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Abstract In this paper we present empirical facts on oil exploitation and a model
that can replicate some of these facts. In particular, we show that the time path of the
oil price, on the one hand, and the extraction rate, on the other hand, seem to follow
a U-shaped and an inverted U-shaped relationship, respectively, which is confirmed
by simple non-parametric estimations. Next, we present a theoretical model where a
monopolistic resource owner maximizes inter-temporal profits from exploiting a non-
renewable resource where the price of the resource depends on the extraction rate and
on cumulated past extraction. The resource is finite and only a part of the resource is
known while the rest has not yet been discovered. The analysis of that model dem-
onstrates that the extraction rate and the price of the resource show the empirically
observed pattern if the stock of the initially known resource is small.
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1 Introduction

Already more than 70 years ago Hotelling (1931) analyzed the problem of how a
non-renewable resource should be optimally exploited. This is indeed an important
issue from an economic point of view because non-renewable resources, such as oil,
gas or ore, are important factors of production and exhaustible. Even if recycling can
be used and allows to reuse a certain part of the resources, this does not change the
fact that the major part of non-renewable resources is lost in the production process.
With a limited amount of resources available, this implies that most of the resources
used today are not available in the future.

Although Hotelling presented his model in the 30’s of the last century, it was only in
the 70’s of the last century that his contribution received the attention it deserved. This
is not too surprising since it was only in the early 70’s that people became aware of the
limited availability of natural resources, in particular of oil. Thus, the Club of Rome
argued that the process of economic growth cannot continue given a finite amount of
natural resources (cf. Meadows 1972) and the two oil crises in the 1970’s lead to a
drastic rise of the price for that resources. Therefore, economists spent great efforts in
finding the optimal rate at which a non-renewable resource should be exploited (see
e.g.Dasgupta and Heal 1979 or Conrad and Clark 1987).

The basic model presented by Hotelling assumes that the market for the exhaust-
ible resource is perfectly competitive. A representative supplier of the resource solves
an inter-temporal optimization problem where the problem is to find the optimal
rate of extraction given the price trajectory. The solution to that problem, which is
equivalent to the social optimum, shows that the price of the resource grows at the
interest rate that is used to discount profits. This rule is the so-called Hotelling’s
rule which is at the heart of the economics of non-renewable resources. While
the price of the resource grows, the extraction rate monotonically declines over
time.

The basic model presented by Hotelling can be varied in several directions. One
obvious extension is to assume that the extraction of resources incurs costs. In this
case, the basics of the Hotelling rule dose not change. Hence, in optimum the net price,
i.e. price minus marginal cost of extraction, rises at the interest rate. If costs are taken
into account, the time path of costs can be crucial as to the price path of the resource.
If, for example, marginal costs decline over time due to technical progress, it may well
be that the price of the resource first declines before it rises again (see e.g. Khanna
2003). A fact, that seems to hold for some resources such as oil for example, as the
next section will show. Another possibility to reconcile theory with first declining
prices that rise at a later stage is to assume that exploratory efforts build up a stock
of reserves that is used to satisfy demand for that resource, as suggested by Pindyck
(1978). Then, a U-shaped price path results if the initial reserves are sufficiently small
to induce falling prices in the early periods and reserves must rise, requiring explo-
ration to exceed production over an interval of time. Another model that predicts a
U-shaped price path is the one by Liu and Sutinen (1982) where benefits of consuming
the resource rise with an increase in the extracted resource stock and exploration costs
increase with an increase in cumulative exploration. In that model the price path may
display a U-shaped form, too, given some technical conditions.
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An important variation of the basic Hotelling model is to assume that the supplier
of the resource can control the price at least to a certain degree. Thus, the 70’s of
the last century demonstrated that the assumption of perfect competition does not
necessarily hold for the oil market. Hence, another variation of the Hotelling model
consists in assuming that the market structure is given by a monopoly where the
monopolist again maximizes inter-temporal profits. The result to this optimization
problem gives the modified Hotelling’s rule, stating that the net marginal revenue
must rise at a rate equal to the interest rate. In addition, it can be shown that, with
a monopolistic market structure, the resource is exhausted at a later point in time
compared to the case of perfect competition. This is due to the monopolist offering
a lower amount of the resource at a higher price compared to suppliers under perfect
competition.

With the rising growth rates of some Asian economies in the last few years, in
particular China and India, the demand for some resources has drastically increased,
particularly for oil. Therefore, the question of how the price of oil and the production
of that resource have evolved has again become a matter of interest both for policy
makers as well as for economists. In this paper we intend to contribute to that line of
research. Thus, we present some facts as concerns the evolution of the oil price and
as concerns the extraction of deposits and we present a theoretical model that is able
to replicate some of these facts.

The rest of the paper is organized as follows. The next section presents facts on
the oil price and on oil exploration and a simple non-parametric estimation of the
evolution of the oil price and of U.S. oil production. Section 3 presents a theoretical
model that can replicate some of the empirical facts. In contrast to Pindyck (1978)
and Liu and Sutinen (1982) we consider a monopolistic resource owner who knows
only a certain part of the total stock of resource but discovers at each point of time
new stocks that add to the known stock of the resource. Section 4, finally, concludes.

2 Some Facts on the Oil Price and Oil Exploration

In this section we summarize some important facts about the production of oil over
the last century and about the oil price. The data are taken from BP (2006) and from
the Energy Information Administration (2007). We should like to point out that we
focus on the long-run evolution of the oil price and oil extraction. Hence, aspects
such as speculation and surprisingly strong demand perspectives that are important in
the short-run are likely to play a minor role. Further, the strong demand from newly
industrializing countries may bring us into a regime where scarcity of oil will become
more and more important as regards the determination of its price (cf. Hamilton 2008).
The latter holds even if technical progress reduces dependence on natural resources
to a certain degree, as pointed out by Krautkraemer (2005).

Figure 1 shows the price for oil over the last 140 years. The figure clearly demon-
strates that both the nominal and the real price first declined before they began to rise.
In order to get an idea about the data generating process behind these data, as a func-
tion of time, we estimate the relationship between the oil price as dependent variable
and time as the independent variable. We take the data in levels, i.e. we do not use first
differences of the oil price, and we estimate the relationship in a non-parametrical way.
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Fig. 1 Nominal and real oil price 1861–2005.

Performing a simple p-spline estimation confirms the conjecture of a first decreasing
and then increasing time path of the real oil price. The detailed result of the estimation
is given in Table 1 in appendix A.1 Figure 2 shows the estimated function with the
smoothing parameter set equal to 0.01.2 The dotted lines give the 95% significance
interval and the function is such that its average value is equal to zero.

Since oil reserves are finite oil production will decline sooner or later. The Peak-
Oil theory, developed by Hubbert (1956), states that oil production first rises and then
declines, implying that oil production typically follows a bell-shaped curve. Current
estimates of the peak in oil production posit that this point has already been reached
in most oil producing countries (see e.g.Schindler and Zittel 2008).

This does not mean that in some regions oil production cannot remain at the current
high level or even be increased, but most countries definitely reached their maximal
oil production already long ago. In the US, for example, the peak in oil production was
reached in 1971, as shown in Fig. 3, where production first rises and then declines.

Performing p-spline estimation gives the estimated curve as a function of time.3

Figure 4 shows that the increase in oil production up to 1971 is followed by a decline,
except for the first half of the 1980’s where oil production temporarily rose.

1 All estimations were done with the package mgcv, version 1.3–23, in R, version 2.5.0, that can be down-
loaded from http://www.r-project.org/. For a short introduction into p-spline estimation see Greiner (2009)
and a more thorough treatment can be found in Ruppert et al. (2003).
2 Selecting the smoothing parameter data driven by resorting to the generalized cross validation criterion
would give a value of 8.7 × 10−5 and a more wiggly function without altering the initial decrease and final
increase of the estimated function.
3 For this estimation, the smoothing parameter is selected by applying the GCV criterion. The estimation
output is in Table 2 in appendix A.
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Fig. 2 Estimation of the (real) oil price as a function of time.
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Fig. 3 Annual US oil production from 1954–2007 (in Thousand Barrels).

3 The Model

The next issue is whether we can replicate the above mentioned facts by an economic
model. To do so we present a model where we assume that the total stock of the
resource consists of a certain part that is known and of a certain part that is unknown
up to time t but can be discovered and, then, becomes known.
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Fig. 4 Estimation of the extraction rate as a function of time.

3.1 The Analytical Model

Assume that the goal is to optimally exploit a non-renewable resource x(t) , where t is
the time argument. At time t , a certain part of the resource has already been discovered
and is known, with xk(t) denoting the stock of the resource which is known. The rest
of the total amount of the resource has not yet been discovered and we denote by xn(t)
the stock of the resource which is not known. Thus, we have x(t) = xk(t) + xn(t).

At each point in time a certain part of the hidden resource is discovered with a
certain rate f ≥ 0. We assume that the rate at which the resource is discovered is a
function which positively depends on the amount of the resource not yet discovered,4

i.e. f = f (xn), with f ′(xn) > 0. This is certainly reasonable because the larger the
amount of the resource not yet discovered, the easier it is to find new deposits. The
more the resource is exploited the more difficult it becomes to detect new deposits.

The stock of the known resource is exploited and declines at the rate u which gives
the amount of exploitation at each point in time. At the same time, it also rises because
at each point in time a certain part of the resource is discovered and raises the stock of
the known resource. The differential equation describing the time path of the known
resource is written as,

ẋ k = −u + f (xn) = −u + f (x − xk), (1)

where we have used xn = x − xk .

It should be noted that the stock of the unknown resource declines at the rate at
which new deposits are discovered. Thus, the evolution of the stock of the unknown
resource is given by,

4 In the following we delete the time argument if no ambiguity arises.
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ẋn = − f (xn). (2)

The total stock of the resource evolves according to

ẋ = ẋ k + ẋn = −u. (3)

Thus, in the long-run, i.e. for t → ∞, u = 0 must hold because the resource is
non-renewable and because the stock is finite.

Using Eq. (3) we can rewrite (1) as follows,

ẋ k = −u + f

⎛
⎝xo −

t∫

−∞
u(ν)dν − xk

⎞
⎠ = −u + f

(
xo − y − xk

)
, (4)

with y cumulated past extraction and xo the initially totally available resource that
must exceed past extraction plus the stock of the known resource, i.e.

y(t) =
t∫

−∞
u(ν)dν, xo ≥ y + xk .

As to the optimization problem we assume that a monopolistic firm wants to maxi-
mize the discounted stream of profits resulting from exploiting the stock of the known
resource. The demand curve is given by p(u, y) > 0 and is a strictly negative function
of the amount of resources supplied at each point in time, u, and positively depends on
cumulated past exploitation, y. With respect to u the demand curve is characterized
by the usual assumptions, pu(·) < 0 and puu(·) < −2puu(·)/u. The latter assumption
implies that the marginal revenue is a declining function of u. In addition, we posit
that the price remains finite, p(0, y) < ∞.

As regards the derivative of the demand function with respect to cumulated past
extraction, y, we posit py(·) ≥ 0. If the inequality sign is strict the price for the resource
is the higher the more of the resource has already been extracted. This assumption is
reasonable because, given the finiteness of the resource, the price will be higher when
less of the resource is left. If the level of remaining reserves is declining the economic
agents will expect declining supply in the future and thus will expect the price to be
rising. Through the future markets oil will be bought in order to trade barrels of oil
when the oil is in short supply leading to higher demand and a higher price.

The firm incurs costs resulting from exploiting the resource and we posit that it is
the more expensive to exploit the resource the smaller the actual stock of the resource
is. This holds because at first those deposits are exploited which are less costly. When
more and more of the resource has been exploited those deposits have to be exploited
which are less accessible and the exploitation of which is associated with higher costs.
Thus, it becomes both more difficult to find new deposits as well as more expensive to
extract the resource when a large fraction of the resource has already been discovered
and exploited.
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Costs of extracting the resource are given by u C(xo−y), with 0 ≥ C(xo−y) > −∞.

This implies that marginal costs are positive, as usual, and that costs are the smaller,
the less the resource has been exploited. The latter assumption is intuitively plausible
because extraction of resources starts with those deposits which can be exploited less
costly. It should be noted that all of the known resource will be extracted if demand
for u = 0 exceeds extraction costs, i.e. p(0, y) ≥ C(xk

z ) ≥ C(xo − y), with xk
z ≥ 0

that value of the known resource below which no new deposits are discovered. If this
does not hold the resource may not be completely extracted because extraction costs
become too high.

Denoting by r > 0 the constant discount rate, the optimization problem is formu-
lated as

max
u

∞∫

0

e−r t (p(u, y) − C(xo − y)) u dt, (5)

subject to

ẋ k = −u + f
(

xo − y − xk
)

, xk(0) > 0 (6)

ẏ = u, y(0) ≥ 0 (7)

lim
t→∞ xk ≥ 0 (8)

To get insight into the optimal solution, we formulate the current-value Hamiltonian
H(·) which is written as

H = (p(u, y) − C(xo − y))u + λ1( f (xo − y − xk) − u) + λ2 u (9)

with λ1 and λ2 denoting costate variables or shadow prices of xk and y.
Assuming that the demand for the resource is sufficiently high such that an interior

solution exists, the necessary optimality conditions are obtained as

∂ H

∂u
= λ2 − λ1 + upu(·) + p(·) − C(·) = 0 (10)

λ̇1 = rλ1 + λ1 f ′(·) (11)

λ̇2 = rλ2 + λ1 f ′(·) − u C(xo−y)(·) − u py(·) (12)

Equation (11) shows that the shadow price of the resource grows at a rate larger than r
since f ′(·) > 0 holds. For example, if f (·) is linear, λ1 will grow at the rate r +ξ, with
ξ > 0 the slope of the function f (·). Hence, comparing our model to the outcome
of the standard optimal control problem, without extraction costs, of a monopolis-
tic resource owner demonstrates that the shadow price in our model rises faster. The
reason is that in our model a certain part of the unknown resource is discovered at each
point in time which makes the shadow price of the known resource increase faster. It
should be mentioned that the shadow price of the resource in our model also grows at
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a higher rate than in the standard model with perfect competition where the shadow
price increases at the rate r at which the market price of the resource grows, too. The
latter rule is the well-known Hotelling’s rule which characterizes the optimal extrac-
tion of a non-renewable resource. Thus, Hotelling’s rule does not hold in our model
implying that the extraction of the resource is not optimal.

In the following we further specify the function underlying our model. As concerns
the demand function, we assume that it is given by

p(u, y) =
(

1

γ + ηu − μy

)α

, α > 0, γ > 0, η > 0, μ ≥ 0 (13)

and the cost function is

C(xo − y) = (φ/2) (xo − y)−2, φ > 0 (14)

The rate at which new deposits of the resource are discovered is linear in its argument,

f (xo − y − xk) = ξ (xo − y − xk − xk
z ), ξ > 0, xk

z ≥ 0 (15)

For xk
z sufficiently large so that p(0, y) ≥ C(xk

z ) ≥ C(xo − y) holds,5 the known
resource is completely exploited such that (xk)
 = 0. The steady state value for y,
then, is given by y
 = xo − xk

z and u
 = 0.

In order to gain insight into the transitional dynamics of our model we resort to
numerical simulations in the next section.

3.2 Numerical Results

Next we use the dynamic programming method by Grüne (1997) and applied by
Grüne and Semmler (2004) to study the dynamics of the model with oil extraction.
The dynamic programming method can explore the local and global dynamics by
using a coarse grid for a larger region and then employing grid refinement for smaller
regions. Since it does not use first or second order Taylor approximations to solve
for the local dynamics, dynamic programming can provide one with the truly global
dynamics in a larger region of the state space.6 The algorithm is explained in detail in
Grüne and Semmler (2004).

Using this algorithm we solve the model of Sect. 3.1 where we set the following
parameter values: α = 2, ξ = 0.5, r = 0.03, γ = 0.05, φ = 4, η = 4 and μ = 0.05.
Moreover, we set xo = 6 and xk

z = 3.

Figure 5 shows the two optimal trajectories in the state space of known, xk, and
already exploited, y, resources. The two trajectories correspond to different initial
conditions for the known oil resource, xk(0). The lower trajectories represents the

5 This holds for xk
z ≥ γ α/2√

φ/2. With (14) the inequality must be strict for C(xo−y) > −∞.
6 For details on the analysis of why the dynamic programming algorithm is globally significantly more
accurate than algorithms using the second order approximations see Becker et al. (2007).
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Fig. 5 Optimal trajectories of xk and y for different initial conditions.

optimal extraction path for mostly unknown resources, whereas the upper trajectory
shows the path of the oil resource when most of the oil resource is known.

The implied time path for the optimal extraction rate of the upper trajectory depicted
in Fig. 5 implies a monotonically declining time path of the exploitation rate u and a
monotonically increasing price for oil p.

The more interesting case is the path of the optimal extraction rate u and the cor-
responding price p when the initial stock of the known resource is small. Then, the
optimal extraction rate is hump-shaped, first increasing then decreasing, and the price
movement due to the eventually exhausted resource first falls and then rapidly rises,
as shown in Figs. 6 and 7.

The observation that in the case of the upper trajectory of Fig. 5 the price will mono-
tonically increase is a very plausible scenario since the total stock of the resource is
overwhelmingly known and does not have to be discovered. Thus, the function f (·) in
Eq. (1) is not positive or only slightly positive, and the known resource does not rise.
Therefore the extraction rate is not likely to rise, but rather to fall. In the case of the
lower trajectory the oil resource is not known. It has to be discovered and its discovery
adds to the total oil resources which increases first and then decreases. Hereby the
optimal extraction rate will rise first and then fall. It is the latter effect that produces
the U-shaped price movement as we can in fact also observe in the real data.

4 Conclusions

In this paper we have presented facts on oil exploitation as well as a theoretical model
that can replicate some of these facts. The model we presented consisted of a monop-
olistic owner of the resource who knows only a certain part of the total stock of the
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resource and who discovers new reserves at a certain rate. Assuming that the price
of the resource depends on the current extraction rate and on cumulated extraction,
we could show that the optimal oil extraction rate may follow an inverted U-shaped
time path. The price of the resource in that case first declines and, then, rises again.
A prerequisite for that outcome is that the initial stock of the known resource is small.
If the stock of resources initially known is large, the extraction rate and the price of
the resource follow monotonically declining and rising time paths, respectively.
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Appendix A: Estimation Results

See Tables 1 and 2.

Table 1 Estimation results producing Fig. 2

Parametric coefficients:

Estimate Stand. error (t-stat) P-value

(Intercept) 26.101 1.205 (21.65) < 2.2 × 10−16

Approximate significance of smooth terms:

edf F P-value

s(Year) 4.607 13.21 3.82 × 10−15

R2(adj) = 0.385 n = 146

Table 2 Estimation results producing Fig. 4

Parametric coefficients:

Estimate Stand. error (t-stat) P-value

(Intercept) 2.7 · 106 8704 (315.3) < 2 × 10−16

Approximate significance of smooth terms:

edf F P-value

s(Year) 8.908 305.9 2 × 10−16

R2(adj) = 0.981 n = 54
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