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Abstract In this paper we develop a framework to analyze the optimal policy of an
inflation-targeting monetary authority that is not fully confident about its model and the
degree of mistrust changes over time as the structure of the economy changes. These
changes can include structural breaks as well as price, output or real exchange shocks.
We use robust control to denote the degree of uncertainty aversion of the policy maker
and a Markov chain to capture the time-varying nature of the uncertainty aversion. We
find that in general a more aggressive interest rate policy is the optimal response to:
(i) more uncertainty aversion and (ii) higher likelihood that the uncertainty aversion
may appear in the future. Moreover, we find that the policy maker’s welfare decreases
when there is an increase in uncertainty aversion. However, the transition probabilities
in the Markov-chain have ambiguous effects on the policy maker expected losses.
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1 Introduction

Uncertainty aversion is not necessarily time invariant. Policy makers can become more
or less pessimistic according to events that they witness or experience. For example,
in 2004 a surge in the global demand for commodities increased their international
price, prompting a policy tightening by many central banks in the face of inflationary
pressures throughout the year. This policy response to price shocks was due to several
factors: (1) the direct impact of higher commodity prices on inflation, (2) the uncer-
tainty about the evolution of commodity prices in the future, (3) the possibility of
second round effects of the aforementioned shocks on the process of price formation
and (4) the possibility of undesirable effects on inflation derived from the combina-
tion of continuing increases in commodity prices and the recovery experienced by the
global economy.1 Consequently, in the light of an increase in commodities interna-
tional prices, those central banks seemed more uncertainty-averse when they tightened
monetary policy mainly in response to precautionary motives.

In this paper we develop a model to study the problem of a monetary authority
under a similar environment. In particular, we analyze the optimal policy response
of an inflation-targeting monetary authority as the assumed structure of the economy
changes which affects the level of confidence on its estimated model of the economy.
The monetary authority may become distrustful of its model when a certain event or
structural break occurs rather than remaining in the same state of trust all the time. That
is, the estimated model of the economy works well in the absence of any significant
change in the structure of the economy but the monetary authority mistrusts the model
after certain events or structural breaks take place. These events include, for example,
sharp and persistent shocks in prices, output or real exchange rates, whereas structural
breaks may occur in the aftermath of a financial crisis. We assume that the monetary
authority cannot assign unique probabilities to the alternative models (i.e. Knightian
model uncertainty).

We model the time-varying degree of mistrust by considering two regimes: pes-
simistic and optimistic. In the latter, as the name indicates the monetary authority is
optimistic about the accuracy of its own model while in the former it is pessimistic.
We do not consider a jump diffusion process to account for rare events as in Liu
et al. (2002); instead we use robust control to model uncertainty aversion. That is, the
monetary authority’s degree of mistrust about its own model in the pessimistic regime
is modeled by introducing robust control as in Hansen and Sargent (2007). Hence,
the monetary authority plays a fictitious game with an evil nature which distorts the
model only in the pessimistic regime. I addition, we use a Markov chain to represent
the possibility that the policy maker may become more pessimistic after these events
or structural breaks take place and that the pessimism might subdue after some time.
Therefore, the Markov chain captures the time-varying degree of uncertainty aver-
sion about the policy maker’s model. The transition probabilities of the Markov chain
process can also be interpreted as bounds that limit the damage that evil nature can
inflict on hitting targets. This bound, known as the free parameter in robust control,

1 The possibility of persistent effects of the shocks observed in 2004 was highlighted in the Summary of
the Quarterly Inflation Report October–December 2004 published by Banco de Mexico in January 2005.
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measures the uncertainty aversion (or pessimism) of the policy maker and can take on
two values. In the pessimistic regime the bound is between a lower bound and infinity
(the policy maker is pessimistic about his model), while in the optimistic regime the
bound approaches infinity (the policy maker is confident in his model). Notice that
by limiting the damage of the evil nature, the transition probabilities also reflect the
degree of mistrust in the model along with the free parameter. Markov chains have
been the subject of recent interest in optimal control problems. For example, Zam-
polli (2006) combines optimal control and Markov regime-switching, finding more
cautious optimal monetary policies in the presence of abrupt changes in one multipli-
cative parameter. Blake and Zampolli (2004) extend those results to find the optimal
time-consistent monetary policy for models with forward-looking variables.

In general terms, our model captures an important feature of policy making under
uncertainty, namely that the degree of uncertainty aversion of policy makers (and argu-
ably human beings) can change according to the events they have recently witnessed
or experienced. The framework developed in this study is applied to the small open
economy model of Ball (1999) for its relative simplicity and parsimony. To simplify
the exposition and follow the initial motivation of the paper, we let the evil nature
distort only the Phillips curve by making price shocks more persistent. However, the
model can be extended to include distortions on output and the real exchange. We ana-
lyze the optimal interest rate response and the monetary authority’s welfare change to
variations in the degree of uncertainty aversion and the transition probabilities of the
Markov chain. We find four main results.

First, an increase (decrease) in the mistrust of the monetary authority about the
accuracy of its own model in the pessimistic regime produces an aggressive (caution-
ary) response of the interest rate regardless of the current regime. In the optimistic
regime, the possibility that in the next period the monetary authority can become more
uncertainty averse produces an aggressive response of the interest rate. In the pessi-
mistic regime this result implies that higher mistrust about the model produces a more
aggressive response of the interest rate to reduce the inflation rate and the output gap.

Second, the transition probabilities of the Markov chain have different types of
impact on the nature of the interest rate response. In general, in the optimistic regime,
an increase in the probability that the monetary authority may become pessimistic
in the future produces a more aggressive response of the interest rate. Alternatively,
in the pessimistic regime an increase in the probability that the monetary authority’s
pessimism may decrease in the future produces a more cautionary response mainly
for relatively large expected durations of the optimistic regime.

Third, the expected monetary authority’s welfare decreases (increases) when there
is an increase (decrease) in the degree of pessimism.

Finally, the transition probabilities in the Markov chain have different effects on wel-
fare. Depending on the specific combinations of the transition probabilities increases
in these probabilities can increase, decrease or not affect the expected policy maker’s
welfare. We identify these cases for a given level of time-varying uncertainty.

In general, our results show that when the pessimistic regime is more severe or more
likely, the interest rate response is more aggressive. This suggests that considering the
possibility that the monetary authority’s degree of uncertainty aversion may increase
in the future (even if the monetary authority is currently optimistic) produces a more
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aggressive interest rate response. In our model we have a cautionary approach (charac-
terized by the use of robust control in the pessimistic regime) that is translated into an
aggressive interest rate policy in the optimistic regime. This is consistent with most of
the previous literature that has shown that monetary policy should be tightened under
uncertainty about the persistence of inflation.2 For example, Angeloni et al. (2003)
explore the impact of nominal and real persistence on the transmission process of
various shocks of the euro area. They find that it is better for policy makers to assume
a relatively high degree of inflation persistence because the costs of making a mistake
when there is less actual persistence are not as high as making the opposite mistake.
Walsh (2004a) finds that a failure to reoptimize the Taylor rule coefficient carries very
little cost when a shock is not very persistent, but a large cost for a very persistent
disturbance. Coenen (2004) compares different models with different degrees of infla-
tion persistence and finds that the policy maker should act under the assumption that
inflation is characterized by a high degree of persistence. However, a relatively recent
stream in the literature has shown that this cautionary approach is not always optimal.
In particular, Walsh (2005a,b) conclude that when the monetary authority considers
a social loss function, the optimal policy rule is to assume a low-persistence. Amano
(2006) confirms the previous results by accounting for inflation persistence in the
welfare-theoretic stabilization objective. In our case, the optimal cautionary interest
rate policy we find takes place only for a small subset of cases when the monetary
authority is already pessimistic about its model and the probability of becoming more
optimistic increases.

The aggressive nature of the robust policies has been previously explored in the
literature. Sargent (1999) and Walsh (2004a) both show that the use of robust con-
trol tends to produce aggressive responses of the policy maker. In particular, Sargent
(1999) also uses Ball (1999) model and finds an aggressive interest rate response of
the policy maker to higher model uncertainty. Thus, the general results of our paper
follow the branch of the literature that advocates for an aggressive monetary policy in
the presence of uncertainty about inflation persistence. However, we also show that
a cautionary response can be optimal but only for a small set of cases of an already
pessimistic monetary authority that may become less pessimistic. Hence, we extend
previous findings to the case of time-variant uncertainty aversion and show a small
subset of new results under robust control. That is, unlike the standard application of
Hansen–Sargent robust control, we consider a time-variant bound on the evil nature’s
distortions. This setup has the advantage of producing an optimal solution that lies
somewhere between the optimal policies of the certainty equivalence case and those
derived from a purely robust control framework. In other words, the way we set up
the control problem might be less suboptimal in the long run than assuming that the
certainty equivalence principle always applies or that the model uncertainty aversion
never ends.

In our model, the source of misspecification only affects the inflation equation
through the incorporation of a disturbance. Walsh (2004b) finds that an optimal instru-
ment rule and robust control lead to exactly the same implicit instrument rule, when

2 Walsh (2004a) provides a thorough review on uncertainty and monetary policy.
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there is uncertainty only about the disturbance processes. However, Walsh (2004b)
also mentions that the two approaches predict different macroeconomic behavior. In
the robust control framework, expectations are formed differently in the sense that
they incorporate the behavior of an “evil” nature.

The framework developed in our paper is used for normative purposes. This implies
that in the decision-making process the monetary authority anticipates the possibil-
ity of switching to a different degree of pessimism using the transition probability
of the Markov chain. In a normative context it is initially possible to just consider
a higher degree of uncertainty aversion instead of switching to a regime where the
monetary authority is more pessimistic, making the specification of transition prob-
abilities somewhat redundant. However, this setup is conceptually flawed because it
assumes that, at the moment of optimization, the monetary authority believes that the
degree of uncertainty aversion will never change in the future. This clearly contra-
dicts the true belief of the monetary authority that uncertainty aversion could change.
In practical terms this alternative setup will also yield different results from ours. In
our setup the optimal solution includes a combination of the pessimistic and optimistic
regimes, whereas the alternative formulation includes only one regime. That is, it is
not the same to optimize every period considering the possibility of regime switching
as to optimize every period, assuming the same regime but changing the degree of
uncertainty aversion at each optimization.

The remainder of this paper is organized as follows. Section 2 presents the mon-
etary authority basic problem given by the Ball (1999) model. Section 3 discusses
the case of a monetary authority with a time-varying uncertainty aversion, which is
modeled by combining robust control and Markov-Switching. We do not assume the
reader is familiar with robust control and, consequently, provide a detailed explanation.
Section 4 shows the optimal solution to the problem. Section 5 describes the procedure
to find a reasonable level of robustness in the pessimistic regime. Section 6 defines and
analyzes the optimal policy response and the welfare losses of the monetary authority
to different degrees and probabilities of uncertainty aversion. Finally, Sect. 7 presents
the conclusions.

2 The Basic Problem of the Monetary Authority

In this section we present the small open economy model of Ball (1999). We use this
model for its simplicity in capturing the major monetary policy effects and concerns.
Moreover, as stated by Ball (1999), the model follows the spirit of larger and more
complicated macroeconomics models used by many central banks. The model consists
of the following three equations3:

yt+1 = αyt − β (it − πt )− χat + ηt+1 (1)

πt+1 = δπt + γ yt − f (at − at−1)+ εt+1 (2)

at = ϕ (it − πt )+ ϑt (3)

3 These equations attempt to capture empirical relationship and they do not necessarily come from
“microfoundations”.
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where yt is the output gap, it is the short term interest rate controlled by the mone-
tary authority, πt is the inflation rate and at is the real exchange rate (higher at is an
appreciation of the domestic currency). In addition, η, ε and ϑ are white noise shocks
whose variances are σ 2

η , σ
2
ε and σ 2

ϑ , respectively. All parameters are positive.
Equation 1 is the open economy IS curve representing the relationship between

monetary policy and output. In Eq. 1, the output gap depends on a demand shock
(ηt+1), the lags of the real interest rate (it − πt ) and the real exchange rate, and the
output gap lag. This equation captures the notion that lower real interest and exchange
rates increase output. The lag on the output gap implies that there is persistence in
output (or alternatively that the output is serially correlated). That is, there are output
components that take more than one period to adjust.

Equation 2 is the open economy Phillips curve. In this equation, the inflation rate
depends on an inflation shock and the lags of the inflation rate, output gap and real
exchange rate change. Ball (1999) derives this equation from separate demand equa-
tions for domestic and foreign goods. This equation expresses the idea that an appreci-
ation of the real exchange rate leads to lower import prices and inflation rate. Similarly,
an increase in the output gap represents a higher domestic demand leading to higher
inflation rates.

Equation 3 is a reduced-form equation that relates the real exchange rate to the real
interest rate. This equation represents the notion that higher real interest rates make
domestic assets more attractive, appreciating the real exchange rate. Moreover, Eq. 3
implies that interest rate policies can also be expressed as real exchange rate policies.

We assume that the monetary authority minimizes the following quadratic loss
function:

min
it

E0

∞∑

t=0

φt
(
π2

t + λy y2
t + λi i

2
t

)
(4)

where E0 is the expectations operator at time zero, φ is the discount factor (0 < φ

≤ 1), λi is the penalization weight for variations in the interest rate and λy is the
penalization weight for deviations of output from its potential. The loss function in
Eq. 4 implicitly assumes zero as the inflation and output gap target. However, when
inflation is expressed as a percentage deviation from the trend, then the optimal policy
tracks the trend inflation rate. Thus, Eq. 4 represents an inflation targeting monetary
authority that is also concerned about keeping the economy at its potential output level
(by attempting to make the output gap as close to zero as possible) and stabilizing the
interest rate. The importance of output and interest rate stabilization relative to the
inflation target is given by λy and λi , respectively. Inflation targeting while attempting
to keep the economy at its potential output is a common concern of central banks.
Zampolli (2006) provides a summary of the main reasons offered in the literature
for including interest rate stabilization in the loss function of the monetary authority:
reducing the maturity mismatch risk to the financial sector, exerting greater influence
on long-term bonds rates, lower transaction fictions, and reducing the frequency that
a policy rule would produce negative nominal interest rates.
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Hence, in this basic problem the monetary authority finds the optimal interest rate
i∗t that minimizes the loss function (Eq. 4) subject to the dynamics of the economy
given by Eqs. 1–3.

3 Time-Varying Uncertainty Aversion

In this section we extend the basic model of Ball (1999), presented in the previous sec-
tion, to include a time-varying uncertainty aversion of the policy maker as the structure
of the economy changes. We proceed by first defining the two regimes. Second, we
introduce model uncertainty in one of the regimes and use robust control to deal with
this type of uncertainty. Third, we use Markov switching to model the time-varying
uncertainty aversion of the policy maker. Finally, in the last subsection we set up the
new optimal monetary authority’s problem.

3.1 Pessimistic and Optimistic Regimes

We now consider an economy that experiences different events or structural breaks
that may represent changes in the structure of the economy which can alter the degree
of mistrusts of the monetary authority. As mentioned before these events or structural
breaks could be financial crises, persistent and sharp shocks to prices, output or the
exchange rate. In order to keep the model tractable we consider two regimes of the
economy denoted by rt+1 ∈ {1, 2}.4 Thus, rt+1is the regime in period t+1 which can
take on two values:

rt+1 =
{

1 if persistent and sharp shocks or structural breaks
2 if no significant events or structural breaks

That is, in regime 2 (rt+1 = 2), there are no significant or persistent shocks or events
which indicate to the monetary authority that the estimated model, given by Eqs. 1–3,
works well in this regime. However, in regime 1 (rt+1 = 1), sharp and persistent
shocks or structural breaks are observed and the estimated model may not be accurate
since the structure of the economy could be changing. Consequently, the monetary
authority mistrusts its own model in this regime. The monetary authority believes
that in regime 1 the estimated model may not fully represent the agents’ reactions,
especially after a period of relative stability.5 In this paper, we consider Knightian
model uncertainty where the policy maker is unable to assign unique probabilities to
the alternative models in regime 1. Hence, regime 1 is the pessimistic regime because
the monetary authority mistrusts its model. Regime 2 is the optimistic regime since
the policy maker believes that his model is a good approximation of the economy.

4 The model we present can be easily extended to the case of N regimes, i.e. rt+1 ∈ {1, . . . , N }. However,
we decide to use two regimes to simplify the exposition.
5 If the policy maker believes that his model is still accurate despite the events witnessed then there is no
model uncertainty and the basic model presented in Sect. 2 is sufficient.
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3.2 Model Uncertainty and Robust Control in Regime 1

The monetary authority deals with Knigthian model uncertainty in regime 1 by using
robust control. We follow Hansen and Sargent (2007) treatment of robust control which
is based on the Gilboa and Schmeidler (1989) minmax approach. The purpose of the
policy maker under robust control is to find a policy rule that works reasonably well
even if his model does not coincide with a true unknown model, as opposed to a policy
rule that is optimal if it does but possibly disastrous if it does not. Thus, the policy
maker defines a set of likely models around his original model in regime 1. In this
set three important models are located: the true unknown model, the original policy
maker’s estimated model and the worst-case model. Following Gilboa and Schmeidler
(1989), under robust control the policy maker adopts the policy rule dictated by the
worst-case model. The policy maker does not truly believe that the worst case will take
place (otherwise there will be no uncertainty), it only uses the worst case to obtain a
policy rule that works relatively well under model uncertainty.

Robust control can also be interpreted as a zero-sum two-player game between
the policy maker and an “evil” nature. In this fictitious game the evil nature intro-
duces distortions to hurt the monetary authority. These distortions can take the place
of more persistence shocks to inflation, output or the real exchange rate. To simplify
the exposition and to follow with the motivation of the commodity price increases
of the introduction, we consider an evil nature that introduces a distortion ωt+1 in
the inflation equation and the monetary authority responds using the interest rate.6

The evil nature uses this distortion to damage the policy maker by making cost-push
shocks persistent. In principle, this distortion will be non-zero in regime 1 to affect
the monetary authority and zero in regime 2 because there is no model uncertainty in
this regime. Therefore, Eq. 2 is modified to include this possibility as follows:

πt+1 = δπt + γ yt − f (at − at−1)+ εt+1 + ωt+1 (5)

where the evil nature distortion ωt+1 is a new control variable included in the optimal
robust control problem. The values of ωt+1 will depend on the next period regime,
and ultimately on the history of the state variables as follows:

ωt+1 = ω (rt , xt , xt−1, . . .) (6)

Equation 6 implies that the model in regime 1 is misspecified in unknown ways.
These distortions include a wide range of misspecified dynamics such as wrong param-
eters, autocorrelated errors and non-linearities. However, the distortion ωt+1 intro-
duced by the evil nature needs to be bounded or it will produce infinite damage to the
policy maker in regime 1. Thus, the bound on the distortion is given by the following
equation:

6 The model can be extended to the case where nature distorts output, prices and the real exchange rate in
which case a vector of distortions is added to the model.
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∞∑

t=0

φtωt+1ωt+1 ≤ μ (7)

where the parameter μ represents the robustness of the model or the degree of uncer-
tainty aversion of the monetary authority in regime 1 and its value needs to come
from outside the model. Higher values of μ allow higher values of the distortions
ωt+1 producing a policy rule for a larger set of models and a more severe worst-case.
Thus, when the monetary authority becomes more pessimistic about the accuracy of its
model in regime 1 (more uncertainty averse) the value ofμ increases. Similarly, lower
values of μ represent a less pessimistic or less uncertainty averse monetary authority.

Equation 7 will represent another constraint in the new optimization problem in
regime 1, and its Lagrange multiplier will be given by the positive parameter θ known
as the “free” parameter of robust control. The role of μ is now taken by θ , where
θ ∈ (

θ,∞)
. Since there is a bijective negative function from μ to θ , an increase in θ

represents a decrease in the monetary authority’s degree of uncertainty aversion (less
pessimistic policy maker) in regime 1. When θ → ∞ the uncertainty aversion to
model misspecification in regime 1 completely dissipates and the monetary authority
is fully confident that his model represents the true state of the economy. Similarly,
when θ decreases

(
θ → θ

)
the monetary authority is more pessimistic about the accu-

racy of its model in regime 1. The lower bound of the free parameter, θ , represents the
highest degree of uncertainty aversion for which is possible to obtain a robust policy.7

Thus, in our model, we consider regime 2 as the state where the monetary authority
is optimistic about the model θ → ∞ and denote the free parameter as θ2. Similarly,
regime 1 is defined as the state where the monetary authority is pessimistic about the
model, θ ≤ θ < ∞ and denote the free parameter as θ1. The actual choice of θ1 and
θ2 is discussed in Sect. 5. Thus, regime 2 (rt+1 = 2) is the state where the monetary
authority is fully confident about the model, θ2 → ∞, the distortion is ωt+1 = 0 and
Eq. 5 becomes Eq. 2. Regime 1 (rt+1 = 1) is the state where the monetary authority is
pessimistic about the model, θ ≤ θ1 < ∞ , the distortion is ωt+1 �= 0 which implies
that Eq. 5 contains persistent price shocks as opposed to those in Eq. 2.

3.3 Time-Varying Uncertainty Aversion and Markov Chain

In this paper we argue that the desire for robustness under model uncertainty is not
necessarily a time-invariant feature of economic behavior. In general, it is reasonable
to suggest that human beings become more or less pessimistic depending on the events
they have recently witnessed or experienced. For example, a person might drive more
cautiously after observing or suffering a car accident just to return to the previous
driving habits once the memory of the event has faded. An example in terms of our
model is that if the policy maker observes a significant increase in commodity prices
he might become more cautious about second-round effects of commodity price infla-
tion, especially when a long period of relative price stability makes him believe that

7 Gonzalez and Rodriguez (2004) show in a small analytical model that there is no robustness for values
0 < θ < θ , where nature is actually benevolent.
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his model (more specifically Eqs. 1–3) might misrepresent agent’s reactions.8 This
implies that the policy maker’s uncertainty aversion (or degree of pessimism about
the model) θ can change as the assumed structure of the economy changes. That is,
θ can alternate between θ1 and θ2 depending on the current state of the economy and
possibly after some shocks or structural breaks are observed.

We use a Markov chain to model the time-varying nature of the policy maker’s
uncertainty aversion. In other words, the possibility of alternating between θ1 and θ2
is captured by using a Markov chain. We believe this is an appropriate choice, since
as the experience of the Mexican central bank suggests, changes in the degree of pes-
simism about the model are not predicted with total certainty. In addition, a Markov
chain allows the approximation of a more general non-linear process about the nature
of time-varying uncertainty. Moreover, as the example above suggests, uncertainty
aversion may be related to the current state of the economy. Thus, the regime rt+1
follows a first order Markov chain process with the following transition matrix9:

P =
[

1 − p p
q 1 − q

]
(8)

where p = Pr {rt+1 = 2|rt = 1} is the probability that the economy alternates from
the pessimistic regime 1 to the optimistic regime 2. On the other hand, q = Pr
{rt+1 = 1|rt = 2} is the probability to alternate from the optimistic regime 2 to the
pessimistic regime 1. The transition probabilities (p, q) are assumed to be time-invari-
ant and exogenous. These probabilities represent the uncertainty about the type of
regime in the next period after shocks or structural breaks have been observed by the
monetary authority. We assume that at time t the information set of the policy maker
is the following:

It =
{

xt , yt , at−1, rt , P, φ, α, β, χ, λy, λi , δ, γ, f, θt , σ
2
ε , σ

2
η , σ

2
ϑ

}
(9)

The previous information set assumes that the regime of the economy rt+1 is
revealed only at the end of period t, after the policy action has been decided. That
is, when the policy maker chooses the policy rule, rt is known but rt+1 is still uncer-
tain. Hence, the uncertainty is about where the system will be at time t + 1, t + 2
and so forth.10 Notice that since in regime 1 the policy maker faces Knightian model
uncertainty, the regime shift is unstructured—i.e. there is no change in a particular
parameter of the model when there is regime-switching. Finally, to simplify the expo-
sition, the parameters of the model are time-invariant with exception of θrt which as
previously discussed represents time-varying degree of uncertainty aversion.

8 This was actually one of the main concerns expressed by the Mexican central bank after the commodity
price increase of 2004.
9 Without loss of generality we use state and regime interchangeably.
10 This is different to Zampolli (2006) assumption where the policy maker is uncertain about the current and
future state of the economy. However, incorporating uncertainty about the current regime of the economy
does not change our main results or the solution method.
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An important aspect of our model is that the transition probabilities in the Mar-
kov chain also represent additional bounds on the evil nature. That is, the ability of
the evil nature to inflict damage on the policy maker is constrained by the severity
of the worst-case shock in regime 1 (θ1) and by the transition probabilities (p, q).
If the policy maker is in regime 2, the ability of the evil nature to affect the policy
maker is constrained by the probability to transit to regime 1 (q) and by the size of
θ1. Similarly, if the policy maker is in regime 1, the evil nature is constrained by the
expected duration of this regimen given by p−1 and by the severity of θ1.

3.4 The New Optimal Control Problem of the Monetary Authority

In this subsection we set up the new optimization problem of the policy maker. We
can summarize our model in general terms as an economy with an inflation targeting
monetary authority, which experiences different shocks or structural breaks that can
change the structure of the economy, specifically the Phillips curve equation. The mon-
etary authority’s model works well in the optimistic regime, but the monetary authority
mistrusts its model in the pessimistic regime where the structure of the economy is
suspected to have changed. Thus, the monetary authority is aware that its own degree
of pessimism can change according to the observed events and introduces robust con-
trol only in the pessimistic regime to deal with model uncertainty. The probability
of a changing degree of model mistrust is captured by using a Markov chain process
between the optimistic and pessimistic regimes. In addition, the policy maker faces a
set of constraints about the dynamic evolution of the economy.

We follow Zampolli (2006) set up of optimal control with regime shifts. However,
our model differs in that we introduce robust control in regime 1. This implies that in
the optimal control problem the policy maker attempts to minimize the loss function
J using it whereas the evil nature tries to maximize it by using ωt+1. Incorporating
Eq. 7 and using θrt as its Lagrange multiplier, the new optimal problem of the monetary
authority becomes the following min-max:

v(yt , πt , rt ) = min
i

max
ωt+1

J =
⎧
⎨

⎩π
2
t + λy y2

t + λi i
2
t − θrtω

2
t+1

+β
2∑

rt+′1=1

Prt rt+1 Et
[
v(πt+1, yt+1, rt+1)

]
⎫
⎬

⎭ rt = 1, 2 (10)

subject to Eqs. 1, 3, 5 and 7.
where rt = 1, 2 represents the current regime which follows a Markov process given
by Eq. 8 and Prt ,rt+1 represents the transition probability between regime rt and rt+1.
From Eq. 8 this implies that P1,2 = p, P1,1 = 1 − p, P2,1 = q and P2,2 = 1 − q.
Hence, θrt+1 contained in v(πt+1, yt+1, rt+1) of Eq. 10 represents whether θ ≤ θ1 < ∞
or θ2 → ∞ in the next period. This feature allows us to model the time-varying uncer-
tainty aversion about the original policy maker’s model given by Eqs. 1–3. The solution
to the new policy maker’s problem will produce a policy rule for the interest rate that
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introduces the possibility that the policy maker’s degree of pessimism about his own
model may change as the structure of the economy changes.

The next step is to transform the new monetary authority’s problem in matrix form
which allows us to solve it as linear quadratic control problem. We first define the
control and state vectors in period t and regime rt as follows:

ut (rt ) =
(

it

ωt+1

)
, xt (rt ) =

⎛

⎝
yt

πt

at−1

⎞

⎠ where rt = 1, 2.

Therefore, for each period the problem generates two sets of controls and states
that correspond to regime 1 and 2. Substituting the value of at into Eqs. 1 and 2 and
setting ς ≡ β + χϕ,ψ ≡ δ + f ϕ, and τ ≡ f ϕ, we obtain the following matrices of
parameters:

A =
⎡

⎣
α ς 0
γ ψ f
0 −ϕ 0

⎤

⎦ , B =
⎡

⎣
−ς
−τ
ϕ

0
1
0

⎤

⎦ , Q =
⎡

⎣
λy 0 0
0 λπ 0
0 0 λi

⎤

⎦ , Rt =
[

0 0
0 −θrt

]
rt = 1, 2

Since the error ϑ now enters directly in Eqs. 1 and 2, the new additive errors for
these equations are defined as ηy and επ with standard deviations of σy and σπ , respec-
tively. Thus, the new additive error vector is denoted by ξt+1 and its corresponding
3 × 3 variance-covariance matrix by �.

The next step is to substitute all the newly defined matrices into the new monetary
authority’s problem given by Eqs. 10, 5, 7, 3 and 1 to obtain a linear quadratic prob-
lem. Since the Riccati equations of a linear quadratic problem with Markov switching
emerges from the first-order conditions alone and the first-order conditions for extre-
mizing a quadratic criterion function match those of an ordinary (non-robust) linear
quadratic problem with Markov switching and an extra set of controls (see Hansen
and Sargent 2007), then the new monetary authority problem with varying uncertainty
aversion consists of finding the controls {ut (rt )}∞t=0 in order to extremize the loss
function J .11

v(xt , rt ) = ext
xt ,ut

J = x
′
t Qxt + u

′
t Rt ut

+φ
2∑

r+1=1

Prt ,rt+1 Et

[
v(xt+1, rt+1)

]
rt = 1, 2 (11)

Subject to the state-space representation of the model

xt+1 = Axt (rt )+ But (rt )+ ξt+1 rt = 1, 2. (12)

11 In this case extremizing refers to minimize the loss function J by using the interest rate and maximize
it by using ωt+1.
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The continuation value of the dynamic problem at t is v(·) and it is a function of
the state variables and the current regime (rt ). Thus, the problem generates a value of
v(·)for each regime.

4 Optimal Solution with Unstructured Regime Shifts

In this section, we show the solution to the inflation targeting monetary authority
problem with time-varying uncertainty aversion given by the system of Eqs. 11–12.
Solving this optimal control problem with unstructured regime shifts is equivalent to
finding a contingent policy rule ut (rt ). The solution is given by the following feedback
rule:

u(xt , rt ) = −Frt xt where Frt =
[

Firt

Fωrt

]
rt = 1, 2. (13)

where Firt is a (1×3) matrix that shows the optimal rule of the interest rate to the state
variables (yt , πt , at−1). Similarly, Fwrt is a (1 × 3) matrix that contains the optimal
rule of the evil nature. The term rt denotes that for each policy rule the model pro-
duce two sets of values, one for each regime. Following Hansen and Sargent (2007),
Kendrick (2002) and Zampolli (2006); substituting the matrices and vectors in our
problem and after extensive matrix algebra we find the feedback matrices:

Frt =
( 2∑

rt+1=1

Prt ,rt+1

[
φB

′
Vrt+1 B + R

′
rt+1

])−1

×
(
φ

2∑

rt+1=1

Prt ,rt+1 B
′
Vrt+1 A

)
rt = 1, 2 (14)

where the matrices Vr+1 in Eq. 14 are (3 × 3) positive semi-definite and represent the
set of Ricatti equations. Similarly, we obtain the solution to the Ricatti Equations:

Vrt = Q + φ

2∑

rt+1=1

Prt ,rt+1 A′Vrt+1 A − φ2
( 2∑

rt+1=1

Prt ,rt+1 A′Vrt+1 B
)

×
( 2∑

rt+1=1

Prt ,rt+1

[
φB

′
Vrt+1 B + R

′
rt+1

])−1

×
( 2∑

rt+1=1

Prt ,rt+1 B ′Vrt+1 A
)

rt = 1, 2 (15)

Equation 13 and 14 show that the solution in Eq. 15 produces one Ricatti matrix
for each regime (V1, V2). In addition, the Ricatti equations for each regime are inter-
related. That is, V2is part of the solution of V1 and vice versa. Therefore, we iterate
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jointly on V1 and V2 until convergence is achieved for each of them.12 Notice that the
solution to the Ricatti equation for each regime

(
Vrt

)
places a weight on the Ricatti

equation of the next period regime
(
Vrt+1

)
equal to the probability of transiting to that

regime
(
Prt ,rt+1

)
.

An important difference between the Ricatti equations obtained here and those in
Zampolli (2006) is the time-varying nature of the matrix Rrt+1 in Eq. 15 of our model
which in our case contains the uncertainty aversion parameter θ .

Since the problem is linear quadratic the value function of the monetary authority’s
losses takes the following form:

v(xt , rt ) = x
′
t Vrt xt + drt rt = 1, 2. (16)

where drt is a scalar that can take different values on each regime. Equation 16 implies
that the losses to the policy maker are conditional of being in regime rt . The scalar drt

is given by the following equation:

d = (I2 − φP)−1 φP
{
tr(Vrt�)

}
(17)

where d is a (2×1) vector that contains the values of drt for each regime, I2 is a (2×2)
identity matrix and tr is the trace operator.13 Given that in the Ball (1999) model the
optimal steady state values of the state variables are zero, the steady state losses to
the policy maker in each regime are given by the vector d. That is, the first element of
the vector d is the value of the loss conditional of being in regime 1 and the second
element is the value of the loss conditional of being in regime 2.

The expected duration of regime 1 and 2 are given by p−1 and q−1, respectively.
Therefore, we compute the expected losses as follows:

v(xt ) = p−1v(xt , rt = 1) + q−1v(xt , rt = 2) (18)

where p−1v(xt , rt = 1) is the expected duration of regime 1 times the losses in
regime 1 and q−1v(xt , rt = 2) is the expected duration of regime 2 times the losses
regime 2.

5 Selection of the Robust Control Free Parameter in the Pessimistic Regime 1

As explained in Sect. 3.2, the monetary authority’s degree of pessimism about its
model is given by the free parameter θ . Under robust control the value of θ needs
to come from outside the model. The selection of the free parameter is important
because values of θrt close to θ represent a monetary authority extremely pessimistic
about its model in regime rt . Large values of θ1 indicate that the monetary authority

12 The matlab implementation of the problem can be obtained from the authors upon request.
13 In the general case where there are N number of regimes the d vector has N rows and the identity matrix
is N × N .
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Table 1 Parameter values

Economy Loss

α 0.72 ϕ 0.2 σ 2
y,π −0.00013 λy 1

ς 0.564 f 0.2 σ 2
y,ϑ −0.00013 λπ 1

γ 0.49 σ 2
y 0.000041 σ 2

ϑ,π 0.00003 λi 0

τ 0.4 σ 2
π 0.000083 φ 0.96

ψ 1.4 σ 2
ϑ 0.00063

is completely confident about the model in regime 1. Therefore, reasonable values of
θ1 prevent the policy maker from appearing catastrophist instead of cautious.

We follow Hansen and Sargent (2007) and use detection error probability theory to
choose these reasonable values of θ1 and θ2. However, we extend their procedure to
include the transition probabilities in the Markov chain and simultaneously choose θ1
and θ2. Hence, we consider three models of the economy: the original, the distorted
and the time-varying model. The original model discussed in Sect. 2 has no model
uncertainty and it is represented by Eqs. 1–3. The distorted model includes the evil
nature distortion ωt+1, the free parameter θ and is given by Eqs. 1, 3 and 5. The time-
varying model represents the possibility of alternating between regimes where there
is model uncertainty in one regime and no uncertainty in the other regime. Thus, the
time-varying model can be written as follows:

time-varying model = (1 − q)(original model) + q (distorted model)

The objective is to find values of θ1 and θ2 for which it is statistically difficult to
distinguish between the original model and the time-varying model. This allows us to
rule out values of θ1 and θ2 that imply extremely pessimistic cases.

In particular, the procedure consists of obtaining two types of probabilities: (i) the
probability of choosing the original model when the data were generated by the time-
varying model and (ii) the probability of choosing the time-varying model when the
data were generated by the original model. The average of these two probabilities is the
probability of making an error in the detection of the model—i.e. the detection error
probability denoted by κ . Note that if there is no robustness (θ → ∞ ⇒ ω → 0 ⇒
original model = distorted model) the original and the time-varying model are the same
and the detection error probability is equal to 0.5 (κ = 0.5). On the other hand, when
the level of robustness is infinite

(
θ → θ ⇒ ω → ∞)

the detection error probability
is equal to zero (κ = 0). Hansen and Sargent (2007) recommend the use of θ associ-
ated with detection error probabilities between 0.1 and 0.2 since they correspond to
commonly used confidence intervals of 95% and 90%, respectively.

We parameterize the model using the values in Zampolli (2006) which correspond
to the UK economy. However, these values are similar to those obtained for the U.S.
and the Euro area (see Orphanides and Wieland 2000; Sargent 1999) and are shown
in Table 1.
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We use the parameters in Table 1 to find the combinations of θ1, θ2, p and q that
produce the recommended values of κ=0.1 and 0.2. We perform 1,000 simulations
using a time horizon of 150 periods (T = 150). Each simulation represents a random
draw of the additive noise. The detailed procedure is shown in Appendix A.
An important advantage of our procedure is that allows the transition probabilities
as well as θ1 and θ2 to determine κ . Therefore, for a given level of κ we may have
different values of θ1 and θ2depending on the values of (p, q).

6 Optimal Policy Response Under Time-Varying Uncertainty

In this section, we analyze numerically the response of the interest rate and the pol-
icy maker’s losses to changes in the degree of model uncertainty in regime 1 and for
different values of the transition probabilities (p, q). From Eq. 13, we can write the
optimal interest rate policy rule as follows:

it = f iy,rt yt + f iπ,rtπt + f ia,rt at−1 (19)

where f iy,rt , f iπ,rt and f ia,rt are the response of the interest rate to the output gap,
inflation and the lagged exchanged rate. We substitute the parameter values for the
UK shown in Table 1 into problem (11)–(12) and obtain the optimal policy responses
and welfare losses. Since the worst-case shock is only used to obtain a robust interest
rate policy rule and to keep the exposition succinct, we present the response of the
worst-case shock in Appendix B.

6.1 Optimal Interest Rate Response

In our model the degree of time-varying uncertainty aversion of the monetary author-
ity (denoted byκ) is composed by the probability that its degree of pessimism will
change in the future given by (p, q) and by the degree of uncertainty aversion in
regime 1 given by θ1. We define an aggressive (cautionary) response when a change in
a parameter produces a higher (lower) value of the feedback coefficient of the interest
rate. Aggressive (cautionary) response implies a stronger (weaker) use of the interest
rate that in the Ball (1999) model depreciates (appreciates) the exchange rate, reduces
(increases) inflation and the output gap.

The effects of changes only in p or q (without offsetting changes in θ1 and θ2 to keep
κ constant) are relatively straight forward. The interest rate response will be aggressive
(cautionary) for changes that increase (decrease) the time-varying model uncertainty.
Thus, increases only in p will produce a higher κ and generate a cautionary response
in both regimes. In the optimistic regime 2, a higher p represents a lower expected
duration of the pessimistic regime 1. In the pessimistic regime 1, it represents a higher
probability to transit to the optimistic regime. Increases in q generate a lower κ and
produce an aggressive response of the interest rate in both regimes. In the pessimistic
regime, a higher q means a lower expected duration of the optimistic regime, whereas
in the optimistic regime implies a higher probability of the pessimistic regime.
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Table 2 Optimal response of the interest rate coefficient (Fi)

f iy f iπ f ia f iy f iπ f ia

q p κ = 0.1 κ = 0.2

0 0 r = 2 1.152 1.89 0.178 1.152 1.891 0.178
0.1 0.75 r = 1 1.289 2.19 0.238 1.239 2.08 0.216

r = 2 1.272 2.15 0.23 1.229 2.056 0.211
0.25 0.75 r = 1 1.304 2.22 0.243 1.247 2.094 0.219

r = 2 1.304 2.22 0.243 1.247 2.094 0.219
0.5 0.75 r = 1 1.346 2.29 0.259 1.268 2.133 0.227

r = 2 1.395 2.42 0.283 1.294 2.2 0.24
0.75 0.75 r = 1 1.478 2.53 0.306 1.334 2.252 0.25

r = 2 1.753 3.22 0.444 1.454 2.563 0.313
1 0.75 r = 1 1.775 3.05 0.409 1.813 3.12 0.424

r = 2 3.956 8.33 1.465 4.188 8.842 1.568
0.1 0.5 r = 1 1.277 2.17 0.234 1.231 2.066 0.213

r = 2 1.228 2.05 0.21 1.201 1.995 0.199
0.25 0.5 r = 1 1.285 2.18 0.237 1.236 2.074 0.215

r = 2 1.251 2.1 0.22 1.215 2.024 0.205
0.5 0.5 r = 1 1.307 2.22 0.245 1.247 2.094 0.219

r = 2 1.307 2.22 0.245 1.247 2.094 0.219
0.75 0.5 r = 1 1.369 2.34 0.267 1.277 2.148 0.23

r = 2 1.483 2.62 0.324 1.333 2.293 0.259
1 0.5 r = 1 1.649 2.82 0.364 1.667 2.853 0.371

r = 2 3.408 7.12 1.224 3.496 7.315 1.263
0.1 0.25 r = 1 1.282 2.18 0.235 1.233 2.07 0.214

r = 2 1.19 1.97 0.194 1.177 1.942 0.188
0.25 0.25 r = 1 1.285 2.18 0.236 1.235 2.073 0.215

r = 2 1.208 2.01 0.201 1.188 1.964 0.193
0.5 0.25 r = 1 1.293 2.2 0.239 1.238 2.079 0.216

r = 2 1.242 2.07 0.215 1.208 2.006 0.201
0.75 0.25 r = 1 1.309 2.23 0.245 1.246 2.094 0.219

r = 2 1.309 2.23 0.245 1.246 2.094 0.219
1 0.25 r = 1 1.522 2.6 0.32 1.475 2.505 0.301

r = 2 2.973 6.17 1.033 2.762 5.697 0.939

Since changes in p and q affect κ , we concentrate the analysis to the effect of (p,q)
for a constant value of κ by adjusting θ1 and θ2 (as outlined in Sect. 5).

Table 2 presents the optimal policy feedback coefficients of the interest rate for
κ=0.1 and 0.2 and selected values of p and q. The first two columns show different
values of p and q while the third column indicates the regime. Columns 4-6 display
the response of the interest rate with respect to each state variable for a robustness
level of κ = 0.1. Similarly, columns 7-9 and 10-12 show the response of the interest
rate for κ = 0.2. Higher values of κ represent lower model uncertainty.

Table 2 shows that the response of the interest rate is positive with respect to all
state variables for all combinations of p, q, κ and regimes, i.e. the interest rate is
always positively correlated with the output gap, inflation and the lagged exchange
rate. The positive sign of the response coefficients is the standard solution to the Ball
model. Hence, we concentrate our analysis in the change of the responses rather than
their sign. The first row in Table 2 is the response when p = 0 and q = 0. That is,
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it represents the response when the monetary authority feels optimistic that its model
is an accurate representation of the true unknown model and it will not transit to a
regime where the model is only an approximation. In this case the policy maker is
always in regime 2. The smallest response takes place precisely when p = q = 0.
This implies that the introduction of the possibility that the policy maker may mis-
trust his own model in the future produces an aggressive response of the interest rate
even when he is optimistic about the accuracy of the model. Moreover, comparing
the interest rate response to the same state variable but for different values of κ , we
find that higher degrees of model uncertainty produce more aggressive responses of
the interest rate with respect to all control variables in both regimes. In regime 1, the
policy maker faces the Knigthian model uncertainty about his model which implies
that higher values of θ1 produce higher worst-case shocks of cost-push inflation. Under
robust control the monetary authority follows the worst-case policy rule. Therefore,
in regime 1 the policy maker behaves as if the worst case of cost-push shocks on
inflation (within the reasonable limits given by θ1) were going to take place and reacts
aggressively to counteract the effect of the worst-case shock on inflation, output gap
and the exchange rate. In regime 2, the policy maker cannot predict with certainty if
his degree of uncertainty aversion will increase in the future. However, the possibility
of this increase on the policy maker’s uncertainty aversion produces an aggressive
response of the interest rate even when the policy maker is optimistic about his model
in the current regime. The monetary authority in regime 2 does not wait until it arrives
to regime 1 to have an aggressive response because it takes the interest rate one period
to affect the output gap and the inflation rate.

This aggressive response of the policy maker to higher model uncertainty under
robust control has been documented before by Gonzalez and Rodriguez (2004), Walsh
(2004a) and Sargent (1999) among others and it contrasts with the traditional caution-
ary response shown in Brainard (1967). The difference is that in the latter the policy
maker faces Bayesian multiplicative parameter uncertainty in a linear quadratic prob-
lem. This makes the policy maker to be more concerned about the variance of the state
variables (output gap and inflation) rather than their actual level and consequently
higher parameter uncertainty triggers a cautionary response.14

In order to complement our analysis, we also use the contour graphs of the responses
shown in Fig. 1. The graphs allows us to observe the responses for all the values of p
and q which are not feasible in Table 2 but at the cost of restricting the analysis to one
value of κ . We use κ = 10% in Fig. 1 but the results for κ = 20% follow the same
pattern.

In general terms we find an aggressive or insensitive response of the interest rate
to changes in p or q in both regimes for a given level of time-varying uncertainty
aversion. The only exception is found for a relatively small region of regime 1 where
the response is cautionary. Next, we explain the interest rate response to changes in p
and q for each regime and then compare across regimes.

14 The cautionary response will always be the case as long as the uncertain multiplicative parameter
belongs to the monetary policy transmission channel (see Söderström 2002).
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Fig. 1 Response of the interest rate for κ = 0.1

6.1.1 Response in the Optimistic Regime 2

The interest rate response in the optimistic regime 2 is aggressive to changes in either
p or q for a given value of κ . In the case of higher q there are two underlying effects.
As mentioned above a higher q produces an aggressive response. However, to keep
the level of time-varying model uncertainty (κ) constant, the degree of pessimism in
regime 1 decreases (i.e. higher θ1 or lower ω) which tends to reduce the response.
Figure 1 shows that the increase in q dominates the impact of a lower ω. Thus, for
a given degree of time-varying model uncertainty, the monetary authority prepares
for the higher possibility of becoming pessimistic by making an aggressive use of the
interest rate in the optimistic regime because of the lagged effect that the interest rate
has on inflation and the output gap.

Regarding p in regime 2, the interpretation is similar. Higher p reduces the response
since it decreases the expected duration of regime 1. To keep constant the time-varying
model uncertainty given by κ , the degree of pessimism in regime 1 increases which
tends to increase the response. The net result of the two effects in Fig. 1 indicates
that when the policy maker is optimistic a decrease in the expected duration of the
pessimistic regime produces an aggressive response of the interest rate for a given
degree of time-varying model uncertainty.
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6.1.2 Response in the Pessimistic Regime 1

Regarding the pessimistic regime 1, we find an aggressive response to changes in
q for a given level of κ . In the pessimistic regime 1, a higher q implies a lower
expected duration of the optimistic regime 2 which increases the response. To keep
κ constant the degree of pessimism about the model in regime 1 decreases (higher
ω) which tends to reduce the response. Thus, the aggressive response to higher q
in regime 1 in Fig. 1 indicates that when the policy maker is pessimistic about
his model, a lower expected duration of the optimistic regime produces an aggres-
sive response of the interest rate for a given level of time-varying model uncer-
tainty.

The effect of p in regime 1 can be divided into two different sections. These sec-
tions can be better observed by tracing a straight line from p = 0.5 to q = 1. In the
left part of this imaginary line, we find that increases in the probability of transiting
to the optimistic regime reduce the response for a given level of κ . Higher values of p
by themselves generate a cautionary response but to keep κ constant the pessimism in
regime 1 has to increase producing an aggressive response. Thus, our results indicate
that for this left section the effect of higher p dominates the impact of higher ω. In
the right part of this auxiliary line, we find that there is an aggressive response of the
interest rate to higher values of p. Roughly speaking, when policy maker is pessimis-
tic about his model and the probability of transiting to the optimistic regime is small,
increases in this probability produce a cautionary response mainly for large expected
durations of the optimistic regime for a given level of time-varying model uncertainty.
Moreover, the response is aggressive when the expected duration or the probability of
the optimist regime is large.

6.1.3 Responses Across Regimes

A comparison between responses show that the feedback coefficients are greater in
the pessimistic regime than in the optimistic regime when q < (1− p) or alternatively
when p < (1−q). This implies that when probability of transiting to the other regime
is low compared to the expected duration of that other regime, the response will be
more aggressive if the policy maker is in the pessimistic regime 1.15 In the opposite
case when the when q > (1 − p) or alternatively when p > (1 − q), feedback coef-
ficients are greater in regime 2 than in regime 1. This implies that when probability
of transiting to the other regime is high compared to the expected duration of that
other regime, the response will be more aggressive if the policy maker is in the opti-
mistic regime 2. Finally, the feedback coefficients are the same in both regimes when
q = (1 − p) or alternatively when p = (1 − q).

15 Since p−1 is the expected duration of regime 1, high values (1 − p) imply low values of p and conse-
quently a larger expected duration of regime 1. Similarly, high values of values (1 − q) imply low values
of q and consequently a larger expected duration of regime 2.
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Table 3 Expected policy maker losses

κ = 0.1 κ = 0.2

q p Total r = 1 r = 2 Total r = 1 r = 2

0 0 0.07022 0.05302 0.06385 0.05302

0.1 0.75 0.75917 0.06700 0.06698 0.70129 0.06189 0.06188

0.25 0.75 0.37403 0.07013 0.07013 0.33993 0.06374 0.06374

0.5 0.75 0.25779 0.07737 0.07732 0.22628 0.06790 0.06787

0.75 0.75 0.27027 0.10158 0.10112 0.21335 0.08012 0.07990

1 0.75 0.67512 0.29210 0.28565 0.55490 0.23991 0.23502

0.1 0.5 0.75133 0.06275 0.06258 0.71010 0.05926 0.05916

0.25 0.5 0.39300 0.06554 0.06548 0.36575 0.06098 0.06095

0.5 0.5 0.28039 0.07010 0.07010 0.25494 0.06374 0.06374

0.75 0.5 0.26835 0.08055 0.08044 0.23196 0.06961 0.06955

1 0.5 0.63883 0.21426 0.21031 0.53280 0.17860 0.17559

0.1 0.25 0.84449 0.06088 0.06010 0.80705 0.05799 0.05751

0.25 0.25 0.50947 0.06387 0.06350 0.47824 0.05990 0.05966

0.5 0.25 0.40016 0.06672 0.06664 0.36994 0.06168 0.06162

0.75 0.25 0.37245 0.06983 0.06983 0.33982 0.06372 0.06372

1 0.25 0.67705 0.13574 0.13408 0.58896 0.11806 0.11672

6.2 Welfare Losses

In this subsection we analyze the effect on the monetary authority expected losses
from changes in q, p and κ given by Eq. 18. Table 3 displays the monetary author-
ity losses for different values of q, p and κ . Table 3 shows that higher degrees of
uncertainty aversion (or pessimism) of the monetary authority increases the monetary
authority’s losses. That is, when the monetary authority believes that his model is far-
ther away from the true unknown model, he assumes a more severe worst-case shock
(ωis higher) and consequently losses are larger. Alternatively, higher values of κ imply
a more optimistic monetary authority and a lower worst-case shock of inflation which
reduces the losses.16

We analyze the effect welfare losses by also using a contour graph for all values
p, q and κ = 0.1.

While we are mostly interested in the total expected losses we also show the
expected losses in each regime to explain the underlying effects on the losses.
Figure 2 shows from left to right expected total, regime 1 and regime 2 losses for
different combinations of p and q. Unsurprisingly, expected losses in regime 1 and 2
follow a similar as the interest rate responses shown in Fig. 1. Combining this informa-
tion with Eq. 18, we expect changes in q to have opposite effects on the total expected

16 As shown in Sect. 3.4 the worst-case shock affects the loss function directly through θ1ωt+1ωt+1.
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Fig. 2 Welfare losses for κ=0.1

losses. Higher q tends to increase losses in both regimes but it also tends to reduce
duration of these higher losses of regime 2. Similarly, for most values of p, higher
values of p tend to increase losses in both regimes but they also reduce the expected
duration of the higher losses in regime 1.

The leftmost graph in Fig. 2, shows the final results on the total expected losses
of these opposite effects of p and q. Higher values of p decrease expected total
losses when p is small (between 0.1 and 0.4) and when both 0.3 < q < 0.8 and
0.4 < p < 0.7. That is, when the expected duration of the pessimistic regime is
large or when the optimistic and pessimistic regime have both a middle duration, an
increase in the probability to transit to the optimistic regime makes the policy maker
better off for a given degree of κ . For values p > 0.3 the response is mostly insen-
sitive for the smallest and largest values of q (0 < q < 0.3 and 0.8 < q < 1). In
these areas the two opposite effects of higher p roughly offset each other. For middle
to high values of q (0.5 < p < 0.7) and a large p (p > 0.7), higher values of p
slightly increase the losses. In this area, the effect of higher losses in both regimes
as a result of larger p is greater than the reduction in the expected duration of the
pessimistic regime since this regime has a low expected duration. In other words,
when the duration of the pessimistic regime is low a further reduction is out weighted
by the aggressive response of the interest rate making the monetary authority worse
off.

Regarding the net effect of q on the total expected losses, we find that when 0.6 <
q < 1 and 0.3 < p < 1, higher values of q increase the losses. This implies that
when the duration of the optimistic regime is relatively small and the duration of
the pessimistic regime is not large then increases in the duration of the optimistic
regime makes the policy maker worse off for a given degree of model uncertainty.
The monetary authority’s total expected welfare increases for higher values of q when
0.3 < p < 1 and 0 < q < 0.6. Hence, increases in the expected duration of the
optimistic regime make the policy maker better off when the expected duration of the
optimistic regime is relatively long and the expected duration of the pessimistic regime
is not large. Finally, expected total losses are mostly insensitive to changes in q when
p < 0.3, implying that when the expected duration of the pessimistic regime is large
then changes in the expected duration of the optimistic regime have a negligible effect
on the monetary authority’s expected welfare.
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7 Conclusions

Casual empiricism suggests that human beings can become more or less pessimistic
depending on the events that they have just witnessed or experienced. The commod-
ity price shocks observed in 2004 is our initial motivation for this paper. As prices
increased, monetary authorities worried about the persistence of these price shocks,
and, as a result, tightened monetary policy. Moreover, these shocks affected the con-
fidence of the monetary authority about the accuracy of its own model to accurately
reflect agents’ reactions. In this paper, we develop a framework to analyze the problem
of an inflation-targeting monetary authority in a similar environment. We consider a
monetary authority whose degree of uncertainty aversion can vary with time as the
structure of the economy changes which is reflected in different events that can range
from structural breaks (for example in the aftermath of a financial crisis) to price,
output or real exchange shocks. To keep the model tractable we consider two regimes.
In the optimistic regimes the events observed do not affect the structure of the economy
and the monetary authority is confident that its model works well. In the pessimistic
regime the events experienced by the economy produces a monetary authority that
mistrusts its model, as it is reasonable to believe that the estimated model may misrep-
resent the agents’ reactions, particularly after a period of relative stability. We model
the fear of model misspecification in the pessimistic regime by using robust control.
The possibility of time-varying uncertainty aversion is captured by a Markov chain
between the pessimistic and optimistic regimes. We apply this framework to the open
economy model of Ball (1999).

In general we find that the interest rate response is more aggressive when: (i) the
degree of mistrust about the model of the monetary authority in the pessimistic regime
increases and (ii) the likelihood of future uncertainty aversion increases. These results
follow the previous research findings in regard to monetary policy under model uncer-
tainty being more aggressive. Our results confirm this aggressive approach to monetary
policy in the presence of time-varying uncertainty aversion about the policy maker’s
model. However, we also find a cautionary response for a small set of cases when the
policy maker already mistrust its model and believes the duration of this pessimism is
short.

Appendix A

In this appendix we describe the steps to computer the detection error probability in
our model, the Matlab implementation of this procedure can be obtained from the
authors upon request.

We define the vector of parameters for the original model: B̃ =
⎡

⎣
−κ
−τ
ϕ

⎤

⎦

The solution to the original model is then given by the following equation:

it = −F̃t x̃t (A-1)
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where the tilde above a matrix or vector denotes the value in the original model. The
optimal value of the state is then given by the following:

x̃t+1 = (
A − B̃ F̃t

)
x̃t + ξ̃t+1 (A-2)

Combining Eqs. 12 and 13 in the text we obtain the following expression for the
states in the time-varying model which are then given by the following:

xt+1 = (A − B Ft ) xt (rt )+ ξt+1 rt = 1, 2. (A-3)

Substituting x̃ in the original model and the x in state 1 because that is the state
when the evil nature introduces the distortion we obtain the following expression:

x̂t+1 = (1 − q) x̃t + qxt+1,rt =1 + ξ̂t+1 (A-4)

where the hat above a matrix or vector denotes the value in the time-varying model.
Next, we follow the approach introduced by Hansen and Sargent (2007). Thus, the

log likelihood ratio under the original model is the following:

Log-likelihood ratio original = 1

T

T −1∑

t=0

{0.5ω̃t+1ω̃t+1 − ω̃t+1ξt+1} (A-5)

where the ω̃ is the mean of the worst-case shock under the original model that is, the
mean over -Fωx̃ . We ran 1,000 Monte Carlo simulations where each of them chooses
a random value of ξ for T = 150 and count the instances where the log-likelihood is
negative.

The log-likelihood ratio under the time-varying model is the following

Log-likelihood ratio time-varying = 1

T

T −1∑

t=0

{
0.5ω̂t+1ω̂t+1 + ω̂t+1ξ̂t+1

}
(A-6)

where the ω̂ is the mean of the worst-case shock under the time-varying model that is,
the mean over -Fωx̂ . We ran 1,000 simulations where each of them chooses a random
value of ξ̂ for T = 150 and count the instances where the log-likelihood is negative.

The error detection probability is then given by the following equation:

κ = 0.5[prob(original) + prob(time-varying)] (A-7)

where the prob(original) and prob(time-varying) are the proportion of instances in
which the likelihood ratio in (A-5) and (A-6), respectively, was negative.

This procedure is undertaken for each set of parameters including θ1, θ2 and (p, q)
until we find κ=0.1, 0.2. In particular, we start by setting (p, q) and assigning a value
for θ1 much lower than θ2. Then, we change the values of θ1 and θ2 while trying to
keep the difference between them as large as possible until the desired κ is found.
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Appendix B

In this Appendix we show the table with the values of the worst-case shock response.
From Eq. 13 in the text, we can write the optimal worst-case shock response as
follows:

ωt+1 = f ωy,rt−1 yt + f ωπ,rt−1πt + f ωa,rt−1at−1 (B-1)

Table B-1 Optimal response of the worst-case shock coefficient (Fw)

f iy f iπ f ia f iy f iπ f ia

q p κ = 0.1 κ = 0.2

0.1 0.75 r = 1 0.0790 0.1971 0.0394 0.0507 0.1282 0.0256

r = 2 0.0636 0.1588 0.0318 0.0413 0.1045 0.0209

0.25 0.75 r = 1 0.0795 0.1971 0.0394 0.0508 0.1279 0.0256

r = 2 0.0795 0.1971 0.0394 0.0508 0.1279 0.0256

0.5 0.75 r = 1 0.0813 0.1979 0.0396 0.0515 0.1282 0.0256

r = 2 0.1322 0.3232 0.0646 0.0814 0.2031 0.0406

0.75 0.75 r = 1 0.0871 0.2027 0.0405 0.0540 0.1301 0.0260

r = 2 0.3561 0.8481 0.1696 0.1956 0.4791 0.0958

1 0.75 r = 1 0.1010 0.2134 0.0427 0.0659 0.1404 0.0281

r = 2 2.7958 6.4585 1.2917 2.1950 5.1257 1.0251

0.1 0.5 r = 1 0.0785 0.1970 0.0394 0.0505 0.1282 0.0256

r = 2 0.0391 0.0989 0.0198 0.0261 0.0667 0.0133

0.25 0.5 r = 1 0.0787 0.1967 0.0393 0.0505 0.1280 0.0256

r = 2 0.0487 0.1223 0.0245 0.0321 0.0815 0.0163

0.5 0.5 r = 1 0.0794 0.1967 0.0393 0.0508 0.1278 0.0256

r = 2 0.0794 0.1967 0.0393 0.0508 0.1278 0.0256

0.75 0.5 r = 1 0.0816 0.1974 0.0395 0.0518 0.1283 0.0257

r = 2 0.1931 0.4706 0.0941 0.1153 0.2870 0.0574

1 0.5 r = 1 0.0985 0.2128 0.0426 0.0633 0.1383 0.0277

r = 2 2.2463 5.2471 1.0494 1.7741 4.1984 0.8397

0.1 0.25 r = 1 0.0787 0.1970 0.0394 0.0505 0.1282 0.0256

r = 2 0.0178 0.0456 0.0091 0.0123 0.0316 0.0063

0.25 0.25 r = 1 0.0786 0.1967 0.0393 0.0506 0.1283 0.0257

r = 2 0.0221 0.0561 0.0112 0.0151 0.0386 0.0077

0.5 0.25 r = 1 0.0785 0.1957 0.0391 0.0504 0.1274 0.0255

r = 2 0.0353 0.0883 0.0177 0.0235 0.0595 0.0119

0.75 0.25 r = 1 0.0782 0.1939 0.0388 0.0507 0.1276 0.0255

r = 2 0.0782 0.1939 0.0388 0.0507 0.1276 0.0255

1 0.25 r = 1 0.0910 0.2055 0.0411 0.0588 0.1348 0.0270

r = 2 1.6162 3.8573 0.7715 1.3282 3.2157 0.6432
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where f ωy, f ωπ,tt and f ωa are the responses of the worst-case shock to the output
gap, inflation and the lagged exchange rate. Table B-1 shows the optimal response of
the evil nature for κ=0.1 and κ= 0.2.

The worst-case shock responses follow a similar pattern as the interest rate response
since the evil nature and the policy maker are playing a zero-sum game. Hence, the
monetary authority uses the interest rate to attempt to offset the actions of the evil
nature. The latter tries to hit the policy maker as much as possible and it is bounded by
the degree of uncertainty and the transition probabilities. Therefore, the same rationale
exposed in the text for the interest rate applies for the worst-case shock of the evil
nature.
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