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Abstract This study uses the interval computing approach to forecast the annual
and quarterly variability of the stock market. We find that the forecasting accuracy is
significantly higher than the OLS lower and upper bound forecasting. The strength of
the interval computing comes from its data processing. It uses lower and upper bound
information simultaneously, no variability information is lost in parameter estima-
tion. The quarterly interval (variability) forecasts suggest that the interval computing
method outperforms the OLS lower and upper bound forecasting in both stable and
volatile periods.
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1 Introduction

Interval forecasting has been the subject of active research over the past two decades as
the traditional point forecasting fails to enhance accuracy. Despite numerous statistical
methods, such as Bayesian, Bootstrapping, Box-Jenkins, GARCH, and Holt-Winters
methods, used in generating interval forecasts, essentially, those interval forecasts
are confidence-based interval forecasts, the combination of point forecasts and some
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variance of forecasts. That is, some arbitrarily determined percent of variance of fore-
casts is added to and subtracted from the point forecasts to form upper and lower
forecast bounds. Given the fact that confidence-based interval forecasts are based on
point data and point forecasts, poor forecast quality is a major problem for confidence-
based interval forecasts, like for point forecasts (Chatfield 1993, 2001). According to
Gardner (1988) and Granger (1996), the confidence-based interval forecasts are too
narrow to have realistic coverage, because the uncertainty related to model selec-
tion and parameter estimation is not accounted for (De Gooijer and Hyndman 2006).
Armstrong (2001) emphases that it is important to incorporate the uncertainty asso-
ciated with the explanatory variables in interval forecasting. He and Hu (2007) find
that indeed, the use of interval data for both dependent and explanatory variables can
substantially increase accuracy of interval forecasts. When random variables are mea-
sured in intervals, more information (variability) is furnished for analysis, compared
with point data. Therefore, the lower and upper bound forecasts based on the interval
data and the rolling OLS method significantly outperform confidence-based interval
forecasts which are generated from point data and point forecasts (He and Hu 2007).
Given the fact that the OLS method uses the lower and upper bound information sepa-
rately in parameter estimation and generating out-of-sample forecasts, it is inevitably
to lose some volatility information in the estimating process.

In order to use the full variability information, the parameter estimating must deal
with the lower and upper bounds simultaneously. In the mathematical and computing
fields, a new method, interval computing, has been both theoretically and computa-
tionally developed since the mid 1960s (Moore 1966, 1979). In interval computing,
both operands and computational results are intervals. By taking interval data (both
lower and upper bounds) into considerations, it is reasonable to expect more reliable
and accurate forecasts with interval arithmetic. The interval computing method has
been effectively applied to many fields. Examples include, but not limited to, chemi-
cal engineering (Gau and Stadtherr 2000; Hua et al. 1996), reliable non-linear global
optimization (Kearfott 1996; Hu et al. 2002; Kearfott and Hongthong 2005), data min-
ing, decision making and game theory (Korvin et al. 2002). A detailed discussion of
interval computing is contained in Sect. 3.1.

The interval computing creates a new forecasting format, variability forecasting,
and may enhance forecasting accuracy to a higher level. The major purpose of this
study is twofold. First, we employ the interval computing method to predict variability
of the stock market. Then, the interval forecasts are compared with those based on
the OLS rolling method reported in He and Hu (2007), in order to assess forecasting
quality provided by the interval computing.

The remainder of this paper is organized as follows. Section 2 describes the estima-
tion model and data, Sect. 3 discusses interval computing procedures, Sect. 4 presents
empirical results, and Sect. 5 contains concluding comments.

2 Model and Data

This study uses the same interval data and models as He and Hu (2007). Accord-
ing to Chen et al. (1986), changes in the stock market (SP;) are linearly determined
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by the following five macroeconomic factors: growth rate variations of seasonally
adjusted Industrial Production Index (IP), changes in expected inflation (DEI;) and
unexpected inflation (Ul,), default risk premiums (DEF;), and unexpected changes
in interest rates (TERM,):

SPr=a;+1;(I1P)+ U(Ul) + Di(DEIL) + Fi(DEF;) + T,(TERM;) + ¢; (1)

Similar to Fama and French (1997) out-of-sample forecasting, the rolling coeffi-
cient estimates from Eq. 1 are multiplied by next period’s explanatory variables to get
out-of-sample forecasts for the stock market:

SP=a—1+ Li1(P) + U1 (Ul) + Di1((DEL) + Fi_1(DEF,)
+T;—1 (TERM,). @

The primary data set covers a period of January 1930-December 2004 and includes
the following basic monthly series:

e [P: the growth rate of seasonally adjusted Industrial Production Index at the begin-
ning of the month. The index is compiled by the Federal Reserve System. This study
uses the one-month lead term of IP in the monthly data.

e LONG: the monthly returns on long-term U.S. government bonds (Stock, Bonds,
Bills, and Inflation 2005 Yearbook, Ibbotson Associates).

e CORP: the monthly returns on long-term corporate bonds (Stock, Bonds, Bills, and
Inflation 2005 Yearbook, Ibbotson Associates).

e SHORT: the monthly returns on one-month U.S. Treasury Bills (Stock, Bonds, Bills,
and Inflation 2005 Yearbook, Ibbotson Associates). According to Fama and French
(1993), SHORT,_ is the proxy for “the general level of expected returns on bonds.”

e CPI: the growth rate of the U.S. Consumer Price Index (Bureau of Labor Statistics).

e SP: the growth rate of Standard and Poor’s 500 Stock Price Index.

For IP, CPI, and SP, the monthly growth rate is the first difference of natural loga-
rithms in months of 7 and ¢ — 1; the annual growth rate is the first difference of natural
logarithms in Decembers of # and ¢ — 1. The annual returns for LONG, CORP, and
SHORT are compounded monthly returns of January through December. The follow-
ing additional series are derived from the above basic series:

DEF,;=CORP; — LONG:;. It represents the default risk premium (Fama and French
1993).

TERM;=LONG; — SHORT;_. It measures unexpected changes in interest rates
(Fama and French 1993).

Ul;: unexpected inflation. It is proxied by the residuals from the following regression
model (Fama 1981):

CPl;=0;_1+BSHORT;_1+n,

El;_1: expected inflation at the end of month #—1. It is the difference of CPI; and
ur,.

DEI,: the change in expected inflation. It measures the difference of EI, and EI,_;.

@ Springer



266 L. T. He, C. Hu

The annual and quarterly interval data consist of the minimum and maximum
monthly numbers in a year or a quarter. The OLS rolling method applies the lower
and upper bound data to Egs. 1, 2 to generate lower and upper bound forecasts; while
the interval computing method directly uses the interval data and the two equations to
produce interval forecasts.

3 Interval Algorithm and Estimation Accuracy
3.1 An Interval Least Squares Algorithm

An interval least squares algorithm has been developed and implemented in C++ in
this study to estimate Eq. 1. Based on the least squares principle, the interval arithmetic
(Moore 1979) is used to construct an interval valued linear system of equations. In this
process, the product of two intervals is used mostly. In interval arithmetic, the product
of two intervals is defined as [a, b] *[c, d]=[min {ac, ad, bc, bd}, max {ac, ad, bc,
bd}].

In order to estimate the coefficients, it is necessary to solve an interval linear sys-
tems of equations Ma = v, where M is a 6 by 6 interval matrix; a is the vector of
the coefficients to be determined; and v is an interval vector. It is assumed that the
coefficients are scalars initially. By taking Mg, the mid-point matrix of M, and vy;q,
the midpoint vector of v, a classic linear system of equations about a is constructed.
The numerical estimates of the coefficients are obtained by using Gaussian elimina-
tion with scaled partial pivoting. This initial approach has the intuition of matching
the center of two interval vectors. In order to better reflect time-varying relationships
between the stock market and other macroeconomic variables, a rolling estimation
period of ten consecutive years of annual data or 20 quarters of quarterly data is used
to establish the interval linear system of equations for annual or quarterly forecasting.
The rolling coefficient estimates in intervals obtained from Eq. 1 can be used to fore-
cast changes of the stock market by estimating the out-of-sample forecasting model
(Eq. 2).

However, the midpoint approach has not taken the widths into considerations yet.
Therefore, it is essential to adjust the width of the forecasted interval. Consistent with
the rolling estimation period, the width is adjusted by a rolling scalar constant which
is equivalent to the average width of the S&P index intervals in the previous ten years
or 20 quarters.

Hu and He (2007) illustrated step-by-step interval computing procedures with
examples of in-sample (1939-2004) and out-of-sample (1940-2004) annual stock
market interval forecasts. Today, software tools and applications for interval com-
puting are available in mainstream programming languages such as C, C++, Fortran,
Java, Lisp, as well as in computational algebra systems, such as Maple, MATLAB,
and Mathematica.

3.2 Assessment of Forecasting Accuracy

The accuracy ratio defined in He and Hu (2007) and Hu and He (2007) is the pri-
mary measure of forecasting quality in this study. The accuracy ratio represents the
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commonly covered range by a forecasted and actual intervals divided by the maximum
distance reached by the two intervals. If the actual interval is used as the denominator,
the ratio is misleading. Consider the following example in He and Hu (2007): the
predicted interval is [1, 5] and the actual interval is [1, 3]. The accuracy ratio should
be 50% (2/4). If the actual interval is used as the denominator, the value of the ratio
becomes 100%. Obviously, it is misleading. We use S P,s; to represent the forecasted
SP interval and define the accuracy ratio as: w(SP N SPeg) /W(SP U SPeg), where w is
the width function of an interval. The accuracy ratio is zero when SP N SP is empty.
The accuracy ratio is determined by the distance covered by a predicted and actual
intervals as well as the maximum range stretched by the two intervals. Therefore, the
shape of coverage is another interesting issue to analyze. We use the following five
definitions of interval forecasts to categorize different shapes of coverage.

1. Over-forecast. It is defined as a forecasted interval that covers the whole actual
interval, that is, both the lower and upper bounds of the forecasted interval exceed
the actual interval. For example, the interval [2, 5] is an over-forecast for the
interval [3, 4].

2. Under-forecast. A predicted interval that resides inside of the actual interval is an
under-forecast. For example, the predicted interval [2, 4] is an under-forecast, if
the actual interval is [1, 5].

3. Lower-forecast. It is a forecasted interval that covers a part of the actual interval
and the lower bound of the forecasted interval exceeds the lower bound of the actual
interval. For instance, the forecasted interval [0, 3] is called a lower-forecast, if
the actual interval remains [1, 5].

4. Upper-forecast. It is opposite to the lower-forecast. The upper bound of a fore-
casted interval [3, 6] exceeds the upper bound of the actual interval [1, 5].

5. Zero-forecast. It is a forecasted interval with an accuracy ratio of zero. That is, the
forecasted interval does not touch the actual interval, such as [1, 2] vs. [4, 5].

The average accuracy ratio and frequency in each category can provide us with
detailed information about the strength and weakness of each interval forecasting
method.

4 Empirical Results
4.1 Overall Accuracy of Interval Forecasts

Both annual and quarterly data indicate far wider intervals for the S&P stock index
than other variables (Table 1). Two inflation measures, changes in expected inflation
and unexpected inflation, have the narrowest intervals. Summary statistics in Table 1
suggest that quarterly interval data display larger unit variation measured by coefficient
of variation, compared to the annual intervals.

The annual and quarterly interval data are used to generate out-of-sample vari-
ability forecasts for the stock market. We employ the interval computing approach to
process interval inputs and produce interval forecasts based on Eqgs. 1, 2. The results
are compared with the OLS interval forecasts which are proven to be superior to point
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Table 1 Summary statistics for interval data (in percent)

SP 1P Ul DEI DEF TERM

Panel A: Annual intervals (1930-2004)

Upper bound mean 6.61 2.36 0.66 0.08 1.82 3.44
Standard deviation 5.20 2.41 0.86 0.06 1.22 2.70
Coefficient of variation 0.79 1.02 1.30 0.75 0.67 0.78
Lower bound mean —6.30 —1.80 —0.51 —0.08 —1.66 —3.14
Standard Deviation 5.05 2.18 0.40 0.08 1.21 2.19
Coefficient of variation —0.80 —1.21 —0.78 —1.00 —-0.73 —0.70
Panel B: Quarterly intervals (Q1 1930—4 2004)

Upper bound mean 3.28 1.12 0.29 0.04 0.94 1.76
Standard deviation 391 1.83 0.61 0.05 1.04 2.12
Coefficient of variation 1.19 1.63 2.10 1.25 1.11 1.20
Lower bound mean —2.46 —0.56 -0.23 —0.04 —0.84 —1.43
Standard deviation 4.32 1.81 0.40 0.06 1.04 1.98
Coefficient of variation —1.76 —-3.23 —1.74 —1.50 —1.24 —1.38

SP = Growth rate in S&P stock index

IP = Growth rate in industrial production index
UI = Unexpected inflation

DEI = Changes in expected inflation

DEF = Default risk premium

TERM = Unexpected changes in interest rates
Coefficient of variation is in decimal numbers

forecast-based confidence interval forecasts by He and Hu (2007). Since the exact
same inputs and models are used to make forecasts, differences between the two types
of interval forecasts are simply consequences of different methods used in process-
ing interval information. Accuracy ratios for 10-year rolling annual interval forecasts
(64%) clearly suggest that the interval computing method is superior to the OLS lower
and upper bound estimation (52%). The difference is significant at the one percent level
(Table 2). The interval computing method can not only greatly enhance the accuracy
of variability forecasting, but also increase the stability of annual rolling forecasting.
The standard deviation of accuracy ratios is 16% for the interval computing, while
22% for the OLS. The difference is significant at the five percent level, as suggested
by the F-statistic in Table 2. The higher accuracy of the interval computing is also
evidenced by the significantly lower mean of forecast errors, 5.17% vs. 6.84%. The
quarterly interval forecasts basically verify the annual findings. However, accuracy
ratios for both methods (44% vs. 34%) are lower than annual forecasts. The result
may reflect the fact that the quarterly interval variables have higher unit variation than
annual ones.

A fundamental difference between the two methods lies in information processing.
The interval computing method uses both lower and upper bound information simul-
taneously in estimating Eq. 1 and forming forecasts; while the OLS method separately
uses lower and upper bound information in the process. The separation of lower and
upper bounds in information processing deprives much variability information. This
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Table 2 Out-of-sample forecasts based on interval computing and OLS lower and upper bound estimates

Interval computing OLS interval®

Panel A: Annual forecasts (1940-2004) with a 10-year rolling period

Forecasting accuracy (FA) 0.64188 0.52449
Std. dev. of FA 0.16149 0.22040
Equality tests for the two pairs Test result
T-statistic 3.46P
F-statistic 1.86¢
Forecast error mean (IE) 0.06843
Std. dev. of IE 0.03727
Equality tests for the two pairs Test result
T-statistic —2.74b
F-statistic 1.34
Panel B: Quarterly forecasts (Q1,1935-04,2004) with a 20-quarter rolling period
Forecasting accuracy (FA) 0.34196
Std. dev. of FA 0.25879
Equality tests for the two pairs Test result
T-statistic 4.83b
F-statistic 1.35¢
Forecast error mean (IE) 0.05483
Std. dev. of IE 0.03832
Equality tests for the two pairs Test result
T-statistic —2.67°
F-statistic 1.224

Forecast error = Sum of absolute values of the differences between the forecasted and actual lower and
upper bounds

FA = The range covered by both the forecasted and actual intervals divided by the maximum range stretched
by the two intervals

4 There are four annual and 14 quarterly OLS interval forecasts are mis-specified, that is, predicted upper
bounds are smaller than predicted lower bounds. However, both FA and Forecast error for OLS interval
are based on corrected mis-specified predicted bounds. We modified the computing procedure, so FA and
Forecast error mean (IE) for OLS interval are slightly different from those reported in He and Hu (2007)
The T-statistic tests the null hypothesis of equality of means for accuracy ratios without the assumption of
equal population variance

The F-statistic tests the null hypothesis of equality of variances. The 1%, 5%, and 10% significant levels
are represented by b, ¢, and d, respectively

may be the reason why the OLS interval forecasts are less accurate than those generated
by the interval computing. The separation of interval information also determines that
the OLS lower and upper bound forecasts are independent of each other. As a result,
the OLS interval forecasts can be mis-specified, that is, the predicted upper bound
is lower than the predicted lower bound in an interval forecast. The mis-specified
OLS interval forecasts are found in this study: four annual forecasts and 14 quarterly
forecasts (Table 2). To correct this misspecification, we consider the lower predicted
value as the lower bound and the higher value as the upper bound. The calculation of
accuracy ratio and forecast error is based on corrected forecasts.
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4.2 Accuracy of Different Categories of Forecasts

In order to further examine the effectiveness of interval forecasting, we classify all
interval forecasts into five different categories. Table 3 provides detailed informa-
tion about each category for annual forecasts. Forecasts from the interval computing
are more likely to exceed the actual lower and upper bounds of S&P intervals. The
frequency of this over-forecast (Over) is 25 out of a total of 65. Interval computing
forecasts do not have a single zero accuracy ratio, that is, all interval computing fore-
casts touch the actual intervals. This is a major reason why the interval computing
method enjoys a higher accurate level. Frequencies for other three categories are sim-
ilar. Contrast to the interval computing approach, the OLS lower and upper bound
prediction method produces 18 over-forecasts and four non-touch forecasts. The fre-

Table 3 Annual accuracy ratios and accumulative accuracy ratios in different categories

Over Under Lower Upper Zero

Frequency in

Interval computing 25 14 13 13 0
OLS interval 18 13 16 14 4
Average accuracy ratio in

Interval computing 0.5800 0.6818 0.6917 0.6680 0
OLS interval 0.5421 0.6041 0.6073 0.4831 0
Standard deviation of accuracy ratios in

Interval computing 0.1757 0.1837 0.1382 0.0918
OLS interval 0.1856 0.1952 0.1598 0.1667
Equality tests for Interval computing versus OLS interval

T-statistic 0.68 1.06 1.52 3.602
F-statistic 1.12 1.13 1.34 3.20b
Mean of accumulative accuracy ratios in

Interval computing 7.5472 52618 4.7684 4.7018
OLS interval 5.3411 4.1034 52178 3.5683
Standard deviation of accumulative accuracy ratios

Interval computing 44199 27374 27524 2.6227 O
OLS interval 29981 23422 29901 19170 0
Equality tests for Interval computing vs. OLS interval

T-statistic 1.95¢ 1.18 —-042 1.27
F-statistic 2.17° 1.37 1.18 1.87

Over = a forecasted interval that covers the whole actual interval

Under = a forecasted interval that resides inside of the actual interval

Lower = a forecasted interval that exceeds the lower bound of the actual interval

Upper = a forecasted interval that exceeds the upper bound of the actual interval

Zero = a forecasted interval that does not touch the actual interval

The T-statistic tests the null hypothesis of equality of means for accuracy ratios without the assumption of
equal population variance

The F-statistic tests the null hypothesis of equality of variances. The 1%, 5%, and 10% significant levels
are represented by a, b, and c, respectively
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quencies of under-forecasts (forecasted intervals residing inside of actual intervals),
upper-forecasts (forecasted intervals only exceeding upper bounds of actual inter-
vals), and lower-forecasts (forecasted intervals only exceeding lower bounds of actual
intervals) are similar for both methods.

The mean of accuracy ratios in each category is greater for the interval computing
method, while standard deviation of accuracy ratios in each category is smaller for the
computing, compared with the OLS lower and upper bound forecasts. However, only
differences in the category of upper-forecasts, 66.8% vs. 48.3% for accuracy ratio and
9.18% vs. 16.67% for standard deviation, are statistically significant (Table 3).

Accumulative accuracy ratios, a combined measure of frequency and average ratio,
in each category may provide a better picture for forecasting quality. Results for the
category of over-forecasts are, once again, in favor of the interval computing, in terms
of a significantly higher mean of accumulative accuracy ratios and lower standard devi-
ation (Table 3). Results for other categories are not significantly different. Overall,
annual interval forecasts suggest that the important strength of the interval computing
approach is able to generate more and better over-forecasts, compared with the OLS
interval forecasts.

When the higher frequency data, the quarterly interval data, are used, the accuracy
of interval forecasts tends to decrease. The interval computing generates 12 non-touch
(zero accuracy) quarterly forecasts, while there are as many as 36 for the OLS interval
forecasting (Table 4). Furthermore, for both interval forecasting methods, the average
accuracy ratios for other four categories are lower than that for annual forecasts.

However, the interval computing method still generates better quarterly forecasts.
The significant T-statistics indicate that the under- and lower-forecasts developed by
the interval computing enjoy the higher accuracy than those produced by the OLS
method. When we take category frequencies into consideration, the interval com-
puting outperforms the OLS method in two categories: over- and lower-forecasts, as
suggested by the means of accumulative accuracy ratios, 16.63 vs. 7.32 and 19.58 vs.
16.29 (Table 4). The differences are significant at the one percent and five percent
levels, respectively. The result that over-forecasts produced by the interval computing
method have higher accumulative accuracy ratios than the OLS over-forecasts is in
line with the annual results.

4.3 Volatility and Accuracy of Forecasts

Essentially, the interval forecasting is a variability forecasting. Can interval forecasting
do a better job in a more volatile period? Results of this study provide a clear answer
to the question. Interval forecasts obtained with both interval computing and the OLS
methods have much higher accuracy ratios in 17 years with most volatile stock prices
than with least volatile stock prices. The accuracy ratios are 64.56% vs. 54.52% for
the interval computing method and 59.50% vs. 40.96% for the OLS method (Table 5).
Both differences are statistically significant. However, the accuracy ratio for the inter-
val computing in the volatile period is not significantly higher than that for the OLS
method, although the difference of accuracy in the stable period is significant in favor
of the interval computing.
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Table 4 Quarterly accuracy ratios and accumulative accuracy ratios in different categories

Over Under  Lower  Upper  Zero

Frequency in

Interval computing 75 36 88 69 12
OLS interval 39 47 85 73 36
Average accuracy ratio in

Interval computing 0.4619 0.5560 0.4502 04217

OLS interval 0.4139 04107 0.3822 0.3811
Standard deviation of accuracy ratios in

Interval computing 0.2169 0.1391 02216  0.1944

OLS interval 02294 0.2713  0.2212  0.2446
Equality tests for Interval computing vs. OLS interval

T-statistic 1.08 317 202> 110
F-statistic 1.12 3.814 1.00 1.58¢

Mean of accumulative accuracy ratios in

Interval computing 16.629 10.322  19.576 14967 O
OLS interval 7.3234  9.8570 16291 14.627 0
Standard deviation of accumulative accuracy ratios in

Interval computing 10.038 59144 11347 89615 O
OLS interval 4.6564 6.0774 9.8934  8.4060 O
Equality tests for Interval computing vs. OLS interval

T-statistic 6.75% 035 203% 023
F-statistic 4.652 1.06 1.32 1.14

Over = a forecasted interval that covers the whole actual interval

Under = a forecasted interval that resides inside of the actual interval

Lower = a forecasted interval that exceeds the lower bound of the actual interval

Upper = a forecasted interval that exceeds the upper bound of the actual interval

Zero = a forecasted interval that does not touch the actual interval

The T-statistic tests the null hypothesis of equality of means for accuracy ratios without the assumption of
equal population variance

The F-statistic tests the null hypothesis of equality of variances. The 1%, 5%, and 10% significant levels
are represented by a, b, and c, respectively

Frequencies in different categories of forecasts suggest that over-forecasts are more
likely to appear in periods with stable stock prices, while more under-forecasts are
formed in volatile price situations. We find that in the stable period, the interval com-
puting method produces 16 over-forecasts and zero under-forecasts, compared to one
over-forecast and 10 under-forecasts in the volatile period. The OLS interval forecasts
show the similar results, but in a less obvious manner.

Compared with the annual interval data, the quarterly data are more unstable, there-
fore, can better reveal the relationship between volatility and accuracy of interval fore-
casting. The accuracy of quarterly interval forecasts significantly increases in 70 most
volatile quarters (45.19% for the interval computing and 35.06% for the OLS method)
from 70 least volatile quarters (28.83% and 20.26%, respectively) (Table 6). Further-
more, in both periods, accuracy ratios are significantly higher (at the one percent level)
for forecasts based on the interval computing than that from the OLS method. Finally,
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similar to the annual interval forecasts, the frequency of over-forecasts is the highest
and the frequency of under-forecasts is the lowest for both methods in the stable period;
while the opposite is true for the volatile period. This is because of that the interval
computing method adjusted the width of the forecasting interval to the average width
of SP intervals in the estimation window.

5 Concluding Comments

Results of this study indicate that the interval computing method can generate inter-
val forecasts with a significant higher average accuracy ratio, compared with interval

Table 5 Annual forecasting quality in different periods

Interval computing ~ OLS interval

Panel A: 17 least volatile years (25% of the sample)

Forecasting accuracy (FA) 0.54523 0.40959
Std. dev. of FA 0.18018 0.22927
Equality tests for the two pairs Test result
T-statistic 1.92¢
F-statistic 1.62
Over Under Lower  Upper Zero
Frequency in
Interval computing 16 0 1 0
OLS interval 10 0 3
Interval computing ~ OLS interval
Panel B: 17 most volatile years (25% of the sample)
Forecasting accuracy (FA) 0.64559 0.59501
Std. dev. of FA 0.16823 0.12254
Equality tests for the two pairs Test result
T-statistic 1.00
F-statistic 1.88
Over Under Lower Upper Zero
Frequency in
Interval computing 1 10
OLS interval 1 7 2 7

FA in stable period

FA in volatile period

Panel C: The stable period vs. the volatile period

Interval computing 0.54523 0.64559
Equality tests for the two pairs Test result
T-statistic —1.68¢
F-statistic 1.15
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Table 5 continued

FA in stable period FA in volatile period

OLS Interval 0.40959 0.59501
Equality tests for the two pairs Test result
T-statistic —2.942
F-statistic 3.50

Forecast error = Sum of absolute values of the differences between the forecasted and actual lower and upper
bounds

FA =The range covered by both the forecasted and actual intervals divided by the maximum range stretched
by the two intervals

The T-statistic tests the null hypothesis of equality of means without the assumption of equal population
variance

The F-statistic tests the null hypothesis of equality of variances. The 1%, 5%, and 10% significant levels
are represented by a, b, and c, respectively

Over=A forecasted interval that covers the whole actual interval

Under=A forecasted interval that resides inside of the actual interval

Lower=A forecasted interval that exceeds the lower bound of the actual interval

Upper=A forecasted interval that exceeds the upper bound of the actual interval

Zero=A forecasted interval that does not touch the actual interval

Table 6 Quarterly forecasting quality in different periods

Interval computing OLS interval

Panel A: 70 least volatile quarters (25% of the sample)

Forecasting accuracy (FA) 0.28829 0.20263
Std. dev. of FA 0.17881 0.20610
Equality tests for the two pairs Test result
T-statistic 2.632
F-statistic 1.33
Over Under Lower Upper Zero
Frequency in
Interval computing 45 0 15 7 3
OLS interval 24 2 15 11 18

Interval computing OLS interval

Panel B: 70 most volatile quarters (25% of the sample)

Forecasting accuracy (FA) 0.45190 0.35060
Std. dev. of FA 0.19391 0.24468
Equality tests for the two pairs Test result
T-statistic 2712
F-statistic 1.59¢
Over Under Lower Upper Zero
Frequency in
Interval computing 0 29 20 18 3
OLS interval 1 28 20 15 6
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Table 6 continued

FA in stable period FA in volatile period

Panel C: The stable period vs. the volatile period

Interval computing 0.28829 0.45190
Equality tests for the two pairs Test result
T-statistic —5.192
F-statistic 1.18
OLS Interval 0.20263 0.35060
Equality tests for the two pairs Test result
T-statistic —3.874
F-statistic 1.41

Forecast error = Sum of absolute values of the differences between the forecasted and actual lower and upper
bounds

FA =The range covered by both the forecasted and actual intervals divided by the maximum range stretched
by the two intervals

The T-statistic tests the null hypothesis of equality of means without the assumption of equal population
variance

The F-statistic tests the null hypothesis of equality of variances. The 1%, 5%, and 10% significant levels
are represented by a, b, and c, respectively

Over =A forecasted interval that covers the whole actual interval

Under = A forecasted interval that resides inside of the actual interval

Lower=A forecasted interval that exceeds the lower bound of the actual interval

Upper=A forecasted interval that exceeds the upper bound of the actual interval

Zero= A forecasted interval that does not touch the actual interval

forecasts derived from the OLS lower and upper bound estimation. The strength of
the interval computing comes from its data processing. It uses lower and upper bound
information simultaneously, no variability information is lost in parameter estimation.

The annual results for different categories of forecasts suggest that the interval
computing approach is able to generate more and better over-forecasts, compared
with the OLS interval forecasts. When quarterly data are used, the accuracy of interval
forecasting reduces. This may be the result of higher unit variation contained in the
quarterly information. Nevertheless, the interval computing still outperforms the OLS
method in two categories: over- and lower-forecasts, as suggested by the higher means
of accumulated accuracy ratios.

Interval forecasting essentially is a variability forecasting. Our results suggest that
interval forecasts generated by either method have higher accuracy ratios in the volatile
period than in the stable period. Quarterly forecasts based on the interval computing
have significantly higher accuracy than the OLS interval forecasts in both volatile and
stable periods. However, annual forecasts from the interval computing outperform the
OLS interval forecasts only in the stable period.

Results on different periods suggest that the frequency of over-forecasts is the high-
est and the frequency of under-forecasts is the lowest for both methods in the stable
period; while the opposite is true for the volatile period.
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