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Abstract In this paper, we examine the weak-form efficient market hypothesis of
crude oil futures markets by testing for the random walk behavior of prices. Using a
method borrowed from statistical physics, we find that crude oil price display weak
persistent behavior for time scales smaller than a year. For time scales larger than a
year, strong mean-reversion behaviors can be found. That is, crude oil futures mar-
kets are not efficient in the short-term or in the long-term. By quantifying the market
inefficiency using a “multifractality degree”, we find that the futures markets are more
inefficient in the long-term than in the short-term. Furthermore, we investigate the
“stylized fact” of volatility dynamics on market efficiency. The simulating and empir-
ical results indicate that volatility clustering, volatility memory and extreme volatility
have adverse effects on market efficiency, especially in the long-term.

Keywords Crude oil futures market · Market efficiency · Long-range dependence ·
Multiscaling · MF-DMA

1 Introduction

Efficient market hypothesis (EMH) is the core of modern financial economics. Accord-
ing to Fama (1970), there are three categories of EMH for the empirical tests—weak-
form efficiency, semi-strong-form efficiency and strong-form efficiency, each of which
has different implications for how markets work. Specifically, the weak-form EMH
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assumes that current stock prices can reflect all the historical publicly available infor-
mation. The semi-strong-form EMH assumes that stock prices can reflect the all pub-
licly available information and instantly respond to new information. Additionally, the
strong-form EMH assumes that current stock prices can even reflect all information,
including the hidden or “insider” information.

In weak-form efficiency, future prices cannot be predicted based on the analysis of
their past performance. This is consistent with the random walk model (RWM) which
assumes that the price changes are homogenously distributed random variables. The
examination of weak-form efficiency can be performed by empirically testing the
RWM (see, e.g., Fama 1991; Lo 1997). The existence of long-range dependence in
return series can reject the RWM, thereby indicating that the market is not weak-
form efficient. In this paper, we will investigate the weak-form efficiency1 of crude oil
futures markets by examining whether futures price follows the random walk behavior
based on the analysis of long-range dependence.

There is a plethora of studies on the efficiency in oil spot market (see, e.g., Tabak and
Cajueiro 2007; Alvarez-Ramirez et al. 2008; Wang and Liu 2010; Alvarez-Ramirez
et al. 2010). Only a few of studies which examine futures market efficiency by testing
for the random walk behavior. For instance, Serletis (1992) shows rejection of random
walk behavior in energy prices using the unit root test allowing for a structural break.
Elder and Serletis (2008) find the evidence that oil prices can be characterized by mean-
reverting behaviors and the variances are dominated by the high frequency components
(or short-term behaviors). This mean-revision in oil prices is also further confirmed by
Serletis and Rosenberg (2007). The results in Fernandez (2010) show that oil returns
series may exhibit either anti-persistence or persistence over the sample period, which
disconfirms the efficient market hypothesis in its weak form.

Some of studies support the efficient oil futures market. For example, Maslyuk and
Smyth (2008) show that the process of oil prices follows a random walk using a unit
root test allowing for an endogenous structural break. Using parametric, semi-para-
metric and non-parametric tests, Cunado et al. (2010) conclude that energy futures
prices are always not long-range dependent. More recently, using three local Whittle
methods (Robinson 1995) and a modified rescaled range analysis (Lo 1991), Wang
and Wu (2012) show that returns in oil prices display no long-range dependence.

In this paper, we extend the previous studies in three-folds. First, as market dynam-
ics can depend of trading horizons, the long-range dependence may be not consistent
for different small and large time scales. In other words, market efficiency in the
short-term may be different from that in the long-term. The existing studies focus on
market efficiency only under the monoscale environment, not taking the multiscale
into account2. Using a detrending moving average analysis borrowed from statistical
physics, we perform a multiscale analysis on crude oil futures markets. Our evidence
shows that futures prices do not follow a random walk behavior for small and large

1 Hereafter, for convenience, we use “the efficiency” to denote the weak-form efficiency in this study.
2 Multiscale analysis of oil futures markets can also be seen in Wang and Wu (2012). One major shortage
of the work of Wang and Wu (2012) is that it only shows the results for four time scales. Different from
Wang and Wu (2012), our multiscale analysis corresponds to the interval of time scales, rather than to the
points of some time scales.
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time scales. That is, oil futures markets are not efficient, either in the short-term or in
the long-term. Moreover, for time scales smaller than a year, oil futures prices display
weak persistent behaviors. For time scales larger than a year, strong mean-reversion
behaviors can be found. Second, the previous studies on market only show a qualita-
tive result on whether crude oil futures markets are efficient or whether futures prices
are long-range correlated. In this paper, we use both qualitative and quantitative anal-
ysis to analyze the market efficiency. By quantifying the degree of market inefficiency
using a “multifractality degree”, we find that futures markets are more inefficient in
the long-term than in the short-term. Third, market volatility can be captured by some
“stylized facts” such as volatility clustering and long memory (Cont 2001). Addition-
ally, some extreme events such as geopolitical events and financial crisis have shocks
to crude oil markets and cause extreme volatilities. Thus, we investigate the effects of
these volatility “stylized facts” on market efficiency based on simulating and empir-
ical analysis. Our results show that these volatility “stylized facts” (clustering, long
memory and extreme volatility) make adverse effects on efficiency of futures markets.
Moreover, the effects are much greater in the long-term than in the short-term.

The remainder of this paper is organized as follows. The next section provides the
methodology. Section 3 reports the empirical results and some relevant discussions.
The last section concludes.

2 Methodology

2.1 Multifractal Detrending Moving Average Algorithm (MF-DMA)
for Long-Range Dependence

Since the seminal works of Peters (1991, 1994), rescaled range analysis (R/S) (Hurst
1951) has been widely applied to financial markets. R/S method has also been employed
to investigate the long-range dependence in crude oil markets (Tabak and Cajueiro
2007). However, as pointed out by Lo (1991), the existence of short-range dependence
may result in a biased estimate of long-range dependence based on conventional R/S
method. The application of Lo’s modified R/S method to oil futures markets can be
seen in Wang and Wu (2012).

R/S method can be used to analyze long-range dependence in stationary time series
only. To overcome this drawback of R/S, Peng et al. (1994) proposes a detrended fluc-
tuation analysis (DFA) which avoids the spurious detection of apparent long-range
dependence that are an artifact of patchiness. One outstanding advantage of DFA is
that it can be directly used to analyze dependence at different time scales. Kantelhardt
et al. (2002) extend DFA and propose a multifractal DFA (MF-DFA) which can be
used to detect multifractality which has been a stylized fact in financial markets (Cont
2001). Alvarez-Ramirez et al. (2008) and Wang and Liu (2010) have successfully
employed DFA and its multifractal extension to detect long-range dependence in crude
oil markets.

DFA and MF-DFA remove the possible trends in time series based on the poly-
nomial fitting. Carbone et al. (2004) propose a detrending moving average (DMA)
algorithm which can remove the trend by subtracting the local means. Gu and Zhou
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(2010) also extend DMA to its multifractal form and their simulating results show
that the multifractal DMA (MF-DMA) is more robust than MF-DFA in capturing
multifractality in time series.

In this paper, we will analyze efficiency in crude oil futures markets by testing for
multifractality and long-range dependence using MF-DMA. For different time scales
n, based on MF-DMA, we can obtain the power-law relationship as follows3:

Fq(n) ∼ nh(q), (1)

where Fq(n) is the detrending variance which depends on the fluctuation order q. The
generalized Hurst exponent h(q) can be obtained by observing the slope of log–log
plot of Fq(n) versus n through the method of ordinary least squares (OLS). The value
h(2) is also the well-known Hurst exponent. If h(2) > 0.5, the long-range dependence
is persistent (positive). An increase in oil price is likely to be followed by another
increase. If h(2) < 0.5, the long-range dependence is anti-persistent (negative). An
increase in oil price is likely to be followed by a decrease. If h(2) = 0.5, there is no
long-range dependence in oil price returns and we can say that the market is efficient in
weak form. If the value of generalized Hurst exponent h(q) depends on the fluctuation
order q, we can conclude that the oil price series has the property of multifractality.

The analytical relationship between h(q) and the seminal Renyi exponent τ(q) is,

τ(q) = qh(q) − 1 (2)

Via a Legendre transform, anther important variable set α − f (α) is defined by

α = h (q) + qh′ (q) , f (α) = q[α − h(q)] + 1 (3)

Here, α is the Holder exponent or singularity strength which characterizes the sin-
gularities in a time series. The singularity spectrum f (α) describes the singularity
content of the time series. The higher degree of multifractality can be obtained from
the larger width of multifractal spectrum of α ∼ f (α). For a time series with a random
walk behavior, the multifractal spectrum is a single point only.

MF-DMA decomposes each time series into different kinds of fluctuations by
imposing the different fluctuation orders q. The h(q) related to larger q denotes the
scaling behaviors of larger fluctuations. For a series with random walk behavior, dif-
ferent kinds of fluctuations have the same scaling behavior (i.e., monofractality). In
this sense, the multifractality can be seen as the existence of market inefficiency. Thus,
we define two indexes of “multifractality degree” to measure the market inefficiency
(Zunino et al. 2008). These two measures can be written as follows:

�h = h (q)max − h (q)min , (4)

�α = αmax − αmin. (5)

3 To save space, we do not show the detailed description of MF-DMA which can be obtained upon request.
One can also see MF-DMA in the work of Gu and Zhou (2010).

123



Efficiency of Crude Oil Futures Markets 397

These two indexes measure the differentials of singularity strength among various
large and small fluctuations.

2.2 The Method of Capturing Volatility Dynamics

Following the seminal work in Engle (1982), the most popular volatility model is
generalized autoregressive conditional heteroskedasticity (GARCH) model proposed
by Bollerslev (1986). Bollerslev (1986) shows that GARCH(1,1) specification works
very well in most of the applied situations. A standard GARCH(1,1) model can be
described as follows.

rt = μt + εt = μt + σt zt , zt ∼ N I D(0, 1),

σ 2
t = ω + aε2

t−1 + bσ 2
t−1, (6)

where, rt denotes the daily return calculated by the first difference of logarithmi-
cal prices. μt denotes the conditional mean and σ 2

t is the conditional variance with
parameter restrictions ω > 0, a ≥ 0, b ≥ 0 and a + b < 1.

In GARCH(1,1) specification, the degree of volatility clustering is measured by
the values of a + b. The larger value of a + b implies the higher degree of volatility
clustering.

The GARCH(1,1) model is constructed on the hypothesis that the volatility auto-
correlations decay at an exponential rate. As the long memory in volatilities has been
a stylized fact (Cont 2001), Baillie et al. (1996) propose a fractionally integrated
ARCH model (FIGARCH) allowing for the hyperbolic rate decaying of autocorre-
lations. Interestingly, the FIGARCH(1, d, 1) tests a GARCH(1,1) with d = 0. FI-
GARCH(1, d, 1) model can be written as follows:

σ 2
t = ω + βσ 2

t−1 + [1 − (1 − βL)−1(1 − ϕL)(1 − L)d ]ε2
t , (7)

where 0 ≤ d ≤ 1, ω > 0, ϕ, β < 1. d is the fractional integration parameter and L
the lag operator. The parameter d characterizes the long memory property of hyper-
bolic decay in volatility because it allows for autocorrelations decaying at a slow
hyperbolic rate. The appreciation of the FIGARCH process is that for 0 < d < 1, it is
sufficiently flexible to allow for intermediate ranges of persistence, between complete
integrated persistence of volatility shocks associated with d = 1 and the geometric
decay associated with d = 0.

To investigate the effects of extreme volatility (EV) on the degree of multifractality,
our procedure is as follows. This procedure of removing EV points can also be seen
in Wang et al. (2011a).

(1) Rearrange the return series {xt , t = 1, . . . , N } to get the rearranged series
{yt , t = 1, . . . , N }. Where, N is the length of each series.

(2) Remove the first T/2 and the last T/2 data points from the sorted series {yt , t =
1, . . . , N }. Where, T is the number of data points in the tail parts. In this case, we
set T = 1 %∗N . Then, the new sorted series with no EV points can be obtained
and denoted as {zt , t = 1, . . . , N − T }.
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(3) Replace first and the last T/2 data points in the sorted series {yt , t = 1, . . . , N }
by the data points randomly chosen from {zt , t = 1, . . . , N − T }. Then, we can
obtain the new series with no extreme values, {y′

t , t = 1, . . . , N }, and the length
of which is N .

(4) Rearrange the series {y′
t , t = 1, . . . , N } to get the rearranged series {x ′

t , t =
1, . . . , N } which has the same rank orders as the original series {xt , t = 1, . . . ,

N }. That is to say, x ′
t should rank n in the series {y′

t , t = 1, . . . , N } if and only
if xt ranks n in the original series {xt , t = 1, . . . , N }.

(5) Analyze the multifractal behaviors of original series {xt , t = 1, . . . , N } and
the EV-removed series {x ′

t , t = 1, . . . , N } to quantify the effects of extreme
volatility on multifractality.

3 Empirical Results

3.1 Simulating Results

Our simulating results based on GARCH-class models and the adjustment of extreme
values show that volatility clustering, long-range dependence in volatility and extreme
volatility have adverse effects on market efficiency. The detailed procedure of simu-
lating can be seen in the Appendix.

3.2 Data and Preliminary Analysis

We choose daily closing price data of West Texas Intermediate crude oil futures traded
in NYMEX (New York Mercantile Exchange) for a specific delivery month. The data
are obtained from Energy Information Agency (EIA) (http://www.eia.doe.gov/). The
sample data covers the period from January 2, 1985 to May 10, 2011.

We choose price data of energy futures with four maturity contracts. The futures
price is quoted for delivering a specified quantity of a commodity at a specified time and
place in the future. Contract 1 (futures contract with the maturity of 1 month) denotes
a futures contract with the earliest delivery date. Contract 2–4 (futures contracts with
the maturities of 2–4 months) denote the successive delivery months following Con-
tract 1. Each contract expires on the third business day prior to the 25th calendar day
of the month preceding the delivery month. If the 25th calendar day of the month is
a non-business day, trading ceases on the third business day prior to the business day
preceding the 25th calendar day. After a contract expires, Contract 1 for the remain-
der of that calendar month is the second following month. For convenience, WTI
oil futures contracts with maturities of 1, 2, 3 and 4 months are denoted by “WF1”,
“WF2”, “WF3” and “WF4”, respectively.

Let Pt denote the energy futures price at day t . We can obtain the daily returns rt by
calculating the first logarithmic difference of prices, rt = log(Pt ) − log(Pt−1). The
graphical representations of four return series are illustrated in Fig. 1.

Table 1 reports the descriptive statistics of crude oil futures returns. The mean value
of each return series is close to zero and the standard deviation is much larger. The
ranges of returns (maximum-minimum) of WF1 and WF2 are larger than those of
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Fig. 1 Crude oil futures returns with different maturities

WF3 and WF4. It means that for futures contracts with smaller maturities, the price
dynamics are more volatile than those of contracts with larger maturities, also evi-
denced by the larger standard deviations. For each return series, the Jarque-Bera (JB)
statistic rejects the null hypothesis of Gaussian distributions at 1 % significance level,
also evidenced by the negative skewness and large kurtosis. The density of oil returns
in Fig. 2 also shows that they are not Gaussian distributed. In comparison to WF3
and WF4, returns of WF1 and WF2 have larger JB statistics, kurtosis and skewness
(absolute value) indicating that return distributions of futures contracts with smaller
maturities are always more fat-tailed. Table 1 also reports the results of unit root tests
for five energy return series based on Augmented Dickey and Fuller (1979) (ADF)
and Phillips and Perron (1988) (PP) methods. The optimal lag length of ADF test is
chosen based on Schwarz information criterion (SIC) and the optimal bandwidth of
PP unit root test is determined based on Newey-West criterion. We can find that ADF
and PP unit root test statistics reject the null hypothesis of unit root at 1 % significance
level indicating that the return series are stationary. The Ljung-Box statistics for serial
correlation show that the null hypothesis of no autocorrelation up to the 20th order
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Fig. 2 Empirical density of futures price returns

Table 1 Descriptive statistics of crude oil futures returns

WF1 WF2 WF3 WF4

Mean (%) 0.021 0.021 0.021 0.021

Std. Dev. 0.025 0.022 0.020 0.020

Maximum 0.164 0.138 0.121 0.115

Minimum −0.400 −0.384 −0.328 −0.284

Skewness −0.823 −0.939 −0.793 −0.671

Kurtosis 17.705 20.268 16.000 13.296

Jarque-Bera 60280*** 83094*** 47239*** 29691***

ADF −61.180*** −80.754*** −80.633*** −81.726***

PP −82.149*** −80.848*** −80.751*** −81.912***

Q(20) 76.270*** 50.337*** 54.131*** 49.561***

ARCH(10) 43.806*** 27.214*** 25.042*** 35.616***

Note: Jarque-Bera statistic tests for the null hypothesis of Gaussian distribution. ADF, PP and KPSS denote
the statistics of augment Augment Dickey and Fuller (1979) and Phillips and Perron (1988), respectively.
Q (20) is the Ljung-Box statistic of the return series for up to the 20th order serial correlation. ARCH(10)
is the F-statistic of ARCH effects up to the 10th order. *, ** and *** denote rejections at 10, 5 and 1 %
significance level, respectively
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Fig. 3 Log–log plots of Fq(n) versus time scale n for q = −5, 5 and 2

are rejected and confirms serial autocorrelation in the crude oil futures returns. The
F-statistics of ARCH test reject the null hypothesis of no ARCH effects up to the
10th order at 1 % significance level implying the existence of the property of volatility
clustering.

3.3 Analysis of Market Efficiency

Figure 3 shows the log–log plots of fluctuation function Fq(n) versus time scale n for
crude oil futures returns. We can find that for each q, a single line cannot well fit the
curve of fluctuation functions. The local slope of fluctuation function appear a turning
point at about n∗ = 250 (about a year). The fluctuation function curves have different
slopes (scaling exponents) for n < 250 and n > 250. That is, the efficiency of crude
oil futures markets is different for various time scales.

Figures 4 and 5 show the generalized Hurst exponents h(q) for small time scales
(n < 250) and large time scales (n > 250), respectively. The values of h(q) depend
on q implying the existence of multifractal behaviors. The multifractal spectra in
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Fig. 4 Generalized Hurst exponents of crude oil futures returns for small time scales (n < 250)

Figures 6 and 7 also confirm the presence of multifractality. That is, crude oil futures
markets display multifractal behaviors, both in the short-term and in the long-term. In
other words, crude oil futures markets are not efficient, which is consistent with the
results in Charles and Darne (2009).

Table 2 reports the Hurst exponents (h(2)), multifractality degrees �h and �α

for small and large time scales. For time scales smaller than a year (n < 250), Hurst
exponents of futures returns are slightly larger than 0.5 indicating that crude oil futures
markets display weak persistent behaviors in the short-term, which is consistent with
the results in Alvarez-Ramirez et al. (2008) and Wang and Wu (2012). For time scales
larger than a year, Hurst exponents are much smaller than 0.5 indicating that oil futures
markets display strong anti-persistent (mean-reversion) behaviors in the long-term.
This result is not completely consistent with the evidence in Serletis and Rosenberg
(2007) and Elder and Serletis (2008). The reason is that Serletis and Rosenberg (2007)
and Elder and Serletis (2008) do not consider the different scaling behaviors for various
time scales. The above two works show that energy futures markets display significant
anti-persistent behaviors. Our further evidence from multiscale analysis indicates that
the meaningful anti-persistent behavior can be only observed in the long-term, not
in the short-term. Our evidence on long-term scaling behavior is not consistent with
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Fig. 5 Generalized Hurst exponents of crude oil returns for large time scales (n > 250)

that in Alvarez-Ramirez et al. (2008). Using a detrended fluctuation analysis (DFA),
Alvarez-Ramirez et al. (2008) show that oil markets display no long-range correlated
behaviors (H ≈ 0.5), supporting the hypothesis of weak-form efficiency. The major
reason of this discrepancy is that in comparison to DMA employed in this paper, DFA
can lead to less controlled behavior of detrended fluctuations (Fq(n)) for larger time
scales (Gu and Zhou 2010). Wang and Wu (2012) seems to have performed multi-
scale analysis on energy futures markets using local Whittle methods and modified
R/S analysis. However, they only show the results on some time scales smaller than a
year. We also extend the work in Wang and Wu (2012) by using different method and
showing the scaling behavior of oil futures prices at larger time scales.

Table 2 also provides the multifractality degrees for two time scale intervals which
can be employed to denote the degree of market inefficiency. The multifractality
degrees for time scales smaller than a year are much smaller than those for time scales
larger than a year. It means that crude oil futures markets are more inefficient in the
long-term than in the short-term.

To investigate the effects of volatility clustering and long memory on market effi-
ciency, we normalize the daily returns by GARCH-type models using the equation as
follows:
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Fig. 6 Multifractal spectra of crude oil returns for small time scales (n < 250)

Rt = (rt − μt )/σt . (8)

where, μt is the daily conditional return at day t and σt is the conditional standard
deviation captured by GARCH-type model. We use GARCH(1,1) model to capture
volatility clustering and FIGARCH(0,d,0) model to capture long memory of volatility.

Figures 6, 7 provide the multifractal spectra for GARCH(1,1) and FIGARCH(0,d,0)
filtered series. The corresponding multifractality degrees are shown in Table 2. For
small time scales, the multifractality degrees for two GARCH-filtered residual series
are slightly smaller than those for original series indicating that the effects of volatility
clustering and long-range dependence on short-term market efficiency are very weak.
For time scales larger than a year, multifractality degrees of GARCH-filtered series
are much smaller than those of original series indicating that the volatility clustering
and long memory have great contributions to market inefficiency. The main reason is
that GARCH-type model can well capture volatility dynamics of crude oil markets
only in the short-term (for time scales smaller than a year), but in the long-term (for
time scales larger than a year), GARCH-type models are misspecified (Wang et al.
2011b).
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Fig. 7 Multifractal spectra of crude oil returns for large time scales (n > 250)

Table 2 also shows the multifractality degrees of EV-adjusted series. For time scales
smaller than a year, Hurst exponents and multifractality degrees nearly have no change
after the procedure of EV-adjustment indicating that the effects of extreme events on
market efficiency is very weak. For time scales larger than a year, the Hurst exponents
are much closer to 0.5 and multifractality degrees become weaker (with the exception
for WF1) after the EV-adjustment procedure. That is, extreme volatility is also a major
factor of long-term market inefficiency.

4 Concluding Remarks and Some Discussions

In this paper, we investigate the efficiency of crude oil futures markets employing mul-
tifractal detrending moving average analysis (MF-DMA). Unlike the results in pre-
vious studies, our empirical analysis shows that crude oil futures markets are weakly
persistent for time scales smaller than a year while for time scales larger than a year,
strong anti-persistent (mean reversion) behaviors can be found. In the short-term, there
are many speculators in crude oil futures market. Their speculations may lead to the
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Table 2 Hurst exponents and multifractality degrees of crude oil futures returns

Small time scales (n < 250) Large time scales (n > 250)

h(2) �h �α h(2) �h �α

WF1

Original series 0.5376 0.1303 0.2790 0.188 0.4691 0.8967

GARCH filtered series 0.5118 0.1096 0.2053 0.357 0.191 0.3561

FIGARCH filtered series 0.5259 0.0733 0.1693 0.3862 0.1795 0.3611

EV-adjusted series 0.5406 0.1176 0.2722 0.3931 0.4184 0.8131

WF2

Original series 0.5513 0.1128 0.2604 0.2040 0.4519 0.8530

GARCH filtered series 0.5187 0.1044 0.2032 0.3597 0.1997 0.3538

FIGARCH filtered series 0.5318 0.0837 0.1926 0.3726 0.2101 0.3830

EV-adjusted series 0.5869 0.0950 0.2258 0.3839 0.3099 0.4903

WF3

Original series 0.5600 0.0922 0.2191 0.2171 0.4505 0.8372

GARCH filtered series 0.5278 0.1047 0.2075 0.3674 0.2040 0.3415

FIGARCH filtered series 0.5425 0.0772 0.1846 0.3933 0.1839 0.3081

EV-adjusted series 0.5838 0.0818 0.1917 0.4164 0.2702 0.4171

WF4

Original series 0.5671 0.0764 0.1887 0.2289 0.4607 0.8371

GARCH filtered series 0.5318 0.1017 0.2036 0.3660 0.2504 0.4144

FIGARCH filtered series 0.5444 0.0707 0.1695 0.3851 0.2619 0.4399

EV-adjusted series 0.5818 0.0570 0.1487 0.4223 0.2206 0.3362

continuous rise or fall of crude oil futures prices. Therefore, the positive correlations
of crude oil futures prices (persistent behavior) can be found in the short-term. In the
long-term, the demand and supply elasticity are much larger in the long-term than in
the short-term (see, e.g., Hamilton 2009). The reason is that oil consumers and produc-
ers can sufficiently adjustment their demand and supply according oil price change.
Thus, if oil price deviates from long-run equilibrium level, the adjustment of supply or
demand can drive oil price to go back to equilibrium. An increase in oil price is very
likely to be followed by a decrease. In this sense, the strong mean-reverting behavior
of oil price can be observed in the long-term.

We also investigate the effects of volatility dynamics on crude oil futures market
efficiency. The results show that the volatility dynamics (clustering, long memory and
extreme volatility) have weak effects on market inefficiency in the short-term. On
the other hand, volatility dynamics make relatively great contributions to long-term
market inefficiency. The reason may be that the break of strong persistence of volatil-
ity can cause the structural break of crude oil markets which have adverse effects on
long-term efficiency.
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Appendix—The Effects of Volatility Dynamics on Market Efficiency:
The Simulating Results

We simulate return series with 216 data points according to the GARCH(1,1) model in
Eq. (1). Many literatures have shown that the conditional mean of financial asset return
is not significantly different from zero. Thus, in the simulating process, we set μt = 0.
We choose a = 0.05 and b = 0.85 0.90, 0.94 and 0.949, respectively (a + b = 0.90,

0.95, 0.99 and 0.999, respectively).
Figure A1 shows the multifractal spectra of simulating series for each a + b4. The

fluctuation order q varies from −5 to 5. For the purpose of comparison, we also show
the situation for random walk series (white noise). For other simulating series, widths
of multifractal spectra of GARCH(1,1) simulating series are larger than that of white
noise implying the significant multifractal behaviors. The corresponding multifractal-
ity degrees are shown in Fig. A2. This result indicates that the existence of volatility
clustering can cause multifractality in financial time series. Moreover, the multifrac-
tality degrees �α shown in Fig. A2 positively correlate with the strength of volatility

4 For each degree of volatility clustering, these generalized Hurst exponents are the average values of h(q)
calculated from 100 simulating series.

123



408 Y. Wang, C. Wu

a+b=0.90 a+b=0.95 a+b=0.99 a+b=0.999 White noise
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

D
el

ta
 a

lp
ha

Fig. A2 Multifractality degree �α for white noise and GARCH(1,1) simulating series with a + b = 0.90,
0.95, 0.99 and 0.999. The error bars are the standard deviations for the 100 simulating series

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

alpha

f(
al

ph
a)

d=0.2

d=0.3

d=0.4
d=0.5

d=0.6

White noise

Fig. A3 Multifractal spectra for white noise and FIGARCH(0,d,0) simulating series with d = 0.2, 0.3,
0.4, 0.5 and 0.6

123



Efficiency of Crude Oil Futures Markets 409

d=0.2 d=0.3 d=0.4 d=0.5 d=0.6 White noise
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
el

ta
 a

lp
ha

Fig. A4 Multifractality degree �α for white noise and FIGARCH(0,d,0) simulating series with d = 0.2,
0.3, 0.4, 0.5 and 0.6. The error bars are the standard deviations for the 100 simulating series

clustering a + b. That is, the asset return series with higher degrees of volatility clus-
tering display stronger multifractal behaviors, further confirming the evidence that the
property of volatility clustering can cause multifractality in return series.

We simulate return series based on the simple FIGARCH(0, d, 0) model with the
long memory parameter d = 0.2, 0.3, 0.4, 0.5, 0.6, respectively. Figure A3 shows mul-
tifractal spectra of simulating series. The spectrum widths of FIGARCH simulating
series are larger than that of white noise indicating that long memory in volatility is
also the source of multifractality

Figure A4 provides the multifractality degrees �α for each long memory parameter
d. For the purpose of comparison, we also provide the situations for time series with
random walk behavior. The multifractality degrees of time series with long memory
volatility are stronger than those of random walk series, indicating that long memory
of volatilities can contribute to multifractality of returns. Moreover, �α increases with
long memory parameter d increases. That is, the higher degrees of long memory in
asset price volatility always relate to the stronger multifractal behaviors of returns.
This simulating evidence further confirms that long memory in volatility is a source
of multifractality of asset price.

To investigate the effects of extreme volatility (EV) on the degree of multifractality,
our simulating procedure is as follows. This procedure of removing EV points can be
seen in Sect. 2.2.

We investigate two types of distributions. The first is a family of Student’s t distri-
butions
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p (x) = 
((γ + 1)/2)√
γπ
(γ /2)

[
1 + (x − μ)2

γ

]−(γ+1)/2

, (A1)

which have power-law tails with exponent γ . The second one is a family of “double”
Weibull distributions,

p (x) = βxβ−1e−|x−μ|β , (A2)

where the shape parameter β describes the heaviness of the tails and we require that
β < 1.

For the case of Student’s t distributions, we investigate γ = 2, 3 and 4. We generate
100 series for each γ and the average multifractal spectrum is determined. Figure A5
shows the multifractal spectra of original and EV-adjusted series for γ = 2, 3 and 4,
respectively. In comparison to the white noise, the significant multifractal behaviors of
simulating series indicate that fat-tail distribution is a major contribution of multifrac-
tality. Figure A6 shows the multifractality degrees (�α) of original and EV-adjusted
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bution with gamma = 2, 3 and 4. The error bars are the standard deviations for the 100 simulating series

series for each γ . It is evident that for each γ, �α of EV-adjusted series is smaller
than that of original series (the simulated series without EV-adjustment) indicating
that extreme volatility is also a contribution to multifractality.

For the case of Weibull distributions, we investigate β = 2, 3 and 4. Figure A7
shows the multifractal spectra of original and EV-adjusted series for each β. The cor-
responding multifractality degrees �α are displayed in Fig. A8. Similar to the case
of Student’s t distribution, the multifractality degrees of EV-adjusted series are sig-
nificantly smaller than those of original series, implying the contribution of extreme
volatility to multifractality.

From the above simulating process, we can conclude that the property of volatility
clustering, long memory and extreme volatility can cause the multifractality in finan-
cial asset returns. The reason may be that GARCH process may generate the power-law
tails in the distribution. Theoretically, a series with pure random walk behavior have
no multifractality (�α = 0). In this sense, the existence of multifractality implies
that the market is inefficient. Thus, our simulating results also indicate that financial
market inefficiency can partly attribute to volatility clustering, long-range volatility
dependence and extreme volatility.
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