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Abstract. The option pricing ability of Robust Artificial Neural Networks optimized with the Huber
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1. Introduction

The scope of this work is to compare alternative feed-forward Artificial Neural
Network (ANN) configurations in respect to pricing the S&P 500 European call
options. Robust ANNs that use the Huber function are developed, and configurations
that are optimized based solely on the least squares norm are compared with robust1

configurations that are closer to the least absolute norm. The data for this research
come from the New York Stock Exchange (NYSE) for the S&P 500 equity index
and the Chicago Board of Options Exchange (CBOE) for call option contracts,
spanning a period from April 1998 to August 2001.

Black and Scholes introduced in 1973 their milestone (BS) formula which is
still a most prominent conventional Options Pricing Model (OPM). The options we
price are on the S&P 500 index, which is extremely liquid and is the closest to the
theoretical setting of the Black and Scholes model (Garcia and Gencay, 2000). Em-
pirical research in the last three decades has shown that the formula suffers from
systematic biases for various reasons (for details see Black and Scholes, 1975;
Rubinstein, 1985; Bates, 1991, 2003; Bakshi et al., 1997; Andersen et al., 2002;
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Cont and Fonseca, 2002). Despite this, BS is frequently used to price European
options2 mainly because alternative parametric models (e.g. stochastic volatility,
jump-diffusion, stochastic interest rates, etc.) have drastically failed to provide re-
sults truly consistent with the observed market data. Additionally, these models are
often too complex to implement and be used for real trading (see Bakshi et al.,
1997). On the other hand, artificial neural networks are promising alternatives to
the parametric OPMs; they do not necessarily rely on any financial theory and are
trained inductively using historical or implied input variables and option transac-
tions data. Their popularity is constantly increasing, and contemporary financial
econometric textbooks (e.g. Tsay, 2002) dedicate special sections or even whole
chapters to this topic.

It is well known that market participants change their option pricing attitudes
from time to time (i.e. Rubinstein, 1985), so a parametric model might fail to ad-
just to such rapidly changing market behavior. ANNs can potentially correct the
aforementioned BS bias (Hutchison et al., 1994; Lajbcygier et al., 1996; Garcia and
Gencay, 2000, Yao and Tan, 2000). Neural networks trained on the least squares
error criterion are highly influenced by outliers, especially in the presence of non-
Gaussian noise (Bishop, 1995). Options data are known to be heavily influenced at
least by noise due either to thin trading or to abnormal volume trading (Long and Of-
ficer, 1997; Ederington and Guan, 2005) and exhibit a strong time-varying element
(Dumas et al., 1995; Cont and Fonseca, 2002). Consecutively, robust estimation is
expected to improve out-of-sample pricing of options.

In previous empirical research on option pricing, ANNs have been optimized
based on the l2 (the least squares) norm. The l2 norm is a convenient way to train
ANNs, since ready to use statistical packages are widely available for this purpose.
Of course, the least squares optimization is highly susceptible to the influence
of large errors since some abnormal datapoints (or few outlier observations) can
deliver non-reliable networks. On the contrary, robust optimization methods that
exploit the l1 (the least absolute) norm are unaffected by large (or catastrophic)
errors but are doomed to fail when dealing with small variation errors (e.g. Bandler
et al., 1993; Devabhaktuni et al., 2001, for applications in the electrical engineering
field).

Here the Huber function (Huber, 1981) is used as the error penalty criterion
during the ANNs optimization process to immunize the adaptable weights in the
presence of data-point peculiarities. The Huber function utilizes the robustness
of l1 and the unbiasedness of l2 and has proved to be an efficient tool for robust
optimization problems for various tasks (Bandler et al., 1993; Jabr, 2004; Chang,
2005), albeit it does not constitute the mainstream. The training of ANNs with
the Huber technique has recently gained attention in electrical engineering (i.e.
Devabhaktuni et al., 2001; Xi et al., 1999), but to our knowledge has not gained
attention in options pricing, where it is possible to observe both small and large
errors for a variety of reasons (e.g. Bakshi et al., 1997). Our choice of the Huber
function is because it is widely referenced on robust estimation (Bishop, 1995), it
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provides a simple generalization of the least squares approach, it avoids the need
for any probabilistic assumptions, and it is not difficult to implement with neural
networks. Comparison with other estimators, like the MM estimators (Yohai, 1987),
the S estimators (Rousseeuw and Yohai, 1984), and the redescenting estimators
(Morgenthaler, 1990), is beyond the scope of this work, but can be part of future
research.

The standard ANN target functions are employed and are comprised by the
market value of the call option standardized with the strike price. Furthermore, the
hybrid ANN target function suggested by Watson and Gupta (1996) and used for
pricing options with ANNs in Lajbcygier et al. (1997) and Andreou et al. (2005)
are examined. In the hybrid models the target function is the residual between the
actual call market price and the parametric option price estimate standardized with
the strike price. It can capture the potential misspecification of the BS assump-
tions of geometric Brownian motion (see for example, Lim et al., 1997). Unlike
Hutchison et al. (1994), in the parametric as well as in the nonparametric models
both historical and implied volatility measures are used. To train the ANNs, the
modified Levenberg-Marquardt (LM) algorithm which is efficient in terms of time
capacity and accuracy (Hagan and Menhaj, 1994) is utilized. In contrast to many
previous studies, thorough cross-validation allows the use of a different network
configuration in different testing periods.

In the following, first the parametric BS model, and the standard and hybrid
ANN model configuration with the Huber function and with least squares (mean
square error to be precise) are reviewed. Then, the dataset, and the historical and
implied parameter estimates are discussed, and the parametric and ANN models are
defined according to the parameters used. Subsequently, the numerical results are
reviewed with respect to the out-of-sample pricing errors; the economic significance
of dynamic trading strategies both in the absence and in the presence of transaction
costs is also discussed. The final section concludes. It is demonstrated that with
the use of the Huber function, ANNs outperform their counterparts optimized with
least squares. The best (hybrid and standard) ANN models with the Huber function
are identified, and evidence is provided that, even in the presence of transaction
costs, profitable trading opportunities still exist.

2. Option Pricing Models: The Parametric BS and ANNs

2.1. THE BLACK AND SCHOLES OPTION PRICING MODEL

The Black Scholes formula for European call options modified for dividend-paying
underlying asset is:

cBS = Se−δT N (d1) − Xe−rT N (d2) , (1)
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with

d1 = ln(S/X ) + (r − δ)T + (σ
√

T )2/2

σ
√

T
, (1.a)

and

d2 = d1 − σ
√

T . (1.b)

In the above, cBS ≡ estimated premium for the European call option; S ≡ spot
price of the underlying asset; X ≡ exercise price of the option; r ≡ continuously
compounded riskless interest rate; δ ≡ continuous dividend yield paid by the un-
derlying asset; T ≡ time left until the option expiration; σ 2 ≡ yearly variance
rate of return for the underlying asset; N (.) ≡ the standard normal cumulative
distribution.

The standard deviation of continuous returns (σ ) is not observed and an appro-
priate forecast should be used. The literature has used both historical and implied
volatility forecasts. Contrary to the historical estimates, the implied volatility fore-
casts have desirable properties that make them attractive to practitioners: they are
forward looking and avoid the assumption that past volatility will be repeated. In this
study, similarly with Hutchison et al. (1994) and in addition to the other volatility
measures, the 60 days historical volatility which is a widely used historical volatility
benchmark is also employed.

If BS is a well-specified model, then all implied volatilities of the same under-
lying asset should be the same or at least some deterministic functions of time.
Unfortunately, this is far from being empirically true. For example, Rubinstein
(1985) has shown that the implied volatilities derived via BS as a function of the
moneyness ratio (S/X ) and time to expiration (T ) often exhibit a U shape, known
as the volatility smile. This is why BS is usually referred to as being a misspecified
model with an inherent source of bias (see also Latane and Jr., 1976; Bates, 1991;
Canica and Figlewski, 1993; Bakshi et al., 2000; Andersen et al., 2002). Under the
existence of this anomaly, any historical volatility measure is doomed to fail, while
measures (like the implied ones) that mitigate this bias could perform better.

2.2. NEURAL NETWORKS

A neural network is a collection of interconnected simple processing elements
structured in successive layers and can be depicted as a network of arcs/connections
and nodes/neurons. The network has the input layer, one or more hidden layers and
an output layer. Each interconnection corresponds to a numerical value named
weight, which is modified according to the faced problem via an optimization
algorithm. The particularity of ANNs relies on the fact that the neurons on each
layer operate collectively and in a parallel manner on all input data and that each
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Figure 1. A single hidden layer feedforward neural network.

neuron behaves as a summing vessel that works, under certain conditions, as a
non-linear mapping junction for the forward layer.

Figure 1 depicts an ANN architecture similar to the one applied for the purposes
of this study. This network has three layers: an input layer with N input variables,
a hidden layer with H neurons, and a single neuron output layer. Each neuron is
connected with all neurons in the previous and the forward layer. Each connection
is associated with a weight, wki , and a bias, wk0, in the hidden layer and a weight,
vk , and a bias, v0, in the output layer (k = 1, 2, . . . , H, i = 1, 2, . . . N ). In addition,
the outputs of the hidden layer (y(1)

1 , y(1)
2 . . . y(1)

H ) are the inputs for the output layer.
Inputs are set up in feature vectors, x̃q = [x1q, x2q . . . , xNq] for which there

is an associated and known target, tq, q ≡ 1, 2, . . . , P , where P is the number of
the available sample feature vectors for a particular training sample. According to
Figure 1, the operation carried out for computing the final estimated output, y, is
the following:

y = f0

[
v0 +

H∑
k=1

vk fH

(
wk0 +

N∑
i=1

wki xi

)]
, (2)

where f0 and fH are the transfer functions associated with the output and hidden
layers respectively.

For the purpose of this study, the hidden layer always uses the hyperbolic tangent
sigmoid transfer function, while the output layer uses a linear transfer function.
In addition, ANN architectures with only one hidden layer are considered since
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research has shown that this is adequate in order to approximate most functions
arbitrarily well. This is based on the universal approximation theorem provided by
Cybenko (1989) (for further details see also Haykin, 1999):

Let fH (.) be a non-constant, bounded and monotone-increasing continuous
function. Let lN denote the N-dimensional unit hypercube [0, 1]N . The space of
continuous functions on lN is denoted by C(lN ). Then, given any function g ∈ C(lN )
and ε > 0, there exist an integer number H and sets of real constants,

wk0, wki , vk, k = 1, 2, . . . , H, i = 1, 2, . . . , N

such that we may define, y(x) = ∑H
k=1 vk fH (wk0 +∑N

i=1 wki xi ) as an approximate
realization of the function g(.); that is, |y(x) − g(x)| < ε for all vectors x that lie
in the input space.

Training ANNs is a non-linear optimization process in which the network’s
weights are modified according to an error function. For the case that the ANN
model has only one output neuron, the error function between the estimated response
yq and the actual response tq is defined as:

eq(w) = yq(w) − tq , (3)

where, w is an n-dimensional column vector containing the weights and biases
given by: w = [w10 . . . , wH0, w11, . . . , wH N , v0, . . . , vH ]T . The Huber function
that is used to optimize the trainable parameters w is defined as (i.e. Huber, 1981;
Bandler et al., 1993):

E(w) =
p∑

q=1

ρk(eq(w)), (4)

where ρk is the Huber function defined as:

ρk(e) =
{

0.5e2 if |e| ≤ k
k|e| − 0.5k2 if |e| > k

, (5)

where k is a positive constant. It is obvious that when |e| > k the Huber function
treats the error in the l1 sense and in the l2 sense only if |e| ≤ k depending on the
value of threshold parameter k. Figure 2 depicts the Huber function along with the
least absolute (l1) and least squares (l2) error functions. The Huber function has a
smooth transition between the two norms at |e| = k, so that the first derivative of
ρk is continuous everywhere.

The choice of k defines the threshold between large and small errors. Different
values of k determine the proportion of the errors to be treated in the l1 or the l2

norm. As seen, when k is sufficiently large the Huber function encompasses the
widely used and conventional least squares (l2) training of the ANNs. As the k
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Figure 2. The Huber, the least absolute (l1) and the least squares (l2) error functions.

parameter approaches zero, the Huber function approaches the l1 function and the
errors are penalized in the least absolute sense. Figure 2 makes obvious that the
Huber function should be more robust to abnormal data since it penalizes them less
compared to the l2 norm.

The nice properties of the Huber function compared to the l2 norm are more
distinct when they are compared according to their gradient vector. The gradient
vector of the least squares error function is:

∇El2 (w) =
P∑

q=1

eq∇eq(w), (6)

whilst the gradient for the Huber function is:

∇E(w) =
P∑

q=1

ζq∇eq(w), (7)

where,

ζq = ∂ρk(eq)

∂eq
=

⎧⎨⎩
eq if |eq | ≤ k
−k if eq < k
+k if eq > k

. (8)
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The P × n Jacobian matrix, J (w), of the P-dimensional output error column
vector is given by:

J (w) =

⎡⎢⎣∇eT
1 (w)
...

∇eT
P (w)

⎤⎥⎦ . (9)

Using this notation, (7) can be written in the form:

∇E(w) = J (w)T ζ (w), (10)

where ζ is a P-dimensional column vector with elements the ζq values.
The quantity ∇eq(w) is the gradient vector of eq(w) with respect to the trainable

parameter vector w. The difference between (6) and (7) depends on the weighting
factor of the ∇eq(w). The weighting factor of ∇eq(w) for the Huber gradient is
the same with the least squares gradient only when |eq | ≤ k. In all other cases the
weighing factor for the Huber gradient is held constant at the value of the threshold
k unlike in the l2 case that gives more weight to large errors. This is how the Huber
function immunizes against the influence of large errors.

Moreover, the Hessian matrix in the case of the Huber function is given by:

∇2 E(w) =
P∑

q=1

dq∇eq(w)∇eq(w)T +
P∑

q=1

ζq∇2eq(w), (11)

where

dq = ∂2ρk(eq)

∂e2
q

=
{

1 if |eq | ≤ k
0 if |eq | > k

. (12)

The quantity ∇eq(w) is computed based on the back-propagation algorithm
that is commonly used in the context of feed-forward ANNs. Based on the neural
network depicted in Figure 1, the partial derivative of the error function (3) with
respect to the weight vk at the hidden layer is:

∂eq

∂vk
= y(1)

κ f ′
0(ψ), (13)

where f ′
0(ψ) is the differential of the output neuron transfer function at point ψ .

Since a linear transfer function is used at the output neuron, the f ′
0(ψ) is equal to

unity. Furthermore, the partial derivative of the error function (3) with respect to
the weight wki at the input layer is:

∂eq

∂wki
= xi f ′

H

(
ψ (1)

κ

)
vk f ′

0(ψ), (14)
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where f ′
H (ψ (1)

κ ) is the differential of the transfer function associated with the kth
hidden neuron at point ψ (1)

κ . For our case, we always use the hyperbolic tangent as
a transfer function:

fH (a) = 2

1 + e−2a
− 1 ≡ tanh(a). (15)

The differential of this function with respect to a can be expressed in a particu-
larly simple form:

f ′
H (a) = 1 − ( fH (a))2. (16)

To optimize the weights, the modified Levenberg-Marquardt (LM) algorithm is
employed. According to LM, the weights and the biases of the network are updated
in order to minimize E(w). At each iteration τ of the LM, the weights vector w is
updated as follows:

wτ + 1 = wτ − [Gτ + μτ I ]−1 J (wτ )T ζ (wτ ), (17)

where G is an approximation of the n × n Hessian matrix defined as:

G =
P∑

q=1

dq∇eq(w)∇eq(w)T, (18)

and dq is defined in (12). The matrix G is obtained from the Hessian matrix by
deleting its second term which is usually considered small. Moreover, I is an n × n
identity matrix, J (wτ ) is the Jacobian matrix at the τ th iteration, and μτ is like
a learning parameter that is automatically adjusted in each iteration in order to
secure convergence. Large values of μτ lead to directions that approach the steepest
descent, while small values lead to directions that approach the Gauss-Newton
algorithm. Further technical details about the implementation of LM can be found
in Hagan and Menhaj (1994) and Hagan et al. (1996). Based on (17), weights and
biases update takes place in a batch mode manner where update occurs only when
all input vectors have been presented to the network.

In addition to the standard ANNs with t ≡ cmrk/X (call market values standard-
ized with their strike price), hybrid ANNs according to which the target function is
the residual between the actual call market price and the BS call option estimation
t ≡ cmrk/X − ĉ�/X (again standardized with the strike price) are also investigated,
where ĉ� should define a pricing estimate taken by the BS under a certain volatility
forecast (this is explained further in the following section). For effective training, the
input/output variables are scaled using the z-score transformation z̃ = (x̃ − μ)/s,
where x̃ is the vector of an input/output variable, μ is the mean and s the standard
deviation of this vector. Moreover, the network initialization technique proposed
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by Nguyen and Windrow (see Hagan et al., 1996) is utilized that generates initial
weights and bias values for a nonlinear transfer function so that the active regions
of the layer’s neurons are distributed roughly evenly over the input space.

For a given set of training data and for a given value of the Huber k value, the
optimal number of hidden neurons is chosen via a cross-validation procedure. ANN
structures with 2 to 10 hidden neurons are trained, and the one that performs the
best in the validation period is selected. Since the initial network weights affect the
final network performance, for a specific number of hidden neurons and Huber k
value, the network is initialized, trained and validated five separate times. Huber
(1981) gives a formula for deriving the optimal k value, but this formula was not
derived with applications of neural networks in mind. Most importantly, restrictive
probabilistic assumptions (of symmetrically contaminated Gaussian distributions)
are made. In addition, (as pointed out also in Koenker, 1982, p. 232), we need
to know the degree of contamination (i.e., the percent of abnormal observations).
With neural networks we neither make any probabilistic assumptions, nor we know
a priori the degree of contamination. Thus, we follow an empirical approach. The
optimal k value is shown from the data after investigating a wide range of potential
values. Different networks are developed for the following Huber k-values: 0.1,
0.2, 0.30, 0.40, 0.5, 0.60, 0.70, 0.80, 0.90, 1, 1.5, 2 and Inf (that corresponds to the
optimization of the ANNs based on the l2 norm). After defining the optimal ANN
structure, its weights are frozen and its pricing capability is tested (out of sample)
in a third separate testing dataset in order to verify the ANNs ability to generalize
to unseen data.

3. Data, Parameter Estimates (Historical and Implied), and Model
Implementation

The dataset covers the period from April 1998 to August 2001. The S&P 500 Index
call options are considered because the CBOE option market is extremely liquid
and these index options among the most popular. This market is the closest to
the theoretical setting of the parametric models (Garcia and Gencay, 2000). Our
prices are closing quotes. The majority (around 75%) of our call options lies in the
+/−15% moneyness area. As suggested by Day and Lewis (1988), because trading
volume tends to concentrate in the options that are around at-the-money and just in-
the-money, any lack of synchronization between closing index level and the closing
option price will be minimized for these options (pg. 107). Of course, it is not the first
time that non intra-day option and index prices are used in analysis (see for example,
Day and Lewis, 1988; Hutchison et al., 1994; Ackert and Tian, 2001; Ederington
and Guan, 2005). Specifically, Ackert and Tian (2001) argue that closing prices,
which are non-synchronous, constitute the best alternative solution to examine the
options arbitrage violations for the S&P index. Kamara and Miller (1995) compare
intraday and closing option pricing results for market efficiency tests and argue that
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closing option prices are appropriate for analysis because they are representative
of the transaction prices that prevailed during the day. This suggests that it is
not unreasonable to use closing data in empirical options research. In our case,
the Huber function is helpful in treating the options data according to the noise
level.

Along with the index, a daily dividend yield, δ, is collected (provided online by
Datastream). After applying various filtering rules, the dataset consists of 64,627
data points, with an approximate average of 35,000 data points per sub-period.
Hutchison et al. (1994) have an average of 6,246 data points per sub-period.
Lajbcygier et al. (1996) include in total 3,308 data points, Yao et al. (2000) in-
clude in total 17,790 data points, and Schittenkopf and Dorffner (2001) include
33,633 data points.

3.1. OBSERVED AND HISTORICALLY ESTIMATED PARAMETERS

The moneyness ratio, S/X , is the basic input used with ANNs since it is highly
related with the pricing bias associated with the BS. The moneyness ratio S/X is
calculated and used with ANNs like in Hutchison et al. (1994) (see also Garcia
and Gencay, 2000). The dividend adjusted moneyness ratio (Se−δT )/X is preferred
here since dividends are relevant. In addition, the time to maturity (T ) is computed
assuming 252 days in a year.

Previous studies have used 90-day T-bill rates as approximation of the interest
rate. In, this study we use nonlinear cubic spline interpolation for matching each
option contract with a continuous interest rate, r, that corresponds to the option’s
maturity. For this purpose, the 3-month, 6-month and one-year T-bill rates collected
from the U.S. Federal Reserve Bank Statistical Releases are used.

Moreover, the 60-days volatility is a widely used historical estimate (see
Hutchison et al., 1994; Lajbcygier et al., 1997). This estimate is calculated us-
ing all the past 60 log-relative index returns and is symbolized as σ60. In addition,
the VIX Volatility Index is an estimate that can be directly observed from the CBOE.
It was developed by CBOE in 1993 and is a measure of the volatility of the S&P
100 Index and is frequently used to approximate the volatility of the S&P 500 as
well. In our dataset the 30-day returns of the two indexes were strongly correlated
(with Pearson correlation coefficient between 0.94 and 0.99). VIX is calculated
as a weighted average of S&P 100 option with an average time to maturity of 30
days and emphasis on at-the-money options. This volatility measure is symbolized
as σvi x .

3.2. IMPLIED PARAMETERS

The Whaley’s (1982) simultaneous equation procedure is adopted to minimize a
price deviation function with respect to the unobserved parameters. For a given day
the optimal implied parameter values correspond to the solution of an unconstrained
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optimization problem that minimizes the sum of squares residuals between the
actual call option market values and the BS estimates. The optimization is done via a
non-linear least squares optimization based on the Levenberg-Marquardt algorithm.
His approach is an alternative to using the methodology proposed by Chiras and
Manaster (1978) (CM), or Latane and Rendleman (1976) (LR). His reasoning is
that: “rather than explicitly weighting the implied standard deviations of a particular
stock where the weights are assigned in an ad-hoc fashion, the call prices are
allowed to provide an implicit weighting scheme that yields an estimate of standard
deviation which has little prediction error as is possible” (pg. 39). Bates (1996b)
remarks that the Whaley’s (1982) least squares weighting scheme effectively assigns
heavier weights on the near the money options than CM and LR. His approach is
widely applied even in more recent research; for instance Bakshi et al. (1997).
Nevertheless, we tried these two weighting schemes (the CM and the modified
LR as recommended by CM), and at least in our dataset the results are inferior to
those of the overall average approach (or its per-maturity variant). The per-maturity
versions worked even better since they can capture time-varying volatility effects
(Bakshi, 1997; Bates, 2003).

Similarly to Bakshi et al. (1997), two different implied volatility measures are
taken from the above procedure. The first optimization is performed by including
all available options transaction data in a day to obtain daily average implied
parameters (σav). Second, daily average per maturity parameters (σavT ) can be
obtained by fitting the BS to all options that share the same maturity date as long
as four different available call options exist.

For pricing and trading reasons at time instant t, the implied structural parameters
derived at day t − 1 are used together with all other needed information (S, T, δ, X
and r). The same reasoning holds for the historical (σ60) and the weighted implied
average (σvi x ) estimates.

It is known that ANN input variables should be presented in a way that max-
imizes their information content (Garcia and Gencay, 2000). When options are
priced, the parametric OPM formulas adjust those values to represent the appro-
priate value that corresponds to an option’s expiration period. According to this
rationale, for use with the ANNs, the volatility measures are transformed by mul-
tiplying each of the yearly volatility forecast with the square root of each option’s
maturity (σ̃ j = σ j

√
T252, where j = {60, vi x, av, avT }). They are named maturity

(or expiration) adjusted volatilities. Also, and following the advice by a referee, we
have constructed tables (not included for brevity) for all nine sub-periods (in several
moneyness and maturity ranges) in order to compare between the volatilities of the
training and the volatilities of the testing sub-periods. If these estimates differ con-
siderably, this may imply saturation of the neural network with poor performance
as a consequence. On average, we have observed no volatility jumps. Furthermore,
the superior out-of-sample performance of the neural networks (see Section 4) is
additional evidence that the saturation problem mentioned by the referee does not
seem to be present.
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3.3. OUTPUT VARIABLES, FILTERING AND PROCESSING

For training ANNs, the call standardized by the striking price, cmrk
q /Xq , is used as

one target function to be approximated. In addition, the hybrid structure is imple-
mented, where the target function represents the pricing error between the option’s
market price and the parametric models estimate, cmrk/X − ĉ�/X , where � is
one of BS60, BSvi x , BSav, and BSavT . In both cases, target residuals are standard-
ized using the mean-variance scaling; hence the output neuron transfer function is
linear.

Before filtering, more than 90,000 observations were included for the period
April 1998 – August 2001. The final dataset consists of 64,627 datapoints. The
filtering rules adopted are: (i) eliminate an observation if the call contract price
is greater than the underlying asset value; (ii) exclude an observation if the call
moneyness ratio is larger than unity and the call price is less than its dividend
adjusted lower bound; (iii) eliminate all the options observations with time to
maturity less than 6 trading days (adopted to avoid extreme option prices that
are observed due to potential illiquidity problems); (iv) price quotes lower than
0.5 index points are not included; (v) maturities with less than four call option
observations are also eliminated; (vi) in addition, to remove impact from thin
trading observations are eliminated according to the rule: eliminate an observation
if the call option price at day t is the same as with day t−1 and if the open interest
for these days stays unchanged and if the underlying asset has changed. We filter
data when we believe that they are “bad data” (filtering rules i, ii, iv, vi), or that
they come from a different “data generating process” (filtering rule iii, following
Bakshi et al., 1997). Filtering rule v was perceived as necessary in order to get an
average volatility per maturity (Bakshi et al., 1997, recommend no less than two
observations).

3.4. VALIDATION AND TESTING, AND PRICING PERFORMANCE MEASURES

The available data are partitioned into training, validation and testing datasets us-
ing a chronological splitting, and via a rolling-forward procedure. Our dataset is
divided into nine overlapping sub-periods in chronological order. Each sub-period
is divided into a training (Tr), a validation (Vd) and a testing (Ts) set, again in
chronological sequence. In each sub-period the training, validation and testing sets
are non-overlapping. The nine testing sets are non-overlapping and they cover com-
pletely the last 20 months of the dataset.

There are M available call option contracts, for each of which there exist �m
observations taken in consecutive time instances t, resulting in a total of P(P =∑M

m=1 �m) available call option datapoints (P is the total number of call option
transactions that cover the whole period and is equal to 64,627). To determine the
pricing accuracy of each model’s estimates, ĉ, the Root Mean Square Error (RMSE)



342 P. C. ANDREOU ET AL.

and the Mean Absolute Error (MAE) are examined:

RMSE =
√√√√1/p

p∑
q=1

(
cmrk

q − ĉq
)2

, (19)

MAE = 1/p
p∑

q=1

∣∣cmrk
1 − ĉq

∣∣, (20)

where p ≤ P indicates the number of observations used per case. These error
measures are computed for an aggregate testing period (AggTs) with 35,734 (so p
is equal to 35,734) datapoints by simply pooling together the pricing estimates of
all nine testing periods. For AggTs, the Median Absolute Error (MdAE) as well as
the 5th (5th APE) and 95th (95th APE) percentile Absolute Pricing Error values
derived from the whole pricing error distribution are also computed and tabulated.
Since ANNs are not optimized solely based on the mean square error and there are
cases that the ANNs are optimized with the Huber function, it is wise to take into
consideration various error measures.

3.5. THE PARAMETRIC AND NONPARAMETRIC MODELS USED

With the BS models input includes S, X, T, δ, r , and any of the four different volatil-
ity measures: σ60, σvi x , σav, and σavT ; the four different models are symbolized as:
BS60, BSvi x , BSav, and BSavT .

To train ANNs inputs of the parametric BS model are also used. These include
the three standard input variables/parameters: (Se−δT )/X, T and r. The various
versions of the ANNs also depend on the BS volatility estimate considered, the
kind of the target function, and the k value of the Huber function.

As mentioned before, ANNs are trained based on twelve different values of the
Huber function (k ∈ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2]). Addition-
ally, ANN structures trained with the use of the mean square error (l2 norm) which
is equivalent to the case where the Huber k value is set to a very large value that
approaches infinity (k = Inf) are included.

Specifically, for each of the four different BS volatility measures, there are thir-
teen ANN models that are trained to map the standard target function cmrk/X (fifty-
two models). Furthermore, each of the previous ANN structures is rebuilt based on
the hybrid target function, cmrk/X − ĉ�/X where � is one of BS60, BSvi x , BSav,
and BSavT . In total, there are 104 different ANN versions.

The standard ANNs are denoted by Ns, and the hybrid versions by Nh. To
distinguish between various Huber function versions, the corresponding value of
the k parameter is used in the superscript and the BS volatility reference is used in the
subscript. For instance, NsI n f

avT (NhI n f
avT ) is the ANN model that uses as fourth input

the (maturity adjusted) volatility, σ̃avT , maps the standard (hybrid) target function
and is trained based on the mean square error.
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Table I. RMSE is the Root Mean Square Error, MAE the Mean Absolute Error,
MdAE the Median Absolute Error, 5th APE is the fifth percentile Absolute
Pricing Error and 95th APE the 95th percentile Absolute Pricing Error. The right
hand side subscripts refer to the kind of historical/implied parameters used. For
the neural networks, the information provided is first under optimal k-value in
each sub-period, and then under least squares estimation.

Parametric models

BS60 BSνi x BSaν BSaνT

RMSE 10.360 12.302 8.266 7.952

MAE 6.620 8.631 4.989 4.646

MdAE 4.458 6.386 3.630 3.274

5th APE 0.302 0.482 0.323 0.256

95th APE 19.448 23.732 12.399 11.672

Standard neural networks (optimal k, Inf)

Ns60 Nsνi x Nsaν NsaνT

RMSE 10.52, 15.38 10.08, 12.70 11.25, 11.92 10.76, 12.07

MAE 5.73, 9.51 4.67, 6.44 5.18, 6.62 5.42, 5.90

MdAE 4.06, 6.58 2.99, 3.98 3.35, 4.28 3.40, 3.53
5th APE 0.44, 0.50 0.30, 0.41 0.34, 0.44 0.33, 0.36

95th APE 14.90, 26.54 12.71, 18.92 13.29, 20.20 15.10, 17.39

Hybrid neural networks (optimal k, Inf)

Nh60 Nhvi x Nhaν NhaνT

RMSE 8.16, 8.58 7.88, 7.79 7.21, 7.73 6.83, 7.15

MAE 5.05, 5.59 3.95, 4.60 4.13, 4.52 3.56, 4.02

MdAE 3.54, 4.02 2.50, 3.07 2.87, 3.03 2.38, 2.58

5th APE 0.29, 0.30 0.22, 0.29 0.24, 0.26 0.20, 0.20

95th APE 13.84, 15.21 10.32, 13.40 10.91, 12.65 9.13, 11.37

4. Pricing Results and Discussion

Table I exhibits the out-of sample pricing performance of BS and ANN models
with alternative volatility measures. As mentioned before, the various models are
compared in terms of RMSE, MAE, MdAE and the 5th and 95th Absolute Pricing
Errors. All statistics are reported for the AggTs (aggregate) period; for the neural
networks the aggregate results are created by selecting the optimal Huber k-value
in the RMSE measure for each sub-period, aggregating, and then comparing with
least squares (inf ) estimation.

It is obvious that the implied volatility measures lead to lower pricing errors in
the case of BS. Looking at the parametric models and similarly to Bakshi et al.
(1997), the overall best BS model is the one that utilizes the implied average per
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maturity volatility, BSavT , followed by BSav that utilizes the overall average. The
BSavT model outperforms significantly all others in all error measures. Specifically,
BSavT has RMSE equal to 7.952, MAE equal to 4.646 and MdAE equal to 3.274. In
addition, this model has a higher chance for small pricing errors and considerably
smaller chance for large pricing errors compared to the other models (see the 5th
and 95th APE statistics).

In comparing the parametric models with the standard (non-hybrid) ANNs that
were trained based on the mean square error criterion, it is true that in general,
the standard ANN models underperform the equivalent parametric ones (see also
Lajbcygier et al., 1996). But Huber standard ANN models perform better than the
equivalent least squares ones. The significance of the improvement provided by the
Huber approach is obvious from the APE error measures. In some cases (Nsvi x )
the improvement provides a model better than the equivalent parametric one.

Before considering the impact of the Huber approach, it is evident that the hy-
brid least squares ANNs’ outperform significantly both the respective parametric
ones, and the standard ANNs, in all measures considered in practically all cases.
Similarly to the parametric OPMs, the out of sample pricing accuracy of ANNs
seems to be highly dependent on the implied parameters used; that is, as we move
from NhInf

60 to NhInf
avT the pricing accuracy improves significantly. The hybrid least

squares ANNs even with historical or weighted average input parameters are con-
siderably better than the equivalent parametric alternatives. Furthermore, it can
be observed that NhI n f

avT outperforms all other parametric and least squares ANN
models.

The Huber optimized hybrid ANN models outperform significantly all equiv-
alent standard ANNs (Huber and least squares) in all error measures considered.
The Huber optimized hybrid ANN models outperform significantly all equivalent
least squares hybrid ANNs, in all measures considered in practically all cases. The
only exception is when vix volatility is used and in a small difference among the
RMSE measures; in all other measures, this model with the Huber approach proved
to be superior to the least squares one. Again, the Huber optimized hybrid ANN
model with avT volatility is the overall best, with RMSE equal to 6.83, MAE equal
to 3.56, MdAE equal to 2.38, and 5th APE equal to 0.20. We should feel confident
in selecting this model, since its 95th APE is equal to 9.13, compared to 11.37 of
the equivalent least squares ANN.

Since in each testing sub-period we used the optimal Huber k-value determined
from the validation set, Table II demonstrates a clustering summary for standard
and hybrid ANNs, in the RMSE and the MAE error measure. It shows the range
that includes the majority of observed optimal k values (six out of the nine). For the
standard ANNs we have a strong clustering around 0.1 and 0.2, and for the hybrid
ANNs values around 0.3 and 0.6 are the most likely ones.

Tables III (for the standard ANN) and IV (for the hybrid ANN) present infor-
mation about the percent of observations treated as outliers by the use of the Huber
function (using the RMSE as the error measure). Each cell is for a maturity and
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Table II. Range of observed optimal k values (it includes at least the 66.66% of observed
optimal k values for the 9 testing sub-periods, after the 3 out of the 9 were removed).
The first range is for the RMSE and the second for the MAE error measures.

σ60 σvi x σav σavT

ANN RMSE 0.1–0.3, 0.1–0.1, 0.1–0.2, 0.1–0.2,

MAE 0.1–0.3 0.1–0.1 0.1–0.2 0.1–0.2

Hybrid RMSE 0.2–0.4, 0.1–0.5, 0.1–0.8, 0.5–0.9,

MAE 0.2–0.5 0.1–0.3 0.1–0.7 0.2–0.6

degree of moneyness classification, and gives the percent of observations treated as
outliers. For the standard neural networks we observe outliers heavily concentrated
in the in-the-money observations of short and medium maturity options. There is
also evidence of outliers present in at-the-money long maturity options. Drawing on
Long and Officer (1997) the long-maturity at-the-money outliers instead, may be
attributed to microstructure effects. As Long and Officer show, excessive demand
for certain options may also induce the presence of outliers. For the hybrid neural
networks we observe that the Huber technique is even more important since outliers
are heavily concentrated not only in in-the-money but also in out-of-the-money ob-
servations; furthermore, other cells also often show significant evidence of outliers.
The wide range of outliers in the hybrid model is a hint that the misspecification of
the BS model is in general rather significant in all ranges of moneyness and matu-
rity. Heavily out-of-money outliers may also be due to thin (non-synchronous)
trading effects (Day and Lewis, 1988). For the hybrid model, the choice of
volatility used with BS seems to be more important than for the standard neural
network.

In the spirit of Black and Scholes (1972), Galai (1977), and Whaley (1982), the
economic significance of the OPMs has also been investigated by implementing
trading strategies. Trading strategies are implemented based on single instrument
hedging as for example in Bakshi et al. (1997), and in addition, transaction costs
and cost-effective heuristics are incorporated (see Andreou et al., 2005). Portfo-
lios are created by buying (selling) options undervalued (overvalued) relative to
a model’s prediction and taking a delta hedging position in the underlying asset.
This (single-instrument) delta hedging follows the no-arbitrage strategy of Black
and Scholes (1973), where a portfolio including a short (long) position in a call is
hedged via a long (short) position in the underlying asset, and the hedged portfolio
rebalancing takes place in discrete time intervals. Rebalancing is done in an optimal
manner, not necessarily daily; the position is held as long as the call is underval-
ued (overvalued) without necessarily daily rebalancing. Proportional transaction
costs of 0.2% are also paid for both positions (in the call option and in the “in-
dex shares”). Strategies with enhanced cost-effectiveness are also implemented by
ignoring trades that involve call options whose absolute percentage mispricing error
is less than a mispricing margin of 15%. Even with transaction costs, there still exist
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opportunities for profitable trading. Again, the hybrid neural networks outperform
all other models, and when estimated via the Huber approach they outperform the
ones estimated via least squares.

5. Conclusions

The option pricing ability of Robust ANNs optimized with the Huber function
is compared with that of ANNs optimized with Least Squares. Comparison is in
respect to pricing European call options on the S&P 500 Index from April 1998
to August 2001. In the analysis, a historical parameter, a VIX volatility proxy
derived by a weighted implied, and implied parameters (an overall average, and
an average per maturity) are used. Simple ANNs (with input supplemented by
historical or implied parameters), and hybrid ANNs that in addition use pricing
information directly derived by the parametric model are considered. The economic
significance of the models is investigated through trading strategies with transaction
costs. Instead of naïve trading strategies, improved (dynamic and cost-effective)
ones are implemented. The use of the robust Huber technique has delivered better
ANN structures. The results can be synopsized as follows:

Regarding out-of-sample pricing, the hybrid models outperform both the stan-
dard ANNs and the parametric ones. Huber optimization improves significantly
the performance of both the standard and the hybrid ANNs. The non-hybrid ANNs
are affected more by large errors, and thus require smaller Huber k-value. The
overall best models were the Huber based hybrid ANNs. In general, within each
class, the best performing Huber model has considerably smaller probability of
large mispricing compared to the least squares counterpart. Lye and Martin (1993)
identify the importance of the generalized exponential distributions for the error
function, in the presence of skewed fat-tailed error distribution. Future work could
consider option pricing with robust ANNs that explicitly account for such error dis-
tributions. Regarding the economic significance of the models, the Huber models
are the overall best models. We have also found that profitable opportunities still
exist with single-instrument cost-effective trading strategies and 0.2% proportional
transaction costs.
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Notes

1Huber (1981) and Hampel et al. (1986) offer an overview for the tools and concepts of the theory
of robust statistics. As pointed out for example by Franses et al. (1999), parametric estimators that are
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derived under the assumption of normally distributed errors are very sensitive to outliers and other
departures from the normality assumption (see also Krishnakumar and Ronchetti, 1997; Ortelli and
Trojani, 2005). They show that the results obtained under a robust analysis can differ significantly
from the ones obtained under similar techniques that are based on the Gaussian analysis. Chang (2005)
has found that the use of the Huber estimation can significantly reduce the influence of outliers for
the estimation of block-angular linear regression model.

2According to Andersen et al. (2002), “the option pricing formula associated with the Black and
Scholes diffusion is routinely used to price European options”.
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