
Comput Econ (2010) 36:309–339
DOI 10.1007/s10614-010-9215-1

Imposing Curvature and Monotonicity on Flexible
Functional Forms: An Efficient Regional Approach

Hendrik Wolff · Thomas Heckelei ·
Ron C. Mittelhammer

Accepted: 20 April 2010 / Published online: 14 May 2010
© Springer Science+Business Media, LLC. 2010

Abstract In many areas of economic analysis, economic theory restricts the shape
of functions. Examples are the monotonicity and curvature conditions that apply to
utility, profit, and cost functions. Here we extend upon a currently available estima-
tion method (Terrell, J Appl Econometr 11:179–194, 1996) for imposing regularity
regionally on a connected subset of the regressor space. Our method offers important
advantages by imposing theoretical consistency not only locally, at a given evaluation
point but also within the whole empirically relevant region of the domain associated
with the function being estimated. The method also provides benefits through higher
flexibility, which generally leads to a better model fit to the sample data. Specific
contributions of this paper are (a) to increase the computational speed, (b) to provide
regularity preserving point estimates, and (c) to illustrate the benefits of this revised
regional approach via numerical simulation results.
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1 Introduction

In many areas of economic analysis regularity conditions, derived by economic theory,
restrict the shape of the mathematical functions used to model technology and/or eco-
nomic behavior. Examples are curvature and monotonicity restrictions which apply
to indirect utility, expenditure, production, profit, and cost functions. During the last
thirty years it has become standard to use second-order flexible functional forms for
empirical analyses, such as the Translog and the Generalized Leontief, which have the
ability to attain arbitrary local elasticities at one point in the regressor space. Recently,
higher (than second) order series expansions, such as the Fourier and the Asymptot-
ically Ideal Production Model (AIM), have been suggested (e.g. Gallant and Golub
1984; Barnett et al. 1991; Koop et al. 1994). These representations promise a better
fit to the data as they transition from local to global flexibility and as the order of
the expansion increases. Even more recently new promising nonparametric estima-
tion techniques that account for shape restrictions (originally proposed by Hildreth,
1954) have garnered increasing attention in the literature (Matzkin 1994; Tripathi
2000; Aït-Sahalia and Duarte 2003; Racine and Parmeter 2008). The advantage of
such an approach is that no assumption about a parametric functional form, or a series
expansion thereof, has to be imposed. However, this advantage comes at the cost of
lower asymptotic convergence rates as well as sometimes unknown asymptotic dis-
tributions. This is particularly a problem in higher dimensional settings, where not
univariate constraints are imposed but regularity is required in multi-input or multi-
output settings. In this paper we focus on the problem of the estimation of parametric
functional forms.

Unfortunately, the estimated parametric functions that model economic behavior
frequently violate curvature and monotonicity restrictions and the propensity for such
violations can increase with the order of flexibility.1 Violations can lead to ambigu-
ous forecasts and errant conclusions about economic behavior. Concerns related to
the imposition of regularity conditions is as old as the literature on flexible func-
tional forms and represents ‘one of the most vexing problems applied economists have
encountered’ (Diewert and Wales 1987, p. 43).

1 A number of authors (Diewert and Wales 1991; Salvanes and Tjøtta 1998; Barnett 2002; Barnett and
Pasupathy 2003) summarize the literature on empirical productivity and supply and demand analysis noting
that it has become customary to use flexible functional forms, but rarely have the shape conditions been
formally tested and as a consequence the first order properties of duality theory can fail. For example,
Diewert and Wales (1991) tested a popular AER paper by Evans and Heckman (1984) which estimated
the cost function of the Bell System (in order to test whether the Bell System is a natural monopoly).
Diewert and Wales (1991) express serious concerns whether this test was meaningful as it was based on
a non-regular estimated functional form. In particular, Diewert and Wales (1991) found that the estimated
function by Evans and Heckman exhibited negative marginal cost in most of the relevant regressor space
and expressed serious concern as to whether their test was at all meaningful. Later Salvanes and Tjøtta
(1998) proposed a procedure to calculate the range of the regressor values where the restrictions imposed
by economic theory are satisfied. Barnett (2002) and Barnett and Pasupathy (2003) discuss two specific
examples where the literature failed to estimate functions that are consistent with economic theory. The
first example is concerned with the modeling of financial intermediaries and the second with estimating the
technology of manufacturing firms as estimated by Barnett et al. (1995). Barnett (2002) provides striking
visual examples of how wrong the estimation can be by displaying isoquants that are of highly implausible
shape.
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In this paper we propose and illustrate a Bayesian estimation procedure for impos-
ing regularity conditions via nonlinear inequality constraints. Building upon work
by Terrell (1996), the conditions are imposed on a connected2 subset of the domain
of the function being estimated. The connected subset represents what we refer to
as the empirically relevant region, and is defined by the model analyst. This regional
approach offers important advantages over the local approach by imposing theoretical
consistency not only locally at a given evaluation point, but also over the entire empir-
ically relevant region of the domain associated with the function being estimated. The
method also provides benefits relative to the global approach, through higher flexi-
bility derived from being less constraining, which generally leads to a better model
fit to the sample data compared to the global imposition of regularity. In order to
underscore the differences between the regional, local and global approach, we begin
by discussing how previous methods handled the imposition of regularity.

1.1 The Global Approach

A widely applied partial solution to the problem of imposing regularity conditions is
to devise parametric restrictions that impose the curvature conditions globally, i.e. at
all values of the regressor space (see Diewert and Wales 1987). For most3 flexible
functional forms, however, such restrictions come at the cost of limiting the flexibil-
ity of the functional form with regard to representing other economic relationships.
For example, under the imposition of global concavity, the Generalized Leontief cost
function does not allow for complementary relationships among inputs.

As recently noted by Barnett (2002) and Barnett and Pasupathy (2003), the ‘mono-
tonicity’ regularity condition has been mostly disregarded in estimation, leading to
questionable interpretability of the resultant empirical economic models. A fundamen-
tal difficulty, however, is that imposing both curvature and monotonicity can extirpate
the property of second order flexibility: For the special case of finite linear-in-the-
parameters functional forms, which is the most common in empirical applications,
Lau (1986, pp. 1552–1557) proved that flexibility is incompatible with global regular-
ity if both concavity and monotonicity are imposed. Thus, maintaining higher order
flexibility requires giving up global regularity (although one might maintain local flex-
ibility), which is a fact that does not seem to be generally appreciated in the literature
on globally flexible functional forms.4

2 A connected set is such that any two points in the set can be connected by a continuous curve totally
contained in the set. Formally: let S be a topological space. X ⊂ S is connected iff we cannot find open sets
U, V ⊂ X such that U ∩ V = Ø and U ∪ V = X.
3 An exception is the class of quadratic functional forms, e.g. the Generalized and Symmetric McFadden,
on which the curvature is easily imposed on the parameters of the Hessian without destroying the flexibility
property, as shown by Lau (1978) and Diewert and Wales (1987). However, if one wishes to impose cur-
vature and monotonicity on functional forms, then the restrictions are functions of the parameters and the
regressor variables. A solution to this problem is the purpose of this paper.
4 For example, a globally consistent second order Translog reduces the feasible parameter values of its
squared terms to be zero, thus restricting the functional form to its (second order inflexible) first order series
expansion, the Cobb-Douglas, which has constant elasticities.
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1.2 The Local Approach

The local approach maintains the flexibility property of a functional form if the reg-
ularity conditions are imposed at one selected point of the regressor space (i.e Ryan
and Wales 1998). The risk with this approach is that regularity may be violated in a
neighborhood of this selected point. Because of this dilemma, the literature on flexi-
ble functional forms is characterized by a continual investigation for new functional
forms that produce relatively large regular regions. Nonetheless, for a given data set,
searching for alternate forms and applying and testing the regularity conditions on
a case by case basis becomes an arduous task,5 that can also be rife with statistical
testing/verification problems. In Gallant and Golub (1984) proposed an inequality con-
strained optimization program to impose regularity conditions locally at each observed
regressor value. Compared with the global approach, this method generally increases
the fit of the model to the data. However, two problems remain: (a) the procedure
becomes numerically difficult for large sample sizes and/or complicated constraints
and (b) it is possible that the estimated form is irregular at points other than the sample
observations. Hence, more general methods of imposing the regularity conditions are
desirable and those which appear to be the most promising are summarized below in
Sect. 1.3.

1.3 Towards Regional Regularity

In order to circumvent the problem of the estimated form being irregular at points other
than the sample observations, Gallant and Golub (1984) discussed the possibility of
imposing regularity conditions on a predefined regular region ψ of the regressor space
by outlining a double inequality constrained optimization procedure. This regional
regularity approach has the advantage that flexibility of the functional form can be
maintained to a large degree while remaining theoretically consistent in the region
where inferences will be drawn. In addition, imposing regional regularity generally
leads to better forecasts than global regularity. However, Gallant and Golub (1984)
did not demonstrate the tractability of this approach and it seems that empirical imple-
mentation can be formidable with the currently available optimization tools.

It was not until 1996 that Terrell (Terrell 1996) advanced ideas relating to the
empirical application of regional regularity. Instead of explicitly using a constrained
optimization algorithm he decomposed the problem into a series of steps: first, a con-
vex set ψ of the domain of the function is approximated by a dense grid consisting of
thousands of singular regressor values. Second, using a Bayesian framework, an uncon-
strained posterior distribution of the parameter vector β, conditional on the endogenous

5 Examples of functional forms investigated are the Minflex Laurent (Barnett 1985), Extended Generalized
Cobb Douglas (Magnus 1979), Symmetric Generalized McFadden and Symmetric Generalized Barnett
(Diewert and Wales 1987). Furthermore see the cited literature in Barnett et al. (1991, p. 10) and more
recently Terrell (1995); Terrell (1996), Ivaldi et al. (1996), Fleissig et al. (1997, 2000), Jensen (1997),
Ryan and Wales (1998), Fischer et al. (2001) for studies evaluating these mentioned and other competing
forms. We recommend Barnett et al. (1991, pp. 3–15) for an extensive and insightful review on the various
developments, trials and errors in the history of using flexible functional forms.
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variable y, pu(β|y), is derived that does not incorporate the regularity conditions.
Third, a Gibbs sampler is used to draw parameter vector outcomes from pu(β|y), and
an Accept–Reject algorithm is applied to assess regularity for each outcome at all grid
points. Finally, point estimates are derived and inferences are drawn based on the set
of regular parameter vectors and its truncated posterior distribution. This procedure
has two problems: (a) Due to the approximation of the relevant regressor space by the
grid, the possibility that the function is irregular for some non-grid points cannot be
eliminated. In this sense Terrell does not impose regional regularity (on a connected
set) but he imposes local regularity at multiple singular points. (b) The Gibbs simulator
requires sampling from the entire support � of the unconstrained posterior pu(β|y).
However, this can be time consuming if, as is often the case in practice, the regular
region is only a small subset of � (Terrell 1996).

To overcome the latter problem, Griffiths et al. (2000, p. 116) suggested using a
Metropolis-Hastings Accept–Reject Algorithm (subsequently denoted as MHARA).
Compared to the Gibbs algorithm, MHARA may increase the probability that sam-
pled parameter vectors are regular, and therefore may be faster than Gibbs sampling.
However, the related literature on MHARA6 did not pursue the regional approach
further, but rather continued to impose local regularity without proving the theoretical
consistency on the domain of interest.

1.4 Objectives and Organization

The principal goal of this paper is to improve upon current methods of imposing reg-
ularity conditions. Improvement is achieved by pursuing the following two objectives
with regard to estimated functions:

(I) economic theory is not violated on a connected subset ψ which encompasses
the empirically relevant region of the regressor space, and

(II) for a given function, the model fit—as judged by any specified scalar measure
of fit on the regular parameter space—is optimized.

We promote the application of regional regularity by combining elements of Terrell’s
approach with the MHARA. This defines an alternative methodology that substantially
mitigates previous difficulties and inconsistencies in applying the regional regularity
concept. New features of our proposed method include:

1. a set of sufficient conditions for which regularity is guaranteed at ‘any’ point in
ψ (objective I). If these conditions are satisfied, a twofold benefit results:

(i) Imposition of regularity in ψ does not rely on a grid approximation, and
(ii) the computational speed of the Accept–Reject algorithm is greatly

enhanced as only a few critical points need to be checked for
regularity.

2. allowing ψ to be some connected non-convex set, which can significantly increase
the model fit achievable from estimation (objective II).

6 Literature on applications of MHARA include Koop et al. (1994), O’Donnell et al. (1999), Griffiths et al.
(2000), Griffiths (2003), Chua et al. (2001), Cuesta et al. (2001), Kleit and Terrell (2001), O’Donnell et al.
(2001) and O’Donnell and Coelli (2003).
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3. demonstrating that the commonly used posterior mean may be inappropriate as
a point estimate of model parameters due to the potential violation of regularity
conditions. As an alternative, we suggest two regularity-preserving point esti-
mates:

(i) the posterior mode
(ii) the parameter vector that minimizes error loss subject to regularity con-

straints.

The organization of the paper is as follows: In Sect. 2, we motivate the method-
ology and outline the estimation procedure in general terms. Section 3 provides a
more technical description of procedures and discusses the methodological contribu-
tions. Examples using AIM functional forms are given in Sect. 4 in order to illustrate
the methodology and demonstrate empirical relevance. A final section presents con-
clusions and the appendix contains all necessary proofs as well as additional details
relating to the implementation of the estimation procedure.

2 Methodological Background

This section provides a general overview of the regularity conditions to be imposed, the
Bayesian context of the problem, the Markov Chain Monte Carlo (MCMC) algorithm
used, and the Accept–Reject algorithm.

2.1 The Cost Function Example

For illustrative purposes, consider estimating a system of input demand equations
imposing a regular region on the underlying unit cost function, c(p; β), whereby p =
[p1, p2, . . ., pK ]T ∈ π are K input prices, π denotes the orthant of strictly positive
prices in �K , and β ∈ � is the parameter vector to be estimated. According to eco-
nomic theory c(p;β) must be concave and nondecreasing in p (Mas-Colell et al.
1995:p.141). The regularity conditions to be imposed on a subset ψ of the price space
π can be characterized by H elementary Inequality Constraint Functions, i (p; β) ≡
[i1, i2, . . . , iH ] : (π×�) → �H , whereby the restrictions hold whenever, for a given
β, i() is nonnegative for all prices in the relevant region ψ,

i(p; β) ≥ 0 ∀ p ∈ ψ.

For example, if c(p; β) is a twice continuously differentiable, linear homogenous in
p unit cost function with K = 2 input prices, then the inequality constraints could be
defined as7

i1 = ∂c(p; β)/∂p1, i2 = ∂c(p; β)/∂p2, i3 = −∂2c(p; β)/∂p2
1 and

i4 = −∂2c(p; β)/∂p2
2

7 Note that nonnegativity of i1 and i2 imposes monotonicity. Nonnegativity of i′3 and i5 imposes negative
semi-definiteness on the Hessian ∂2 f (p; β)/∂p∂p′. Since by linear homogeneity of f (·) the Hessian has
rank K − 1, it is not necessary to generate an additional inequality constraint function to sign the K th
principal minor.
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price

cost

p sim

Fig. 1 Irregular function. Figure depicts an example where ψp includes all observed data points (each dot
represents an observed (cost, price) combination used for estimating the cost function), and ψsim includes
the region at which inferences will be drawn for simulation purposes. However, ψ = ψp

⋃
ψsim violates

the requirement that it is one connected set. The graph shows that imposing concavity and monotonicity at
both regions ψp and ψsim does not necessarily generate overall regularity and can lead to spurious forecasts
because costs must not decline with rising input prices

Note that previous global and local estimation methodologies differ in the way ψ

is defined. If i(p; β) ≥ 0 ∀ p ∈ ψ., we say that regularity is imposed (i) locally if
ψ consists of one or more singular disconnected points in π, (ii) globally if ψ = π,
and (iii) regionally if ψ is some connected subset of π. Given the trade off between
flexibility, on the one hand, and regularity violations on the other, we follow the idea
of Gallant and Golub (1984) and consider imposing the conditions regionally. For this
purpose we now define a particularly relevant ψ.

Definition 1 The empirically relevant set ψ is a closed8 and connected subset of π that
covers the empirically relevant price region, defined as containing all sample observa-
tion n = 1,…,N as well as any price points c = 1,…,C that will be used for subsequent
analyses and/or simulations based on the estimated model.

In contrast to previous practice, we here require ψ to be a connected set. It the-
oretically rules out the possibility that any small irregular region in between two
disconnected regular regions can destroy overall regularity (see Fig. 1).

With respect to Definition 1 it is important to also note that the range of ψ depends
on the particular dataset. Moreover, its construction is driven by different estimation
purposes:

a. Interpretation of estimated function as local approximation: This only requires
the smallest possible set ψ at a singular point p0 in the regressor space. Such a set
could be motivated by the construction of the flexible functional form as a series
expansion around this singular point and if interest only lies in characterizing
such a point.

8 The requirement that ψ is a closed set simplifies the proofs of some later propositions, but is not necessary
for any other reason.
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b. Intended policy simulations: In the context of our cost function example, c(p),
the researcher may be interested in deriving the demand function at point p1. This
point could be just another observed data point from the original data set or a new
point of interest for a scenario simulation, for example after adding a tax t to p0

(i.e. p1 = p0 + t) in order to evaluate policy options. In general, the definition
of the set ψ defines the suitable (theory consistent) range of regressor values for
model simulations.

c. Technical requirements: If the estimated function will be used in the context of
a larger simulation model, numerical requirements may lead to a rather large set
ψ often extending considerably beyond the initial range of interest in economic
analysis. For example, to guarantee the proper functioning of iterative algorithms
sometimes used in partial equilibrium models, the set ψ has to encompass the
range of values occurring in the numerical procedure. An estimated flexible func-
tional form with a large set ψ could also replace globally regular and therefore
less flexible functional forms most often employed in Computable General Equi-
librium models.

d. Intended graphical analysis: For example in order to show a set of empirically
estimated isoquants of a production functions, ψ should be at least as large as the
envisaged domain of the figure.

2.2 Statistical Model and Bayesian Context

Although the methodology is applicable in other contexts, here we follow the example
of the previous section and hence, describe the setting as an estimation of a system of
M equations

y = f (P; β) + ε. (1)

(1) is the empirical specification of the statistical model of interest, whereby y is an
M · N ×1 vector of N observations on M endogenous variables, which represent trans-
formations of N × K observed prices P, and β ∈ � is an L × 1 unknown parameter
vector.9 We assume that ε is an M ·N ×1 unknown error vector with mean E[ε]= 0 and
covariance matrix �. Further, � is the L-dimensional parameter space, which, if the
regularity conditions are to hold for all values of p in ψ, reduces to the L-dimensional
regular subset �R ⊂ � defined as10

�R|ψ = {β : i (p; β) ≥ 0 ∀ p ∈ ψ}. (2)

9 Note that the matrix denoted by the capital letter P represents n observations on the lower case price
vector p = [p1, p2, . . ., pK ]T.
10 We use the superscript ‘R’ for a ‘regular’ set, and ‘IR’ for an ‘irregular’ set. E.g. for the irregular param-
eter space we write �IR. Note that generally for any given connected or disconnected set ψ∗, � consists
of two disjoint subsets, such that �IR|ψ∗ ∪ �R|ψ∗ = �.
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The marginal posterior distribution for β is derived by applying Bayes rule

p (β|y,ψ) ∝
∫

L (β,�|y) · p (β,�|ψ) d� (3)

where L(β,�|y) is the likelihood function summarizing the sample information,
p(β,�|ψ) is the joint prior distribution on the parameters, given ψ, and p(β|y,ψ)
is the conditional posterior. Assuming the standard ignorance prior on the covari-
ance matrix, p(�) = |�|−(M+1)/2, and further assuming that β and � are a priori
independent, the joint prior is defined as

p (β,�|ψ) = p (β|ψ) · |�|−(M+1)/2 . (4)

In the remainder of the paper we do not impose any additional information in our prior
other than that needed to account for the economic theory constraints imposed on ψ.
Recognizing that the definition of the regular parameter set �R|ψ is dependent on the
choice of ψ, the marginal conditional improper11 prior on the β vector is specified as
an indicator function

p (β|ψ) = 1{β ∈ �R|ψ} (5)

where the prior equals 1 if regularity holds at the value β ∀ p ∈ ψ, and equals 0
otherwise.

The notation used in (1)–(5) highlights the conditionality upon ψbecause it not only
determines the applicable domain for f(p; β) but also determines the shape of �R|ψ
and therefore the potential fit of the economic model to the data. In the remainder of
the paper p(β|y,ψ) denotes the regularity posterior containing all of the information
about the parameters that can be extracted from a) economic theory, b) data and c) the
chosen model, y = f(P; β) + ε, as applicable to a given empirically relevant region
ψof input price space.

2.3 Markov Chain Monte Carlo and Accept–Reject Algorithm

We now turn towards the simulation technique used to generate outcomes from the
regularity posterior p(β|y,ψ), which are then used to obtain point estimates and to
draw posterior inferences. One possible method is to approximate posterior expecta-
tions numerically by applying a Markov Chain Monte Carlo technique. For example,
a Metropolis-Hastings algorithm can be used to generate J (pseudo-) random out-
comes, b( j), j = 1, . . ., J from p(β|y,ψ) on the support �R. The outcomes are then

11 Note that typically a prior distribution is a function of the parameters only and has the entire parameter
space as its domain. In our case however p(β|ψ) also includes information about the price space as part of
its specification. Also, 1{β ∈ �R|ψ} is technically not a “proper” prior distribution. It is not normalized to
integrate to 1, and moreover, if �R|ψ does not have finite volume,

∫
p (β|ψ) dβ = ∞. However our prior

effectively indicates the set membership of β, i.e., if it is regular or not, and it is an uninformative prior on
�R|ψ.
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used to approximate posterior expectations via the appropriate empirical estimates,
e.g. J−1 ∑J

j=1 g(b(j)) for approximating E[g(β)]. The estimates converge to the true

expectations as J increases. 12

To account for the regularity prior p(β|ψ), the simulator should ensure that any
drawn parameter vector b( j) implies regularity of f(p; β) for every point p in the pre-
defined set ψ, i.e. b( j) ∈ �R|ψ ∀ j . Since theoretically there are an infinite number of
points in ψ, they cannot all be checked explicitly. In general the connectedness can be
approximated by a fine grid denoted by the disconnected set ψg ⊂ ψ which consists of
possibly Q ≈ tens-of-thousands of equidistant distinct points. 13 Within the MCMC
an Accept–Reject algorithm is then implemented to guarantee that ∀ b( j) the regu-
larity conditions hold for any single of the Q grid point, i.e. that b( j) ∈ �R|ψg ∀ j,

whereby �R|ψg is the approximated regularity posterior support, which will tend

towards the actual set �R|ψ the finer the approximation grid ψg. In order to cir-
cumvent the approximate nature of this representation, in a later subsection (Step 4),
we identify problem conditions under which checking certain key points in ψ will
guarantee overall regularity ∀ p ∈ ψ. Although we cannot always, for all functional
forms, universally identify conditions under which ψg will automatically guarantee
regularity in ψ, we view this as in important step in the right direction.

3 Regionally Regular Estimation Procedure

This section describes our proposed method for estimating f (p; β) subject to the non-
linear inequality constraints i(p; β) ≥ 0 ∀ p ∈ ψ. To start we provide a complete
stepwise description in Box 1. The procedure consists of three parts: pre-analysis of
the problem (Steps 1–4), application of the MHARA (Steps 5–11) and inferences
based on the regularity posterior (Step 12). In the subsections to follow, we explain
the objectives of the steps14 and develop necessary technical details.

3.1 Pre-Analysis: Selection of Regular Region and Approximation Grid

The pre-analysis provides necessary information for the subsequent application of the
MHARA especially the definition of the prior distribution p(β,ψ) = 1{β ∈ �R|ψ}:
The regularity conditions (defined by economic theory) are identified (Step 2), the

12 See literature cited in footnote 14 for useful introductions into MCMC methods.
13 I.e. in the case of a hyperrectangle ψg is defined as a) selecting Q equidistant values between the vertices

of ψ, pmin
k and pmax

k as pq
k = pmin

k + (q − 1)Q−1(pmax
k − pmin

k ) ∀ q ∈ {1, . . ., Q} and using all possible
Q · K combinations of prices to generate ψg.
14 Step 1, Step 5, Step 7, Step 9–11 are not further elaborated on because their content is either obvious
from the explanation given in Box 1, or they are part of the conventional Metropolis-Hastings algorithm,
which we assume the reader to be familiar with. In order to keep it is as uncomplicated as possible we
outline the simplest way of implementing the Markov Chain. Other procedures like multiple chains and
other proposal distributions are suggested in the literature. The reader is referred to Chib and Greenberg
(1996); Richarson and Spiegelhalter (1996), Robert and Casella (1999), or Chen et al. (2000) for a further
discussion of appropriate modifications of the Metropolis-Hastings algorithm.
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Box 1 The 12-step procedure—pre-analyses (1)–(4), MAHRA (5)–(11), inference (12)

Step 1 Estimate y = f(P; β)+ε without imposing inequality constraints to obtain the
unconstrained estimate bu of β as well as the estimated L × L covariance matrix
cov(bu).

Step 2 Define i() that characterizes the regularity conditions for the function being esti-
mated.

Step 3 Define ψaccording to Definition 1. If the proposed region is not convex, define a
sequence of I convex subsets ψi such that ψ = ⋃I

i=1 ψi .
Step 4 Selection of evaluation points: For the hth function ih(p; β): analyze which Prop-

erties I–V hold ∀ (p, β) ∈ (ψ × �) and define ψgh according to Table 1. Repeat
Step 4 ∀ h.

Step 5 Initialize the Markov Chain with a regular parameter vector: If bu ∈ �R, set b(0) =
bu else b(0) = 0. Set j = 0.

Step 6 Generate a candidate b(∗) by the proposal distribution p(b(∗); b( j)).

Step 7 If b(∗) is irregular at the vertices of ψ, set r=0.

Step 8 Repeat Step 4, but instead of evaluating i() on (ψ × �), evaluate i() ∀ (p,b(∗)) ∈
(ψ × b(∗)), i.e. conditional on the very last draw b(∗).

Step 9 If b(∗) is regular in ψg, calculate r = p(b(∗)|y,ψ)/p(b( j)|y, ψ), else set r = 0.

Step 10 if r > 1, b( j+1) = b(∗) else

if Uniform(0,1) ≤ r, b( j+1) = b(∗), else b( j+1) = b( j).

Step 11 Increment j by j = j + 1. Go to Step 6, until j = J + S, whereby {b( j)}S
j=1 are

the burn-in draws to be discarded after the final loop such that {b( j)}J+S
j=S+1 are the

outcomes to be considered for constructing p(β|y, ψ).
Step 12 Analyze p(β|y,ψ), i.e. calculate point estimates and perform inferences.

empirical relevant region ψ is chosen by the researcher (Step 3) and subsequently
approximated by a grid ψg (Step 4).

Step 2: The regularity conditions of f (·) are to be translated into H inequality con-
straint functions [i1, i2. . ., iH ] such that economic theory holds whenever i(p; β) ≥ 0.
An illustrative example for the case of monotonicity and curvature restrictions was
given in Sect. 2.1.

Step 3: In contrast to defining ψ as one convex hyperrectangle (as in Gallant and
Golub 1984; Terrell 1996), we define ψas any connected (possibly non-convex) set.
This has potential advantages. First consider the following adaptation of a well-known
result from optimization theory:

Lemma 1 Let ψ∗ be any subset of the regressor space π and let s: �R|ψ∗ → �1 be
any scalar function.

I f ψ1∗ ⊂ ψ2∗, then max
β∈�R

∣
∣ψ∗1

s(β) ≥ max
β∈�R

∣
∣ψ∗2

s(β).

Suppose s (β) is any scalar goodness of fit measure maximized when estimating the
model. The lemma then states that the fit of a model regular in ψ1∗ is at least as good
as the fit when imposing regularity in ψ2∗, given that ψ1∗ ⊂ ψ2∗. This suggests that
within the context of Definition 1 (see Sect. 2) ψ should be defined as small as possi-
ble. This may result in a non-convex set ψ. Our methodology can be equally applied
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by decomposing ψ into I convex subsets ψi ∀ i = 1, . . . , I , such that ψ = ⋃I
i=1 ψi .

15

In practice, the construction of ψcould be the I = N + C line segments connecting
all empirically relevant points, thereby promising an increased fit of the estimated
model to the data (in comparison of constructing a convex hyperrectangle around
all empirical relevant points). In our application in Sect. 4, we compare these two
approaches.

Whereas Step 3 focused on the selection of ψ, the next issue concerns the construc-
tion of the evaluation grid ψg, which is conditional on a given set ψ.

Step 4: As outlined in Sect. 2.3, ψ is approximated by ψg and regularity is explic-
itly checked for a high number, Q, of grid points. It remains uncertain, however, if the
selected Q-grid is dense enough to avoid irregularity that may occur in between grid
points.

The purpose of Step 4 is to identify problem conditions under which it will be
guaranteed that if certain key areas or singular points in ψ are regular, then other areas
of interest are regular as well. This allows for a reduction of regularity checks to a
number Q∗ < Q that

(a) improve the computational speed of the algorithm, while
(b) maintaining the accuracy of the approximation obtained from the original Q-grid.

In order to identify those cases where a reduction in grid points is possible we define
the following properties relating to f (p; β),ψ, and ih :

Property I ih has Property I, iff each of the K derivatives, ∂ih/∂pk, is continuous
and either ≤ 0 ∀ p ∈ ψ or ≥ 0 ∀ p ∈ ψ. The signs may however be different across
the K derivatives.

Property II ψ is a closed and connected hyperrectangle constructed such that each
of its sides is parallel to one of the K price-axes.

Property III ih has Property III, iff the derivative with respect to at least one price
(say the mth price) is continuous and either ∂ih/∂pm ≥ 0 ∀ p ∈ ψ or ∂ih/∂pm ≤
0 ∀ p ∈ ψ.

Property IV ih is quasiconcave in p and ψ is convex.

Property V f (p; β) is twice continuously differentiable and homogenous in p.

If certain combinations of these properties hold, which are summarized as six cases
in Table 1, then we perform (depending on Cases 1–6) the regularity checks at one of
the following much smaller Q∗ < Q subsets of ψ, which are either, just one vertex,
all vertices, the boundary bd(ψ), one side of, or the ‘shield’ S*, which are defined as:

15 Subsequently, in order to save notation, the subindex i is omitted. Since some nonconvex supersets
cannot be decomposed into a finite union of convex subsets, the requirement to define each subset ψi to
be convexly shaped limits the generality of the construction of possible regular regions. However, such
nonconvex sets can be arbitrarily well approximated for large I. For applied work we propose nonconvex
sets which circumvent this problem, see the “string approach” in Sect. 4.2.
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Table 1 Sufficient conditions for defining the evaluation set as a subsets of ψ

Case Property
I

Property
II

Property
III

Property
IV

Property
V

ψh Support
generated
by the hth
grid

Propo-
sition

1 + Boundary �R|Bgh⊃�R|ψ 1a
Bh

2 + + One vertex
zh

�R|zh=�R|ψ 1b

3 + Boundary �R|Bgh⊃�R|ψ 2a
Bh

4 + + Side Sh �R|Sgh⊃�R|ψ 2b
5 + + All vertices �R|Zh=�R|ψ 3

Zh
6 + Shield S∗ �R|S∗⊃�R|ψ 4

In the third to last column the symbol ψh is a placeholder for Bh , Sh , S∗, zh , and Zh . The subindex h
indicates that each inequality constraint function ih requires its own ψh , all of which are proper subsets
of ψ

(1) z is the K × 1 price vector is one vertex of the hyperrectangle ψ(Q∗ = 1).16

(2) Z = [z1, z2, . . ., z2K ] is a K × 2K matrix of all vertices of the hyperrectangle
ψ(Q∗ = 2K ).

(3) B = bd (ψ) denotes the boundary of ψ.
(4) S ⊂ B is one side of the hyperrectangle orthogonal to the mth price-axis.
(5) S∗ ⊂ B is a set that can be viewed as a “shield” bounding ψ from below, i.e.

from the perspective of rays emanating from the origin 0 ∈ π (see the illustra-
tions in Fig. 2). In order to define S*, let l(0, y) be a straight line through the
origin 0 and through y ∈ π, then S∗ = {p ∈ bd (ψ) : ∀φ if φ ∈ bd (ψ) ∩
l (0, p) , then ||p|| ≤ ||φ||}.

With these definitions, the six cases in Table 1 read row-wise as follows:
For Cases 1–5: Suppose for the hth elementary inequality constraint function ih

the properties (designated by +) hold:

ih ≥ 0 ∀ p ∈ ψ iff ih ≥ 0 ∀ p ∈ ψh,

whereby ψh is a placeholder for one of the evaluation sets, as indicated in the column
‘ψh’.

For Case 6: For inequality constraint functions i∗(·) that impose either nonnegative
slope, nonpositive slope, concavity and/or convexity:

i∗(·) ≥ 0 ∀ p ∈ ψ iff i∗(·) ≥ 0 ∀ p ∈ S∗.

For the proofs of these statements see Sect. A1 of the appendix.

16 Given the proof of Proposition 1b in the appendix, which vertex out of the 2K vertices must be explicitly
checked (for the sign of ih) depends on the signs of the derivatives: If ∂ih/∂pk ≤ 0 ∀ p ∈ ψ, then the kth

element of z is pmax
k and if ∂ih/∂pk ≥ 0 ∀ p ∈ ψ, then the kth element of z is pmin

k .
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Fig. 2 Illustrations of evaluation grids for the Accept–Reject algorithm. To the left, an example of a shield
S∗ ⊂ ψ is displayed. To the right the shield grid Sg∗ ⊂ ψ = {p : p ∈ ×3

k=1[.5, 1.5]} which we also use
for the second principal minor test for the AIM(2) in Sect. 4

The Cases 2 and 5 are of special interest because not only these cases enhance the
computational speed considerably by reducing the evaluation set to include the vertices
only, but, and perhaps more importantly, because from a theoretical perspective under
Cases 2 and 5, we do not rely anymore on some approximation set ψg, (that would
guarantee regularity only if Q → ∞)17, but it is guaranteed that regularity of f holds
also between all of the grid points. This is expressed in the following proposition:

Proposition 5 If for all b( j) Cases 2 or 5 hold ∀ h, then ∀ p ∈ ψ f (p; b( j)) is regular.

For all other cases, clearly, in practice, all infinite ψh must be approximated by
an hth evaluation grid ψgh . For example, the boundary evaluation set Bh = bd(ψ) is
approximated by an evaluation grid Bgh ⊂ B, and Sh and S∗

h are approximated by
Sgh and S∗

gh respectively. Conversely zh and Zh are finite evaluation sets (that do not
require the approximation subindex ‘g’).

Finally note, that the first five cases in Table 1 are very general in the sense that
any kind of shape restriction could be imposed. Case 6, instead, is less general, but
applies to many functions in economics as these are often homothetic and constrained
by monotonocity and or curvature conditions (this suits our cost-function example in
Sects. 2 and 4).

3.2 The Metropolis-Hastings Accept–Reject Algorithm

Steps 6–11 of the procedure apply the MHARA, which provides J random draws from
the regularity posterior p(β|y,ψ). We elaborate on some of these steps below.

Step 6: b(∗), a candidate for the j th + 1 vector in the MCMC sequence {b( j)}J+S
j=1 ,

is generated by a symmetric proposal distribution p(b(∗); b( j)). We use the multi-
variate normal distribution N(b( j), δcov(bu)) to first generate the L × 1 vector b(∗∗)

17 If Q → ∞, i.e. the number of equidistant grid points of ψg goes to infinity, and i(·) is continuously

differentiable, then any parameter value b ∈ �R|ψg is such that f (p; b) is almost everywhere in ψ

regularity-retaining.
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whereby the covariance matrix cov(bu) is scaled by the scalar δ such that approxi-
mately 25% of the draws get accepted in Step 10.18 Since b(∗∗)doesn’t account for
the linear equality constraints on the parameters (e.g. the symmetry condition on the
Hessian ∂2 f (p; β)/∂p∂p′), we further calculate the linearly restricted draw of the L-V
free parameters b(∗) as

b(∗) = b(∗∗) − cov (bu) · RT · (R · cov (bu) · RT)−1 · (R · b(∗∗) − r),

whereby R is a V × L design matrix and r is a V × 1 vector chosen appropriately to
impose V linear equality restrictions on b(∗). Note that now b(∗) accounts for the linear
equality constraints, but not yet for the nonlinear inequality constraints i(p; β) ≥ 0,

which is the task of the next step.
Step 8: The same procedure applies as in Step 4, with the modification that f (·) and

i(·) are evaluated conditionally on the drawn parameter vector b(∗). To save computing
time, if in Step 4 in some hth evaluation the evalution set equals Zh or or zh , the hth

evaluation of Step 8 can, of course, be skipped.

3.3 Point Estimates: Inconsistency of the Mean and Two Alternatives

Step 12: Steps 1–11 generated J outcomes of p(β|y,ψg), which can now be used to
derive point estimates and to draw posterior inferences. Finite sample inferences such
as posterior moments and highest posterior density regions can be directly computed
using well-known Monte Carlo techniques.

As far as we are aware, all previous studies applying MCMC and Importance
sampling to impose regularity conditions define the point estimate of β as the mean
E[β] of the regularity posterior.19 However, this may result in regularity violations, as
indicated in the following proposition.

Proposition 6 Let p(β|y,ψ) be the regularity posterior with parameter support
�R|ψ. If an inequality constraint is a nonlinear function of β, then E [β] =∫

β · p (β|y,ψ) dβ can reside in either �R|ψ or �IR|ψ, and thus f(p; E[β]) can lose
the property of being regular for some p ∈ ψ.

Although the mean point estimator E[β] has some desirable properties under squared
error loss, if it is found that E[β] is irregular, this undermines the estimation objec-
tive of imposing the regularity constraints. Hence, here we propose two alternative
estimators that, in addition to imposing regularity (objective I), maximize a model fit
measure s(β) on �R|ψg, as indicated by Lemma 1 (objective II). Our first suggestion
for an estimator is best motivated under the assumption of Gaussian noise. The second
is motivated independently of the noise probability distribution.

18 The term proposal distribution stems from the fact that p(b(∗); b( j)) proposes a new candidate b(∗) for
the next state b( j+1). Generally the proposal distribution is defined to be symmetric around the previous
accepted point b( j). See Robert and Casella (2002, pp. 281–283) discussing the choice of δ.
19 These include Barnett et al. (1991), Koop et al. (1994), Koop et al. (1997), Terrell (1996), Terrell and
Dashti (1997), O’Donnell et al. (1999), Griffiths et al. (2000), Chua et al. (2001), Kleit and Terrell (2001),
Cuesta et al. (2001), Adkins et al. (2002), O’Donnell et al. (2001), and O’Donnell and Coelli (2003).
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Under the assumption of a normal error distribution, we present the mode

β(mode) = arg max
β∈�R

∣
∣ψg

{
p(β|y,ψg)

}
.

of the regularity posterior as the point estimate which maximizes the model fit subject
to the regularity conditions. To motivate β

(mode), note that the information contained
in the normal unrestricted posterior pu (β|y) ∝ | (N − L)�|−N/2 (see Zellner 1971,
p. 243) is strictly monotonically related to the generalized variance of the fit |�|−1,
which can be used as a goodness of fit indicator. In fact, Barnett (1976) proves that
the minimization of |�| is equivalent to Maximum Likelihood (ML) estimation in the
case of the nonlinear normal classical SUR model. Since (N − L) and the exponent
−N/2 are fixed constants, the minimization of |�| over β ∈ � produces the exact
same result as the maximization of pu(β|y) over β ∈ �. So long as no other prior than
the regularity prior is applied, we have that p (β|y,ψ) ∝ pu (β|y) · 1{β ∈ �R|ψ} ∝
| (N − L)�|−N/2. Thus the normal classical inequality-constrained-ML estimator
generates a point estimate that is numerically equivalent to the mode of p(β|y,ψ). In
order to approximate the solution based upon the MCMC outcomes {b( j)}J+S

j=S+1, one

can simply compare the values pu(b( j)|y)∀ j resulting from the MHARA as

b(mode) = arg max
b( j)

{
|(N − L)�|−N/2( j)

}
.

An alternative estimator, which is not tied to Gaussian errors, can be based on a loss
function (LF) criteria over �R|ψg. The estimator would be defined by solving

β
(LFϕ) = arg min

β∗∈�R|ψg

{∫

β∈�R|ψg

||β∗ − β||ϕ p(β|y,ψg)dβ

}

which minimizes the posterior weighted deviation over β ∈ �R, where || · ||ϕ is some
vector norm20 measuring the distance between two points within �R. For exam-
ple, with || · ||2, the standard Euclidean norm, b(LF2) = arg min

b( j)
J−1 ∑J

i=1(b
( j) −

b(i))′(b( j)−b(i)), minimizing the empirical-MCMC analogue to the expected squared
LF subject to the regularity constraints.

We reemphasize that if Cases 2 or 5 of Table 1 apply ∀ h, then b(LFϕ) and b(mode) are
members of the regular set �R|ψ and hence both estimators are regularity-preserv-
ing (Proposition 5). Conversely, if cases 2 and 5 do not hold, then without further
knowledge one cannot exclude that the estimates belong to the irregular set �IR|ψ.

20 Given an N-dimensional x a general vector norm ||x||ϕ , for φ = 1, 2, . . . is a nonnegative defined as

||x||ϕ =
[
�N

n=1 |x|ϕ
]1/ϕ

. The special case ||x||∞ is defined as ||x||∞ = max |xn | . The most commonly

encountered vector norm is the Euclidian norm, given by ||x||2 = [�N
n=1x2]1/2.
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The proposed methodology is general enough to be adopted in both the Bayesian
and the Classical framework. In the Classical framework, we could maximize a likeli-
hood function subject to (non-)linear inequality constraints i() and the point estimate
is the mode of the MCMC-simulated likelihood, which generally will be identical
to the mode, β

(mode), of the regularity posterior. The suggested LF criterion, lead-
ing to β

(LFϕ), is typically motivated from the Bayesian perspective and has no direct
Classical analogue.

4 Numerical Examples

This section illustrates the proposed methodology by estimating a cost function sub-
ject to regularity conditions. For comparison purposes we re-estimate and extend some
of the simulation experiments provided in the work of Terrell (1995).21 In the first
subsection local, global and regional regularity approaches are compared based on a
specified convex set ψ�. (We use the superscript symbol � to denote a convex set.)
The purpose of the second subsection is to demonstrate the effects of shrinking the
size of ψ.

4.1 Experiment I—Convex Cube ψ

4.1.1 Data Generation

We now briefly describe the design of the simulations.22 The true data genera-
tion process is formulated by the well-known CES cost function f CES(p;αk, ρ) =
[
�3

k=1a1/(1−ρ)
k · p−ρ/(1−ρ)

k

](1−ρ)/−ρ

. As in Terrell, no stochastic error term is added.

The derivatives result, by Shephard’s Lemma, in K = 3 input demand functions,

xk = ∂ f CES/∂pk = [αk · f CES/pk]1/(1−ρ) (5)

Following Terrell, the data set for the first experiment (Table 2) contains N = 64
observations, consisting of all combinations of the values 0.5, 0.8333, 1.1666 and 1.5
generated by K = 3 input prices. By (6) this produces 64 · 3 true input demand levels,
where xk is 64 × 1 with k = 1, 2, 3.

21 The model is kept rather basic which simplifies notation and interpretation of the results related the impo-
sition of the regularity conditions. However, generalizations are straightforward, e.g., output, as another
explanatory variable, could be added while simultaneously imposing that f is convex and monotone increas-
ing in output, as it is required by economic theory, in addition to the restrictions which are imposed with
respect to p.
22 For further details about the simulation set-up, the reader is referred to Terrell (1995).
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Table 2 Global, regional and local approach—comparison based on AIM cost functions

Model Forecast
error and
regularity
violations
evaluated
over ψ�

g

Estimation approach

Local regularitya Global regularitya Regional regularity
Mean Mode

AIM(1) AAAE 0.05208 0.14395 0.095523 0.093291
MAE −0.19692 0.469 0.29045 0.28540
Concavity violations 0% 0% 0% 0%
Monotonicity violations 17.33% 0% 0% 0%

AIM(2) AAAE 0.02056 0.13266 0.040248 0.036739
MAE −0.07563 0.40808 0.11591 0.10759
Concavity violations 3.11% 0% 0% 0%
Monotonicity violations 19.09% 0% 0% 0%

Experiment based on Tables 1 and 2 of Terrell (1995): True data generation process: CES technology with
parameter settings ai = 1; ρ = 0.75. In order to provide a benchmark for the average and largest error,
the CES-input demand data xk have, as in Terrell (1995), mean of 8000−1�8000

g=1 xgk = 0.2552 ∀ k and

standard deviation of std(xk ) = 0.2230 ∀ k over the evaluation grid ψ�
g

a Some considerable differences exist between our and Terrell (1995) results. (a) Local Regularity AIM(2):
Instead of 3.11% Terrell found 1.6% of concavity violations. (b) He calculated error statistics in the column
‘global approach’ which are about 3–4 times higher for the AAAE and 1.5 times higher for the MAE than
our results: AIM(1): AAAE = 0.64146, MAE = −0.84186; AIM(2): AAAE = 0.47073, MAE =−0.63968.
After careful consideration, we believe that the results in our table are the correct ones

4.1.2 Estimation and Evaluation

The purpose of the first experiment is to assess potential advantages of the regional
approach compared to the local and global approach both in terms of model fit and
the propensity for regularity violations. The normal SUR system of K = 3 input
demand functions, x̂k = ∂fAIM(τ )

k

(
P, β̂

)
/∂pk+ûk is estimated, whereby ûk = x̂k − xk

represents the 64 × 1 approximation error vector to the ‘true’ data generation process
(7), L < N 23 and x̂k is the estimated kth64 × 1 input demand vector derived from the
Asymptotically Ideal Production Model, AIM(τ ), with

f AIM(1) = �3
k=1βk pk + β4 p1/2

1 p1/2
2 + β5 p1/2

1 p1/2
3 β6 + β6 p1/2

2 p1/2
3

f AIM(2) = �3
k=1βk pk + β4 p3/4

1 p1/4
2 + β5 p3/4

1 p1/4
3 + β6 p1/2

1 p1/2
2 + β7 p1/2

1 p1/4
2 p1/4

3

+β8 p1/2
1 p1/2

3 + β9 p1/4
1 p3/4

2 + β10 p1/4
1 p1/2

2 p1/4
3 + β11 p1/4

1 p1/4
2 p1/2

3

+β12 p1/4
1 p3/4

3 + β13 p3/4
2 p1/4

3 + β14 p1/2
2 p1/2

3 + β15 p1/4
2 p3/4

3 ,

23 This requirement is due to an important recent proof by Griffiths et al. (2002), ensuring a bounded solution
for the unconstrained maximum likelihood function. They remark that heretofore most authors incorrectly
assumed that N > M and N = max{Lm} is sufficient, with Lm being the number of parameters of the mth

equation, m = 1, . . ., M .
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which are homogenous of degree one, constant returns to scale unit cost functions.24

As in Terrell (1995), the performance of the AIM(τ ) is evaluated over the cubic
region ψ� = {p : p ∈ ψ� = {

p : p ∈ ×3
k=1[.5, 1.5]} by defining a grid ψ�

g ⊂ ψ�

of 20 equidistant prices for each input. Thus in total ψ�
g consists of Q = 20 ·20 ·20 =

8000 points, q = 1, . . .., Q. This grid is used to compute (a) the maximum approxima-

tion error, MAEk = MAEk = sgn

{

ûarg max
q

{|ûqk |},k
}

·max
q

{∣∣ûqk
∣
∣}, and (b) the average

absolute approximation error, AAAEk = Q −1 ∑Q
q=1 |ûqk |, over all Q points, where

ûqk = x̂qk − xqk is the difference between the predicted input demand, estimated
by the AIM(τ ), and the (true) CES input demand of equation (7). Then pursuing our
objective II of optimizing the model fit MAE and AAAE values close to zero are
preferred.

4.1.3 Results

The model fit measures, as well as the percentages of regularity violations of the grid
points for the local, global and regional approach are displayed in Table 2. In the first
two columns we repeat Terrell (1995, Tables 1 and 2, pp. 9–10) simulation experiment,
and the last two columns apply the method described in Sect. 4.

First the demand system is estimated subject to local concavity and monotonic-
ity constraints guaranteeing regularity for the underlying AIM(τ ) cost function at
pM = [1, 1, 1], i.e. at the mean of ψ�. Compared to the other columns, the local
approach provides the best model fit statistics but violates the regularity conditions
in the neighbourhood of pM (leading to regularity violations of about 20% of the
grid points), which is illustrated in Fig. 3. It is particularly instructive to note that
the monotonicity violations are substantially more frequent than the concavity viola-
tions, which is disconcerting given that Terrell, and in fact most researchers in similar
previous studies, did not check for monotonicity violations (see Barnett 2002).

In the column ‘global regularity’ economic theory holds globally on π through the
imposition of nonnegativity constraints on all the AIM parameters β (as in Terrell
1995) which confirms numerically the result of Lemma 1 by showing a decreased
model fit.

The last two columns show the MHARA25 results imposing the regularity condi-
tions regionally on ψ�. First we take the mean—as is commonly done—as the point
estimate for β. As one might expect this ‘regional mean approach’ leads to improved

24 A functional form is second order flexible, if it is capable of being locally equivalent to the true function
in level, gradient, and Hessian at one given point in the price domain π. This is the case for the AIM(1),
which is equivalent to the well known Generalized Leontief. Through series expansions the order of flex-
ibility can be increased to locally coincide with the true function at higher than second order derivatives.
The AIM(2) maintains the flexibility order three. Asymptotically, τ → ∞, these forms converge globally
to the true function. For a further discussion and definitions about second order flexibility see e.g. Barnett
(1983). For the concept and applications of globally flexible functional forms, see e.g. Gallant and Golub
(1984), Terrell (1995), or Barnett et al. (1991).
25 For MCMC sampling in the context of the normal SUR model, we want to refer to the very useful
exposition by Griffiths 2003.

123



328 H. Wolff et al.

Fig. 3 Violations on the price grid ψ�
g in the case of the local regularity approach. . In 19.09% of the grid

points monotonicity is violated (left cube) and in 3.11% concavity is violated (right cube). Each black dot
is one grid point where violation occurs

model fit measures compared to the global approach (e.g. a reduction of the AAAE by
33.6% and 69.7% and a reduction of the MAE by 38.1% and 71.6% in the case of the
AIM(1) and AIM(2) respectively). However, only the mode, as the point estimate for
β, guarantees regional regularity within ψ� (Proposition 6). Results from the ‘mode
approach’ are displayed in the last column of the table, confirming the theory outlined
in Sect. 3 that the model fit statistics are always superior to the ‘mean approach’,
leading to a further reduction in the AAAE of 1.7% and 7.2% and to a reduction in
the MAE of 8.7% and 2.3% for the AIM(1) and AIM(2), respectively.

Concerning the computational efficiency of the algorithm, it is worthwhile to note
that instead of the full evaluation grid of 8000 points, due to the Properties I–V, the
maximum of 1142 grid points of the set S∗

g ⊂ ψ�
g had to be evaluated only. Fur-

thermore, for the AIM(1) often only one vertex had to be assessed. This significantly
decreased the computational burden compared to previous approaches.

Summarizing Table 2, imposing local regularity increases the model fit in all speci-
fications at the cost of violating monotonicity and concavity within ψ, which produces
estimation results that are problematic in terms of economic interpretation and fur-
ther analysis. Imposing regional regularity solves this problem and still significantly
increases the model fit compared to the global approach. Moreover, apart from its
appealing regularity preserving property, it seems relevant for model fit to use the
mode instead of the mean.

4.2 Experiment II—Comparison Between Convex and Nonconvex ψ

The purpose of this subsection is to analyze model performance for different defini-
tions of ψ based on empirically relevant price sets.

The experimental design is based on the same (true) data generation process as
in the previous subsection. However, instead of using the 64 observations, N = 26
data points are (randomly) selected from ψ� = {p : p ∈ ×3

k=1[.5, 1.5]}, under the
restriction that a) the smallest and the largest values are (again) elements of the bound-
ary of ψ�, i.e. pmin

k = 0.5 ∀ k and pmax
k = 1.5 ∀ k and that b) the points do not belong

to three convex subsets that are eliminated from ψ�. Suppose further that the purpose
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Fig. 4 The String grid ψ
string
g

of the estimated model is to analyze C = 4 (policy) scenarios, and that the scenario
prices are exogenously determined at 2 points within ψ� and at 2 points outside of
ψ�.26 Then, a natural goal is to estimate the function such that all N + C price points
are regular (objective I) and that the model fit is as good as possible (objective II).

To evaluate the influence of different definitions of ψ the empirically relevant
regions are chosen to be

(a) ψ�, as before approximated by 8000 grid points ψ�
g and

(b) ψstring = ⋃29
i=1 ψi , which covers all 30 = I + 1 price points by connecting

29 straight lines ψi , i = 1, . . . I, between pM (which is one of the C selected
scenario points) and each of the remaining N +C −1 prices. We chose to approx-
imate each line ψi by ψig by taking 20 equidistant grid points between pM and
the i th price point, leading to a total of 580 grid points for ψg only. Further, due
to exploiting Properties I–V, the evaluation grid could be reduced to 520 points,
which is displayed in Fig. 4. Furthermore, for the AIM(1), the grid could be
further reduced to just 30 evaluation points, Zh , for assessing monotonicity and
the sign of the first order leading principal minor. We refer to (a) as the ‘cube
approach’ and (b) as the ‘string approach’.

In Table 3, performance-statistics are evaluated at (i) the N = 26 observed price
points, denoted as ψNg, (ii) the C = 4 out of sample forecasts, ψCg and (iii) the 8000

grid points ψ�
g .

The first two estimation methods, ‘local regularity’ and ‘global regularity’, serve
as a reference to the more interesting numerical results of the last three columns, in
which comparisons between imposing the regularity conditions on ψ�

g versus impos-

ing the regularity conditions on ψ
string
g are provided: The main result is that the model

fit measures are significantly improved, favoring the string approach, which suggests
that it is worth reducing the size of ψ. Reductions in approximation errors can be
achieved of over 40% and 83% for the AIM(1) and AIM(2), respectively. Further
details on these percentages are presented in the last column.

26 The values of these 4 prices together with the 26 data points are provided in the appendix part C).
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We also supply performance statistics for the string approach evaluated over the
cube grid ψ�

g . We do not necessarily advocate such an approach (i.e. defining ψ on
a subset of the region where subsequent inferences will be drawn). We rather include
these results27 to again emphasize the trade off between flexibility and regularity: The
regional regularity approach can become useless when ψ does not cover the empiri-
cally relevant region (because it is likely that outside of ψ regularity will be violated
as is the case for AIM(1) and AIM(2)). This example underscores the advisability
of considering the Definition 1 carefully. In particular it is to be assumed that it is
known prior to the estimation at which ranges of the data the model shall generate
forecasts. Then we argue that, once it is ensured that the empirically relevant price
set is regular, it is not particularly important if the function is irregular immediately
outside the boundary of ψ because inferences will not be drawn from those regions.

5 Conclusion

This paper develops a procedure for estimating parametric functions subject to regu-
larity conditions derived from economic theory that are imposed on a regular region
of the function’s domain defined by the analyst. Our method extends upon Terrell
(1996) work leading to improved model fit, and is also computationally much faster
and more efficient than previous approaches while imposing both curvature and mono-
tonicity on the entire selected region of the regressor space. In fact the generality of the
method makes it applicable as a new procedure for the broader problem of estimating
regression functions subject to nonlinear inequality constraints.

Our numerical examples illustrate that the tractability of the estimation procedure is
enhanced through a reduction in the number of regularity checks required in the esti-
mation process. Another objective was to improve in- and out-of-sample forecasts.
The theoretical and numerical results provide evidence that the model fit statistics
significantly improve by a) using the posterior mode of the parameters and/or by b)
allowing the desired regular region, ψ, to be some connected non-convex set. Finally
we demonstrated that the commonly used posterior mean may be inappropriate as a
point estimate. For both of the latter problems we suggested simple consistent alter-
natives.

It will be interesting to compare these results with the currently developing new
techniques in nonparametric estimation that imposes shape restrictions. This is to be
explored in future research. We hope that the methods and results demonstrated in
this paper promote tractability and facilitate efficiency in the analysis of regularity-
preserving economic models.

Acknowledgement Thanks are due to Guido Imbens, Haijun Li, Siegfried Schaible, Mark Voornefeld
and Arnold Zellner for correspondence and valuable discussions during the course of the research. The first
author is grateful to the German Academic Exchange Service (DAAD) for financial support.

27 It is also interesting to see that even though the model fit statistics of the ‘string approach’ are clearly
superior to the ‘cube approach’ when evaluated on ψN

g , this is not necessarily true when evaluated over

the cubic region ψ�
g , (i.e. in the case of the AIM(2) the change in approximation errors are negative). The

demand quantities for the out of sample prices in ψ�\ψstring are calculated by (7).
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Appendix

The appendix is divided into three parts. Part A) contains the proofs of the propositions
outlined in Table 1 and some further explanations. Part B) lists the remaining proofs
of Lemma 1, Propositions 5 and 6 and Part C) provides the data used in Sect. 4.2.

Part (A): Proof of Propositions Outlined in Table 1 and Further Explanations

Before we prove the cases outlined in Table 1 we need to introduce two further set def-
initions. (1) For any given MCMC outcome b(∗) ∈ �, the orthant of strictly positive
prices π can always be partitioned into two disjoint subsets, πR|b(∗) ∪ πI R|b(∗) =
π. We say that f (p; b(∗)) is well behaved on the regular price set πR|b(∗) = {p :
i(p; b(∗)) ≥ 0 ∀ p ∈ π}. (2) Since we are particularly interested in the behavior of the
function within the set ψ, let us define ψR = ψR|b(∗) = {p : i(p; b(∗)) ≥ 0 ∀ p ∈
ψ} ⊂ πR|b(∗). It has the following features: If f (p; b(∗)) is regular ∀ p ∈ ψ, then
ψR = ψ. In general, however, ψR ⊂ ψ. For Propositions 1a to 2b and 4, we prove
sufficiency by contrapositive. To prove necessity is trivial and is omitted.

Proposition 1a

Suppose

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ih/∂p1 ≥ 0 ∀ p ∈ ψ {or ∂ih/∂p1 ≤ 0 ∀ p ∈ ψ}
∂ih/∂p2 ≥ 0 ∀ p ∈ ψ {or ∂ih/∂p2 ≤ 0 ∀ p ∈ ψ}
: : :
: : :
∂ih/∂pK ≥ 0 ∀ p ∈ ψ {or ∂ih/∂p2 ≤ 0 ∀ p ∈ ψ}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(Property I holds)

Iff B ⊂ ψR
h , then ψR

h = ψ.

Proof of Proposition 1a 28: Suppose not, then ∃ p∗ ∈ ψIR\B with ih (p∗) < 0. Fur-

ther ∃ pB = [
pB

1 , pB
2 , . . . , pB

K

]T ∈ B which has the following property:

pB
1 ≤ p∗

1 {or pB
1 ≥ p∗

1}
pB

2 ≤ p∗
2 {or pB

2 ≥ p∗
2}

: :
pB

K ≤ p∗
K {or pB

K ≥ p∗
K }

From Property I it follows that ih(pB) ≤ ih(p∗). Finally, since ih(pB) ≤ ih(p∗) < 0
it follows that pB ∈ψIR

h . Hence B �⊂ ψR
h . ��

28 The ‘or statements in the parenthesis {}’ of property I are to be read as follows: in each kth row either
the statement without parenthesis or the statement within the parenthesis is true, except for the case that the
derivative is zero on ψ. We explicitly allow that the signs across the K derivatives may be different. In the
proof it then applies, that whenever in the kth row of Property I the derivative is nonnegative, then in the
kth row pB

k ≤ p∗
k . And equivalently, for nonpositive derivatives it applies pB

k ≥ p∗
k .
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We conclude that only B ⊂ ψ has to be evaluated if Property I holds. In practice,
however, we cannot check for the connected set but approximate it by Bg, thus still run-
ning the risk of violating regularity in the neighborhood of the points in Bg. Fortunately
however, in many applications we can apply the results of the following proposition.

Proposition 1b Suppose Properties I and II hold. Iff z = [
pmin{max}

1 , pmin{max}
2 , . . . ,

pmin{max}
K ]T ∈ ψR

h , then ψR
h = ψ.

Proof of Proposition 1b Suppose not, then ∃p∗ ∈ ψIR\{z} with ih(p∗) < 0 and by
Property I (see Proposition 1a) ∃pB ∈ B with ih(pB) ≤ ih(p∗), hence pB ∈ BIR. From
Property II it follows that ∃ one vertex point z = [z1, z2, . . ., zK ]T with the following
property:

z1 ≤ pB
1 {or z1 ≥ pB

1 }
z2 ≤ pB

2 {or z2 ≥ pB
2 }

: :
zK ≤ pB

K {or z≥
K pB

K }

Hence ih(z) ≤ ih(pB) ≤ ih(p∗) < 0. So z ∈ ψIR
h . ��

Since—under the conditions Properties I and II—whenever [pmin{max}
1 ,

pmin{max}
2 , . . . , pmin{max}

K ]T ∈ ψR
h , then ψR

h = ψ, we conclude that only this single
vertex point has to be checked.29 If for some inequality constraint function ih Property
I does not hold, but instead the relaxed version Property III, then the following result
still greatly simplifies the Accept–Reject algorithm.

Proposition 2a Suppose ∂ih/∂pm ≥ 0 ∀ p ∈ ψ{or ∂ih/∂pm ≤ 0 ∀ p ∈ ψ} and
∂ih/∂p−m can take any value (Property III). Iff B ⊂ ψR

h , then ψR
h = ψ.

For the proof we need the following notation: Partition the K × 1 vector p∗ ∈ ψ

into the singular p∗
m and the K −1×1 vector p∗−m and similarly partition pB ∈ B into

pB
m and pB−m .

Proof of Proposition 2a Suppose not, then ∃ p* ∈ ψIR\{B} with ih(p∗) < 0. Further
∃ pB = [pB

1 , pB
2 , . . . , pB

K ]T ∈ B which has the following property:

pB
m ≤ p∗

m{orpB
m ≥ p∗

m}
pB−m = p∗−m

By Property III it follows that ih(pB) = ih(pB
m, pB−m) ≤ ih(p∗

m, p∗−m) = ih(p∗) < 0.
Hence B �⊂ ψR

h . ��
Note that the assumptions of Property III are much weaker than of Property I and

will hold for a wide set of common flexible functional forms and their respective
inequality constraint functions, in which case we can omit checking the interior of ψ.
Similarly to Proposition 1b, the following will further enhance the speed of MHARA.

29 In case ψ is defined as the union of Iψi , then the sum of vertices [z1, z2, . . ., zI ] are to be checked.
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p2

p1 

p3 

pB p*

ih=-1 

ih=0 

A 1 Inequality Constraint Function Level Sets ih = −1 and ih = 0 in price space π. If properties II and
III hold, p* is irregular, and ∂ih/∂p3 ≥ 0, then the boundary side S facing towards the p1–p2 level contains
irregular points pB ∈ SIR ⊂ S as well. SIR is shaded in grey. The set ψ ⊂ π is indicated by the cube

Corollary 2b Fix the mth price axis from Property III. Let S ⊂ B ⊂ ψ be that
side of the hyperrectangle, which is orthogonal to the mth price-axis and for which
pS

m = pmin{max}
m ∀ (pS

m, pS−m) ∈ S. Suppose Properties II and III hold. Iff S ⊂ ψR
h ,

then ψR
h = ψ.

Proof of Corollary 2b The proof follows the same logic as the proof of
Proposition 1b. ��

In other words, if Properties II and III hold, then it is only necessary to evaluate S
which is the side of the hyperrectangle orthogonal to the mth price-axis and on which
the value of pm is either a) smallest, in the case that ∂ih/∂pm ≥ 0 or b) largest, in the
case that ∂ih/∂pi ≤ 0. For illustration, see Fig. A1.

The following proposition provides sufficiency conditions to check only the extreme
points Ze

h of a convex set ψ. 30 The result does not rely on Property II and is hence
more general than Case 5 of Table 1. If ψ is a hypercube, then Ze

h is equivalent to the
2K vertices defined in Sect. 3.1 as Zh .31

Proposition 3 Suppose Property IV holds. Iff Ze
h ∈ ψR

h , then ψR
h = ψ.

Proof of Proposition 3 A quasi-concave function ih has the property that its upper
contour set Uω = {p : ih ≥ ω, p ∈ ψ, ω ∈ �1} is convex. ψR

h = {p : ih ≥ 0, p ∈ ψ}
is an upper contour set U0 evaluated at ω = ih = 0 such that Ze

h ∈ ψR
h (by assump-

tion). Since, by Property IV, ψis convex it follows that ψR
h = U0 ∩ψ is convex (since

the intersection of convex sets is convex). Finally, since any convex set is connected
and Ze

h ∈ ψR
h , it follows that ψR

h = ψ. ��

30 ze is an extreme point of ψ iff ze = λ ·p1 +(1 − λ) p2, ∀ p1, p2 ∈ ψ, λ ∈ (0, 1), implies ze = p1 = p2.
31 If ψi is defined as a part of a hyperplane in π, the number of vertices might be different from 2K . For
example, in the case that ψi has the form of a line, we just have two instead of 2K vertices, the starting and
the ending point of the line.

123



336 H. Wolff et al.

Remark 1 In order to identify quasiconcavity of Property IV, in practice it is use-
ful to make use of the bordered Hessians of i(·), see e.g. (Simon and Blume, 1994,
pp. 523–531).

Proposition 4 x Suppose the regularity conditions to be imposed belong to a subset
of the following properties: (a) nonpositive slope,(b) nonnegative slope, (c) convexity,
or (d) concavity. Suppose property V holds. Iff S∗ ∈ ψR then ψR = ψ.

Proof of Proposition 4 Suppose not, then ∃ p* ∈ ψIR\S∗ for which either (a) non-
positive slope, (b) nonnegative slope, (c) convexity, or (d) concavity is violated.

First suppose monotonicity, (a) or (b), is violated at p*. Then at least one ele-
ment ∂ f (p∗) /∂pk of the K × 1 gradient vector ∂ f (p∗) /∂p is wrong in sign. By the
property of a homogenous of degree α function, α ∈ �1, we have ∂ f (tp∗) /∂p =
tα−1∂ f (p∗) /∂p ∀ t > 0. This implies that the signs of the elements of the gradi-
ent vector evaluated at tp∗ do not change relative to the gradient vector evaluated
at p*, and hence any tp∗ is irregular as well. Consequently, also irregular is the
point pS∗ ∈ S ∗ ∩l (0, p∗) at which the ray through the origin and p* intersects with
shield S*.

Now suppose curvature, (c) or (d), is violated at p*. Then the Hessian evaluated at
p*, H|p∗, does not maintain the correct semi-definiteness. Again, by the property of
homogenous functions we have ∂ f 2 (tp∗) /∂p∂p′ = tα−2∂2 f (p∗) /∂p∂p′ ∀ t > 0.

Since H|tp∗ only differs from H|p∗ by the multiple tα−2 the definiteness of the matrices
is identical, hence tp∗ ∈ ψIR ∀ t > 0. Consequently, the point pS∗ ∈ S ∗ ∩l (0, p∗)

is also irregular. ��

Part (B): Proof of Lemma 1, Propositions 5 and 6

Proof of Lemma 1 The proof follows immediately from the definition of �R|ψ∗ =
{β : i(p; β) ≥ 0 ∀ p ∈ ψ∗, β ∈ �} which implies that ceteris paribus, the larger the
constraining set ψ∗ ⊂ π, the smaller is the support �R, i.e. if ψ1∗ ⊂ ψ2∗, then
�R|ψ1∗ ⊃ �R|ψ2∗. Consequently, maximizing s(β) over the smaller set �R|ψ2∗
can only lead to objective values equal or smaller than as maximizing s(β) over �R|ψ∗

1.
��
Proof of Proposition 5 The proof follows directly from the Propositions 1b and 3 and
noting that if the evaluation sets are finite, the regularity posterior can be simulated
with support �R|ψ = �R|ψg, i.e., regularity is guaranteed on the connected set
∀ p ∈ ψ and there is no reliance on an arbitrary approximation grid. ��
Proof of Proposition 6 The proof follows directly by noting that for nonlinear inequal-
ity constraints the constraint set �R is not necessarily convex. Hence linear combina-
tions over �R can reside outside of �R. ��

Part (C)
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Table 4 Input price observations and out of sample points used for experiment II

n Input price 1 Input price 2 Input price 3

26 × 3 input price observation matrix P

1 0.59404 0.56000 0.55000

2 0.52200 0.68344 0.84049

3 0.55812 1.05000 1.18890

4 0.57451 1.49900 1.46040

5 0.94357 0.54122 0.81883

6 0.69551 0.78415 0.60475

7 0.82898 0.78613 0.73893

8 0.84189 1.15940 1.09310

9 0.80024 1.49740 1.45910

10 1.12530 0.56597 1.08850

11 1.15600 0.95502 1.37150

12 1.38970 1.04470 0.64871

13 1.21790 1.38860 0.76997

14 1.02370 1.21050 1.34420

15 1.09690 1.44260 1.47270

16 1.46630 0.58908 1.30410

17 1.44160 1.02990 1.41120

18 1.41350 1.14770 1.47790

19 1.38970 1.41070 0.61131

20 1.48110 1.43560 0.79465

21 1.48060 1.34620 1.06060

22 1.43460 1.42840 1.46580

23 0.50000 0.50000 0.50000

24 1.50000 1.50000 1.50000

25 1.50000 0.50000 1.50000

26 0.50000 1.50000 1.50000

c Input price 1 Input price 2 Input price 3

C = 4 scenario input price vectors

1 1.00000 1.00000 1.00000

2 1.28870 1.26140 0.87679

3 3.00000 3.00000 3.00000

4 4.39890 1.76720 3.91230
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