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Abstract Linear differential duopolies are constructed with continuous time scales,
constant coefficients and two types of information delays: fixed and continuously dis-
tributed time delays. System dynamics are considered with delays in the diagonal
terms. By analyzing the associated characteristic equations, it is found that the stabil-
ity is lost when the lengths of delays cross some critical values. Then it is shown that
the destabilizing effect caused by the fixed delays is stronger than the destabilizing
effect of the distributed delays having exponentially-declining weighting function. It
is further demonstrated that the strength of the destabilizing effect is reversed if the
distributed delay has a bell-shaped weighting function.
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1 Introduction

Oligopoly models play a central role in the literature of mathematical economics.
Since the pioneering work of Cournot (1838), a large number of researchers discussed
and examined the classical Cournot model and its variants and extensions. The exis-
tence and uniqueness of the equilibrium was the main focus of studies in the early
stages and later the research turned to the dynamic analysis of oligopolistic markets.
A comprehensive summary of earlier results can be found in Okuguchi (1976), and
their multiproduct generalizations with several case studies are discussed in Okuguchi
and Szidarovszky (1999). The attention was focused on linear and linearized models
at the beginning which provided the local asymptotic properties of the equilibria.
During the last two decades however an increasing attention has been given to the
analysis of global dynamics. A survey of the newer results can be found in Bischi
et al. (2010) which contains models with both discrete and continuous time scales.
The most common dynamic processes are based either on the gradients of the profit
functions or on best responses. In this paper continuous-time gradient dynamics will
be considered with constant coefficients. Some applications of gradient dynamics to
economic models are found in Bischi et al. (2010).

In the cases of most models discussed earlier in the literature, it was assumed that
each firm has instantaneous information about its own output and also on the out-
puts of the competitors. This assumption has mathematical convenience, however it
is unrealistic in real economics, since there are always time delays due to determining
and implementing decisions. In addition to these facts, in fast changing industries the
firms do not want to follow sudden market changes, they rather want to react to aver-
aged past information. Hence there are always time delays between the times when
information is obtained and the times when the decisions are implemented.

Howroyd and Russel (1984) construct two linear continuous-time dynamic oligop-
oly models with partial adjustment towards the best response and consider the effects
caused by time delays on local stability. They show clear-cut results. In their Model
I in which each firm has delayed information of its own output and its competitors’
outputs, local stability can be lost when the lengths of the delays are large enough. On
the other hand, in their Model II in which each firm has delayed information only in
the competitors’ outputs, stability is preserved regardless of the length of the delays
under the plausible assumption that the coefficient matrix of the dynamic system with-
out time delays is diagonally dominant. They, however, do not investigate the case in
which each firm has delayed information on its own output and can use instantaneous
information on the competitors’ outputs.

This paper has three purposes. The first purpose is to complement the study of
Howroyd and Russel (1984) by examining how the fixed time delays affect local
dynamics in this missing case. Howroyd and Russel (1984) assume fixed time delays.
There are, however, many economic situations in which the delays are uncertain or
the firms are reacting to averaged past information. In such situations, continuously
distributed time delays are appropriate. Thus the second purpose is to examine whether
or not the results obtained under fixed time delays still hold in a dynamic oligopoly
model with continuously distributed time delays. The last purpose is to compare the
destabilizing effects caused by fixed and distributed time delays and to show that the
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Dynamics in Linear Cournot Duopolies 313

relative strength between the two effects depends on the value of the shape parameter
of the weighting function under distributed delay.

The paper is organized as follows. Section 2 constructs a basic duopoly model with
linear price and cost functions. Section 3 assumes constant speed of adjustment and
introduces fixed time delays into the basic model. Section 4 discusses the model with
continuously distributed time delay. Section 5 concludes the paper.

2 The Basic Model

In this section, dynamics in a classical linear oligopoly model is briefly reviewed and
its global stability is confirmed. Consider an industry of N firms producing a homo-
geneous good. Let k = 1, 2, . . . , N denote the firms and let xk be the output quantity
produced by firm k. The price function is assumed to be linear,

p = a − b
N∑

�=1

x� with a > 0 and b > 0.

Production cost is also assumed to be linear and the marginal cost of firm k is denoted
by ck . The profit function of firm k is defined by

πk =
(

a − b
N∑

�=1

x�

)
xk − ck xk .

Firm k determines its output to maximize its profit with respect to xk . Assuming interior
optimal solutions of the profit maximizing problems and then solving the first-order
condition for the output yield the best reply for firm k,

Rk(x−k) = a − ck − b
∑N

� �=k x�

2b

with

x−k = (x1, x2, . . . , xk−1, xk+1, . . . , xN ).

A Cournot equilibrium state is a vector (xc
1, xc

2, . . . , xc
N ) that satisfies xc

k = Rk(xc
−k)

for k = 1, 2, . . . , N . Thus a Cournot equilibrium output of firm k is

xc
k = a − Nck +∑N

� �=k c�

(N + 1)b
.

In this paper we assume that the firms continuously adjust their outputs proportion-
ally to the change in their profits. This gradient dynamics is modeled by an N -dimen-
sional system of ordinary differential equations of the form,
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ẋk = αk
∂πk

∂xk
for k = 1, 2, . . . , N , (1)

where αk is a positive adjustment coefficient of firm k, and the dot over a variable
means its time derivative, e.g., ẋk = dxk/dt . Substituting the explicit expression of
the marginal profit of firm k into (1), we obtain the continuous-time oligopoly model
with gradient dynamics

ẋk(t) = αk

⎛

⎝a − ck − b
N∑

� �=k

x�(t) − 2bxk(t)

⎞

⎠ for k = 1, 2, . . . , N . (2)

Using the best reply functions, system (2) can be rewritten as

ẋk(t) = ᾱk (Rk(x−k(t)) − xk(t)) for k = 1, 2, . . . , N . (3)

where ᾱk = 2bαk . In system (3), each firm adaptively adjusts its output in such a way
that the adjustment rate of the output is proportional to the difference between the
profit maximizing output and the current output. That is, each firm adjusts its output
into the direction toward its best reply. The transformation from (2) to (3) or vice
versa implies that for the firms, the gradient adjustment of the output is the same as
the adaptive adjustment toward best reply. To establish local stability of the Cournot
equilibrium, it suffices to show that all eigenvalues of the coefficient matrix of either
(2) or (3) have negative real parts. It is shown in Bischi et al. (2010, Theorem 2.2),
that system (3) is always locally asymptotically stable. This implies that system (2)
is also locally asymptotically stable. Since local stability leads to global stability in
linear models, we obtain the following well-known result:

Theorem 1 The continuous-time gradient dynamic model (2) is globally asymptoti-
cally stable.

In the following we introduce time delays into system (2) and consider how time
delays affect local stability of the Cournot equilibrium. We examine two different
types of time delays: fixed or discrete time delay in Sect. 3 and continuously distrib-
uted time delay in Sect. 4. We abbreviate the first delay to a discrete-delay and the
second to a continuous-delay henceforth.

3 Linear Duopolies with Two Discrete Delays

Howroyd and Russel (1984) obtain the delay oligopoly system by introducing dis-
crete-delays into (3),

ẋk(t) = ᾱk (Rk(x−k(t − Tk)) − xk(t − Sk)) for k = 1, 2, . . . , N ,

where firm k experiences a time delay Tk in obtaining information about the compet-
itors’ outputs and a time delay Sk in implementing information about its own output.
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Dynamics in Linear Cournot Duopolies 315

The Cournot equilibrium is shown to be stable in their Model I with Tk = Sk = rk > 0
if 2ᾱkrk ≤ 1 and (N − 1)b < 1 hold. It is also shown to be always stable regardless
of the lengths of delays in their Model II with Tk > 0 and Sk = 0.1 In the following,
we consider the opposite case with Sk > 0 and Tk = 0 in the gradient dynamic model
(2). Since it is, however, difficult to examine the general N -firm oligopoly model, we
confine our analysis to delay duopoly dynamics (i.e., N = 2).

For the sake of notational simplicity, we use the followings: x = x1, y = x2, α =
α1, β = α2, cx = c1 and cy = c2. Then a duopoly version of the gradient dynamic
model is presented by

ẋ(t) = α(a − cx − 2bx(t − Sx ) − by(t − Tx )),

ẏ(t) = β(a − cy − bx(t − Ty) − 2by(t − Sy)). (4)

A steady state (i.e., Cournot outputs) of the delay model (4) is obtained by substituting
2 for N in xc

k ,

xc = a − 2cx + cy

3b
and yc = a − 2cy + cx

3b
,

which are independent of the length of delays. Since the discrete-delays in the off-
diagonal terms are harmless to stability, we assume the following:

Assumption 1 Tx = Ty = 0.

We start from the local stability analysis. For this purpose we consider the corre-
sponding homogenous system of (4):

ẋδ(t) = α(−2bxδ(t − Sx ) − byδ(t)),

ẏδ(t) = β(−bxδ(t) − 2byδ(t − Sy)),

where xδ(t) = x(t) − xc and yδ(t) = y(t) − yc are deviations from the correspond-
ing equilibrium values. The characteristic equation of the linearized system can be
obtained by looking for the solutions in exponential forms,

xδ(t) = eλt u and yδ(t) = eλtv

and substituting them into the homogeneous equations. The resultant system can be
written in the matrix form:

⎛

⎝
λ + 2αbe−λSx αb

βb λ + 2βbe−λSy

⎞

⎠

⎛

⎝
u

v

⎞

⎠ =
⎛

⎝
0

0

⎞

⎠.

1 More general result, asymptotic stability for linear differential system with general delays Tkj ≥ 0 for
1 ≤ k �= j ≤ N and Skk = 0 for k = 1, 2, . . . , N , is shown in Hofbauer and So (2000).
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A nontrivial solution exists if and only if the determinant of the coefficient matrix is
zero, which provides a mixed exponential-polynomial equation for λ:

(
λ + 2αbe−λSx

) (
λ + 2βbe−λSy

)
− b2αβ = 0. (5)

Expanding (5), we obtain the characteristic equation of the form

λ2 − αβb2 + 2αbλe−λSx + 2βbλe−λSy + 4αβb2e−λ(Sx +Sy) = 0. (6)

Due to Theorem 1, the duopoly system (4) is locally asymptotically stable in the
absence of information delays. Although we assume away information delays in the
competitors’ outputs and reduce the N -firm model to the duopoly model, the dynamic
analysis of system (4) is still complicated in the case of multiple distinctive delays,
Sx > 0, Sy > 0 and Sx �= Sy . Following Li and Wei (2009), we take the two-step
procedure. At the first step, setting Sx = 0, we reduce (6) to the equation with single
discrete-delay Sy . We first find a stable interval of Sy in which all roots of the char-
acteristic equation (6) have negative real parts. Then we proceed to the question of
stability switching. The stability analysis concerns with whether all roots lie in the left
half of the complex plain. The analysis of stability switching concerns with whether
the roots cross the imaginary axis when the delay changes. At the second step, select-
ing a value of Sy from the stable interval, we treat Sy as a parameter and find a stable
interval of Sx , repeating the same procedure taken at the first step. The stable interval
of Sx depends on the value of Sy . Moving the value of Sy from one extreme of its
stable interval to the other extreme generates the Sy-dependent corresponding interval
of Sx . Putting these intervals together constructs the region of Sx and Sy in which the
Cournot equilibrium is stable.

First Step Sx = 0 and Sy > 0.

The condition Sx = 0 reduces the characteristic equation (6) to the form,

λ2 + 2αbλ − αβb2 + 2βb(λ + 2αb)e−λSy = 0. (7)

It can be checked that λ = 0 is not a solution of the above equation. Let λ = iω with
ω > 0 be a solution. Substituting it into (7) and separating the real and imaginary
parts, we have

2βb(2αb cos(ωSy) + ω sin(ωSy)) = ω2 + αβb2

2βb(ω cos(ωSy) − 2αb sin(ωSy)) = −2αbω. (8)

The sum of the squares of these two equations yields the fourth-order equation in ω

ω4 − 2b2(2β2 − 2α2 − αβ)ω2 − 15α2β2b4 = 0 (9)

implying that

ω2± = b2(2β2 − 2α2 − αβ ± √
D)
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where D is the discriminant and has the form

(2β2 − 2α2 − αβ)2 + 15α2β2 > 0.

Clearly ω2+ > 0 and ω2− < 0. Substituting the positive root ω+ into (8) and solving
the resultant equations we have

cos
(
ω+Sy

) = α2b2

4α2b2 + ω2+

and

sin
(
ω+Sy

) = ω+(ω2+ + αβb2 + 4α2b2)

2βb(4α2b2 + ω2+)
.

Hence there is a unique θ = ω+Sy ∈ (0, 2π ] that makes both equations hold. Solving
either of the last two equations for Sy yields the threshold value of time delay Sy ,
given Sx = 0,

SD0
y = 1

ω+
cos−1

[
α2b2

4α2b2 + ω2+

]

or

SD0
y = 1

ω+
sin−1

[
ω+(ω2+ + αβb2 + 4α2b2)

2βb(4α2b2 + ω2+)

]

where the values of the right hand sides of these expressions are the same.
To verify stability switching, we need to determine the sign of the derivative of

Re
[
λ(Sy)

]
at the point where λ(Sy) is purely imaginary. By differentiating (7) with

respect to Sy, we have

{
2(λ + αb + βbe−λSy ) − 2βb(λ + 2αb)e−λSy Sy

} dλ

d Sy
= 2βb(λ + 2αb)λe−λSy .

For convenience we check the sign of (dλ/d Sy)
−1 that is written as

(
dλ

d Sy

)−1

= (λ + αb)eλSy + βb

βbλ(λ + 2αb)
− Sy

λ

where, from (7), we have

eλSy = − 2βb(λ + 2αb)

λ2 + 2αbλ − αβb2 .
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Therefore

sign

[
d(Re λ)

d Sy

]

λ=iω+

= sign

[
Re

(
dλ

d Sy

)−1
]

λ=iω+

= sign

[
Re

(
− 2(λ + αb)

λ(λ2 + 2αbλ − αβb2)
+ 1

λ(λ + 2αb)

)]

λ=iω+

= sign

[
2(ω2+ + αβb2 + 2α2b2)

(ω2+ + αβb2)2 + (2αbω+)2
− 1

4α2b2 + ω2+

]

= sign
[
2(ω2+ + αβb2 + 2α2b2)(4α2b2 + ω2+) − (ω2+ + αβb2)2 − (2αbω+)2

]

= sign
[
15α2β2b4 + ω4+ + 8α2b4

√
D
]

> 0,

where the definition of ω2+ was used in the last step. This result implies that the cross-
ing of the imaginary axis is from the left to the right as Sy increases and thus leads to
the loss of stability. It can be noticed that the firms are symmetric in the adjustment
coefficients and discrete-delays. We can get the threshold value of Sx by interchanging
α and β. Concerning stability of the Cournot equilibrium, the following conclusion
holds at the first step:

Theorem 2 The discrete-delay duopoly model with Si > 0 and S j = 0 (i, j =
x, y, i �= j) is locally asymptotically stable for Si < SD0

i and unstable for Si > SD0
i

where the critical level of discrete-delay SD0
i is defined by

SD0
i = 1

ωi+
cos−1

[
b2b2

4b2b2 + ω2
i+

]

with

ωi+ = b
√

2a2 − 2b2 − αβ +√Di

and

Di = (2a2 − 2b2 − αβ)2 + 15α2β2

where

a = α and b = β if i = x and a = β and b = α if i = y.

Second Step Sx > 0 and Sy > 0.
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Suppose that the characteristic equation (6) has a value of Sy selected from the sta-
bility interval [0, SD0

y ) obtained at the first step. By the same token, let λ = iw, w > 0
be a solution of the characteristic equation. Substituting it into (6) we have the real
and imaginary parts in the following forms:

2αbw sin (wSx ) + 4αβb2 cos
(
w(Sx + Sy)

) = w2 + αβb2 − 2βbw sin
(
wSy

)
,

2αbw cos (wSx ) − 4αβb2 sin
(
w(Sx + Sy)

) = −2βbw cos
(
wSy

)
. (10)

Hence the sum of the squares of the two equations in (10) is arranged to be

4α2b2w2 + 16α2β2b4 − 16α2βb3w sin
(
wSy

)

= (w2 + αβb2)2 + 4β2b2w2 − 4βb(w2 + αβb2)w sin
(
wSy

)
(11)

which is written as a fourth-order equation in w,

w4 + 2b2(2β2 − 2α2 + αβ)w2 − 15α2β2b4

+4βbw(4α2b2 − w2 − αβb2) sin
(
wSy

) = 0.

It is not easy to solve this equation analytically for w. However, under a specific
condition such as α = β = k, the equation is reduced to

(w2 − 3k2b2)(w2 + 5k2b2 − 4kbw sin(wSy)) = 0.

Since the second factor is always positive, a positive solution of w is uniquely deter-
mined to be w+ = √

3kb which is independent of the specific value of Sy .
Using the addition theorem for trigonometric functions, we solve (10) to obtain

sin (wSx ) = (w2 + αβb2) + 4β2b2w − 2βb(αβb2 + 2w2) sin
(
wSy

)

2αb(w2 + 4β2b2 − 4βb sin
(
wSy

)
)

,

and

cos (wSx ) = β2b2 cos
(
wSy

)

w2 + 4β2b2 − 4βb sin
(
wSy

) .

Again, we need to determine the sign of the derivative of Re[λ(Sx )] at the point
where λ(Sx ) is purely imaginary. From (6), we have

(
dλ

d Sx

)−1

= (2λ + 2βb(1 − λSy)e−λSy )eλSx

λ(2αbλ + 4αβb2e−λSy )
+ 2αb − 4αβb2e−λSy

λ(2αbλ + 4αβb2e−λSy )
− Sx

λ

where from (6)

eλSx = − 2αbλ + 4αβb2e−λSy

λ2 − αβb2 + 2βbe−λSy
.
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Therefore

sign

[
d(Re λ)

d Sx

]

λ=iw+

= sign

[
Re

(
dλ

d Sx

)−1
]

λ=iw+

= sign

[
Re

(
− 2λ + 2βb(1 − λSy)e−λSy

λ(λ2 − αβb2 + 2βbλe−λSy )
+ 2αb − 4αβb2 Sye−λSy

λ(2αbλ + 4αβb2e−λSy )

)]

λ=iw+

= sign

[
−−4β2b2w+−2(αβb2+w2+)+2βb(3w2++αβb2) sin

(
w+Sy

)+2βbw+(αβb2+w2+)Sy cos
(
w+Sy

)

w+(4β2b2w2++(αβb2+w2+)2−4βb(αβb+w2+)w+ sin
(
w+Sy

)
)

+ 8α2βb3(sin
(
w+Sy

)+ w+Sy cos
(
w+Sy

)
) − 4α2b2w+

w+(4α2b2w2+ + 16α2β2b4 − 8α2βb3w+ sin
(
w+Sy

)
)

]

= sign
[
4b2(β2 − α2)w+ + 2(αβb2 + w2+)w+ + 2βb(4α2b2 − αβb2 − 3w2+) sin

(
w+Sy

)

+ 2βb(4α2b2 − αβb2 − w2+)w+Sy cos
(
w+Sy

)]

where we use (11) in the last step. Under the specific condition α = β = k, the
expression in the last brackets is simplified as

2w+(k2b2 + w2+) − 4kbw2+ sin
(
w+Sy

)
> (8

√
3 − 12)k2b3 > 0.

The first inequality is due to
∣∣sin w+Sy

∣∣ < 1 and w+ = √
3kb. Therefore we obtain

d(Re λ)

d Sx

∣∣∣∣
λ=iw+

> 0

implying that all the roots cross the imaginary axis from left to right as Sx increases
when Sy is chosen from its stability interval. The result is summarized in the following
theorem:

Theorem 3 Given α = β = k, the discrete-delay duopoly model with Sx > 0 and
Sy ∈ (0, SD0

y ] is locally asymptotically stable for Sx < S̄x and unstable for Sx > S̄x

where S̄x = S̄x (Sy) is defined by

S̄x (Sy) = 1

w+
cos−1

[
β2b2 cos

(
w+Sy

)

w2+ + 4β2b2 − 4βb sin
(
w+Sy

)
]

with

w+ = √
3kb.

Notice that S̄x (Sy) converges to the threshold value SD0
x obtained in Theorem 2,

when Sy approaches 0. The locus of S̄x = S̄x (Sy) for Sy ∈ (0, SD0
y ] is the partition

curve dividing the discrete-delays (Sx , Sy) space into stable and unstable regions and
is depicted as a thicker concave curve in Fig. 1b.
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Sx
C0Sx

D0
Sx

Sy
C0

Sy
D0

Sy

P1

P2

P3

P4

Sx
D0

Sx

Sy
D0

Sy
A B

Fig. 1 Partition lines of the discrete- and continuous-delay models. A nk = 0 for k = x, y and B nk =
1, 2, 3, 4 for k = x, y

4 Linear Duopolies with Two Continuous-Delays

In real economic situations, the delays are usually uncertain and can be considered to
be fixed only under special circumstances. Therefore, we will re-model time delays
in a continuously distributed manner and compare the discrete-delay effects with the
continuous-delay effects. As in the discrete-delay model, we examine the case where
the firms have time delays only in implementing information about their own outputs.2

State variables x(t) and y(t) in the diagonal terms are replaced by certain averages of
past values. The continuous-delay dynamic system is frequently modeled with Volterra
type integro-differential equations

ẋ(t) = α(a − cx − 2bxe(t) − by(t)),

ẏ(t) = β(a − cy − bx(t) − 2bye(t)), (12)

with expectations on its own outputs,

xe(t) =
t∫

0

φ(t − s, Sx , nx )x(s)ds

and

ye(t) =
t∫

0

φ(t − s, Sy, ny)y(s)ds.

2 It is possible to show that time delays in the competitor’s output are harmless to stability even in the
continuous-delay model. See Matsumoto and Szidarovszky (2009).

123



322 A. Matsumoto et al.

The weighting function φ is assumed to have the form

φ(t − s, �, �) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

�
e− t−s

� if � = 0,

1

�!
(

�

�

)�+1

(t − s)�e− �(t−s)
� if � ≥ 1.

(13)

Here we assume that � > 0 and � is a nonnegative integer. For � = 0, weights are
exponentially declining with most weight given to the most current data. For � > 0,

the weighting function has a bell-shaped profile indicating that zero weight is given
to the most recent data, rising to maximum at s = t − � and declining thereafter. As
� increases, the weighting function becomes more peaked around � and as � goes to
infinity, the weighting function converges to the Dirac delta function.3

Substituting (13) into the above expectation formations and the resulting expres-
sions into (12) yield a system of integro-differential equations. A steady state of
system (12) is identical with the Cournot equilibrium, xc and yc. In order to analyze
the dynamic behavior of the system, we consider the corresponding homogeneous sys-
tem. Letting xδ and yδ, as before, denote the deviations of x and y from their Cournot
output levels, xc and yc, the homogeneous system can be formulated as follows:

ẋδ = α

⎧
⎨

⎩−2b

t∫

0

φ(t − s, Sx , nx )xδ(s)ds − by(t)

⎫
⎬

⎭ ,

ẏδ = β

⎧
⎨

⎩−bx(t) − 2b

t∫

0

φ(t − s, Sy, ny)yδ(s)ds

⎫
⎬

⎭ . (14)

We seek the solutions in the exponential forms

xδ(t) = eλt u and yδ(t) = eλtv,

and substituting these solutions into Eq. 14 and arranging terms yield

⎛

⎝λ + 2αb

t∫

0

φ(t − s, Sx , nx )e
−λ(t−s)ds

⎞

⎠ u + αbv = 0,

βbu +
⎛

⎝λ + 2βb

t∫

0

φ(t − s, Sy, ny)e
−λ(t−s)ds

⎞

⎠ v = 0. (15)

3 See Bischi et al. (2010) for more properties of the weighting function, φ(t − s, �, �).
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Introducing a new variable z = t − s, we can simplify the integral terms by noticing
that

t∫

0

φ(t − s, �, �)e−λ(t−s)ds =
t∫

0

φ(z, �, �)e−λzdz.

Since we are interested in the asymptotic behavior of the system, we let t → ∞ to
have

lim
t→∞

t∫

0

φ(z, �, �)e−λzdz =
(

1 + λ�

q

)−(�+1)

with

q =
⎧
⎨

⎩

1 if � = 0,

� if � ≥ 1.

Then Eq. (15) can be written in the matrix form

(
Ax (λ) Bx (λ)

By(λ) Ay(λ)

)(
u
v

)
=
(

0
0

)

where

Ax (λ) =
[
λ

(
1 + λSx

qx

)nx +1

+ 2αb

]
,

Ay(λ) =
[
λ

(
1 + λSy

qy

)ny+1

+ 2βb

]
,

Bx (λ) = αb

(
1 + λSx

qx

)nx +1

and

By(λ) = βb

(
1 + λSy

qy

)ny+1

.

A non-trivial solution exists if and only if

Ax (λ)Ay(λ) − Bx (λ)By(λ) = 0 (16)

which is called the characteristic polynomial of system (14). Since it is difficult to
check whether the real parts of the roots of (16) are negative or positive, we will
specialize the from of the density function to obtain some analytical results.
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We have already assumed that both firms have information delays about their own
outputs, Sx > 0, Sy > 0 and Sx �= Sy . In addition to this, we further assume that the
firms have exponentially declining weighting functions, that is, nx = ny = 0. Then
equation (16) under these assumptions becomes a fourth degree polynomial equation:

a0λ
4 + a1λ

3 + a2λ
2 + a3λ + a4 = 0

where the coefficients are defined as

a0 = Sx Sy > 0,

a1 = Sx + Sy > 0,

a2 = 1 + 2b(αSy + βSx ) − b2αβSx Sy � 0,

a3 = 2b(α + β) − b2αβ(Sx + Sy) � 0,

a4 = 3b2αβ > 0.

The Routh-Hurwitz stability theorem implies that the roots of the characteristic equa-
tion have negative real parts if and only if all coefficients are positive and the following
determinants are positive:

J2 =
∣∣∣∣
a1 a0
a3 a2

∣∣∣∣ and J3 =
∣∣∣∣∣∣

a1 a0 0
a3 a2 a1
0 a4 a3

∣∣∣∣∣∣
.

Notice that

J2 = Sx + Sy + 2b(αS2
y + βS2

x ) > 0

and

J3 = a3 J2 − a2
1a4.

Since J2, a1 and a4 are positive, J3 > 0 implies a3 > 0. Then relation J2 =
a1a2 − a0a3 > 0 implies that a2 also have to be positive. It is thus sufficient for our
purpose to assume that J3 > 0, which implies that all roots have negative real parts.

Theorem 4 If Sx > 0 with nx = 0 and Sy > 0 with ny = 0, then the continuous-delay
system (12) is globally asymptotically stable for (Sx , Sy) below the partition curve,
J3 = 0, and unstable for (Sx , Sy) above the curve where

J3 = b
{[

Sx+Sy+2b(αS2
y+βS2

x )
] [

2(α+β)−bαβ(Sx+Sy)
]−3bαβ(Sx+Sy)

2
}

.

The graphical representation of Theorem 4 is given in Fig. 1a where the downward
sloping curve is the locus of J3 = 0 with α = β = b = 1. In the horizontally-
shaded region under the locus, we have J3 > 0 and thus the Cournot equilibrium is
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asymptotically stable. Figure 1b is an enlargement of the square region surrounded by
the two loci, Sx = SD0

x and Sy = SD0
y , in the lower-left part of Fig. 1a. The down-

ward-sloping thicker curve is the partition curve under the two discrete delays being
within the horizontally-shaded region of Fig. 1a. Therefore the stability region with
the discrete-delay is smaller than the stability region with the continuous delay with
nx = ny = 0.

Furthermore, if we solve J3 = 0, taking Si > 0 and S j = 0, (i, j = x, y, i �= j),
then we obtain the threshold value of the continuous-delay of firm i in the case where
firm i has continuous-delay information on its own output while firm j has instanta-
neous information about its own output,

SC0
i = c +√α2 + αβ + β2

αβb

with

c = β if i = x and c = α if i = y.

The continuous-delay system with Si > 0 and S j = 0 is asymptotically stable if
0 < Si < SC0

i and unstable otherwise. This result is also visualized in Fig. 1a where
the outer dotted horizontal or vertical line is the locus of Si = SC0

i . Under the hor-
izontal line or in the left of the vertical line, the Cournot outputs are asymptotically
stable when only one firm experiences a continuous-delay with exponentially declining
weighting function.

It can be also observed in Fig. 1a that the stability region with two continuous-
delays is smaller than the stability region with a single continuous-time delay. The
partition line under the single discrete-delay, Si = SD0

i , is also depicted in the shaded
region as the inner horizontal or vertical dotted line. The partition curve with two
discrete-delays is depicted as the outermost concave-shaped curve in Fig. 1b where
the stability region with two discrete-delays is smaller than the stability region with
a single discrete-delay. Locations of these dotted lines indicate that the destabilizing
effect of the single discrete-delay is stronger than the destabilizing effect of the single
continuous-delay in the sense that the stability region with the discrete-delay is smaller
than the stability region with the continuous delay.

It is possible to derive an analytic form of the partition curve with larger values of
nx and ny . It becomes, however, clumsy and much more complicated. Therefore we
numerically check the shapes of the partition curves. Taking α = β = b = 1 again
and repeating the same procedure with increasing values of nx = ny = 1, 2, 3, 4, we
obtain the four partition curves illustrated in Fig. 1b in which Pi means the partition
curve when nx = ny = i . It can be seen that the continuous-delay partition curve
moves outward as the value of nx = ny increases. In other word, the stability region
under the continuous-delays expands and get closer to the stability region under the
discrete-delays.

There is an interesting relation between the characteristic polynomials (6) and (16)
of the systems with discrete- and continuous-delays. Assume that nx and ny converge
to infinity. Since qi = ni for i = x, y, we have the limits
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Ax (λ) →
(
λeλSx + 2αb

)
,

Ay(λ) →
(
λeλSy + 2βb

)
,

Bx (λ) → αbeλSx

and

By(λ) → βbeλSy .

Multiplying both sides of the characteristic equation (16) by e−λSx e−λSy and arranging
terms, we get the characteristic equation (5),

(
λ + 2αbe−λSx

) (
λ + 2βbe−λSy

)
− αβb2 = 0.

Therefore in the limiting case, the characteristic equation of the continuous-delay
model converges to the characteristic equation of the discrete-delay model. The former
model can approximate dynamics generated by the latter model if the value of the shape
parameters (i.e., nx and ny) of the weighting functions is large enough.

In short, we find that increasing the shape parameters of the weighting function has
a stabilizing effect in the sense that the stability region in the parameter space enlarges
as the values of nx and ny increase.

5 Concluding Remarks

It is well-known that a continuous-time linear oligopoly is globally asymptotically
stable. In this paper, we introduce two types of a time delay, a discrete-delay and
continuous-delay, and consider the destabilizing effects caused by the time delay in
the duopoly framework. We draw attention to the case where each firm has delay
information only on its own output and obtain the following results.

(1) The analytical form of the partition curve dividing the (Sx , Sy) space into the sta-
bility and instability regions is explicitly derived as summarized in Theorems 2, 3
and 4.

(2) Our numerical study indicates that the destabilizing effect caused by the discrete-
delay is stronger than the destabilizing effect by the continuous-delay having the
exponentially declining weighting function (i.e., nx = ny = 0) in the sense that
the stability region with the former is smaller than the stability region with the
latter as depicted in Fig. 1a.

(3) The strength of the destabilizing effects is reversed if the continuous-delay has
the bell-shaped weighting function (i.e., nx = ny > 0) as shown in Fig. 1b.

(4) The stability region with continuous-delay expands as the shape parameter of
the weighting function increases and converges to the stability region of dis-
crete-delay when the shape parameter tends to infinity.

The main result in this paper is that the existence of time delays in the adjustment
process has the destabilizing effect on the economy. The intuitive reason for this result
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is as follows. As pointed out earlier, many types of time delays, such as the decision lag
and the operational lag, arise in the real world. In such a circumstance, firms inevitably
rely on inaccurate and untimely information about the economic situation. They are
accordingly liable to misuse and mistreat the data in determining their own levels of
output. This leads to instability of the economy when the lengths of delays are large
enough. In this sense, our analysis shows that the Cournot adjustment process may
fail to establish the Nash equilibrium.
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