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Abstract In this paper, a new technique is investigated to speed up the order of
accuracy for American put option pricing under the Black–Scholes (BS) model. First,
we introduce the mathematical modeling of American put option, which leads to a
free boundary problem. Then the free boundary is removed by adding a small and
continuous penalty term to the BS model that cause American put option problem to
be solvable on a fixed domain. In continuationwe construct themethod of lines (MOL)
in space and reach a non-linear problem and we show that the proposed MOL is more
stable than the other kinds. To deal with the non-linear problem, an algorithm is used
based on the predictor–corrector method which corresponds to two parameters, θ and
φ. These parameters are chosen optimally using a rational approximation to determine
the order of time convergence. Finally in numerical results a second order convergence
is shown in both space and time variables.

Keywords Penalty method · American option pricing · Finite difference method ·
Rational approximation · Method of lines · Predictor–Corrector method

1 Introduction

The development of modern option pricing began with the publication of the Black–
Scholes (BS) option pricing formula in 1973, which was used in computing the value
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of the European option pricing Black and Scholes (1973). This model is so important
in financial mathematics, that Robert Merton and Myron Scholes shared the 1997
Nobel Prize for economics (Fischer Black having died in 1995) because of this inno-
vative Merton (1973) and Myneni (1992). The BS formula computes the value of
an European option pricing based on the underlying asset, strike price, volatility
of the asset, and the expiration time of option pricing Hull (1997). The European
option pricing has the ability of exercising only at expiring date, while the Ameri-
can option pricing could be permitted at any time during the life of option. So, the
American option pricing is more complicated. Analytical solutions of BS models
for American option pricing problems are seldom available, therefore a numerical
techniques must be used. Using numerical methods for solving American option pric-
ing problem has been the subject of numerous researches during the last decades
Barraquand and Pudet (1994), Amin and Khanna (1994) and Broadie and Detem-
ple (1996). Elementary introductions to the topic can be found out, in Kwok (1998),
Kwok (2009), Ross (1999), San-Lin (2000), Meng et al. (2014), Wilmott (1998),
Wilmott et al. (1993), Yonggeng et al. (2002) and Song and Yang (2014). Typi-
cally, at any time there is a particular value of the asset, which makes the bound-
ary between two regions: in one side the option pricing should be hold and the
other side one should exercise it. An extended BS model with a non-linear penalty
source term is considered. The penalty method for solving option pricing prob-
lems was introduced by Zvan et al. (1998). This term allows applicability of BS
model beyond the basic European option pricing. In the penalty method, the free
boundary is removed by adding a small and continuous penalty term to the BS
model. Consequently, it is converted to a non-linear problem and can be solved
on a fixed domain. The non-linear problem will be dealt with by MOL. Afterward,
the non-linear problem is solved by predictor–corrector method which depends on
the parameters θ and φ Fitzsimons et al. (1992). The main idea of this paper is
showing that for many test parameters the backward finite difference (FD) approx-
imation is more stable than the central and forward techniques, which is different
from what presented in Khaliq et al. (2006). Then we use a rational approxima-
tion to speed up the convergence rate in time variable with respect to θ -method
which is of order O(Δt) + O(ΔS)2 for the American option pricing and it is
shown in Fitzsimons et al. (1992) that the order of the given method is O(Δt)2

+ O(ΔS)2.
The remainder of the paper is organized as follows: In Sect. 2, the BS model for

American put option pricing is introduced using the penalty method. The order of
accuracy for the θ -method and some stability conditions for the penalty method are
given in Sect. 3. In Sect. 4, we use theMOL for converting partial differential equation
(PDE) of BS model to an ordinary differential equation (ODE). Then we combine a
particular predictor–corrector method Fitzsimons et al. (1992) with rational approxi-
mation to get high order of accuracy for American put option. In Sect. 5, the numerical
results are presented for various time and space step sizes. Finally, a brief conclusion
is given in Sect. 6.
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2 BS Model for American Put Option Problem by Penalty Method

The BS model for American put option pricing takes the form of a free boundary
problem. Letting S(t) be the price at time t , then the value V (S, t) of an American
put option is formulated as follows Neftci (2000)

∂V

∂t
+ 1

2
σ 2S2

∂2V

∂S2
+ r S

∂V

∂S
− rV = 0, S > S(t), 0 ≤ t < T,

V (S, T ) = max(E − S, 0), S ≥ 0,

V (S(t), t) = E − S(t),

lim
s→∞ V (S, t) = 0,

S(T ) = E,

V (S, t) = E − S, 0 ≤ S < S(t), (1)

where S(t) denotes the free boundary. The parameters σ , r and E denote the volatility
of the underlying asset, the interest rate and the exercise price of the option, respec-
tively. Note that, the value V (S, t) of the option must satisfy the positivity constraint

V (S, t) ≥ max(E − S, 0), S ≥ 0, 0 ≤ t ≤ T, (2)

because, for American put option an early exercise is permitted.
Analytical solution of the BS model of American option pricing problem is seldom

available, therefore a numerical techniques must be used. Thus a penalty term is added
to BS model of American put option and give a non-linear parabolic PDE on a fixed
domain (see Appendices 1 and 2 for more details). The penalty term is given by Zvan
et al. (1998)

εC

V + ε − q(S)
, (3)

where 0 < ε << 1 is a small regularization parameter, C ≥ r E is a positive constant
and q(S) is defined by:

q(S) = E − S. (4)

So the free boundary problem (1) is reduced to the following nonlinear PDE:

∂V

∂t
+ 1

2
σ 2S2

∂2V

∂S2
+ r S

∂V

∂S
− rV + εC

V + ε − q(S)
= 0, S ≥ 0, t ∈ [0, T )

V (S, T ) = max(E − S, 0),

V (0, t) = E,

V (S, t) = 0, as S −→ ∞. (5)

3 The θ -Method and Its Consistency

Following discretization on the domain [0, S∞] × [0, T ], the well-known θ -method
applied to (5) takes the formDuffy (2006) (We apply forward for time steps and central
for space steps):
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V n+1
j −V n

j

Δt
+ 1

2
σ 2S2j

[
θ
V n+1
j−1 −2V n+1

j + V n+1
j+1

ΔS2
+ (1 − θ)

V n
j−1−2V n

j + V n
j+1

ΔS2

]

+ r S j

[
θ
V n+1
j+1 − V n+1

j−1

2ΔS
+ (1 − θ)

V n
j+1 − V n

j−1

2ΔS

]
− r

[
θV n+1

j + (1 − θ)V n
j

]

+ θ
εC

Vn+1
j + ε − q(S j )

+ (1 − θ)
εC

Vn
j + ε − q(S j )

= 0. (6)

We consider θ -methods that arise by treating the penalty term explicitly in (6), that is,
by replacing V n

j by V n+1
j in that term, we obtain

V n+1
j −V n

j

Δt
+ 1

2
σ 2S2j

[
θ
V n+1
j−1 −2V n+1

j + V n+1
j+1

ΔS2
+ (1 − θ)

V n
j−1−2V n

j + V n
j+1

ΔS2

]

+ r S j

[
θ
V n+1
j+1 − V n+1

j−1

2ΔS
+ (1 − θ)

V n
j+1 − V n

j−1

2ΔS

]
− r

[
θV n+1

j + (1 − θ)V n
j

]

+ εC

Vn+1
j + ε − q(S j )

= 0. (7)

A detailed analysis is provided in Nielsen et al. (2002) for certain schemes applied to
(5) using upwind differencing where it was concluded that a time step constraint was
needed to preserve the positivity constraint if the penalty term was treated explicitly.
In particular, for the corresponding linear (or semi-) implicit backward Euler method
the constraint is

Δt ≤ ε

r E
, (8)

see Khaliq et al. (2006).
Now we prove that the θ -method has the order O(Δt)+O(ΔS)2 . By using Taylor

expansion for V n
j+1, V n

j−1 and V n+1
j , we get

V n+1
j = V n

j + Δt

(
∂V

∂t

)n

j
+ (Δt)2

2!
(

∂2V

∂t2

)n

j
+ · · · ,

V n
j+1 = V n

j + ΔS

(
∂V

∂S

)n

j
+ (ΔS)2

2!
(

∂2V

∂S2

)n

j
+ · · · ,

V n
j−1 = V n

j − ΔS

(
∂V

∂S

)n

j
+ (ΔS)2

2!
(

∂2V

∂S2

)n

j
− · · · . (9)

Substituting from (9) in (7) implies

V n
j + Δt

(
∂V
∂t

)n
j + (Δt)2

2!
(

∂2V
∂t2

)n
j
+ · · · − V n

j

Δt
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+ 1

2
σ 2S2j

[
θ

V n+1
j − ΔS

(
∂V
∂S

)n+1
j + (ΔS)2

2!
(

∂2V
∂S2

)n+1

j
− · · · − 2V n+1

j

ΔS2

+
V n+1
j + ΔS

(
∂V
∂S

)n+1
j + (ΔS)2

2!
(

∂2V
∂S2

)n+1

j
+ · · ·

ΔS2

+ (1 − θ)

V n
j − ΔS

(
∂V
∂S

)n
j + (ΔS)2

2!
(

∂2V
∂S2

)n
j
+ · · ·

ΔS2

−2V n
j + V n

j + ΔS
(

∂V
∂S

)n
j + (ΔS)2

2!
(

∂2V
∂S2

)n
j
+ · · ·

ΔS2

]

+ r S j

[
θ

V n+1
j + ΔS

(
∂V
∂S

)n+1
j + (ΔS)2

2!
(

∂2V
∂S2

)n+1

j
· · · − V n+1

j

2ΔS

+ΔS
(

∂V
∂S

)n+1
j − (ΔS)2

2!
(

∂2V
∂S2

)n+1

j
+ · · ·

2ΔS

+ (1 − θ)

V n
j + ΔS

(
∂V
∂S

)n
j + (ΔS)2

2!
(

∂2V
∂S2

)n
j
+ · · ·

2ΔS

−V n
j + ΔS

(
∂V
∂S

)n
j − (ΔS)2

2!
(

∂2V
∂S2

)n
j
+ · · ·

2ΔS

]

− r

[
θ

(
V n
j + Δt

(
∂V

∂t

)n

j
+ (Δt)2

2!
(

∂2V

∂t2

)n

j
+ · · ·

)
− (1 − θ)V n

j

]

+ εC

Vn+1
j + ε − q(S j )

= 0, (10)

or the simplified form

(
∂V

∂t

)n

j
+ O(Δt) + 1

2
σ 2S2j

[
θ

((
∂2V

∂t2

)n+1

j
+ O(ΔS)2

)

+ (1 − θ)

((
∂2V

∂t2

)n

j
+ O(ΔS)2

) ]
+ r S j

[
θ

((
∂V

∂S

)n+1

j
+ O(ΔS)2

)

+ (1 − θ)

((
∂V

∂S

)n

j
+ O(ΔS)2

) ]
− r

[
θ

(
V n
j + Δt

(
∂V

∂t

)n

j
+ O(Δt)

)

+ (1 − θ)

(
V n+1
j + Δt

(
∂V

∂t

)n+1

j
+ O(Δt)

)]
+ εC

Vn+1
j + ε − q(S j )

= 0.

(11)
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By adding and subtracting the term

εC

Vn
j + ε − q(S j )

,

and nothing that

(
∂V

∂t

)n

j
+ 1

2
σ 2S2j

(
∂2V

∂t2

)n

j
+ r S j

(
∂V

∂S

)n

j
− rV n

j + εC

Vn
j + ε − q(S j )

= 0, (12)

we have

1

2
σ 2S2j θ

[(
∂2V

∂t2

)n+1

j
−

(
∂2V

∂t2

)n

j

]
+ r S jθ

[(
∂V

∂S

)n+1

j
− (

∂V

∂S
)nj

]

− rθ
(
V n+1
j − V n

j

)
+ O(Δt) + O(ΔS)2

+ εC

Vn+1
j + ε − q(S j )

− εC

Vn
j + ε − q(S j )

= 0. (13)

Using Taylor expansion we have

(
∂2V

∂t2

)n+1

j
=

(
∂2V

∂t2

)n

j
+ Δt

∂
(

∂2V
∂t2

)n
j

∂t
+ · · · ,

V n+1
j = V n

j + Δt

(
∂V

∂t

)n

j
+ (Δt)2

2!
(

∂2V

∂t2

)n

j
+ · · · , (14)

then by substituting in (13), we obtain

εC

Vn+1
j + ε − q(S j )

− εC

Vn
j + ε − q(S j )

+ O(Δt) + O(ΔS)2 = 0. (15)

On the other hand, for American put option we have

|V n+1
j − q(S j )| < ε, |V n

j − q(S j )| < ε, (16)

thus we write

εC

Vn+1
j + ε − q(S j )

= C

1 + V n+1
j −q(S j )

ε

= C

⎡
⎣1 − V n+1

j − q(S j )

ε
+

(
V n+1
j − q(S j )

ε

)2

− · · ·
⎤
⎦ ,
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εC

Vn
j + ε − q(S j )

= C

1 + V n
j −q(S j )

ε

= C

⎡
⎣1 − V n

j − q(S j )

ε
+

(
V n
j − q(S j )

ε

)2

− · · ·
⎤
⎦ , (17)

since
|V n+1

j −q(S j )|
ε

< 1 and
|V n

j −q(S j )|
ε

< 1.
By substituting

V n+1
j = V n

j + O(Δt),

in (17), we get

εC

Vn+1
j + ε − q(S j )

− εC

Vn
j + ε − q(S j )

= O(Δt). (18)

Therefore, the truncation error of the θ -method is of order O(Δt) + O(ΔS)2. In the
next section, we use the MOL and predictor–corrector technique to get high accuracy
for time and obtain parameters of this method using rational approximation.

4 Rational Approximation and Stability

By defining τ := T − t , we consider (6) in the more conventional form

∂V

∂τ
= 1

2
σ 2S2

∂2V

∂S2
+ r S

∂V

∂S
− rV + εC

V + ε − q(S)
, S ∈ [0, S∞], τ ∈ (0, T ]

V (S, τ = 0) = max(E − S, 0),

V (0, τ ) → Vτ = −rV + εC

V + ε − E
,

V (S, τ ) = 0, S → ∞
V (0, τ ) = E . (19)

Applying the MOL semi-discretization approach Duffy (2006) by using a central FD
for the first order derivative, ∂V

∂S , it can be written in the compact form

∂V

∂τ
= F(τ, V ), V (0) = V0, (20)

where F(τ, V ) = AV+g(τ, V ), inwhich g(τ, V ) is the non-linear discretized penalty
term and A is the nonsymmetric tridiagonal matrix
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−r 0
a(2) b(2) c(2)

a(3) b(3) c(3)
. . .

. . .
. . .

a(N − 2) b(N − 2) c(N − 2)
a(N − 1) b(N − 1) c(N − 1)

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

a(i) = 1

2

σ 2S(i)2

ΔS2
− r S(i)

2ΔS
,

b(i) = −
(

σ 2S(i)2

ΔS2
+ r

)
,

c(i) = 1

2

σ 2S(i)2

ΔS2
+ r S(i)

2ΔS
,

for i = 2, . . . , N − 1.
Now we use the predictor–corrector method for solving (20). For simplicity, we

assume a uniform time step size k. Then for the corrector

V n+1−V n = k

[
1

2
{AV n + gn} + θ{AV n+1 + gn+1} + φ{AV̂ n+1 + ĝn+1}

]
, (21)

we use the θ -method to compute the predicted solution V̂ n+1:

V̂ n+1 − V n = k
[
(1 − θ){AV n + gn} + θ{AV̂ n+1 + ĝn+1}

]
. (22)

For θ = 0 and φ = 1
2 , (21) reduces to the modified Euler method.We treat the implicit

non-linear term g(τ, V ), explicitly, in both the predictor and corrector throughout
evaluating g at the current available values. This yields the following linear implicit
method with tridiagonal coefficient matrix T = I − kθ A,

T V n+1 =
[
I + k

2
A

]
V n + k

[
1

2
gn + (φ + θ)ĝn+1

]
+ φk AV̂ n+1

T V̂ n+1 = [I + k(1 − θ)A] V n + kgn . (23)

The following definitions and lemmas are recalled from Brayton et al. (1972),
Lambert (1978) and Mock (1983). The linear stability properties of the linear implicit
method (23) are determined through applying to the scalar equation ∂v

∂t = λv, Re(λ)

< 0. Applying (23) to this problem yields vn+1 = R(q)vn , q = kλ with the rational
stability function
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R(q)22 = N (q)

D(q)
= 1 + ( 1

2 − θ + φ
)
q + (

φ − θφ − 1
2θ

)
q2

1 − 2θq + θ2q2
, (24)

(see Voss and Casper (1989), Voss and Khaliq (1999) and Fitzsimons et al. (1992)).

Definition 1 A numerical method is said to be A-stable if its region of absolute sta-
bility contains the whole of the left half-plane. A one-step numerical method is said
to be L-stable if it is A-stable and if, in addition, when it is applied to the scalar test
equation y′ = λy, where λ is a complex constant with Re(λ) < 0, it has the form
yk+1 = R(kλ)yk , where | R(kλ) |→ 0 as Re(kλ) → −∞.

Definition 2 Let q be a complex number and let RS
T (q), where S > 0, T > 0, be

given by

RS
T (q) = Σ S

i=0aiq
i

ΣT
i=0biq

i
,

where all the ai and bi are real and a0 = b0 = 1. We say that RS
T (q) is an (S, T )

Rational approximation of order P to eq if RS
T (q) = eq + O(qP+1). If P = S + T ,

it is called the Padé approximation to eq .

Remark 1 Consider the (2, 2) Rational approximation R2
2(q) containing the free

parameters ξ and ζ

R2
2(q; ξ, ζ ) = 1 + 1

2 (1 − ξ)q + 1
4 (ζ − ξ)q2

1 − 1
2 (1 + ξ)q + 1

4 (ξ + ζ )q2
:= N (q)

D(q)
. (25)

It is of order 2 in general and of order 3, if ξ �= 0, ζ = 1
3 . It is a Padé approximation

of order 4, if ξ = 0, ζ = 1
3 .

Theorem 1 Butcher (2008) R2
2(q; ξ, ζ ) is A-stable iff

(a) all poles of R2
2(q; ξ, ζ ) = N (q)

D(q)
are in the right half-plane.

(b) E(y) =| D(iy) |2 − | N (iy) |2≥ 0, for all real y.

Proof The necessity of (a) follows from the fact that if q∗ is a pole, then limq→q∗ |
R(q) |= ∞, and hence |R(q)| > 1, for q close enough to q∗. The necessity of (b)
follows from the fact that E(y) < 0 implies that |R(iy)| > 1, so that |R(q)| > 1 for
some q = −ε + iy in the left half-plane. Sufficiency of these conditions follows from
the fact that (a) implies that R is analytic in the left half-plane so that, by the maximum
modulus principle, |R(q)| > 1 in this region implies |R(q)| > 1 on the imaginary
axis, which contradicts (b). 
�
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Lemma 1 R2
2(q; ξ, ζ ) is A-stable iff ξ ≥ 0, ζ ≥ 0, and L-stable iff ξ = ζ > 0.

Proof Let R2
2(q; ξ, ζ ) be A-stable. Then by Theorem 1, (a) and (b) are true, thus both

of the roots of D(q) = 0 must be in the right half-plane, that is,

q1 = Re

(
1 + ξ + √

(1 − 2ξ + ξ2 − 4ζ )

ξ + ζ

)
≥ 0,

q2 = Re

(
1 + ξ − √

(1 − 2ξ + ξ2 − 4ζ )

ξ + ζ

)
≥ 0,

thus

q1 =
{ 1+ξ

ξ+ζ
if (1 − 2ξ + ξ2 − 4ζ ) < 0,

1+ξ+
√

(1−2ξ+ξ2−4ζ )

ξ+ζ
if (1 − 2ξ + ξ2 − 4ζ ) ≥ 0,

(26)

q2 =
{ 1+ξ

ξ+ζ
if (1 − 2ξ + ξ2 − 4ζ ) < 0,

1+ξ−
√

(1−2ξ+ξ2−4ζ )

ξ+ζ
if (1 − 2ξ + ξ2 − 4ζ ) ≥ 0,

(27)

and

E(y) = 1

4
y4ξζ ≥ 0. (28)

From (28), we conclude that ξ ≥ 0 and ζ ≥ 0, since otherwise, we should have ξ < 0
and ζ < 0, this yields ξ + ζ < 0 and 1 + ξ − √

(1 − 2ξ + ξ2 − 4ζ ) ≤ 0, which
contradicts (27).

Conversely, let ξ ≥ 0, ζ ≥ 0. Then we show that R2
2(q; ξ, ζ ) is A-stable. Since

ξ ≥ 0, ζ ≥ 0, then (28) and (26) are clearly true. To prove (27), it is clear that 1+ξ
ξ+ζ

≥ 0,

when 1− 2ξ + ξ2 − 4ζ < 0. Let 1− 2ξ + ξ2 − 4ζ ≥ 0. Since ξ + ζ ≥ 0, we should
prove 1 + ξ − √

(1 − 2ξ + ξ2 − 4ζ ) ≥ 0. If

1 + ξ −
√

(1 − 2ξ + ξ2 − 4ζ ) < 0,

then

(1 + ξ)2 < 1 − 2ξ + ξ2 − 4ζ,

or equivalently

4ξ < −4ζ,

which contradicts the hypothesis ξ ≥ 0, ζ ≥ 0. Thus by Theorem 1, R2
2(q; ξ, ζ ) is

A-stable.
To prove the second part, let ξ = ζ > 0, then (25) is converted to

R2
2(q; ξ, ξ) = 1 + 1

2 (1 − ξ)q

1 − 1
2 (1 + ξ)q + 1

2ξq
2
. (29)
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Therefore | R2
2(q; ξ, ξ) |→ 0 as Re(q) → −∞, so according to the Definition 1

R2
2(q; ξ, ξ) is L-stable. Conversely, let R2

2(q; ξ, ξ) be L-stable, then by Definition 1, it
is A-stable and so by the first part, we have ξ ≥ 0, ζ ≥ 0, and since | R2

2(q; ξ, ξ) |→ 0,
as Re(q) → −∞, we get ξ = ζ > 0, (see (25)). 
�

According to the Remark 1, and Lemma 1, the predictor–corrector method is
L-stable, if

φ − θφ − 1

2
θ = 0, (30)

and

2θ − 2φ = ξ, 4θ − 1 = ξ,

which implies

φ = −2θ + 1

2
. (31)

Substituting from (31) in (30) and solving it, yields

θ = 1 ±
√
2

2
, φ = −1 ∓ √

2

2
.

We choose

θ = 1 −
√
2

2
, φ = −1 + √

2

2
,

since this choice yields more accurate results on various test problems. We use a
rational approximation for three different kinds of FD and draw the numerical results
for different data of BS model as shown in Fig. 1a, b, c, d and e.

The Fig. 1a, b, c, d and e show that the backward FD is more stable than the forward
and central FDs for the first derivative, ∂V

∂S , of BS model.

5 Numerical Results

The numerical simulations are run on a computer with an Intel(R) Pentium processor
2.00 GHz 8 GB RAM and the software programs are written in Matlab.

Let VPC denote the approximate solution obtained by the MOL and predictor–
corrector method developed in Sect. 4. The error on VPC at the current time (τ = T )

is computed as
Error = max

S
| VPC (S, T ) − V (S, T ) | . (32)

The exact solution V (S, T ), needed in (32) is not available.

Remark 2 For a call (put) option, either European or American, when the current
asset price is higher, it has a strictly higher (lower) chance to be exercised and when
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Fig. 1 a Plots of R(q) for three kinds of FD with σ = 0.25 and r = 0.05. b Plots of R(q) for three kinds
of FD with σ = 0.3 and r = 0.02. c Plots of R(q) for three kinds of FD with σ = 0.2 and r = 0.1. d
Plots of R(q) for three kinds of FD with σ = 0.15 and r = 0.07. e lots of R(q) for three kinds of FD with
σ = 0.1 and r = 0.01

exercises, it induces higher (lower) cash inflow. Therefore, the call (put) option price
functions are increasing (decreasing) of the asset price, that is,

C(S2, τ ; E) > C(S1, τ ; E), S2 > S1,
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Fig. 2 American put option with ε = 0.0001, Nτ = 1, 000, NS = 100, T = 1 and E = 1

or
P(S2, τ ; E) < P(S1, τ ; E), S2 > S1. (33)

It is shown in Fig. 2 that our results are true for T = τ , according to Remark (2).
Therefore, more accurate estimation is obtained using the FD method with a large

number of time and space steps (Nτ , NS).
To compute the error of approximate solution from (32), we save the solution for

NS = 1,000 and Nτ = 10, 100, 1,000, then we compare it with the results obtain
for NS = 10, 50, 200, 400, 800. See the numerical results in Table 1a, b and c for the
above mentioned values of Nτ and NS, and σ = 2, T = 1, S∞ = 2, r = 0.1, E = 1
and ε = T

Nτ
r E (see 8).

In Table 1d, we save the approximate solution for Nτ = 10 and NS = 1,000,
then we change the parameters to NS = 10, 50, 200, 400, 800, σ = 0.25, T = 1,
S∞ = 2, r = 0.02 and E = 1.

Finally, we save the approximate solution for Nτ = 10 and NS = 1,000, then
we change the parameters to σ = 0.3, T = 1, S∞ = 2, r = 0.02, E = 1
and obtain the Table 1e for NS = 10, 50, 200, 400, 800. In this section numerical
solution showed which Δt → 0 (ε −→ 0) the estimated option values provided
by the penalty approach, VPC (S, T ), converge towards the V (S, T ) (in (32)) and
VPC (S, T ) is obtained satisfied financial condition (Remark (2)).

6 Conclusion

We investigated the stability and consistency of American put option pricing and we
showed the truncation error of θ -method is of order O(Δt) + O(ΔS)2. We obtained
a high accuracy by using MOL and predictor–corrector method which depends on
the parameters θ and φ. By using Rational approximation, we obtained θ and φ to
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Table 1 Estimation Error of American option pricing

NS Backward error Central error Forward error CPU time(s)

(a) Error of American put option for Nτ = 10 and ε = 0.01

10 1.2679 × 10−2 1.5970 × 10−2 1.3255 × 10−2 0.04543

50 4.5037 × 10−3 4.6206 × 10−3 4.6354 × 10−3 0.05949

200 6.9110 × 10−4 7.0609 × 10−4 7.2044 × 10−4 0.21503

400 2.2412 × 10−4 2.4433 × 10−4 2.3711 × 10−4 0.95323

800 3.3668 × 10−5 4.1030 × 10−5 3.5918 × 10−5 4.68692

(b) Error of American put option Nτ = 100 and ε = 0.001

10 1.3651 × 10−2 1.4677 × 10−2 1.4070 × 10−2 0.09191

50 3.1311 × 10−3 3.0029 × 10−3 3.1311 × 10−3 0.24059

200 6.0943 × 10−4 6.2683 × 10−4 6.4175 × 10−4 1.96409

400 2.2772 × 10−4 2.3387 × 10−4 2.3978 × 10−4 9.29067

800 3.7923 × 10−5 3.9016 × 10−5 3.9937 × 10−5 47.39064

(c) Error of American put option Nτ = 1000 and ε = 0.0001

10 1.5500 × 10−2 1.6372 × 10−2 1.5935 × 10−2 0.55707

50 2.9990 × 10−3 2.9941 × 10−3 3.1573 × 10−3 1.99824

200 6.2395 × 10−4 6.4037 × 10−4 6.5615 × 10−4 16.52437

400 2.3376 × 10−4 2.4005 × 10−4 2.4590 × 10−4 98.65016

800 3.8932 × 10−5 3.9940 × 10−5 3.9937 × 10−5 408.28682

(d) Error of American put option for Nτ = 10 and ε = 0.01

10 1.2767 × 10−1 1.9765 × 10−1 2.1915 × 10−1 0.05949

50 1.1722 × 10−1 1.9322 × 10−1 2.1862 × 10−1 0.05949

200 7.5160 × 10−4 1.2655 × 10−3 1.6608 × 10−1 0.22503

400 2.8308 × 10−4 4.7687 × 10−4 6.1937 × 10−4 0.98343

800 4.7284 × 10−5 7.9667 × 10−5 1.0118 × 10−4 4.49312

(e) Error of American put option for Nτ = 10 and ε = 0.01

10 8.3574 × 10−2 1.5376 × 10−1 1.7099 × 10−1 0.05949

50 8.2769 × 10−2 1.6249 × 10−1 1.6182 × 10−1 0.05949

200 9.8384 × 10−4 1.3118 × 10−3 1.4079 × 10−3 0.23463

400 3.7009 × 10−4 4.9468 × 10−4 5.3061 × 10−4 0.99143

800 6.1777 × 10−5 8.2897 × 10−4 8.8788 × 10−5 4.49312

guarantee L-stability for American put option under the popular BS model. We used
three different kinds of FD, i.e. backward, central and forward FDs for the first order
space derivative in BS model, ∂V

∂S and showed by numerical results that the backward
method is more stable and more accurate than the others for ∂V

∂S .

Acknowledgments The authors would like to thank anonymous reviewers for their useful comments and
suggestions.
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Appendix 1

Solving an Ordinary Differential Equation by Penalty Method

We consider a simple ordinary differential equation

{
u′ = −u,

u(0) = 2,
(34)

with the additional constraint that
u(t) ≥ 1. (35)

The solution to this problem can be computed analytically and is given by

u(t) =
{
2e−t for t ≤ ln2,
1 for t > ln2.

(36)

Suppose, however, that wewant to solve the initial-value problem (34)–(35) numer-
ically. Then we would have to check, for each time step, whether the constraint is
satisfied or not. Let un be a numerical approximation of u(tn) where tn = nΔt , and
Δt > 0 is the time step. We compute a numerical solution of the initial-value problem
(34)–(35) using an explicit finite-difference scheme:

un+1 = max((1 − Δt)un, 1), n ≥ 0, (37)

where u0 = 2. This corresponds to a Brennan-Schwartz type of algorithm for pricing
American put options Brennan and Schwartz (1977).

An equation which approximates this property fairly well can be derived by adding
an extra term to equation (35). Consider the initial-value problem

{
v′ = −v + ε

v+ε−1 ,

v(0) = 2,
(38)

where ε > 0 is a small parameter. Note that, initially, v = 2, so the penalty term is

ε

v + ε − 1
.

For more detail see Nielsen et al. (2002).
Now we use predictor–corrector method developed in Sect. 4 for solving (38). For

simplicity, we assume a uniform time step size Δt and T = 1 + Δtθ , then for the
corrector

T vn+1 =
(
1 − Δt

2

)
vn + Δt

2

ε

vn + ε − 1
+ Δt (θ + φ)

ε

v̂n+1 + ε − 1
, (39)
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Table 2 Error of penalty method with Δt = ε
1+ε

ε Δt Error CPU time(s)

0.1 9.09 × 10−2 2.2457 × 10−1 0.01289

0.01 9.90 × 10−3 3.5477 × 10−2 0.01670

0.001 9.99 × 10−4 5.2163 × 10−3 0.02124

0.0001 1.00 × 10−4 7.2493 × 10−4 0.46150

the predicted solution v̂n+1 is given by

T v̂n+1 = (1 − Δt (1 − θ))vn + Δt
ε

vn + ε − 1
. (40)

Table 2, show the maximum absolute error:

Error = max
n

| u(tn) − vn |,

where u(tn) and vn are the exact and approximate solution of Eq. (34), respectively.

Appendix 2

Penalty Method for American Put Option Nielsen et al. (2002)

In this section we derive an implicit and a semi-implicit scheme. For both schemes we
assume that

C > r E . (41)

Under this mild assumption it turns out that the implicit scheme is stable, whereas the
semi-implicit scheme is stable if the additional condition (8) (see Sect. 3) is satisfied.

Using the notation introduced above, we consider forward FD for ∂V
∂S and obtain

the following scheme:

V n+1
j − V n

j

Δt
+ 1

2
σ 2S2j

V n
j+1 − 2V n

j + V n
j−1

(ΔS)2
+ r S j

V n
j+1 − V n

j

ΔS

− rV n
j + εC

V
n+ 1

2
j + ε − q j

= 0. (42)

Here, we put V
n+ 1

2
j = V n

j in the fully implicit scheme and V
n+ 1

2
j = V n+1

j in the
semi-implicit scheme. The scheme (42) can be rearranged as

(
1 + rΔt + Δt

(ΔS)2
S2jσ

2 + r
Δt

ΔS
S j

)
V n
j = V n+1

j
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+
(
1

2

Δt

(ΔS)2
S2jσ

2 + r
Δt

ΔS
S j

)
V n
j+1 +

(
1

2

Δt

(ΔS)2
S2jσ

2
)
V n
j−1

+ εΔtC

V
n+ 1

2
j + ε − q j

. (43)

Our aim is to show that
V n
j ≥ max(q j , 0), ∀ j, n. (44)

We do this in two steps; first, we show that

V n
j ≥ q j ∀ j, (45)

and next that
V n
j ≥ 0. (46)

In order to prove (45), we introduce

unj = V n
j − q j . (47)

By substituting (47) in (43) and that q j = E − S j , we have

(
1 + rΔt + Δt

(ΔS)2
S2jσ

2 + r
Δt

ΔS
S j

)
unj = un+1

j

+
(
1

2

Δt

(ΔS)2
S2jσ

2 + r
Δt

ΔS
S j

)
unj+1 +

(
1

2

Δt

(ΔS)2
S2jσ

2
)
unj−1

+ εΔtC

u
n+ 1

2
j + ε

− rΔt (E − S j ), (48)

where u
n+ 1

2
j = unj in the fully implicit case and u

n+ 1
2

j = un+1
j in the semiimplicit

case. Define
un = min

j
unj , (49)

and let k be an index such that
unk = un . (50)

For j = k, it follows from (48) that

(
1 + rΔt + Δt

(ΔS)2
S2kσ

2 + r
Δt

ΔS
Sk

)
un ≥ un+1

k

+
(
1

2

Δt

(ΔS)2
S2kσ

2 + r
Δt

ΔS
Sk

)
un +

(
1

2

Δt

(ΔS)2
S2kσ

2
)
un

+ εΔtC

u
n+ 1

2
k + ε

− rΔt E, (51)
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or

(1 + rΔt)un ≥ un+1
k + εΔtC

un+ 1
2 + ε

− rΔt E . (52)

Let us now consider the fully implicit case. Here (52) takes the form

(1 + rΔt)un − εΔtC

un + ε
+ rΔt E ≥ un+1

k ≥ un+1. (53)

If we assume that
un+1 ≥ 0, (54)

then we have
F(un) ≥ 0, (55)

where

F(x) = (1 + rΔt)x − εΔtC

x + ε
+ rΔt E . (56)

Since
F(0) = Δt (r E − C) ≤ 0, (57)

(see (41)), and

F ′(x) = 1 + rΔt + εΔtC

(x + ε)2
> 0, (58)

it follows from (55) that
un ≥ 0. (59)

Consequently, by induction on n, it follows from (47) that

V n
j ≥ q j , ∀ j, n = N + 1, N , . . . , 0. (60)

Next we consider the semi-implicit scheme and we assume that (8) holds. It follows
from (52) that

(1 + rΔt)un ≥ un+1
k (un+1

k + ε) + εΔtC − rΔt E(un+1
k + ε)

un+1
k + ε

, (61)

we assume that un+1 ≥ 0, and thus un+1
k ≥ 0.

Let
G(x) = x(x + ε) + εΔtC − rΔt E(x + ε), (62)

then
G(0) = Δtε(C − r E) ≥ 0, (63)

(see (41)), and
G ′(x) = 2x + ε − rΔt E, (64)

so G ′(x) ≥ 0 for x ≥ 0 provided that (8) holds. Hence, we have

unj ≥ 0, (65)

123



The Stability Analysis of Predictor–Corrector Method 273

and thus by (47)

V n
j ≥ q j , ∀ j, n = N + 1, N , N − 1, . . . , 0. (66)

Next we consider (46), i.e, we want to show that

V n
j ≥ 0. (67)

As above, we define
V n = min

j
V n
j , (68)

and let k be an index such that
V n
k = V n . (69)

It follows from (43) that(
1 + rΔt + Δt

(ΔS)2
S2kσ

2 + r
Δt

ΔS
Sk

)
V n ≥ V n+1

k

+
(
1

2

Δt

(ΔS)2
S2kσ

2 + r
Δt

ΔS
Sk

)
V n +

(
1

2

Δt

(ΔS)2
S2kσ

2
)
V n

+ εΔtC

V
n+ 1

2
k + ε − qk

, (70)

or

(1 + rΔt)V n ≥ V n+1 + εΔtC

V
n+ 1

2
k + ε − qk

. (71)

Since we have just seen that

V
n+ 1

2
k ≥ qk, (72)

both in the fully implicit and in the semi-implicit case, it follows from (71) that

(1 + rΔt)V n ≥ V n+1, (73)

and then it follows by induction on n that

V n
j ≥ 0, ∀ j, n = N + 1, N , . . . , 0. (74)

Theorem 2 If (41) holds, the numerical solution computed by the fully implicit scheme
(42) satisfies the bound

V n
j ≥ max(E − S j , 0), ∀ j, n = N + 1, N , . . . , 0. (75)

Similarly, if (41) and (8) hold, the numerical solution computed by the semi-implicit
version of (42) satisfies the bound (75).

We can implement backward and central FDs similar to forward FDs for ∂V
∂S and

obtain similar results.
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