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Abstract This analysis explores robust designs for an applied macroeconomic
discrete-time LQ tracking model with perfect state measurements. We develop a pro-
cedure that reframes the tracking problem as a regulator problem that is then used
to simulate the deterministic, stochastic LQG, H-infinity, multiple-parameter mini-
max, and mixed stochastic/H-infinity control, for quarterly fiscal policy. We compare
the results of the five different design structures within a closed-economy accelerator
model using data for the United States for the period 1947–2012. When the con-
sumption and investment tracking errors are more heavily emphasized, the H-infinity
design renders the most aggressive fiscal policy, followed by the multiple-parameter
minimax, mixed, LQG, and deterministic versions. When the control tracking errors
are heavily weighted, the resulting fiscal policy is initially more aggressive under the
multi-parameter specification than under the H-infinity andmixed designs. The results
from both weighting schemes show that fiscal policy remains more aggressive under
the robust designs than the deterministic model. The simulations show that the multi-
parameter minimax and mixed designs provide a balancing compromise between the
stochastic and robust methods when the worst-case concerns can be primarily limited
to a subset of the state-space.
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1 Introduction

Optimal control in applied macroeconomic analysis requires the modeling of equa-
tion parameters and disturbances in order to deal with uncertainty. Kendrick’s (1981)
partial-adjustment, closed-economy macroeconomic accelerator model explores opti-
mal control policies under multiplicative uncertainty by estimating stochastic equa-
tion parameters using adaptive control algorithms. Kendrick’s innovative analysis also
explores additive uncertainty, which is the more commonly specified uncertainty that
arises through the error terms in the system equations.

Most of the earlier control systems research focused on the linear-quadratic-
Gaussian (LQG) approach, in which the disturbances were modeled as random
Gaussian variables (Chow 1975; and Sage and White 1977), or on adaptive control,
where the unknown disturbances are learned through complex feedback and feed-
forward loop algorithms (Kendrick 1981, 2005). The primary problem with these
adaptive and LQG probabilistic approaches is that minimizing the expected value of
a performance index leads to maximum system performance in the absence of mis-
specification, but it can lead to poor performance and instability if it is misspecified
(Tornell 2000). This inadequacy creates a need for robust design considerations.

Robust control modeling explicitly accounts for imprecise system models or error
models in order to synthesize a control policy that stabilizes a family of models (Bern-
hard 2002). H∞-optimal control was the primary subject of robust control research
in the field of engineering in the 1980s and 1990s, and has been extensively applied
in economics (Basar 1992; Hansen and Sargent 2008). Basar and Bernhard (1991)
explore H∞-optimal control designs for continuous and discrete time systems with
both perfect and imperfect information structures. Linear-quadratic (LQ) specifica-
tions in an H∞-optimal control model represent a minimax approach that seeks to
achieve a robust design by minimizing a performance index under the worst possible
disturbances, where the disturbances maximize that same performance index. Robust
is defined as guaranteed performance for any disturbance sequence that satisfies the
H∞-norm bound.

1.1 Purpose and Scope

The purpose of this paper is to integrate an H∞-optimal control design, a multiple-
parameter minimax design, and a mixed stochastic/robust design into a macroeco-
nomic accelerator model in order to compare the robust design policies with the
deterministic and LQG stochastic policies. The paper builds upon Kendrick’s (1981)
closed-economy LQ (Linear-Quadratic) tracking model that was applied to the US
using quarterly data from 1947 to 1969 in order to evaluate optimal fiscal policy. Our
analysis converts the LQ tracking problem to an LQ regulator design, and formulates
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the error structure of the model for five different cases: deterministic, LQG stochastic,
H∞-optimal control, multiple-parameter minimax, and stochastic-H∞-mixed optimal
control.

TheH∞-optimal control, multiple-parameter minimaxmodel, andmixed optimiza-
tion models are specified as soft-constrained games. We develop a Matlab software
program that allows the user to select the weighting parameters of the game to achieve
disturbance attenuation. The empirical analysis re-estimates an expanded version of
Kendrick’s (1981)model using quarterly data from 1947 to 2012. The estimatedmodel
shows fiscal crowding-in for consumption, and fiscal-crowding out for investment.
Using an augmented performance index, we employ the estimated parameters to sim-
ulate the model and compare the trajectories of the deterministic, stochastic, robust,
and mixed control designs. The results show that the multiple-parameter minimax and
mixed designs can provide a balance between the LQG model’s potential failure due
to worst-case scenario exposure, and the overly aggressive robust policy that operates
under consistent extreme pessimism.

1.2 Contribution to Research on Robustness and Fiscal Policy

The most widely used approach to robustness in macroeconomics has been that of
Hansen and Sargent (2007, 2008), which focuses on using entropy to measure model
misspecification, imploring both state-space (time domain) and frequency domain
methods. Svec (2012) and Karantounieas (2013) both employ the Hansen and Sar-
gent robust control approach within the Lucas and Stokey (1983) complete markets
economy without capital, where exogenous government spending is financed by labor
income taxes. Svec (2012) studies how an altruistic government optimally sets labor
taxes and one-period debt in an economy, where uncertain consumers believe that
the true approximating probability model lies within a range on probabilities. The
study finds that the political government that maximizes consumer welfare under
consumers’ own subjective utility functions finances a smaller portion of a gov-
ernment spending shock from taxes than it would if consumers did not face model
uncertainty. Karantounieas (2013) also explores optimal taxes when the government
authorities trusts an exogenous government spending probability model, but the pub-
lic has pessimistic expectations. The paternalistic planner will employ distortionary
taxation by exploiting household mispricing and shifting household expectations,
leading to higher tax rates during favorable shocks and lower tax rates for adverse
shocks.

Carvalho (2005),Hansen et al. (1999),Hansen andSargent (2008), Svec (2012), and
Karantounieas (2013) are all representative agent models where robustness enters into
government policy analyses through Ramsey consumer utility functions that depend
on consumption and leisure. In contrast, our analysis calculates optimal robust govern-
ment spending for unknown disturbances in aggregate consumption and investment
where the government is minimizing a quadratic performance index function of the
tracking errors. Hansen and Sargent (2008) explores robust control in the context of
the LQ regulator, but does not consider the LQ tracking problem, nor the macroeco-
nomic accelerator model. As far as we know, our analysis is the first application of the
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H∞-control, multi-parameter minimax, and stochastic-H∞-mixed control approaches
to generate either optimal fiscal or monetary policy within the macroeconomic LQ-
tracking problem.

Our empirical analysis confirms the usefulness of the accelerator model used in
Kendrick (1981) and Kendrick and Shoukry (2013). The estimations in Kendrick
(1981) experienced problems with the poor fit of some variables, and problems with
coefficient signs that were opposite of theoretical expectations. The empirical results
of our model show that the accelerator model achieves superior measurement and
performance when constructed as a second-order difference equation system, which
is consistent with the larger lag structure inKendrick and Shoukry (2013). The fit of the
model using a large data set alignswith the theoretical expectations of the consumption
crowding-in effect and the investment crowding-out effect of government spending,
and further establishes the accelerator model as being a fundamental tool for use in
conducting policy analysis.

Kendrick and Amman (2010), and Kendrick and Shoukry (2013), demonstrate the
benefits from employing a quarterly fiscal policy over an annual fiscal policy. They
find that more frequent policy changes can respond more quickly to downturns, and
achieve more stabilization while creating less additional public debt. The various
designs considered in this paper provide a further rationale for the potential gains
from quarterly fiscal policy, since the policymakers optimally employmore aggressive
strategies that account for worst-case concerns. Kendrick and Amman (2010) consider
the importance of both 1-period and 2-period lags in the control variable structurewhen
evaluating quarterly policy, but do not consider the 2-period lags in the state variables,
as we have done here. Kendrick and Amman (2006) discuss modeling stochastic
systems with forward-looking variables, but our analysis does not employ forward-
looking loops.

One limitation of robust control has been the model solution and computational
difficulty. H∞-controls are determined for unstructured uncertainty sets with bounded
perturbations with no particular form. Despite this difficulty, H∞-control rules are
much better developed and much simpler than the control rules for the structured
uncertainty modeled by the μ-structured singular value as a measure of performance
(Williams 2008). Dennis et al. (2009) use structural-form methods to solve robust
control problems in order to avoid the onerous state-space methods used in Hansen
and Sargent (2008). Our analysis develops an efficient method for obtaining the state-
space representation of the robust LQ tracking accelerator model, and provides a
computationally feasible framework for its solutions.

1.3 Policy Activism, and Issues in Robust Control

It should be clarified that robust control does not imply either more aggressive, or
more dampened policy. Bernhard (2002) points out that robust control designs are
not necessarily more cautious than designs that rely on an uncertain model. In some
cases, including the simulations in this paper, the robust model may call for even
greater control effort by the policymaker. For example, Dennis et al. (2009) explore
robust monetary policy within a New Keynesian model, and find that central bank

123



Macroeconomic LQ-Tracking Model 125

policy will become optimally more activist in order to curb the additional persistence
of inflation that occurs in response to shocks. Onatski and Stock (2002) also find that
monetary policy is generally more aggressive under robust specifications.

However, in contrast to critics of the worst-case design approaches, Barlevy (2011)
argues that robust control strategies do not always respondmore aggressively to incom-
ing news than would optimal policies in models without uncertainty. The Brainard
Principle holds when increased uncertainty or robust errors reduce the level of policy
activism (Brainard 1967). Zakovic et al. (2007) examine a model of the euro area,
and find that monetary policy rules under a minimax design approach do not lead to
extreme activism, hence upholding the Brainard Principle.

The simulations in this paper explore the case where the state tracking errors are
assigned a relatively large weight, and also the case where the control tracking errors
are assigned a large weight. In both cases, our analyses found that fiscal policy was
generally the most aggressive under the H∞-optimal control strategies with distur-
bance attenuation. When additional disturbance parameter weights are introduced for
the multiple-parameter minimax approach, and when the mixed policy is employed,
optimal fiscal policy becomes less aggressive than under the H∞-strategy, but is still
more active than deterministic and LQG control policies. This is consistent with
Bernhard (2002), Onatski and Stock (2002), and Dennis et al. (2009), which have
found that the robust monetary trajectory was more aggressive than in the stochastic
case. Our results are also consistent with Tornell (2000), which finds that H∞-derived
stock market forecasts are more sensitive to news than are rational expectations fore-
casts. Tornell’s (2000) simulations demonstrate that when the degree of robustness
increases, stock prices adjust more aggressively, and become more volatile relative to
dividends.

The conclusions in our study do not align with those in Zakovic et al. (2007) and
Barlevy (2011), which find that robust policy follows the Brainard Principle whereby it
is more conservative. However, our analysis demonstrates that the primary concern is
not simplywhether or not the control is more aggressive under the robust design versus
the deterministic design. Instead, the emphasis should be the selection from among
a range of strategies which each lead to different control trajectories that provide
a tradeoff between the degrees of freedom in the parameter selection, the level of
robustness, and the balance between risk exposure and pessimism. Taken together, the
conclusions from our accelerator model with two state equation disturbances show
that the behavior of the system is likely to be complex and difficult to predict a priori;
hence, there is a need for advanced simulation.

Robust modeling does have some considerable limitations. Diebold (2005) points
out that most robust modeling in monetary policy may be naively complacent because
the methods are aimed at dealing with models’ local deviations from certainty, when
the problem may actually entail global deviations from uncertainty. Thus, when omit-
ted variables render the model set too small, the minimax policy trajectory will be
incompletely robustified. Another consideration in robust design is that the system
must be formulated properly with an appropriately accurate model of the system;
otherwise, optimizing the wrong controller makes performance worse instead of bet-
ter.
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2 Macroeconomic Model Derivation for Deterministic and LQG Optimal
Control

This section develops a version of the Kendrick (1981) and Kendrick and Shoukry
(2013) partial-adjustment, closed-economy macroeconomic accelerator model. Let
the variables be defined as follows:

Ck = total personal consumption expenditures in period k, 2005 dollars
C∗
k = desired consumption, or target consumption, in period k

Ik = gross private domestic investment in period k, 2005 dollars
I ∗
k = desired investment, or target investment, in period k
Yk = gross domestic product in period k, 2005 dollars, minus net exports of goods
and services, 2005 dollars, so that Yk = GDP – NX
Gk−1 = government obligations in period k – 1 that will result in total purchases
of goods and services in period k, 2005 dollars
G∗

k = desired government obligations, or target obligations, in period k

The model is linear time-invariant (LTI), so that all of the coefficients in the linear
equations are assumed to be constant over the entire time horizon. This allows for the
use of standard techniques such as OLS (ordinary least squares) regression to estimate
the equations. However, the optimal control solutions below will also work when the
equations have time-variant coefficients, so the state-space notation reflects this.

The target consumption level is assumed to be a linear function of national output,
as shown in Eq. (1). The level of consumption in period k follows an accelerator frame-
work, and is determined by the previous period’s consumption level plus a fraction
of the difference between the current targeted level and the last period level, plus a
fraction of the consumption level two periods earlier, as shown in Eq. (2).

C∗
k = a + bYk (1)

Ck = Ck−1 + α1(C
∗
k − Ck−1) + α2Ck−2 (2)

Equations (3) and (4) specify the investment functions. The targeted level of invest-
ment in Eq. (3) is a linear function of the difference between the current period invest-
ment and the investment level in the previous period, plus and adjustment for the level
of government spending in the previous period. The fiscal effect on the target invest-
ment level can either be a positive crowding-in, or a negative crowding-out, depending
on the coefficient signs. This is consistent with the empirical findings in Leeper et al.
(2010), in which both the speed of the fiscal adjustment and the agents’ fiscal fore-
sight have some impact on the policy effectiveness, where government investmentwith
comparatively weak productivity can dictate a contractionary government investment
policy in the long-run. The current level of investment in Eq. (4) follows its own accel-
erator function, which is driven by the target investment, and the levels of consumption
and investment in the previous two periods.

I ∗
k = e 1 + e 2(Ik − Ik−1) + e 3Gk − 1 (3)

Ik = Ik−1 + θ1(I
∗
k − Ik−1) + θ2 Ik−2 + θ3(Ck−1 − Ck−2) (4)
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Kendrick’s (1981) model does not include the two-period lagged variables in order
to remain simple. Kendrick and Shoukry (2013) does use two-period lagged variables
on a larger data set, and includes the interest rate. The empirical estimates using the
revised data on our model, which are presented below, showed that the first-order
difference equations contained a high degree of autocorrelation in the error terms,
while the second-order difference equations were a better fit, and did not exhibit
autocorrelated errors. In fact, the results show that the double-lag accelerator model
produces statistically significant coefficients that are consistent with the theoretical
predictions regarding their signs and magnitudes.

Equation (5) gives the national income identity, where the national output variable
Y represents real GDP minus net exports.

Yk = Ck + Ik + Gk−1 (5)

Substitute the national income identity in Eq. (5) into Eq. (1). Then substitute Eq. (1)
into Eq. (2), and substitute Eq. (3) into Eq. (4). After rearranging and including the
disturbance term variables w1,k and w2,k , this yields Eqs. (6) and (7).

Ck = δ0 + δ1Ck−1 + δ2 Ik−1 + δ3Gk−1 + δ4Ck−2 + δ5 Ik−2 + δ6w1,k (6)

Ik = λ0 + λ1Ck−1 + λ2 Ik−1 + λ3Gk−1 + λ4Ck−2 + λ5 Ik−2 + λ6w2,k (7)

where

z1 = 1 − α1b; z2 = 1 − θ1e2; δ0 = α1a

z1
+ α1b θ1e1

z1 z2
;

δ1 = 1 − α1

z1
+ α1b θ3

z1 z2
; δ2 = α1b (1 − θ1 − θ1e2)

z1 z2
;

δ3 = α1b

z1
+ α1b θ1e3

z1 z2
;

δ4 = α2

z1
− α1b θ3

z1 z2
;

δ5 = α1b θ2

z1 z2
;

λ0 = θ1 e1
z2

; λ1 = θ3

z2
; λ2 = 1 − θ1 − θ1 e2

z2
;

λ3 = θ1e3
z2

; λ4 = − θ3

z2
; λ5 = θ2

z2
(8)

The coefficients on the disturbance terms are δ6 = λ6 = 0 in the deterministic
model, and will be δ6 = λ6 = 1 in the stochastic LQG model and all of the robust
designs.

This LTImodel in Eqs. (6) and (7) has the advantage of being derived from an accel-
erator framework, which has proven its utility over many decades, such as in Chow
(1967), Kendrick (1981), and Kendrick and Shoukry (2013). Moreover, Eqs. (6) and
(7) can be estimated and simulated without knowing the underlying parameters in
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Eqs. (1)–(4). Note that neither Kendrick (1981), Kendrick and Shoukry (2013), nor
this analysis, suggests that this model should directly be applied as a complete econo-
metric forecasting model. Rather, the model is useful for simulating the performance
of various optimal control policy techniques, and then evaluating the effects that they
would have if employed within a larger model, such as the 135-equation model in
Taylor (1993). It also provides a framework to demonstrate exactly how to incor-
porate the deterministic, stochastic, and H∞-optimal control techniques within any
given macroeconomic linear-quadratic (LQ) tracking model in order to construct and
evaluate policy. For these objectives, this relatively simple model offers much insight.

We define the following LQ tracking problem. The objective is for the fiscal pol-
icymaker to choose the level of government purchases so that it will minimize the
quadratic performance index given in Eq. (9) subject to the two linear state equations
given by Eqs. (6) and (7). If the coefficients on the error terms in Eqs. (6) and (7) are
set equal to zero, then the model becomes deterministic.

min
G

J (G) = 1

2

[
q1, f (CK+1 − C∗

K+1)
2 + q2, f (IK+1 − I ∗

K+1)
2
]

+1

2

K∑
k=1

[
q1,k(Ck − C∗

k )
2 + q2,k(Ik − I ∗

k )2 + Rk(Gk − G∗
k)

2
]

+1

2

K+1∑
k=1

[
q3,k

{
(Gk − Gk−1) − (Gk − Gk−1)

∗}2] (9)

This LQ tracking problem has two state variables, consumption (C) and invest-
ment (I ), and one control variable (G). The benefits and drawbacks of the symmetric
quadratic performance index for economic and engineering applications need not be
discussed here, since they are well known, and have been discussed in previous liter-
ature Kendrick (1981).

In Eq. (9), the policymaker is penalized for deviations of consumption, investment,
and government spending from their target values. However, the last term in the track-
ing index in Eq. (9) offers a new contribution to the literature. The policymaker is also
penalized for large changes in government spending between periods. This innovation
to the model is an important pragmatic consideration because government policy-
makers will prefer more stable spending patterns in the ongoing budget appropriation
process, and will not desire large fluctuations from the previous budget. This also
reflects the fact that most new budgets are largely designed by adjusting the prevail-
ing budget on a line-by-line basis. Our simulations also demonstrate the additional
importance of this term when robust modeling designs are used.

The following procedure rewrites the above equations in a state-space form that
transforms a Linear-Quadratic (LQ) tracking problem into a canonical LQ regulator
problem to be employed in deterministic, stochastic LQG, and robust control. Trans-
forming the tracking problem into a regulator problem requires increasing the number
of state variables in order to incorporate the targets into the state-space. The tracking
problemcan be rewritten as anLQ regulator problemwith eleven state variables, eleven
state equations, and one control variable. Although this transformation creates a higher
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dimensional state-space, it greatly simplifies the subsequent solution procedures for
the deterministic, stochastic, H∞- optimal control, multiple-parameter minimax, and
mixed problems. This exploration of the latter two methods is a new contribution to
the minimax literature.

There are two methods for handling the constant terms in Eqs. (6) and (7) when
writing the state-space system in a standard form. Kendrick and Amman (2006) use a
vector of ones for the system, and thenmultiply this by a coefficientmatrix that consists
of the constants in each of the state equations. This leads to an extra additive matrix
term in the system state equation. The present transformation uses another approach
that avoids the use of the additional additive term in the linear matrix state equation.
The tradeoff is that this will require an additional state variable. The constants can be
effectively incorporated into the set of state variables as an additional state variable as
follows. Rather than using a vector of ones, equation (10) defines a variable that is a
sequence of recurring ones for all k = 1, . . ., K .

ck+1 = 1ck; c1 = 1 (10)

Based on this equation and its initial value of 1, ck = 1 for all k = 1, . . ., K . This
new state variable consisting of a sequence of ones serves as a placeholder in each
state equation, where the coefficient of this ck variable in each individual equation
is the constant. So, the constant terms in Eqs. (6) and (7) become δ0ck and λ0ck ,
respectively, in the state space equations.

Although this analysis will only examine time invariant coefficients, note that the
method used in Eq. (10) could be altered to include the time variant case. The variable
ck will grow or shrink over time if the coefficient in Eq. (10) is greater than 1, or less
than 1, respectively. In those cases, the constants in Eqs. (6) and (7) would thus grow
or shrink over the time horizon.

The model allows for optimal consumption, investment, and government purchases
to grow at quarterly target rates of gC,k , gI,k, gG,k , respectively, that are specified by
the fiscal policymaker, which results in an annual growth rate of (1 + gi,k)4 per year.
The consumption, investment, and government purchases tracking equations can thus
be written, respectively, as

C∗
k+1 = (1 + gC,k)C

∗
k ; I ∗

k+1 = (1 + gI,k)I
∗
k ; G∗

k+1 = (1 + gG,k)G
∗
k (11)

The state variables are defined as follows:

x1,k = Ck, x2,k = Ik, x3,k = ck, x4,k = C∗
k , x5,k = I ∗

k , x6,k = G∗
k

x7,k = Gk−1, x8,k = Gk−1 − Gk−2, x9,k = (Gk−1 − Gk−2)
∗

x10,k = Ck−1, x11,k = Ik−1 (12)

Define the scalar control variable as difference between the actual and targeted level
of government purchases so that

uk = Gk − G∗
k (13)
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Since the control variable, uk , includes the negative of the targeted level of gov-
ernment purchases, G∗

k , this target variable will be added to the first state equation.
The net of effect of adding and subtracting the same variable is 0, but this allows the
problem to be written in standard LQ regulator format. Once the optimal control has
been simulated to produce the values for uk , the target level of government purchases,
G∗

k , will have to be added to uk in order to recover the values for government pur-
chases, Gk . The lagged actual value of government purchases, Gk − 1, is recovered in
the system output by the state variable x7,k .

Expressions Eq. (10) through Eq. (13) can then be combined towrite the newmatrix
state equation as

xk+1 = Akxk + Bkuk + Dkwk; uk = Gk − G∗
k ; wk =

[
w1,k
w2,k

]
;

x(1) = x1 (14)

where the state-space is given by

xk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ck

Ik
ck
C∗
k

I ∗
k

G∗
k

Gk−1
Gk−1 − Gk−2

(Gk−1 − Gk−2)∗
Ck−1
Ik−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,1
x2,1
x3,1
x4,1
x5,1
x6,1
x7,1
x8,1
x9,1
x10,1
x11,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ3
λ3
0
0
0
0
1
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Dk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ6 0
0 λ6
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

Ak =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1 δ2 δ0 0 0 δ3 0 0 0 δ4 0
λ1 λ2 λ0 0 0 λ3 0 0 0 0 λ4
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 + gC,k 0 0 0 0 0 0 0
0 0 0 0 1 + gI,k 0 0 0 0 0 0
0 0 0 0 0 1 + gG,k 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 gG,k 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

First, consider the deterministic LQ regulator problem where δ6 = λ6 = 0. After
rewriting expression Eq. (9) based on the state variable definitions in Eq. (10) through
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Eq. (16), the objective is to minimize the performance index

min
u

J (u) = xTK+1Q f xK+1 +
K∑

k=1

[
xTk Qkxk + uTk Rkuk

]
(17)

subject to equation Eq. (14), where the performance index weights are

Qk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1,k 0 0 −q1,k 0 0 0 0 0 0 0
0 q2,k 0 0 −q2,k 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
−q1,k 0 0 q1,k 0 0 0 0 0 0 0
0 −q2,k 0 0 q2,k 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 q3,k −q3,k 0 0
0 0 0 0 0 0 0 −q3,k q3,k 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

Q f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1, f 0 0 −q1, f 0 0 0 0 0 0 0
0 q2, f 0 0 −q2, f 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
−q1, f 0 0 q1, f 0 0 0 0 0 0 0
0 −q2, f 0 0 q2, f 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 q3,K+1 −q3,K+1 0 0
0 0 0 0 0 0 0 −q3,K+1 q3,K+1 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

The solution to the LQ regulator problem is found by computing the recursive
Eqs. (20) and (21) offline in retrograde time.

Fk =
(
BT
k Pk+1Bk + Rk

)−1
BT
k Pk+1Ak (20)

Pk = Qk + AT
k Pk+1 (Ak − Bk Fk) ; Pk+1 = Q f (21)

These recursive equations are much simpler to compute than the longer recursive
equations employed by Kendrick (1981), Amman (1996), and Chow (1975) that arise
when solving theLQ tracking problem.Using the values computed in (20) andEq. (21),
the unique optimal feedback control policy is computed in forward time by

u∗
k = −Fk xk (22)
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The optimal closed-loop state trajectory is given by

xk+1 = (Ak − Bk Fk) xk + Dkwk; x(1) = x1 (23)

Since the constant (c) and the tracking variable trajectories for consumption
(C∗), investment (I ∗), and government obligations (G∗), are embedded within the
state equations, they cannot be controlled. The controllability subspace for the
above system has a dimension of two, which is the rank of the controllability
matrix [B|AB|A2B|A3B|A4B|A5B|A6B|A7B|A8BA9B|A10B]. Thus, consumption
(C) and investment (I ) can be tracked toward their targets. The control equations are
the same for the deterministic and stochastic LQG form of themodel; but, δ6 = λ6 = 0
in the deterministic model, so that no disturbances are entering the system. The error
coefficients are δ6 = λ6 = 1 in the stochastic LQG model, where the each of the
disturbances are independent and follow a Gaussian distribution with a mean of 0 and
have a constant variance.

3 Robust Designs: H∞ -Optimal Control, Multiple-Parameter Minimax, and
Mixed

The LQG only considers the average system performance when the disturbances fol-
low a stochastic uncertainty. The robust designs account for the worst-case, which is
generally not captured by the average performance of the LQG. Rustem and Howe
(2002) summarize that even though optimal control under the average performance
of the LQG is often adequate, most system failures occur only when the worst case
is actually realized. However, if the policy design strictly follows the minimax strat-
egy, then the inherent pessimism can cause a severe performance decline. The policy
design therefore must account for both the expected performance and the worst-case
design, and find a balance between the two approaches.

The next phase is to develop robust policy designs in order to assist in improved
policy decisions. The worst-case methods here consider the discrete-time minimax
controller design problem with perfect state measurements.

3.1 H∞ -Optimal Control

The H∞-optimal control problem is formulated in expression Eq. (24) as a soft-
constrained LQ game. The controller u is the minimizing player, and the disturbance
term w, representing nature, is the maximizing player.

min
u

max
w

Jγ (u, w) = xTK+1Qk xK+1+
K∑

k=1

[
xTk Qkxk + uTk Rkuk − rHwT

k wk

]
(24)
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subject to Eq. (14), where

rH = γ 2
H > 0; Rk > 0; Q f , Qk ≥ 0; k = 1, 2, . . ., K ;

dim(Ak) = (n, n) = (11, 11); dim(Bk) = (n,m) = (11, 1);
dim(Dk) = (n, p) = (11, 2)

dim(Q f ) = dim(Qk) = (n, n) = (11, 11); dim(Rk) = (m,m) = (1, 1);
dim(xk) = (n, 1) = (11, 1); dim(uk) = (m, 1) = (1, 1);
dim(wk) = (p, 1) = (2, 1)

The simulations in this analysis assume that both players have access to closed-loop
state information with memory, where Rk is an identity matrix. Define the recursive
matrix sequences Mk and �k , k ∈ [1, K ], where �k is invertible, by Eqs. (25) and
(26):

Mk = Qk + AT
k Mk+1�

−1
k Ak; Mk+1 = Q f (25)

�k = I +
(
Bk B

T
k − r−1

H DkD
T
k

)
Mk+1 (26)

Basar and Bernhard (1991) show that show that a unique (and global) feedback saddle-
point solution exists if, and only if,

rH I − DT
k Mk+1Dk > 0; k = 1, 2, . . ., K (27)

After computing Eqs. (25) and (26) offline, the solution trajectory (x∗
k , u

∗
k , w

∗
k ) is given

by Eqs. (28), (29), and (30). The unique saddle-point optimal control rule is

u∗
k = −BT

k Mk+1�
−1
k Akxk (28)

The unique saddle-point worst-case disturbance trajectory is

w∗
k = r−1

H DT
k Mk+1�

−1
k Akxk (29)

and the state trajectory is given by

x∗
k+1 = �−1

k Akx
∗
k ; x∗

1 = x1 (30)

The saddle-point value of the game is calculated by

J ∗
γ (u, w) = xT1 M1x1 (31)

If the matrix given by Eq. (27) has one or more negative eigenvalues, and is thus
not positive definite, then the game does not have a saddle-point solution, and its
upper value is unbounded (Basar and Bernhard 1991). Thus, we have written aMatlab
program that will issue a warning to the user, and will cease calculation if Eq. (27)
has any negative eigenvalues for any period.
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3.2 Disturbance Attenuation

In the general minimax problem, the value of rH = γ 2
H > 0 is a free scalar parameter

than can be chosen by the policymaker, where larger values of rH correspond to larger
penalties on the error terms. Choosing large values of rH will force the error terms
to be very small. However, the objective of robust control is to stabilize the system
under the worst-case design, which occurs when the magnitudes of the errors are the
largest. This can be achieved by choosing very small values for rH , which causes the
errors to be as disruptive as possible under the game specification.

This process of choosing the value of rH so that the errors are creating their max-
imum disruption is called disturbance attenuation, which is discussed in Basar and
Bernhard (1991) and Tornell (2000). To achieve disturbance attenuation, the value γ ∗

H
must be chosen for γH , where r∗

H = γ ∗2
H > 0, so that γ ∗

H is the infimum, i.e., the
smallest value of γH that still allows for a saddle-point solution of the game. Thus, it
is important to note that under H∞-optimal control with disturbance attenuation, rH
is not a free parameter. The value of r∗

H must be chosen to be as small as possible.
Expressions Eqs. (25)–(27) show that γH must be chosen to be large enough so

that it will meet the conditions for the existence of a solution. Disturbance attenuation
results from using the minimum for γH that will satisfy these conditions. The Matlab
program that the authors have created for the simulations below allows the user to
decrease the value of rH = γ 2

H until it is arbitrarily close to the infimum of the viable
set that satisfies the saddle-point existence eigenvalue condition in Eq. (27). It should
also be noted that if a solution exists, it is global, and not just local.

3.3 Multiple-Parameter Minimax Design

The H∞-optimal control design with disturbance attenuation computes a particular
worst-case solution to the dynamic game. It generates the optimal control under the
worst-case overall error structure asmeasured by theEuclideannormof the disturbance
vector w. Thus, the two disturbance variables w1,k and w2,k are equally weighted by
the disturbance attenuation parameter, r∗

H = γ ∗2
H .

The multiple-parameter minimax design reformulates the game so that a different
weight is chosen for each of the two errors vectors w1,k and w2,k . This requires
modifying the soft-constrained game in Eq. (24) so that the disturbance vector is now
weighted by a positive definite penalty matrix, rM , rather than the original scalar rH .
The new minimax game is:

min
u

max
w

Jγ (u, w) = xTK+1Qk xK+1+
K∑

k=1

[
xTk Qkxk + uTk Rkuk − wT

k rMwk

]
(32)

subject to Eq. (14), where

rM =
[
r1 0
0 r2

]
r1 = γ 2

1 > 0; r2 = γ 2
2 > 0 (33)
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The saddle-point solution to this game is found by recursively computing Eqs. (25)
and (34), where Eq. (34) is a modified version of Eq. (26).

�k = I +
(
Bk B

T
k − Dkr

−1
M DT

k

)
Mk+1 (34)

The existence of a saddle-point solution requires that

rM − DT
k Mk+1Dk > 0; k = 1, 2, . . ., K (35)

The optimal control and state trajectories are given by Eqs. (28) and (30), respectively,
and the optimal disturbance trajectory in Eq. (29) is now replaced by Eq. (36).

w∗
k = r−1

M DT
k Mk+1�

−1
k Akxk (36)

In the 2-parameterminimaxdesign, the policymaker can still achieve a robust design
by choosing smaller values for the penalty weights r1 and r2. There is no H∞-optimal
control disturbance attenuation value for the game in this case, since the smallest value
of r1 depends on the choice of r2, and vice versa. Thus, therewill always be a tradeoff in
the robustness associated with each disturbance variable, where the designer chooses
Pareto attenuation values of r1 and r2. Pareto attenuation replaces H∞-disturbance
attenuation, and requires the following. Given r2, the policymaker must choose the
smallest value of r1 such that the existence condition in Eq. (35) is satisfied. If the user
restricts the parameter choices so that r1 = r2, then the Pareto attenuation solution to
themultiple-parameter minimax design will be identical to the disturbance attenuation
solution to the H∞-optimal control design, where r∗

1 = r∗
2 = r∗

H .
Onemethodof choosing these penaltyweights is to set theDPR (disturbance penalty

ratio), and then select the smallest set of penalty weights such that the saddle-point
conditions in Eqs. (25), (34) and (35) are met. When there are p disturbance terms,
the DPR for each disturbance would be assigned relative to the weight on the most
disruptive disturbance.

This is the method of selecting a set of Pareto attenuation parameters that is used
in the simulations below. Since private domestic investment is the most volatile com-
ponent of GDP, the disturbance penalty ratio is set at

DPR = r1
r2

= 10 (37)

Recall that r1 is the weight on the consumption disturbance, and r2 is the weight
on the investment disturbance. Larger values of the DPR mean that relatively higher
weight is assigned to deviations in the consumption disturbances. In Eq. (37), the
penalty weight for consumption disturbances is 10 times larger than the weight for
investment disturbances. The resulting policy will generate investment disturbances,
w2,k , that have a larger magnitude than they would under the H∞-controller. Con-
versely, the consumption disturbances, w1,k , will be smaller in magnitude than they
would be under H∞-control.
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Under the multi-parameter minimax design, the policymaker can freely choose
the DPR ratios, as long as a solution to the game exists. Given a DPR, however,
the disturbance attenuation problem requires that the smallest values for each of the
disturbance penalty parameters be chosen in order for the optimal control to achieve
maximum worst-case robustness. Once the DPR has been selected, r1and r2 are not
free parameters. We developed a Matlab program that allows the user to iteratively
input parameter values that maintain the DPR until the smallest set of parameters that
still satisfies the eigenvalue conditions Eqs. (25), (34) and (35) is found, provided that
a solution exists.

3.4 Mixed Stochastic/H∞ - Optimal Control

In some cases, the policymaker may only be concerned with the robustness of a subset
of the system equations that contain disturbances. For example, the unpredictable part
of aggregate consumption may be considered to be well-modeled by the stochastic
LQG specification, but the volatility of private investment might have an uncertain
structure. This situation can be modeled by the mixed stochastic/H∞-optimal control
specification. In the situation where there are two disturbances as described above,
one of the disturbances, w1,k , is modeled as a stochastic Gaussian variable, and the
other disturbance, w2,k , is modeled using the H∞-worst case design. This gives the
user the option to focus on the robustness properties of just the equation with the error
structure that is considered highly unstable.

The mixed stochastic/H∞-control can be designed by modifying the soft-
constrained minimax game given by Eqs. (14) and (24) as follows. The state equation
is now

xk+1 = Akxk + Bkuk + Dkw2,k + Ekw1,k; x(1) = x1 (38)

where the state-space disturbance coefficient matrices are redefined by

Dk = [
0 λ6 0 0 0 0 0 0 0 0 0

]T ;
Ek = [

δ6 0 0 0 0 0 0 0 0 0 0
]T (39)

min
u

max
w

Jγ (u, w) = xTK+1QkxK+1 +
K∑

k=1

[
xTk Qkxk + uTk Rkuk − rMXw2

2,k

]
(40)

The optimal closed-loop policy solution to the game in Eqs. (38)–(40) is given by
Eqs. (41)–(45), provided that the existence condition in Eq. (43) is satisfied.

Mk = Qk + AT
k Mk+1�

−1
k Ak; Mk+1 = Q f (41)

�k = I +
(
Bk B

T
k − r−1

MX DkD
T
k

)
Mk+1 (42)

rMX I − DT
k Mk+1Dk > 0; k = 1, 2, . . ., K (43)

u∗
k = −BT

k Mk+1�
−1
k Akxk (44)
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w∗
2,k = r−1

MX D
T
k Mk+1�

−1
k Akxk (45)

In the mixed model expressed by Eqs. (38)–(45), the consumption disturbance
term w1,k can be modeled under robust design, and the investment error w2,k can be
modeled as a stochastic error. In that case, the Dk and Ek matrices in Eq. (38) would
be switched, and Eqs. (38)–(40) would be replaced by Eqs. (46)–(48).

The state equation disturbance coefficient matrices are switched, so it becomes

xk+1 = Akxk + Bkuk + Dkw1,k + Ekw2,k; x(1) = x1 (46)

The new disturbance coefficient matrices that model robust consumption disturbances
are

Dk = [
δ6 0 0 0 0 0 0 0 0 0 0

]T ;
Ek = [

0 λ6 0 0 0 0 0 0 0 0 0
]T (47)

The performance index game now has the disturbance penalty weight, rMX , on the
consumption disturbance w1,k , rather than on the investment disturbance, w2,k .

min
u

max
w

Jγ (u, w) = xTK+1QkxK+1 +
K∑

k=1

[
xTk Qkxk + uTk Rkuk − rMXw2

1,k

]
(48)

The solution is given byEqs. (41)–(44),where the optimal robust disturbance trajectory
in (45) is replaced by Eq. (49), so that only the consumption errors are modeled under
the worst-case design.

w∗
1,k = r−1

MX D
T
k Mk+1�

−1
k Akxk (49)

Although we have explored the mixed design with robust consumption, as defined
by Eqs. (46)–(49), the results are not reported here, due to length considerations.
The mixed stochastic/H∞-control simulations below only examine the case given by
Eq. (38)–(45),whichmodelsworst-case investment disturbancesmixedwith stochastic
Gaussian consumption errors.

4 Estimation and Simulation

The model allows for optimal consumption, investment, and government purchases
to grow at target rates that are specified by the policymaker. This particular set of
simulations will follow Kendrick’s (1981) growth rate of gC,k = gI,k = 0.75% per
quarter for consumption and investment. This results in an annual growth rate of about
3% per year, which is consistent with the long-term growth rate for the US economy.
Government purchases will be assumed to grow at a rate of gG,k = 0.5% per quarter,
which is an annualized rate of about 2% per year. The consumption, investment, and
government purchases tracking equations can thus be written, respectively, as

C∗
k+1 = 1.0075 C∗

k I ∗
k+1 = 1.0075 I ∗

k G∗
k+1 = 1.005 G∗

k (50)

123



138 D. Hudgins, J. Na

The following analysis estimates the accelerator model using U.S. Bureau of Eco-
nomic Analysis (BEA) Real GDP component data in billions of chained 2005 dollars
for the period 1947 quarter 1 to 2012 quarter 3. The estimates for Eqs. (6) and (7) are
given below, with t-statistics in parentheses below the coefficients.

Ck = −8.485
(−1.02)

+1.29
(21.7)

Ck−1 + 0.234
(5.4)

Ik−1 + 0.039
(2.4)

Gk−1 − 0.307
(−5.2)

Ck−2 − 0.202
(−4.7)

Ik−2

(51)
R2 = .9999; Durbin-Watson = 2.13; number of observations = 261

Ik = 4.9
(0.51)

+ 0.83
(12.1)

Ck−1 + 1.12
(22.5)

Ik−1 − 0.041
(−2.2)

Gk−1 − 0.804
(−11.9)

Ck−2 − 0.23
(−4.6)

Ik−2 (52)

R2 = 0.9988; Durbin-Watson = 2.17; number of observations = 261
The fit of the above equations is excellent. All coefficients are statistically signifi-

cant, and have the expected signs. We are not arguing that there could not have been
one or more changes in the system coefficients over this long time span. Rather, the
purpose is simply to evaluate the different control designs based on the approximated
time-invariant coefficient system as measured above.

In Eq. (51), government purchases has the expected fiscal crowding-in effect on
consumption, rather than the crowding-out effect that occurred in Kendrick’s (1981)
original estimation. Equation (52) shows that consumption has a crowding-in effect
investment, but government purchases has a fiscal crowding-out effect investment. The
model thus has a unique set of internal dynamics. Expansionary fiscal policy increases
consumption, but decreases investment. However, if fiscal policy is overly contrac-
tionary, then fall in consumption will in-turn create a negative impact on investment.
Thus, the optimal tracking policies depend on the parameter values, and require sim-
ulation. The following analysis shows that this leads to a complex error interaction
when constructing an optimal robust policy design.

Since the US was in a recessionary phase at the end of the data period, the simula-
tions assume a recessionary gap, where consumption is initially 1% below its target
value, and investment is initially 3% below its target. Since fiscal policy during the
previous four years had reacted by being countercyclical and expansionary, the simu-
lations assume that the initial current value of government spending is 0.74% above
its initial target value. The analysis compares two different overall policy approaches:
heavily weighted tracking errors for the consumption and investment state variables,
and a heavily weighted tracking error for the policy variable, government spending.

4.1 Heavy Weight on Tracking Errors for Consumption and Investment

The first set of simulations assigns weights for the final state tracking errors for con-
sumption and investment that are 10 times the weight assigned to the government
purchases policy tracking error. We set q1, f = q2, f = 10, and q1,k = q2,k = q3,k =
Rk = 1 for all k = 1,…, K . Thus, the final state tracking error is also 10 times greater
than the weight assigned to the state tracking errors for each period except for the
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Fig. 1 Government purchases: heavyweight on the tracking errors for consumption and investment.q1, f =
q2, f = 10; q1, k = q2, k = q3, k = Rk = 1; sw1 = 27; sw2 = 31; rH = 8, 816.1; r1 = 22, 146; r2 =
2, 214.6; rMX = 1, 483.4

terminal period. The use of parameters that are in multiples of 10 is consistent with
Kendrick and Shoukry (2013).

Figures 1, 2, 3, 4, 5 and Tables 1, 2, 3 show comparisons for the system trajectories
under the five different error structures. The figures show the simulated trajectories for
government purchases, consumption, investment, the consumption disturbance, and
the investment disturbance, respectively. The disturbance terms are both zero for all
periods under the deterministic design.

For the LQG simulations, the two disturbance errors were randomly generated from
a Gaussian distribution with a mean of 0. The standard deviation for the consumption
disturbance w1,k and investment disturbance w2,k were taken from the regressions
in Eqs. (51) and (52). They are respectively given by sw1 = 27 and sw2 = 31. The
LQG optimal control model was simulated ten times, and then the average value of
government purchases, consumption, investment, and the disturbances was plotted in
the figures. Even when limiting the LQG model to 10 simulations, the average values
for all of the variables are close to their values under the deterministic scenario. This
masks some of the deviations that occur within each individual LQG simulation, but
does show some volatility in the policy. As the number of simulations increases, the
LQG trajectories become indistinguishable from the deterministic model trajectories.

The H∞-optimal disturbance attenuation parameter was iteratively calculated to
be r∗

H = 8, 816.1. This value is not a free-parameter. Given the performance index
weights above, this is the smallest value that allows the system to have a saddle-point
solution.With this value, theEuclidean normof the system’s error vector ismaximized,
leading to the worst-case scenario for entire system.
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Fig. 2 Consumption: heavyweight on the tracking errors for consumption and investment. q1, f = q2, f =
10; q1, k = q2, k = q3, k = Rk = 1; sw1 = 27; sw2 = 31; rH = 8, 816.1; r1 = 22, 146; r2 =
2, 214.6; rMX = 1, 483.4

The multiple-parameter (in this case, 2-parameter) minimax design assigned a dis-
turbance parameter ratio of DPR = 10, as stated in Eq. (37). The Pareto attenuation
weights for the 2-parameterminimax design for the consumption and investment errors
were calculated to be r∗

1 = 22, 146 and r∗
2 = 2, 214.6, respectively. As explained

above, these parameters were calibrated as follows. The model was iteratively solved
for the smallest weights on the consumption and investment disturbances that were
possible, while maintaining a ratio of DPR = 10 and still allowing for a solution to the
minimax game. Note that the smaller of the 2-parameter minimax penalty weights will
always be smaller than the H∞-optimal disturbance parameter r∗

H , and larger minimax
parameter will be larger than the H∞-parameter, so that r∗

2 < r∗
H < r∗

1 .
For the mixed stochastic/H∞-optimal control specification, the simulations assume

that the investment equation is most likely to experience a worst-case scenario. The
H∞-optimal control single equation disturbance attenuation parameter value was
found to be r∗

MX = 1, 483.4, which was thus used as the weight on the investment
error w2,k in the performance index. The consumption error w1,k was again assumed
to follow a Gaussian distribution with a mean of 0 and standard deviation of sw1 = 27.
In the mixed design, the single disturbance attenuation parameter will be smaller than
the value under the 2-parameter minimax design. Thus, r∗

MX < r∗
2 < r∗

H . This occurs
because the mixed parameter model only considers the worst-case for the investment
equation, hence the error can be made larger and still satisfy the eigenvalue condition.
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Fig. 3 Investment: heavy weight on the tracking errors for consumption and investment. q1, f = q2, f =
10; q1, k = q2, k = q3, k = Rk = 1; sw1 = 27; sw2 = 31; rH = 8, 816.1; r1 = 22, 146; r2 =
2, 214.6; rMX = 1, 483.4

Note that as the disturbance parameter ratio DPR → ∞, r∗
2 → r∗

MX . Hence, the 2-
parameter minimax design becomes equivalent to the mixed design when no penalty
weight is placed on the consumption disturbance. If DPR = 1, r∗

1 = r∗
1 = r∗

H .
The data for all figures are in billions of constant dollars, so that each 1-point change

represents $1 billion annualized. Figure 1 and appendix Table 1 show the trajectories
for government purchases. Since the economy begins in a recession during quarter 1,
the trajectories show that government spending is consistently above its target for all
periods. The optimal policy is the most aggressive under H∞-optimal control. It is
less aggressive under the 2-parameter minimax design where the investment error is
assigned ahigher penaltyweight than consumption.Theoptimalmixed stochastic/H∞-
optimal control policy trajectory is between the 2-parameter minimax design and the
LQG design. This is occurring because the aggressive policy is only pessimistically
countering one robust disturbance. However, the mixed policy thrust is still much
closer to the other two robust policy trajectories than it is to the deterministic and
stochastic policy trajectories.

TheBrainard principle holdswhen the optimal policy action is less aggressive under
the robust design than in the stochastic design. In this set of simulations, the Brainard
principle clearly does not hold. There is some reduction in the control energy expendi-
ture from utilizing the 2-parameter minimax and mixed designs, since policymaker is
targeting the pessimism on just one variable, rather than two. So, the fiscal authorities
achieve some cost savings over the H∞-strategy, which can be seen by converting the
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Fig. 4 Consumption disturbance: heavyweight on tracking errors for consumption and investment. q1, f =
q2, f = 10; q1, k = q2, k = q3, k = Rk = 1; sw1 = 27; sw2 = 31; rH = 8, 816.1; r1 = 22, 146; r2 =
2, 214.6; rMX = 1, 483.4

Fig. 5 Investment disturbance: heavy weight on the tracking errors for consumption and investment.
q1, f = q2, f = 10; q1, k = q2, k = q3, k = Rk = 1; sw1 = 27; sw2 = 31; rH = 8, 816.1; r1 =
22, 146; r2 = 2, 214.6; rMX = 1, 483.4

annualized data in the simulations to quarterly amounts. Employing the H∞-strategy
over all 7 quarters requires government spending to become $276 billion greater than
it would be under the LQG design, which yields an average cost savings of about $69
billion per quarter. The 2-parameter minimax design saves about $27.4 billion (about
1%) over the horizon compared to the H∞-strategy, which is an average savings of
$3.9 billion per quarter. The mixed design has a much greater total period savings
of $21.1 billion (about 2.7% of total spending), which saves about $6.2 billion per
quarter compared to the H∞-strategy. Thus, the fiscal authorities can gain substantial
cost savings from employing the 2-parameter minimax and mixed designs.
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However, both the 2-parameter minimax and mixed designs strategies assume that
investment is the more likely variable to encounter a worst-case scenario. If this is
not case, and if consumption is also equally likely to obtain its worst-case, then the
model is incompletely robustified and more exposed to severe shocks. Thus, the fiscal
savings obtained from focusing the policymakers’ robustness concerns on investment
performance must be evaluated based on the tradeoff from incurring the additional
exposure to problems arising from downturns in the consumption component of the
economy.

The consumption and investment trajectories in Figs. 2 and 3; and appendix Tables 2
and 3, show the extreme pessimism under the robust scenarios. Note that the initial
condition on the state trajectories is assigned at period k = 1, so that the policy
impacts that occur in period 1 do not affect consumption and investment until period
2. Government spending in the last planning period K = 7 achieves its terminal
manifestation on consumption and investment in period 8. Consumption is higher
under H∞-optimal control than for the LQG and deterministic design in until period
5, when it begins to lag. Consumption is even higher under the 2-parameter minimax
design, and does not fall below the deterministic and stochastic designs until after
quarter 6. During quarters 1 through 6, consumption is largest under the mixed design,
and it isn’t surpassed by the deterministic and LQG trajectories until after quarter 7.

The three robust designs have greater consumption values earlier in the planning
horizon due to the more extreme government spending under the pessimistic safe-
guard stance. Consumption in the 2-parameter design has skewed it robustness toward
investment, causing the consumption disturbances to be smaller in magnitude than
they are for the H∞-design. As a result, consumption is consistently greater under
the 2-parameter minimax design than it is under the H∞-design. The consumption
disturbances are stochastic under the mixed design, since it limits the robust concern
exclusively to the investment disturbance. So when comparing the mixed to the other
two robust policies, the less aggressive government spending under the mixed policy
is counteracted by a smaller overall negative impact arising through the disturbances.

During the first four periods, investment undershoots its trajectory the most under
the mixed design, followed by the 2-parameter minimax, the H∞-optimal control
policy, LQG, and deterministic. Since the 2-parameter minimax model has placed
a much greater relative emphasis on investment robustness, the larger investment
disturbances cause a more pessimistic path throughout the planning horizon than for
investment in the H∞-design. Since the 2-parameter minimax and the H∞-designs
still penalize both consumption and investment disturbances, the level of investment
under the mixed design, which only designs the worst-case for the single investment
equation, eventually surpasses them. This is partly due to the smaller crowding-out
effect of less aggressive government spending under the mixed design, and partly due
to the higher crowding-in effect of consumption over the planning horizon. The LQG
investment path is consistently lower than the deterministic path due to the outcomes
of the Gaussian errors in the reported simulations; however, this will not always be
the case, since the stochastic disturbances will randomly move the path above and
below the deterministic design. But, barring the case of prolonged repeated large
random negative shocks, the LQG trajectory will generally be above the robust model
trajectories.
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Figures 4 and 5 show the disturbance errors for the stochastic and various robust
cases. The average consumption and investment disturbances fluctuate around their
mean of 0 for the LQG, as expected. This is also true for the consumption disturbance
under the mixed design, since it is still assumed to be stochastic. Under the robust
designs, the consumption disturbance initially has a large negative value, and the
magnitude steadily decreases over the planning horizon.

The investment disturbance is assumed to be the primary worst-case concern. Since
the 2-parameter minimax design allows for greater robustness in the investment equa-
tion, the investment disturbancesw2,k have consistently greater (negative) magnitudes
under the 2-parameterminimaxmodel than they do under theH∞-design. This is due to
the smaller penalty weight assigned to the investment disturbances in the 2-parameter
minimax performance index. Conversely, the consumption disturbances have much
greater magnitudes under the H∞-design since the 2-parameter minimax has assigned
smaller penalty weights to the consumption disturbances. The investment disturbance
trajectory under the mixed design consistently lies below the trajectories for the purely
robust strategies in these simulations. This is expected since the penalty weight on the
investment disturbance is the lowest under the mixed design.

4.2 Heavy Weight on the Control Tracking Errors for Government Purchases

The second set of simulations follow Kendrick (1981) by weighting the final period
tracking errors of the state variables from their targets at 100 times more than the state
tracking errors in any other period. We set q1, f = q2, f = 1, and q1,k = q2,k = .01
for all k = 1,…, K . The control tracking error is assigned a weight of Rk = 1, and the
deviation of the change in government purchases from its targeted growth is given a
weight of q3,k = 0.1 for all k = 1,…, K . Under this scheme, the policy tracking error
carries the same weight as the final consumption and investment tracking errors. The
policy tracking error is assigned 10 times more weight than deviations from desired
changes in the spending growth over the previous period, and 100 times more weight
than state tracking errors in any period.

The H∞-optimal disturbance attenuation parameter was found at r∗
H = 1, 988.8.

The 2-parameter minimax design retained a disturbance parameter ratio of DPR = 10,
as stated in the previous simulations. The Pareto attenuation weights were iteratively
computed to be r∗

1 = 4, 942 and r∗
2 = 494.2, respectively. The mixed disturbance

attenuation parameter value was found to be r∗
MX = 328.2.

Figures 6, 7, 8, 9, 10 and appendix Tables 4, 5, 6 show comparisons for the system
trajectories under the five different error structures. Figure 6 shows that government
purchases decreases much faster and tracks its target more closely than in Fig. 1. In
Fig. 6, the paths of government purchases under the H∞-structure and 2-parameter
design are almost indistinguishable, but the differences can be seen in Table 4. In
Table 4, the controller is slighter more aggressive under the 2-parameter design than
under the H∞-structure until period 4, when the two become equal; after period 4,
government spending is less aggressive in the 2-parameter design than under the H∞-
design. This contrasts with Fig. 1, where the H∞-controller was the most aggressive
throughout the entire planning horizon. The overall level spending across the horizon is
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Fig. 6 Government purchases: heavy weight on control tracking error. q1, f = q2, f = Rk = 1; q1, k =
q2, k = 0.01; q3, k = .1; sw1 = 27; sw2 = 31; rH = 1, 988.8; r1 = 4, 942; r2 = 494.2; rMX = 328.2

Fig. 7 Consumption: heavy weight on control tracking error. q1, f = q2, f = Rk = 1; q1, k = q2, k =
0.01; q3, k = .1; sw1 = 27; sw2 = 31; rH = 1, 988.8; r1 = 4, 942; r2 = 494.2; rMX = 328.2

about the same under these two designs, so there is no cost savings to the policymaker.
Themixed trajectory for government purchases consistently lies below the 2-parameter
and the H∞-control trajectories, as it did in Fig. 1. Thus, the mixed strategy still allows
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Fig. 8 Investment: heavy weight on control tracking error. q1, f = q2, f = Rk = 1; q1, k = q2, k =
0.01; q3, k = .1; sw1 = 27; sw2 = 31; rH = 1, 988.8; r1 = 4, 942; r2 = 494.2; rMX = 328.2

Fig. 9 Consumption disturbance: heavy weight on control tracking error. q1, f = q2, f = Rk = 1; q1, k =
q2, k = 0.01; q3, k = .1; sw1 = 27; sw2 = 31; rH = 1, 988.8; r1 = 4, 942; r2 = 494.2; rMX = 328.2

for a reduction in the control intensity over the two purely robust designs, which results
in a total cost savings of about $131 billion (2.5%), which is an average of about $33
billion per quarter.
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Fig. 10 Investment disturbance: heavy weight on control tracking error. q1, f = q2, f = Rk = 1; q1, k =
q2, k = 0.01; q3,k = .1; sw1 = 27; sw2 = 31; rH = 1, 988.8; r1 = 4, 942; r2 = 494.2; rMX = 328.2

The consumption and investment trajectories in Figs. 7 and 8; and Tables 5 and 6,
continue to exhibit excess pessimismunder the robust scenarios.Consumptiondeclines
over the entire planning horizon for all designs except for the LQG,which is only above
the deterministic trajectory due the stochastic errors. Consumption is still the lowest
under H∞-optimal control. Consumption is again lower under the multiple-parameter
design that under the mixed structure, where consumption does not fall below the
deterministic trajectory until after period 4. When the control tracking error is heavily
weighted, the increased policy thrust under the purely robust designs it too small to
increase consumption above the deterministic trajectory; thus, the resulting robust
consumption paths are now lower in Fig. 7, which contrasts with their higher paths in
Fig. 2.

Investment falls over the entire horizon for all error structures, with the exception of
the LQG, where the average random error causes a slight increase investment toward
the end of the horizon. In both Figs. 3 and 8, investment is lower under the 2-parameter
minimax specification than under the H∞-design, due to the 2-parameter emphasis on
the robustness in the investment equation. After period 5, the mixed design trajectory
rises above the investment levels in the 2-parameter minimax and H∞-designs. As
in the case where the state tracking errors were more heavily weighted, the more
optimistic deterministic investment trajectory is above the purely robust path. Except
for the casewhere unpredicted pessimism leads to a sequence of large negative random
shocks in investment, the LQG investment trajectory will also lie predominantly above
the robust model trajectory in this case as well.

Figures 9 and 10 display the disturbances. As in the case with larger weight on the
state tracking errors, Fig. 9 shows that the consumption disturbances are larger in mag-
nitude under H∞-control than in the 2-parameter minimax model. The consumption
errors are random under the LQG and mixed designs. Since the 2-parameter minimax
structure places all of the robustness concern on investment, it again produces the
largest magnitude for the investment disturbance trajectory.
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4.3 No Penalty for Deviations in the Control between Periods

In the previous simulations, the government was penalized for changing its spending
above or below the stated quarterly target growth rate of gG,k = 0.5% (which is
about 2% annualized growth) between periods. When the spending-change penalty
parameter,q3,k , is extremely large relative to the other performance indexweights, then
government spending will always increase in each quarter by gG,k = 0.5%, regardless
of its initial value. Thus, the fiscal authorities will be forced to set the spending level
in each new budget as a standard percentage above spending in the previous budget.
This restricts the fiscal authorities’ ability to freely change government spending when
attempting to track the policy and state variable targets.

The last set of simulations analyzes the case where the government is not penalized
for changing its spending above or below the stated quarterly target growth rate of
gG,k = 0.5% between periods. This allows us to gauge the performance differential
that results from including, versus omitting, the spending change penalty in the policy
objective. In order to assess this, we reconsider the first case where there were heavy
weights on the tracking errors for consumption and investment. Now, we alter this
scenario and assign a zero weight for the policy deviations between periods, but retain
all of the other weighting values. Thus, q1, f = q2, f = 10, q1,k = q2,k = Rk = 1,
but q3,k = 0 for all k = 1,…, K . Figures 11, 12, 13 and Tables 7, 8, 9 illustrate the
system trajectories.

Fig. 11 Government purchases: heavy weight on the tracking errors for consumption and investment.
q1, f = q2, f = 10; q1, k = q2, k = Rk = 1; q3, k = 0; sw1 = 27; sw2 = 31; rH = 6, 265.1; r1 =
15, 785; r2 = 1, 578.5; rMX = 1, 060.0
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Fig. 12 Consumption: Heavy weight on the tracking errors for consumption and investment. q1, f =
q2, f = 10; q1, k = q2, k = Rk = 1; q3, k = 0; sw1 = 27; sw2 = 31; rH = 6, 265.1; r1 = 15, 785; r2 =
1, 578.5; rMX = 1, 060.0

Government purchases is considerably more volatile when there is no penalty
for excessive changes between periods. In period 1, government spending rises to
approximately an annualized $4,000 billion in all three robust designs (H∞-control,
2-parameter minimax, and mixed), and reaches $3,463.6 billion in the deterministic
and LQG designs. This is far greater than the period 1 levels when there is a penalty
for excessive changes between periods, which resulted in period 1 spending of only
$3,540 billion in the robust designs, and $3,170.8 billion under the deterministic and
LQG structures. When there is no penalty for excessive changes between periods,
the level of government spending continually falls across the planning horizon after
period 1, and ends up at lower amounts in period 7 than in the case where there are
penalties for excessive changes between periods.

Figures 12 and 13 show that consumption and investment end up closer to their
final targets when government spending has the extra flexibility of being unhampered
by penalties for changes between periods. However, this type of volatile budget policy
would likely not be politically feasible, andwould be difficult to implement in practice,
for either annual or quarterly fiscal policy. The latter simulations in Figs. 11, 12, 13
would require the government to increase spending by around 40% in the first policy
quarter under the robust designs, and about 25% under the LQG design, and then
consistently lower spending by large increments thereafter. When budgetary changes
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Fig. 13 Investment: heavy weight on the tracking errors for consumption and investment. q1, f = q2, f =
10; q1, k = q2, k = Rk = 1; q3, k = 0; sw1 = 27; sw2 = 31; rH = 6, 265.1; r1 = 15, 785; r2 =
1, 578.5; rMX = 1, 060.0

between periods are penalized, the initial spending increase is half as much, at around
20%, under the robust designs, and only about 11% under the LQG design. This
illustration confirms the merit of using a performance index penalty for excessive
changes in the policy variable between periods, especially when robust designs are
employed.

5 Conclusion

Once the model’s performance under the different error structures has been analyzed,
the robust strategies offer several avenues for application. The fiscal authorities could
implement the simulated H∞-optimal control or multi-parameter minimax strategy as
the operating policy. However, strictly following a robust design can lead to an overly
pessimistic control policy, since it only optimizes over the worst-case error scenarios
(Rustem and Howe 2002). Alternatively, it could use the worst-case disturbances
obtained in the simulations to determine the worst-case distribution for the error terms
in the system equations (Basar and Bernhard 1991).

Policymakers could also construct control rules that use a weighted average of the
trajectories from the H∞-optimal control, multi-parameter minimax, and/or mixed
designs combined with the deterministic and LQG control specifications, to achieve a
balanced policy that is less susceptible to instability issues than it would be without the
attention to robustness. This latter approach is themost pragmatic. Several researchers,
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such as Kendrick (2005) and Zakovic et al. (2007), favor this approach to implement-
ing robust designs. Rustem and Howe (2002) caution that minimax approaches and
stochastic control are only risk management tools for coping with uncertainty, and
hence they cannot be substituted for wisdom.

Finally, the fiscal authorities could use the mixed strategy that was obtained in this
paper, if most of the robustness concerns are focused only on a subset of the sys-
tem equations. Green and Limebeer (2012) emphasize that model reduction, whereby
high-order systems are approximated by lower-order systems, serves as a key compo-
nent that links control system design to plant modeling. Although our analysis only
presented the mixed case where the H∞-strategy was modeled for the investment
equation, it could have been designed where the robust concern was reduced to the
consumption equation. The simulations showed the mixed strategy provides a reduc-
tion in the control effort over the designs where the entire system was modeled under
the worst-case disturbance scenario.

Acknowledgments The authors are grateful to DavidKendrick, AlexUfier, and three anonymous referees
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6 Appendix

Tables 1, 2, 3 present the data graphed in Figs. 1, 2, 3, respectively, so that all of
the data points can be compared with more detailed resolution. These data are in
billions of constant dollars, so that a 1-point difference between data points represents
$1 billion annualized. Consumption and investment are fixed at their initial values
in period 1. Government purchases is fixed in period 0, and the first optimal policy
action for government spending occurs in period 1. Deviations from targeted changes
in government spending are penalized.

Tables 4, 5, 6 present the data graphed in Figs. 6, 7, 8, 9, respectively. The trajectories
for government purchases under the H∞-control and 2-parameter minimax designs
appear close in Fig. 6, but the differences are easily seen in Table 4.

Table 1 Government purchases: heavy weight on tracking errors for consumption and investment

k G∗ G: Deterministic G: LQG G : H∞ G: 2-par. minimax G: Mixed

0 2464.7 2483.0 2483.0 2483.0 2483.0 2483.0

1 2477.0 3170.8 3170.8 3544.3 3542.3 3541.0

2 2489.4 3176.6 3214.0 3535.6 3532.3 3544.3

3 2501.9 3030.4 3050.3 3287.4 3283.3 3253.8

4 2514.4 2893.0 2940.2 3050.0 3046.0 3026.4

5 2526.9 2799.0 2837.4 2880.0 2876.0 2867.2

6 2539.6 2747.0 2760.7 2777.0 2772.0 2765.9

7 2552.3 2730.0 2726.9 2730.0 2725.0 2721.2

q1, f = q2, f = 10; q1, k = q2, k = q3, k = Rk = 1; sw1 = 27; sw2 = 31; rH = 8, 816.1; r1 =
22, 146; r2 = 2, 214.6; rMX = 1, 483.4
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Table 2 Consumption: heavy weight on the tracking errors for consumption and investment

k C∗ C : Deterministic C : LQG C : H∞ C : 2-par. minimax C : Mixed

1 9726.6 9630.3 9630.3 9630.3 9630.3 9630.3

2 9799.5 9657.2 9653.8 9660.1 9667.0 9671.0

3 9873.0 9681.5 9685.5 9687.5 9696.9 9706.9

4 9947.1 9700.6 9697.2 9705.1 9714.9 9721.9

5 10021.7 9719.0 9705.3 9716.0 9725.0 9728.9

6 10096.9 9742.0 9731.7 9726.0 9735.0 9748.3

7 10172.6 9778.0 9773.7 9741.0 9749.0 9769.8

8 10248.9 9838.0 9820.3 9767.0 9776.0 9780.6

q1, f = q2, f = 10; q1, k = q2, k = q3, k = Rk = 1; sw1 = 27; sw2 = 31; rH = 8, 816.1; r1 =
22, 146; r2 = 2, 214.6; rMX = 1, 483.4

Table 3 Investment: heavy weight on the tracking errors for consumption and investment

k I∗ I : Deterministic I : LQG I : H∞ I : 2-par. minimax I : Mixed

1 1957.9 1900.9 1900.9 1900.9 1900.9 1900.9

2 1972.6 1855.8 1858.8 1835.4 1820.2 1810.1

3 1987.4 1827.5 1816.6 1789.2 1768.7 1753.7

4 2002.3 1821.9 1800.4 1771.5 1751.1 1741.2

5 2017.3 1837.0 1807.8 1777.0 1759.0 1752.5

6 2032.5 1873.0 1826.1 1799.0 1785.0 1780.0

7 2047.7 1934.0 1879.0 1838.0 1828.0 1833.2

8 2063.1 2034.0 1958.3 1895.0 1890.0 1913.1

q1, f = q2, f = 10; q1, k = q2, k = q3, k = Rk = 1; sw1 = 27; sw2 = 31; rH = 8, 816.1; r1 =
22, 146; r2 = 2, 214.6; rMX = 1, 483.4

Table 4 Government purchases: heavy weight on control tracking error

k G∗ G: Deterministic G: LQG G : H∞ G: 2-par. minimax G: Mixed

0 2464.7 2483.0 2483.0 2483.0 2483.0 2483.0

1 2477.0 2761.3 2761.3 2921.1 2922.8 2897.0

2 2489.4 2683.7 2622.7 2791.9 2793.0 2777.8

3 2501.9 2620.6 2577.5 2684.5 2685.0 2672.3

4 2514.4 2585.0 2560.8 2621.0 2621.0 2609.1

5 2526.9 2569.0 2557.0 2586.0 2585.0 2581.6

6 2539.6 2563.0 2559.9 2568.0 2567.0 2566.5

7 2552.3 2565.0 2568.5 2561.0 2560.0 2560.8

q1, f = q2, f = Rk = 1; q1, k = q2, k = 0.01; q3, k = 0.1; sw1 = 27; sw2 = 31; rH = 1, 988.8; r1 =
4, 942; r2 = 494.2; rMX = 328.2
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Table 5 Consumption: heavy weight on control tracking error

k C∗ C : Deterministic C : LQG C : H∞ C : 2-par. minimax C : Mixed

1 9726.6 9630.3 9630.3 9630.3 9630.3 9630.3

2 9799.5 9641.2 9651.6 9635.4 9642.6 9646.1

3 9873.0 9645.7 9653.6 9632.3 9642.3 9649.9

4 9947.1 9644.5 9656.4 9619.3 9629.6 9646.3

5 10021.7 9638.0 9663.2 9594.0 9603.0 9613.2

6 10096.9 9625.0 9681.8 9550.0 9558.0 9570.0

7 10172.6 9603.0 9690.7 9477.0 9484.0 9507.3

8 10248.9 9565.0 9710.2 9356.0 9363.0 9403.2

q1, f = q2, f = Rk = 1; q1, k = q2, k = 0.01; q3, k = .1; sw1 = 27; sw2 = 31; rH = 1, 988.8; r1 =
4, 942; r2 = 494.2; rMX = 328.2

Table 6 Investment: heavy weight on control tracking error

k I∗ I : Deterministic I : LQG I : H∞ I : 2-par. minimax I : Mixed

1 1957.9 1900.9 1900.9 1900.9 1900.9 1900.9

2 1972.6 1872.6 1877.0 1860.8 1844.5 1840.0

3 1987.4 1853.3 1881.8 1827.4 1805.4 1800.3

4 2002.3 1837.9 1885.6 1793.2 1770.7 1770.2

5 2017.3 1821.0 1885.7 1747.0 1727.0 1740.3

6 2032.5 1798.0 1885.4 1677.0 1660.0 1681.9

7 2047.7 1761.0 1906.2 1562.0 1549.0 1582.8

8 2063.1 1701.0 1922.9 1374.0 1364.0 1420.7

q1, f = q2, f = Rk = 1; q1, k = q2, k = 0.01; q3, k = .1; sw1 = 27; sw2 = 31; rH = 1, 988.8; r1 =
4, 942; r2 = 494.2; rMX = 328.2

Table 7 Government purchases: heavy weight on tracking errors for consumption and investment no
penalty for deviation from targeted change in government spending

k G∗ G: Deterministic G: LQG G : H∞ G: 2-par. minimax G: Mixed

0 2464.7 2483.0 2483.0 2483.0 2483.0 2483.0

1 2477.0 3463.6 3463.6 4003.9 3994.3 3988.0

2 2489.4 3099.6 3047.1 3416.2 3408.2 3342.3

3 2501.9 2891.8 3030.1 3071.8 3065.2 3020.1

4 2514.4 2779.0 2797.1 2875.0 2869.0 2833.3

5 2526.9 2726.0 2742.9 2768.0 2763.0 2751.6

6 2539.6 2709.0 2711.8 2715.0 2710.0 2702.1

7 2552.3 2715.0 2710.8 2695.0 2690.0 2693.9

q1, f = q2, f = 10; q1, k = q2, k = Rk = 1; q3, k = 0; sw1 = 27; sw2 = 31; rH = 6, 265.1; r1 =
15, 785; r2 = 1, 578.5; rMX = 1, 060.0
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Table 8 Consumption: heavy weight on the tracking errors for consumption and investment no penalty for
deviation from targeted change in government spending

k C∗ C : Deterministic C : LQG C : H∞ C : 2-par. minimax C : Mixed

1 9726.6 9630.3 9630.3 9630.3 9630.3 9630.3

2 9799.5 9668.6 9668.1 9677.9 9684.6 9690.4

3 9873.0 9690.4 9687.6 9701.4 9710.5 9716.3

4 9947.1 9706.5 9705.8 9714.4 9723.8 9730.9

5 10021.7 9725.0 9722.4 9726.0 9735.0 9739.0

6 10096.9 9752.0 9746.5 9742.0 9751.0 9766.7

7 10172.6 9798.0 9784.4 9772.0 9780.0 9795.6

8 10248.9 9874.0 9853.7 9823.0 9832.0 9837.5

q1, f = q2, f = 10; q1, k = q2, k = Rk = 1; q3, k = 0; sw1 = 27; sw2 = 31; rH = 6, 265.1; r1 =
15, 785; r2 = 1, 578.5; rMX = 1, 060.0

Table 9 Investment: heavy weight on the tracking errors for consumption and investment no penalty for
deviation from targeted change in government spending

k C∗ I : Deterministic I : LQG I : H∞ I : 2-par. minimax I : Mixed

1 1957.9 1900.9 1900.9 1900.9 1900.9 1900.9

2 1972.6 1843.8 1848.8 1816.6 1801.8 1792.2

3 1987.4 1826.6 1814.1 1787.8 1768.0 1760.2

4 2002.3 1834.0 1829.7 1790.4 1770.7 1765.9

5 2017.3 1860.0 1845.8 1813.0 1796.0 1796.7

6 2032.5 1907.0 1894.2 1852.0 1839.0 1843.3

7 2047.7 1982.0 1964.3 1913.0 1904.0 1922.9

8 2063.1 2105.0 2068.3 2006.0 2003.0 2036.6

q1, f = q2, f = 10; q1, k = q2, k = Rk = 1; q3, k = 0; sw1 = 27; sw2 = 31; rH = 6, 265.1; r1 =
15, 785; r2 = 1, 578.5; rMX = 1, 060.0

Tables 7, 8, 9 show the data graphed in Figs. 11, 12, 13, respectively, where the
deviations from targeted changes in government spending are not penalized.
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