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Abstract Computing numerical solutions of household’s optimization, one often
faces the problem of interpolating functions. As linear interpolation is not very good
in fitting functions, various alternatives like polynomial interpolation, Chebyshev poly-
nomials or splines were introduced. Cubic splines are much more flexible than polyno-
mials, since the former are only twice continuously differentiable on the interpolation
interval. In this paper, we present a fast algorithm for cubic spline interpolation, which
is based on the precondition of equidistant interpolation nodes. Our approach is faster
and easier to implement than the often applied B-Spline approach. Furthermore, we
will show how to loosen the precondition of equidistant points with strictly monotone,
continuous one-to-one mappings. Finally, we present a straightforward generalization
to multidimensional cubic spline interpolation.

Keywords Interpolation · Multidimensional cubic splines

JEL Classification C63 · C65

1 Motivation

In computational economics, one always faces the problem of approximation. Solving
large scale OLG models, for example, one quickly is confronted with the problem
that there is no analytical solution to household’s optimization. Hence, computational
economists use numerical solutions. A popular approach is a discretization of the
state space of households together with a backward optimization as described e.g. in
İmrohoroğlu et al. (1995, 90ff.) or Nishiyama and Smetters (2005, 1111ff.).
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Beneath the need of several optimization algorithms, programmers often face the
problem of interpolation. The most popular interpolation method surely is linear
interpolation. In addition to the fact that it doesn’t need much complex programming,
linear interpolation can easily be generalized to the multidimensional case. However,
it is a disadvantage that one needs a lot of data (i.e. interpolation nodes) to obtain good
approximation results, which increases the calculation time.

Therefore, various interpolation algorithms, which are much better in fitting func-
tions than linear interpolation, were introduced. Heer and Maussner (2005, 431ff.),
for example, suggest Chebyshev polynomials to solve the interpolation problem.
B-Splines, like described in Miranda and Fackler (2002), Judd (1998) or de Boor
(1978), are also a very useful alternative, especially if one needs some more flexible
functions than polynomials.

In this paper, we will give an algorithm for cubic spline interpolation which is
a special case of the B-Spline approach. In the next section, after presenting some
theory on splines, we will introduce a fast algorithm which is easy to compute in
any programming language. Section 3 shows, how spline interpolation can easily
be generalized to the multidimensional case. Section 4 gives applications of spline
interpolation comparing it to the linear interpolation and standard B-Splines. Section
5 concludes.

2 A Fast Solution to One-Dimensional Cubic Splines

2.1 Preliminaries

A grid�n(a, b)= {x0, . . . , xn}, n ∈ N,on the interval [a, b] is a set of points xi ∈ [a, b],
i = 0, . . . , n, with a = x0 < x1 < · · · < xn = b. In the following we will call xi

nodes. By Sk,l(�n(a, b)), l, k ∈ N0, l < k, we denote the function space of all
one-dimensional, real-valued Cl([a, b]) functions on the bounded interval [a, b] that
are piecewise kth degree polynomial on every interval [xi−1, xi ], i = 1, . . . , n. A
spline of degree k and smoothness l with n + 1 nodes in �n(a, b) is a function
sk,l

n ∈ Sk,l(�n(a, b)). A spline of degree zero is a step function, a spline of degree one
is a continuous, piecewise linear function, a spline of degree two and smoothness one
is a once continuously differentiable, piecewise second-order polynomial function,
etc.

If �n(a, b) = {x0, . . . , xn} and the interpolation data yi ∈ R, i = 0, . . . , n, is
given, a spline sk,l

n ∈ Sk,l(�n(a, b)) interpolates the data {yi }i=0,...,n , if it satisfies the
n + 1 interpolation conditions

sk,l
n (xi ) = yi for i = 0, . . . , n. (2.1)

In the following, we will concentrate on splines of order three and smoothness two,
so-called cubic splines. Therefore, for the sake of simplicity, we denote S3(�) :=
S3,2(�n(a, b)) the function space of all degree three and smoothness two splines on
the grid �n(a, b) and s ∈ S3(�) a degree three and smoothness two spline.
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There are several ways to represent such a spline. Since a cubic spline is piecewise
third-order polynomial, an intuitive explicit form of a spline function is

s(x) = ai + bi x + ci x2 + di x3 if x ∈ [xi−1, xi ] for i = 1, . . . , n

with some adequate coefficients ai , bi , ci , di ∈ R. Given the interpolation data yi ,

i = 0, . . . , n, we can determine the coefficients ai , bi , ci , di for an interpolating
spline. The computation of these coefficients is e.g. described in Judd (1998, 225ff.).
However, this intuitive approach has several disadvantages. First, in order to evaluate
the spline function several times, one has to calculate 4n coefficients and store them
permanently. Second, and even worse, in order to compute the coefficients one has to
solve a linear equation system of 4n equations in 4n unknowns which may be costly
in terms of time. In order to relax these space and time constraints, basis functions of
the function space Sk,l(�n(a, b)) were proposed. The most popular basis functions
are the B-Spline functions given by the recursive formula

Bk,�
j (x) = x − x j−1−k

x j−1 − x j−1−k
Bk−1,�

j−1 (x)

+ x j − x

x j − x j−k
Bk−1,�

j (x)

with B0,�
j =

{
1 if x j−1 ≤ x < x j

0 otherwise

for j = 1, . . . , n + k. The n + k B-Spline basis functions Bk,�
j form a basis of the

function space Sk,k−1(�n(a, b)). A spline sk,k−1
n can therefore be represented by a

linear combination of these B-Spline basis functions, i.e.

sk,k−1
n (x) =

n+k∑
j=1

c j Bk,�
j (x)

with some suitable coefficients c j . Note that this modification allows to reduce the
linear equation system defining the spline coefficients to n + k equations. For some
more information on B-Splines see Miranda and Fackler (2002, 115ff.) or de Boor
(1978).

2.2 Interpolation with Equidistant Nodes

If � is a set of equidistant nodes, we can apply a fast and easy to implement algorithm
for one-dimensional cubic spline interpolation. The approach requires only n + 3
spline coefficients and does not need a sophisticated linear equation system solver.
Consequently, this interpolation method could be easily implemented by programmers
in any language.
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Fig. 1 Base of S3(�). This figure shows the basis functions u1, u2, . . . , un+3 of the function space of
splines S3(�) on the interval [a, b] with equidistant nodes (see (2.2) and (2.3))

Given a set � = {x0, x1, . . . , xn} of equidistant nodes, i.e.

xi = a + ih, h = b − a

n
, i = 0, . . . , n, (2.2)

and the associated interpolation data y0, y1, . . . , yn ∈ R, we define S3(�) as in Sect.
2.1 and choose the functions

uk(x) = �

(
x − a

h
− (k − 2)

)
, k = 1, . . . , n + 3 (2.3)

with

�(t) =

⎧⎪⎨
⎪⎩

(2 − |t |)3, 1 ≤ |t | ≤ 2

4 − 6|t |2 + 3|t |3, |t | ≤ 1

0, elsewhere,

(2.4)

see Fig. 1. U = {u1, u2, . . . , un+3} is a basis of the n + 3-dimensional space S3(�),
i.e. every s ∈ S3(�) can be written as

s(x) =
n+3∑
k=1

ckuk(x) (2.5)

with some coefficients ck . Actually, the functions uk are an explicit form of the B3,�
k

B-spline basis functions. They can be obtained by employing equidistant nodes like
in (2.2) and some straight forward computation.
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Due to the bounded support supp(uk) = [xk−4, xk] ∩ [a, b], uk vanishes outside
the bounded interval [xk−4, xk] ∩ [a, b] and Eq. (2.5) changes to

s(x) =
m∑

k=l

ckuk(x), l =
⌊

x − a

h

⌋
+ 1, m = min (l + 3, n + 3), (2.6)

where �·� denotes the floor function.
With S3(�) being an n + 3-dimensional space, we need n + 3 interpolation

conditions in order to determine the interpolating spline function uniquely. Howe-
ver s(xi ) = yi , i = 0, . . . , n, only specifies n + 1 conditions. Therefore, we add
two conditions which define the second-order derivatives of the spline function at the
boundaries a and b to be equal to some exogenous constants1

s′′(a) = α, s′′(b) = β.

There are several possibilities to choose the constants α and β. Setting α = β = 0
leads to a natural spline. Natural splines solve the problem

min
g∈M

∫ b

a
g′′(x)2 dx,

where M ⊂ C2[a, b] is the set of all twice continuously differentiable functions on
[a, b] interpolating the data y0, . . . , yn , i.e. the natural spline is the function which
minimizes the total curvature over the interval [a, b]. Alternatively, one could think
of several possibilities to approximate the second-order derivatives at a and b using
the given interpolation data in order to get a better approximation in between the
interpolation nodes.

In the following we assume that α and β are specified. Then the n + 3 interpolation
conditions and the fact that uk vanishes outside the bounded interval [xk−4, xk]∩[a, b]
define the linear equation system

s′′(x0) =
3∑

i=1

ci u
′′
i (x0) = α,

s(xi ) =
m∑

k=l

ckuk(xi ) = yi , l =
⌊

xi − a

h

⌋
+ 1,

m = min (l + 3, n + 3), i = 0, . . . , n,

s′′(xn) =
n+3∑

i=n+1

ci u
′′
i (xn) = β

1 There are several ways to specify those two missing condition. Behforooz and Papamichael (1979) analyze
a whole class of end conditions and their implication on error bounds.
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which is equivalent to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u′′
1(x0) u′′

2(x0) u′′
3(x0) 0 . . . . . . 0

u1(x0) u2(x0) u3(x0) 0 . . . . . . 0

0 u2(x1) u3(x1) u4(x1) 0 . . . 0
.
.
.

. . .
. . .

. . .
. . .

. . .
.
.
.

0 . . . 0 un(xn−1) un+1(xn−1) un+2(xn−1) 0

0 . . . . . . 0 un+1(xn) un+2(xn) un+3(xn)

0 . . . . . . 0 u′′
n+1(xn) u′′

n+2(xn) u′′
n+3(xn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2

c3

.

.

.

cn+1

cn+2

cn+3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α

y0

y1

.

.

.

yn−1

yn

β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.7)

Employing equidistant interpolation nodes like in (2.2), (2.7) turns into

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 1 0 . . . . . . . . . 0
1 4 1 0 . . . . . . . . . 0
0 1 4 1 0 . . . . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0 . . . . . . 0 1 4 1 0
0 . . . . . . . . . 0 1 4 1
0 . . . . . . . . . 0 1 −2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
c2
...
...
...

cn+2
cn+3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αh2/6
y0
y1
...

yn−1
yn

βh2/6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.8)

The linear equation system (2.8) can be solved in three steps:

1. From the first and the last two lines we obtain

c2 = 1

6

(
y0 − αh2

6

)
, cn+2 = 1

6

(
yn − βh2

6

)
.

2. Next, we have to compute the solution of the system

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 1 0 . . . . . . . . . . . . 0
1 4 1 0 . . . . . . . . . 0
0 1 4 1 0 . . . . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0 . . . . . . 0 1 4 1 0
0 . . . . . . . . . 0 1 4 1
0 . . . . . . . . . . . . 0 1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c3
c4
...
...
...

cn

cn+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1 − c2
y2
y3
...

yn−3
yn−2

yn−1 − cn+2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As the matrix is a symmetric and tridiagonal matrix, the computation of (c3, . . . ,

cn+1) should be no problem, see Judd (1998, 61ff.).
3. The first and the last coefficient are then derived from

c1 = αh2

6
+ 2c2 − c3, cn+3 = βh2

6
+ 2cn+2 − cn+1.
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Given the coefficients c = (c1, . . . , cn+3)
T of the interpolating spline function s in

(2.5) we can compute the value of the interpolating spline at any x ∈ [a, b].

2.3 Re-scaling of the Nodes

The last section developed a fast algorithm for the computation of splines with equi-
distant sets of interpolation nodes. With a non-equidistant grid we can use the same
algorithm if the following condition is satisfied:

Let the set of nodes � and the interpolation data y0, . . . , yn be given. If the xi

are not evenly spaced but determined by a strictly monotone, continuous one-to-one
mapping gr: [0, n] → [x0, xn] such that xi = gr(i), i = 0 . . . , n, we can proceed as
follows:

1. Interpolate the data y0, . . . , yn with the algorithm given in Sect. 2.2 and obtain a
spline s with coefficients ck, k = 1, . . . , n + 3.

2. In order to evaluate the interpolating function s∗(x) at any x ∈ [a, b] first compute
z = gr−1(x) ∈ [0, n] and evaluate s(z), where a = 0, b = n, h = 1 (cf. Sect. 2.2).
s∗(x) = s(z) then is the value of the function interpolating the data yi . Notice that
s∗ satisfies the interpolation conditions s∗(xi ) = s(gr−1(xi )) = s(i) = yi, i =
0, . . . , n.

This approach defines a re-scaling of the x-coordinate. As an example, Fig. 2 shows
the re-scaling with the original nodes xi satisfying xi = gr(i),

gr(i) = a · ((1 + g)i − 1), i = 0, . . . , 10, a ≈ 0.078, g = 0.3. (2.9)

The interpolation data yi is computed from yi = √
xi .

2 As one can see, the new scaling
approach could allow a better approximation as steeper parts (especially around 0) are
flattened.

3 Extension to Multidimensional Spline Interpolation

For a better understanding of multidimensional spline interpolation, we will first intro-
duce the procedure in two dimensions. After knowing this algorithm, a generalization
to n-dimensional interpolation will be no problem.

2 Notice that we didn’t chose gr(i) = i2 on purpose. This would result in a straight line. Since in reality
one doesn’t know the exact function the interpolation data is computed from, an exponentially growing grid
like in (2.9) is useful as long as the function we want to interpolate has its steepest parts at the left endpoint
of the interpolation interval. It is easy to fit this grid into an interval and, in addition, the growth of the grid
can be directly controlled by the parameter g. However, there are various other grid making functions that
may be useful with other interpolation data.
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Fig. 2 Re-scaling approach

3.1 Bicubic Spline Interpolation

Given the equidistant grids �1 = {x0, . . . , xn1},�2 = {z0, . . . , zn2} with

xi1 = a1 + i1h1, h1 = b1 − a1

n1
, i1 = 0, . . . , n1

zi2 = a2 + i2h2, h2 = b2 − a2

n2
, i2 = 0, . . . , n2

on the intervals [a1, b1] and [a2, b2] and the interpolation data yi1i2 , we are looking
for a bicubic spline s ∈ S3(�1) × S3(�2) =: S3,3 interpolating the data yi1i2 . S3,3 is
the tensor product of S3(�1) and S3(�2), i.e. if {u1, . . . , un1+3} is a base of S3(�1)

and {v1, . . . , vn2+3} is a base of S3(�2),

{
ui1vi2 | i1 ∈ {1, . . . , n1 + 3}, i2 ∈ {1, . . . , n2 + 3}}

is a base of S3,3. Hence, the dimension of S3,3 is (n1 + 3) · (n2 + 3) and any spline
s ∈ S3,3 can be written as

s(x, z) =
n1+3∑
i1=1

n2+3∑
i2=1

ci1i2 ui1(x)vi2(z), ci1i2 ∈ R.

We can compute ci1i2 by the following algorithm:

1. For q = 0, . . . , n2 compute coefficients c∗
i1q of the splines

sq,1(x) =
n1+3∑
i1=1

c∗
i1qui1(x) ∈ S3(�1)

due to the interpolation conditions sq,1(xi1) = yi1q , i1 = 0, . . . , n1.
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2. Now solve the spline interpolation problem si1,2 ∈ S3(�2),

si1,2(z) =
n2+3∑
i2=1

ci1i2vi2(z), i1 = 1, . . . , n1 + 3,

with respect to si1,2(zq) = c∗
i1q , q = 0, . . . , n2.

3. The bicubic spline interpolating yi1i2 is then given by

s(x, z) =
n1+3∑
i1=1

n2+3∑
i2=1

ci1i2 ui1(x)vi2(z),

ui1(x) = �

(
x − a1

h1
+ 2 − i1

)
, vi2(z) = �

(
z − a2

h2
+ 2 − i2

)
.

Notice that the re-scaling approach can also be applied in the multidimensional case.

3.2 A Generalization to Multidimensional Problems

Knowing the bicubic spline interpolation, the generalization to a d-dimensional pro-
blem is straightforward. Given d different grids �1,�2, . . . ,�d and the interpolation
data yi1i2...id , the following two-step algorithm is applied for multidimensional spline
interpolation:

1. If ni is the number of nodes in �i compute the splines sq,1 ∈ S3(�1) × · · · ×
S3(�d−1) for q = 0, . . . , nd with the interpolation data yi1i2...id−1q and obtain the
coefficients c∗

i1i2...id−1q .
2. Interpolate for i1 = 1, . . . , n1 , i2 = 1, . . . , n2 , . . . , id−1 = 1, . . . , nd−1 the

data c∗
i1i2...id−1q with nodes xq ∈ �d . The coefficients ci1i2...id obtained from this

interpolation are the coefficients of our interpolating spline function.

Therefore we can write the interpolating spline function at x = (x1, . . . , xd) ∈ R
d

as

s(x) =
n1+3∑
i1=1

· · ·
nd+3∑
id=1

ci1i2...id ·
d∏

j=1

u j
i j

(
x j
)

with u j
i j
(x j ) = �

(
x j −a j

h j
+ 2 − i j

)
. Notice that the dimension of this problem is∏d

j=1(n j + 3).

4 Applications

In this chapter, we present an example for the use of the re-scaling approach and com-
pare in terms of accuracy and speed the linear interpolation, the third degree B-spline
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Fig. 3 Interpolation of x0.25

interpolation and the fast spline algorithm described above. For the computation of
B-splines we use the CompEcon Toolbox by Miranda and Fackler (2002). Besides
many other programs, they provide some powerful and efficient algorithms for multi-
dimensional interpolation.

We provide results for four different tests. In the first section, we demonstrate
graphically the influence of the new scaling approach on the interpolation of some
particular type of function. In Sect. 4.2 we apply the three different algorithms to
an artificial interpolation problem. In the third section, we’ll solve a two-dimensional
household maximization problem in a partial equilibrium setting and in the last section
we compare the solutions of a multidimensional OLG model, solved with different in-
terpolation methods. The results in section two and three are computed with MATLAB
whereas the OLG model is programmed in FORTRAN.

4.1 The Influence of the Re-Scaling Approach

For some utility functions used in economics (e.g. the CRRA-utility function) marginal
utility goes to infinity as the amount of the valued item approaches zero. Interpolating
a function with these properties, one always faces the problem of bad accuracy in a
neighborhood around zero. In the following we will show how one could improve
accuracy in this region without losing accuracy in the rest of the interpolation interval.

A group of functions which satisfy the condition mentioned above is fm(x) = xm,

0 < m < 1. As cubic splines are curved functions in opposite to piecewise linear
ones, it is easier for them to fit a curved function like xm . Figure 3 demonstrates this
issue showing the interpolating spline and piecewise linear function of x0.25 on the
interval [0, 0.5] with n = 5 and equidistant interpolation nodes.3

3 In this figure, we didn’t show the results from a B-spline approach, since the result is very close to the
one computed with our fast algorithm.



Multidimensional spline interpolation 163

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1
f
Spline
linear

Fig. 4 Interpolation of x0.25 with re-scaling

However, this figure also shows the problem of low accuracy in the region around
zero. This problem can be reduced by re-scaling as explained in Sect. 2.3. Figure 4
displays the interpolating functions of x0.25 after re-scaling the cubic spline as well as
the linear interpolating function with the function (2.9) and parameters a = 0.0279
and g = 0.8.

Obviously, the accuracy in between the interpolation nodes in Fig. 4 rises since
there are lots of points in the steep area around zero. Re-scaling, therefore, is a good
solution to the problem described above. However, one should be aware that the re-
scaling approach can only be applied if one can find the “problematic” parts of the
function underlying the interpolation data.

4.2 Interpolation of Given Functions

Next we discuss a stylized interpolation problem. Consider the function

fd(x) =
d∑

i=1

x
1
2i
i , x = (x1, . . . , xd) ∈ R

d .

Tables 1–3 compare for d = 1, 2, 3 the results of different interpolation approaches
for different interpolation nodes n + 1 on the interval [0, 1]. After the calculation of
coefficients, the interpolating functions are evaluated at m evenly spaced points on
the interpolation interval.4 The error reported in the tables is the maximum absolute
difference of the interpolating function and the original function f . The columns

4 In the multidimensional cases we use n interpolation nodes and evaluate on an evenly spaced grid of m
points in every dimension.
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Table 1 Interpolation of one-dimensional function

n Linear Linear (g) B-spline Fast Fast (g)

Time expired (s)

10 0.7030 0.8708 5.4179 2.4650 2.6377

20 0.7075 0.8704 9.0490 2.4611 2.6197

50 0.7082 0.8701 4.0806 2.4589 2.6336

100 0.7082 0.8718 4.1297 2.4748 2.6300

500 0.7061 0.8703 4.2499 2.4692 2.6239

1000 0.7086 0.8718 4.3679 2.4528 2.6230

Error

10 0.0791 0.0127 0.0488 0.0569 0.0046

20 0.0559 0.0046 0.0327 0.0402 0.0020

50 0.0354 0.0011 0.0200 0.0255 8.0 · 10−4

100 0.0250 6.46 · 10−4 0.0140 0.0180 4.71 · 10−4

500 0.0112 1.22 · 10−5 1.48 · 1018 0.0080 8.0 · 10−7

1000 0.0079 3.09 · 10−6 9.02 · 1051 0.0057 3.67 · 10−10

m = 1, 000, 000, g = 10
n

Table 2 Interpolation of
two-dimensional function

n Linear Linear (g) B-spline Fast Fast (g)

Time expired (s)

10 0.4619 0.5496 2.0214 1.7825 1.9023

20 0.4635 0.5453 2.2075 1.8096 1.8923

50 0.4626 0.5464 2.6144 1.8104 1.8924

100 0.4638 0.5447 3.3266 1.8247 1.9127

Error

10 0.3447 0.0161 0.2597 0.2839 0.0048

20 0.2793 0.0059 0.2039 0.2311 5.4557 · 10−5

50 0.2113 0.0012 0.1498 0.1767 2.54 · 10−6

100 0.1729 3.47 · 10−4 0.0956 0.1334 1.20 · 10−7

m = 500, g = 10
n

“Linear” and “Linear (g)” show results for a linear interpolation without and with
re-scaling. The column “B-spline” gives error and expired time for interpolation with
B-splines from the CompEcon toolbox. “Fast” and “Fast (g)” present the results from
the algorithm discussed above without and with re-scaling.

The results in these tables are not very surprising. As one would expect, linear
interpolation is the worst in terms of accuracy and the best in terms of speed. As
B-splines and the splines obtained from our fast algorithm are both cubic splines, they
give similar results in terms of accuracy. However, especially in the one-dimensional
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Table 3 Interpolation of
three-dimensional function

n Linear Linear (g) B-spline Fast Fast (g)

Time expired (s)

10 0.5070 0.5675 2.7033 2.6205 2.6746

20 0.5102 0.5727 5.9913 2.6470 2.7107

Error

10 0.7252 0.0177 0.4754 0.5665 4.57 · 10−4

20 0.5116 0.0064 0.1845 0.3192 5.52 · 10−5

m = 50, g = 10
n

case, B-splines do slightly better than the splines computed from the fast algorithm. The
big error in the column B-splines at n = 500 and n = 1, 000 reflects that the B-spline
interpolation matrix is not very well conditioned for a high number of interpolation
points. Both the time needed for the fast algorithm as well as for linear interpolation
are nearly independent of the number of grid points. For linear interpolation this issue
should be clear. For the fast spline algorithm this is mainly due to the definition in (2.6),
i.e. the computation of the spline function only needs to evaluate the basis function
at a maximum of four points, independent of the number of grid points. Finally, we
can see that re-scaling reduces the speed of the algorithm. Of course, this is due to
the computation of z = gr−1(x) (see Sect. 2.3). However, re-scaling provides a much
higher accuracy.

4.3 Agent’s Optimization

This section presents results from an agent’s optimization problem. The agent lives
for J = 3 periods, while he retires at age jR = 3, i.e. he will not work anymore and
receive a pension.

The agent maximizes

Vj (a j , ep j ) = max
c j ,� j

{
u(c j , � j )

1− 1
γ + βVj+1(a j+1, ep j+1)

1− 1
γ

} 1
1− 1

γ ,

where c j and � j ∈ [0, 1] denote consumption and leisure at age j , β is the time
discount factor, γ is the intertemporal elasticity of substitution between consumption
and leisure in different ages and VJ+1 = 0. Agent’s instantaneous utility function is
given by

u(c j , � j ) =
{

c
1− 1

ρ

j + α · �
1− 1

ρ

j

} 1
1− 1

ρ
,

where ρ denotes the elasticity of substitution between consumption and leisure and
the leisure preference parameter α is assumed to be age independent.5 The budget

5 The utility function used is a transformation of the standard CES utility function. This transformation
guarantees that the value function Vj has a lower bound of 0.
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constraint is defined as follows:

a j+1 = a j (1 + r) + w j (1 − τ j ) + p j − c j ,

with a1 = aJ+1 = 0, a j ≥ 0 for all j . During employment, agent earns labor
income of w j = (1 − � j ) · w · e j , where e j denotes his efficiency in age j . After
retirement, the agent will choose � j = 1 but receive a pension p j which depends on
the earning points he accumulated during the working periods. The pension is given
by p j = ep jR · APA, where APA is the exogenously given actual pension amount. In
order to receive a pension, one has to pay some pension contribution τ jw j depending
on labor income. During the working period, agent can accumulate earning points due
to the following constraint:

ep j = ep j−1 + min
[w j

w̄
, 2.0

]
,

where average income w̄ is exogenously given. Therefore, the amount of accumulated
earning points in one year is limited to 2.0.

The agent’s optimization problem is solved backwards by a discretization of the
two-dimensional household state space A = {a1, . . . , an}, E P = {ep1, . . . , epn}. We
optimize with the Nelder–Mead simplex method, see Press et al. (2002, 408ff.). For
the interpolation of the future value function we use our three different approaches,
linear interpolation, B-spline and the fast spline algorithm. The results are shown in
Tables 4–6.

n denotes the number of grid points used in both dimensions, i.e. in total there are
n2 interpolation nodes. The total computation time in seconds needed for the solution
of the model can be seen from the column “Time”. In order to give some error measure
for the different approaches, we calculate a high accuracy solution of the model, i.e.

Table 4 Linear interpolation

n A C L Time n A C L Time

5 0.04436 0.04642 0.00232 1.46971 5 0.01592 0.01844 0.01125 1.32653

8 0.01454 0.01322 0.00613 3.57532 8 0.00573 0.00902 0.00054 3.07855

10 0.00689 0.00804 0.00478 5.38342 10 0.01369 0.00935 0.00592 4.62272

20 0.00681 0.00766 0.00176 20.64993 20 0.00255 0.00150 0.00130 15.96909

On the left with equidistant nodes and on the right with re-scaling, g = 0.5 in asset direction

Table 5 B-spline interpolation
n A C L Time

5 0.00767 0.00801 0.00056 2.45424

8 0.00065 0.00102 0.00111 6.09872

10 0.00043 0.00059 0.00051 9.54312

20 0.00008 0.00010 0.00008 35.71164
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Table 6 Fast spline interpolation

n A C L Time n A C L Time

5 0.00885 0.00916 0.00051 1.61290 5 0.00302 0.01166 0.00468 1.51354

8 0.00157 0.00182 0.00131 3.83078 8 0.00099 0.00275 0.00101 3.50598

10 0.00018 0.00075 0.00094 6.03053 10 0.00058 0.00133 0.00025 5.32241

20 0.00063 0.00070 0.00011 22.83018 20 0.00006 0.00037 0.00006 19.82591

On the left with equidistant nodes and on the right with re-scaling, g = 0.5 in asset direction

a high number of data points combined with a high accuracy level in the optimization
step. We consider this solution as “perfect solution”. The errors reported in the columns
A, C and L are the maximum absolute differences between the values computed from
the model and the “perfect solution” in household’s assets, consumption and leisure
over the different ages, respectively.

The results in these tables are very similar to the ones in the test above. Splines
are better in terms of accuracy but worse in terms of time. However, in this case,
the fast algorithm is not much slower than the linear interpolation approach. This
may be due to the fact that we use an optimization algorithm, where the different
interpolating functions don’t necessarily have to be called for the same number of
times.

Finally, the B-spline approximation and the fast spline algorithm give similar solu-
tions in terms of accuracy.

4.4 A Multidimensional OLG Model

As a last step, we will take a look at the use of spline interpolation in a multidimensional
OLG general equilibrium model. Household’s maximization problem in this model is
very similar to the one stated in the previous section. We extend the problem of Sect.
4.3 by idiosyncratic wage as well as lifetime uncertainty and set J = 16, jR = 9. In
order to isolate risk aversion from intertemporal substitution, we follow the approach
of Epstein and Zin (1991) and formulate the maximization problem of a representative
consumer at age j and state z recursively as

Vj (z) = max
c j ,� j

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(c j , � j )
1− 1

γ + βs j+1

⎡
⎣∑

e j+1

π(e j+1|e j )Vj+1(z
′)1−η

⎤
⎦

1− 1
γ

1−η

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1
1− 1

γ

with parameters, variables and utility function u(·) like in the previous section and
the degree of relative risk aversion η. s j+1 denotes the survival probability for a
household from period j to period j + 1. Productivity e j at each age j is uncer-
tain and depends on the productivity in the previous period. Consequently, π(e j+1|e j )
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denotes the probability to experience productivity e j+1 in the next period if the current
productivity is e j . The budget constraint is extended to

a j+1 = a j (1 + r) + w j (1 − τ j ) + p j − T (y j ) − (1 + τ c)c j + b j

with a progressive income tax function T (·), which depends on the total taxable income
y j of the household, a consumption tax rate τ c and unintended bequests b j , which are
left by households that don’t survive to the next period, as we abstract from annuity
markets. The pension system is the same as in the previous section. However, the
pension contribution τ j , the actual pension amount APA and the average earnings w̄

are now determined endogenously.
In order to compute a general equilibrium, we add a perfectly competitive produc-

tion sector populated by a large number of firms, the sum of which we normalize to
unity. Aggregate output Y is produced using a Cobb–Douglas production function.
The government in each period issues new debt and collects income and consumption
taxes in order to finance general government expenditure G as well as the interest pay-
ments on its debt. The pension system adjusts the APA and the pension contribution
rate τ j in order to yield a standard pension (i.e. where ep j = jR −1) which amounts to
60% of average earnings and to balance the pension system’s budget in every period.
For further information on the model, its calibration and the results we refer to Fehr
and Habermann (2005).

In the following table, we present results from both a linear interpolation approach
and the fast spline method with re-scaling. We compute the household’s decision as
in the previous section but with a line search optimization tool, see Press et al. (2002,
412ff.). In the first column we report the number of grid points used in every dimension
of the state space. The column “Time” reports the time in seconds needed to compute
a complete steady state. For the last three columns we approach similar to the previous
section. For comparison we compute a high accuracy case (“perfect solution”), where
the steady state is calculated with splines which use 100 points in every direction. In
Table 7 we report the absolute value of the relative difference between this “perfect
solution” and the other solutions (in per thousand of the “perfect solution” value)
in aggregate capital, aggregate labor supply and household’s ex-ante utility at age 1,
respectively.

As we would expect, linear interpolation even with re-scaling provides a much
lower accuracy than spline interpolation. Furthermore, the fast spline interpolation

Table 7 An OLG simulation model

Linear Splines

n Time � K � L � U Time � K � L � U

20 28 6.748 1.063 1.204 43 2.970 0.207 0.091

40 111 0.894 0.233 0.283 128 0.490 0.000 0.009

80 458 0.577 0.078 0.155 703 0.000 0.000 0.009

100 721 0.570 0.068 0.128 1117 0.000 0.000 0.000
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algorithm is not that much slower than a linear interpolation approach, especially if
we consider the high accuracy of the fast spline interpolation method with re-scaling.

5 Conclusion

The present paper presents an algorithm to cubic spline interpolation as an alternative
to linear interpolation and the standard B-spline approach. As well as the B-spline
method, the algorithm is based on choosing a suitable base of the function space of
cubic splines. As it doesn’t require any linear equation solving method, the algorithm
given in Sects. 2 and 3 is easy to compute in any programming language. The imple-
mentation effort is manageable even without much previous knowledge on function
approximation. Having implemented one-dimensional interpolation, a generalization
to n dimensions is straightforward. In addition, with re-scaling, we can easily manage
the problem of low accuracy in steep parts of utility functions. However, the algo-
rithm provided is more restrictive than a linear interpolation or a standard B-spline
approach. It is based on the precondition that the nodes providing the interpolation
data are equally spaced or follow a strictly monotone, continuous one-to-one mapping
from [0, n] to the interpolation interval. Hence, it is not possible to interpolate any
data from arbitrarily chosen points. If one faces the problem to interpolate such data,
linear interpolation or B-splines would be a reasonable instrument. Nevertheless, if the
given precondition is satisfied, the algorithm presented in this paper gives a fast solu-
tion to cubic spline interpolation which can easily be applied in many approximation
problems in computational economics.
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