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Abstract. A heuristic algorithm for solving large scale fixed charge network flow problems (FCNFP)
based on the dynamic slope scaling procedure (DSSP) and tabu search strategies is presented. The
proposed heuristic integrates the DSSP with short-term memory intensification and long-term memory
diversification mechanisms in the tabu scheme to improve the performance of the pure DSSP. With
the feature of dynamically evolving memory, the enhanced DSSP evaluates the solutions in the
search history and iteratively adjusts the linear factors in the linear approximation of the FCNFP to
produce promising search neighborhoods for good quality solutions. The comprehensive numerical
experiments on various test problems ranging from sparse to dense network structures are reported.
The overall comparison of the pure DSSP, the enhanced DSSP, and branch and bound (B&B by
cutting-edge MIP optimizer in CPLEX) is shown in terms of solution quality and CPU time. The
results show that the enhanced DSSP approach has a higher solution quality than the pure DSSP for
larger scale problems.
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1. Introduction

The fixed charged network flow problem (FCNFP) is one of the practical branch
problems in the minimum cost network flow problems. Besides the variable cost
on each arc in the network, a fixed setup cost occurs when there is a flow on an arc.
The fixed setup costs are very common in real world applications, which include
handling fees, changeover times, charter rental and docking fees, etc. The central
decision “to go or not to go” can be modeled by imposing fixed charges on the arcs of
a network. FCNFP is known as NP-hard and usually formulated as a mixed-integer
programming (MIP) model. The solution time of MIP problems with exact solution
methods, typically the branch and bound method (B&B), increases exponentially
as the problem size increases. In real life, it is not practical for a firm to solve
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the large-scale FCNFP problems with the branch and bound techniques because
the search process may last several days. Hence, we are interested in developing
heuristics to achieve a reasonable trade-off between the proximity of the solution
and the computational time.

Exact solution approaches based on the B&B and cutting plane methods were
developed by Gray (1971), Steinberg (1970), Palekar et al. (1990), Hochbaum
(1989), Barr et al. (1981), Suhl (1985) and Cabot and Erenguc (1984). However,
the enumerative B&B method needs several hundreds of branching steps and cuts
even for a 4 by 4 problem. The exponentially increasing number of subproblems
that need to be solved in order to find the optimal solutions of FCNFP makes B&B
very unwieldy in large-scale FCNFP. Typically, tremendous computational time
is required to justify the optimality of the current solution. By contrast, heuristic
approaches have some merits on these aspects. Several heuristic approaches had
been proposed in the past three decades.

To date, quite a few of the heuristic approaches in the fixed charge problems
are based on Lagrangean relaxation and decomposition. These types of approaches
were presented by Geoffrion (1974), Magnanti et al. (1986), Gendron and Grainic
(1994) and Crainic and Frangioni (1994). Gendron and Grainic (1994) presented
a methodology that uses a series of Lagrangian relaxations in the design of the
multi-commodity capacitated fixed charge network problems.

The application of the tabu search (Glover and Laguna (1989, 1990, 1997) in the
Fixed Charge Transportation Problem (FCTP) and FCNFP was proposed by Sun
et al. (1998) and Crainic and Farvolden (2000). Sun et al. introduced an effective and
thorough tabu search algorithm in the uncapacitated FCTP with immediate memory
to find the local approximated optima, short-term memory to intensify the optimal
search, and long-term memory to diversify the search among the least visited arcs.
Glover (1994) proposed an approach called the ghost image process for the fixed
charge problem with the parametric deformation. It progressively improves the
solution by certain method (the tabu search was recommended in his paper).

Kim and Pardalos (1999) developed a new heuristic framework, called Dy-
namic Slope Scaling Procedure (DSSP), to solve the capacitated FCNFP problems.
DSSP parameterizes a nonlinear fixed charge factor into a linear factor associated
with each arc, and adjusts the linear factors iteratively to reflect the exact origi-
nal variable and the fixed cost in order to approximate the true objective function
value.

In this paper, we propose a heuristic that combines DSSP with the short-term and
long-term memory techniques from the tabu search, which we refer as the enhanced
DSSP hereafter. In addition to the computational experiment on DSSP by Kim and
Padarlos (1999), we have further examined the performance of DSSP on larger
scale FCNFP. The paper is organized as follows. Section 2 presents a mathematical
formulation of FCNFP. Section 3 includes a brief description of DSSP approach.
Section 4 includes a detailed design of the enhanced DSSP procedure, including the
description of the tabu strategies and overall mechanism for the enhanced DSSP. The
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description of generating test problems and the comparisons of the computational
results for DSSP, the enhanced DSSP and the branch and bound method are given
in Section 5.

2. Problem Description

Given a directed graph G = (N , A) consisting of a set N of n nodes and a set of A
of m arcs, let xi j denote the flow on the arc from node i to node j, ci j as the variable
cost and si j the fixed cost. Let ui j denote the capacity of arc (i, j), and bi the amount
to be sent from supply and received at demand node. “O” represents the source
node and “D” represents the demand node. The general problem is given as:

min f (x) =
∑

(i, j)∈A

fi j (xi j ) (1)

s.t
n∑

j=1

xi j −
n∑

k=1

xki =
⎧⎨⎩

bi if i = O
−bi if i = D

0 otherwise

⎫⎬⎭ for i = 1, 2, . . . , n(2)

xi j ≤ ui j for (i, j) ∈ A
xi j ≥ 0 for (i, j) ∈ A

(3)

where f is discontinuous at zero and separable such that for each arc (i, j), fi j has
a form:

fi j (xi j ) =
{

0 if xi j = 0
si j + ci j xi j , si j ≥ 0 if xi j > 0.

(4)

3. DSSP

The dynamic slope scaling procedure (DSSP) is developed by Kim and Pardalos
(1999). The computational merit of this approach is to approximate a solution for
FCNFP by solving successive LP problems with recursively updated coefficients
of the objective function. At each iteration, the linear factor is adjusted to reflect
both the current variable cost and the fixed cost, while the overall marginal cost
depends on the current level of each activity. Initially, when there is no flow through
the arcs, a non-linear cost of an arc is transformed into a linear factor given as:

c̄0
i j = ci j + si j/ui j for i, j = 1, 2, . . . , n . (5)
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The objective function of FCNFP is then approximated as a linearized problem:

min f (x) =
n∑

i=1

n∑
j=1

c̄i j xi j (6)

s.t
n∑

j=1

xi j −
n∑

k=1

xki =
⎧⎨⎩

bi if i = O
−bi if i = D
0 otherwise

⎫⎬⎭ for i = 1, 2, . . . , n

(7)

xi j ≤ ui j for (i, j) ∈ A
xi j ≥ 0 for (i, j) ∈ A.

(8)

Note that the constraints of the FCNFP are not changed in this linear approximation.
At each iteration, a new linear approximation is solved with adjusted linear factors.
The linear factor c̄i j in the next linear approximation is updated with xi j in the
current solution. If this xi j does not justify the fixed cost on arc (i, j), the LP
solving mechanism will either increase the value of xi j to justify the investment
or drop it to zero in the next iteration. This means that marginal fixed cost, si j/xi j
decreases as xi j increases, so that the value of linear factor (i.e. cost coefficient in
the linear approximation) will decrease to keep xi j as an active variable. Kim and
Pardalos [13] proposed two updating schemes with different strategies in setting
c̄k

i j when xk−1
i j = 0. The updating schemes are given as follows:

c̄k
i j =

{
ci j + si j

/
xk−1

i j if xk−1
i j > 0

max1≤l≤k
{
c̄l

i j |xl−1
i j > 0

}
if xk−1

i j = 0
(9)

or

c̄k
i j =

{
ci j + si j

/
xk−1

i j if xk−1
i j > 0

c̄r
i j if xk−1

i j = 0
(10)

where max1≤l≤k{c̄l
i j | xl−1

i j > 0} is the maximum linear factor of the arc (i, j) in
the iteration history with non-zero flow in the previous iteration; c̄r

i j is the most
recent c̄i j in the iteration history for arc (i, j) with non-zero flow in the previous
iteration. DSSP continues until identical solutions are obtained in two consecutive
iterations. The numerical experiment of Kim and Pardalos (1999) has shown that
for the large-scale problems, the scheme (10) has a slightly better performance than
(9). Thus, we choose (10) as an updating scheme in the DSSP phase in the enhanced
DSSP.
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According to the computational experiment conducted by Kim and Pardalos
(1999), DSSP has quite satisfactory performance in solving the small and medium
size FCNFP problems, and finding exact solutions in most cases of the small size
problems. However, in the medium and large-scale problems, it is true that the
chance of achieving the true optima by DSSP becomes scarcer. In such cases,
DSSP stops at a local optimum which is still far away from the exact solution. In
order to improve the performance of DSSP, we propose a heuristic that combines
DSSP with the tabu scheme to force DSSP to continue the additional search when
DSSP fails to make any progress.

4. Enhanced DSSP with Tabu Search

In the proposed algorithm, the tabu search characterizes subsets of potential moves
and tabus, according to the past search records to either continue the search near
or divert the search from the already visited feasible region. The two classical
components of the tabu search, the intensification and diversification strategies, are
used in the enhanced DSSP. The frequency records the number of iterations an arc
appeared in the earlier solutions. Two types of frequency memory are used in the
algorithm: (1) frequency memory throughout the whole search process, which is
also referred to as the long-term memory; (2) frequency memory in one separate
DSSP phase, which is, along with the quality memory, also referred to as the
short-term memory. The recency-based memory keeps track of the arc being basic
or non-basic in the recent history of solutions. The arcs being active for certain
iterations of consecutive intensification and diversification processes are labeled
as tabu-active and will not be selected into the candidate list in the following
intensification and diversification processes. This prevents the solutions containing
tabu-active arcs from belonging to the modified neighborhood and hence from
being revisited.

In general, the enhanced DSSP with the tabu scheme consists of three phases: (1)
DSSP to solve the linear approximation of FCNFP problems, (2) the intensification
process based on the short-term memory (3) the diversification process based on the
long-term memory. The enhanced DSSP starts DSSP phase with the same initial
scheme shown in (5). Except that it records the performance data during DSSP
iterations, the first DSSP phase is very similar to the pure DSSP. The intensification
process then is invoked to apply the initial linearization scheme and lead a new
iteration of DSSP phase to further search the neighborhood in which the current best
solution occurred. After the intensification iterations repeated for a certain period of
time (the number of the intensification iterations will be discussed in Section 4.2),
the search process moves on to the diversification iteration to explore a never visited
region for better solutions. Since each diversification process generates a new search
region that has not been explored before, it is necessary for the intensification
iterations to further examine this region after diversification iteration, especially if
it has identified a solution that is better than the current best solution. Therefore,
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the whole search process can be interpreted as: DSSP phase is the actual search
executor, while the intensification and diversification processes define the strategic
directions that the search executor should follow.

4.1. TABU SEARCH STRATEGIES

We utilize the long-term and short-term memory in designing MOVE sets, tabu set,
aspiration set, rules of managing these sets and the initial solution schemes in the
intensification and diversification processes.

4.1.1. MOVE Sets
The MOVE sets are used to store the arcs that will be encouraged into the basis in the
following search process. After the first DSSP phase, a different initial linearization
scheme than (5) will impose incentives to the arcs in the MOVE sets to let these
arcs enter the basis in the next round of DSSP phase, which drive the following
DSSP to search a modified neighborhood. This may lead to a result that improves
the current best solution so far, which we refer as an “improved-best solution” in
the procedure. Hereafter, we call the arcs in the MOVE sets as the “trigger arcs”
because they play a critical role in distinguishing the new search neighborhood
from the previous one. We designed two MOVE sets α and β for the intensification
process and diversification process respectively.

The construction of MOVE set α in each intensification process is based on
the short-term memory of frequency, recency and quality. The frequency memory
records arcs frequently visited in DSSP phase immediately before the intensifi-
cation process. The quality memory records the specific neighborhood where the
improved-best solution is found. The recency memory prevents the same solution
from being revisited. Thus, the intensification process defines α in a way to lead the
search process to further explore the immediate neighborhoods near the improved-
best solution. The details of selection criteria and incentive applied to the trigger
arcs in the intensification process will be discussed in Section 4.2.

The construction of MOVE set β in each diversification process is based on
the recency memory and the long-term memory of frequency. More precisely, the
frequency memory here records those arcs that have never been visited throughout
the entire search history. By selecting and encouraging never visited arcs into the
basis in the following search process, the diversification process, in fact, directs the
search process into a not-yet-visited neighborhood. The recency memory records the
tabu status of the arcs. Note that after the diversification iteration, the intensification
process will be invoked again to direct another round of DSSP phase to either further
search the newly defined neighborhood if an improved-best solution is found in
the previous diversification iteration, or return to the neighborhood in which the
most recent improved-best solution was found. The details of selection criteria
and incentive to the trigger arcs in the diversification process will be discussed in
Section 4.3.
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4.1.2. Tabu Set
The tabu set τ stores the arcs that have been moved for a certain period of time,
denoted as tm max sh and tm max lm for intensification and diversification pro-
cesses, respectively. It may cause DSSP to return to the recently visited solution.
These arcs become tabu-active and are kept from being selected into α or β. Let tbi j
denote the period of time that arc (i, j) has been a tabu. When arc (i, j) sits in τ for a
certain period of time, denoted as tb max sh and tb max lm for intensification and
diversification processes, respectively, it is allowed to enter the MOVE sets again
for the succeeding intensification and diversification until it reaches tm max sh or
tm max lm to be forbidden again. Note that the tabu restriction is only applied to
the arcs selected into α or β based on the frequency memory. The arcs selected by
aspiration criterion are exempted from the tabu status examination.

4.1.3. Aspiration Criterion
The aspiration criterion is used in the intensification process to ensure the neigh-
borhoods around the improved-best solution, are thoroughly searched. When the
improved-best solution occurs in DSSP phase, the arcs with the most dramatic flow
change from the previous DSSP iteration (e.g. changing from non-basic to basic)
have the main contribution in finding the improved-best solution. These arcs are
then kept in the inspiration set ζ during DSSP phase and will be selected into α

regardless of their tabu status in the following intensification process. Note that the
linear factors associated with the improved-best solution are also recorded and will
be used in the initial linearization scheme in the following intensification process.
This will be discussed in greater detail in Section 4.2.

4.2. INTENSIFICATION PROCESS WITH SHORT-TERM MEMORY

The intensification process is to direct DSSP phase search more thoroughly in the
modified neighborhood in which an improved-best solution is found. The intensifi-
cation process selects appropriate candidates into the MOVE set α and then, differ-
entiates the initial linearization schemes for these trigger arcs and the other ones for
DSSP phase following immediately. The intensification only uses the performance
data collected from DSSP phase immediately before it. This immediate-before
DSSP phase keeps track of the number of times that the arc is active for all the arcs,
denoted as t xnonzero shi j and memorizes the arcs with drastic changes in the
improved-best solution from DSSP phase with the aspiration set, denoted as ζ , and
the linear factors associated with the most recent improved-best solution for the rest
arcs, denoted as c̄b

i j . The set ζ then forms a part of the MOVE set α. The rest of arcs
in α are stored in the short-term memory and not tabu-active. As a result, the intensi-
fication process selects the arc into α if it satisfies either of the following conditions:

{(i, j) | t xnonzero shi j ≥ k/2, (i, j) /∈ τ } or

{(i, j) | (i, j) ∈ ζ }
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where k is the number of iterations in the DSSP phase immediately before the
intensification. We consider the arcs with t xnonzero shi j ≥ k/2 are virtually
frequently visited arcs. This will be further explained in Section 5.2.

For the arcs, which do not belong to α, we set their linear factors to c̄b
i j , and for

the arcs in α, only variable costs are included in their linear factors, significantly less
than the linear factors subject to the fixed charges. The initial setting scheme of the
linear factors for a new round of DSSP phase immediately after the intensification
process is given as follows:

c̄0
i j

{
ci j if (i, j) ∈ α

c̄b
i j otherwise.

(11)

The recency memory, the frequency memory and the quality memory collabo-
ratively generate a modified neighborhood that is close to, but slightly different
than the one containing the current improved-best solution. This leads the follow-
ing DSSP phase to further search the good solution areas. The iteratively updated
intensification process upgrades neighborhoods that are close to the most recent
improved-best solution for DSSP phase in search for better solutions.

Since the process memorizes the arcs at the aspiration level in the inspiration
set ζ until a new improved-best solution is found, the search around the same
improved-best solution neighborhood may be continued in the intensification iter-
ations that filter through several diversification iterations if no new improved-best
solution is found during these diversification process. In this case, the search near
the same improved-best solution from the earlier intensification process is resumed
after the diversification. Even though the diversification process may have changed
the set of frequently visited arcs to be selected in the following intensification, the
number of these arcs only accounts for a very small portion of the total number of
arcs in the problem, therefore, with most linear factors still set to the same c̄b

i j , the
search process, in fact, returns to the improved-best solution neighborhood. As a
result, it seems sufficient to set the number of intensifications to 1 within a single di-
versification iteration. Moreover, according to our observation in the computational
experiment, the number of intensification iterations has no significant impact on the
performance of the enhanced DSSP. The selection of tb max sh and tm max sh
is empirical and will be discussed in Section 5.2.

4.3. DIVERSIFICATION PROCESS WITH LONG-TERM MEMORY

The diversification process is designed to lead the algorithm to divert the search
process into a new region that has not yet been explored. The diversification process
selects a certain number of unvisited arcs into MOVE set β of the diversification
and linearizes the initial linear factors to direct DSSP phase following the diver-
sification to explore a new unexplored neighborhood. Four main factors for an
effective diversification mechanism are the size of MOVE set β, denoted as divno,
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the selection criteria of trigger arcs, the initial linearization scheme for the following
DSSP phase, and the period of time an arc being a move or a tabu.

It is not surprising that there are many more arcs left unvisited than visited
in the pure DSSP or in a single DSSP phase in the enhanced DSSP. Obviously,
simply selecting all the inactive arcs into β will not produce a good direction for
the search process to continue searching for better solutions. Therefore, unlike the
construction of the MOVE set α in the intensification process, that selects all the
frequently visited arcs in the short-term memory as a part of α, the construction
of β depends on how many inactive arcs should be selected and under what extent
of inactiveness the arc can be selected into β. Therefore, the construction of β

becomes more empirical. However, too small size of MOVE set β will not produce
sufficient influence and will be dominated by the influence of the other arcs outside
of β, which results in the process still being trapped at a local optimum. On the
other hand, selecting a large β may include too many always-performing-bad arcs,
which will tremendously dilute the effectiveness of the good candidates and lead the
search process into unproductive neighborhoods. We will discuss different settings
of these two factors in Section 5.2.

In order to decide which arcs should be selected into β, we adopt the concept of
reduced cost. Let π denote the dual variables associated with constraints (2) and γ

with constraints (3), respectively (π, γ ≥ 0). The reduced cost associated with arc
(i, j) in the linear approximation of FCNFP is then given by:

rci j = c̄i j + �i j = c̄i j + πi − π j + γi j ∀(i, j) ∈ A. (12)

The reduced cost indicates how strongly the associated arc tends to be active. The
value of reduced cost is the amount, by which the coefficient of the associated
variable needs to be improved so that the associated variable can enter the basis in
the following LP iterations. In other words, the less the reduced cost is, the less cost
we need to pay to bring this arc into the basis. The less cost means a less negative
impact on the objective value. On the other hand, some other arcs in the changed
basis may bring profits to the objective value (i.e. decreasing the objective value
in minimization), which may offset and outstrip that negative impact caused by
trigger arcs and hence result in a better solution. Therefore, it seems reasonable to
choose the arcs with the least reduced cost into β.

While memorizing short-term performance information for the intensification
process, DSSP phase also memorizes performance information throughout the
whole search history, including the number of iterations the arc is active, denoted
as t xnonzero lmi j , the average reduced cost, denoted as avg rci j and the average
linear factors of each arc, denoted as avg c̄i j . Thus, the arcs that have never been
visited can be defined as:

η = {(i, j) | t xnonzero lmi j = 0}. (13)
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The diversification process selects from η divno number of arcs that are not tabu
active and with the least reduced cost into β, which is given as:

β = {
(i, j) | min(divno)(avg rci j , (i, j) ∈ η and (i, j) /∈ τ )

}
. (14)

Based on the reduced cost, the linear factors of the trigger arcs are then set to
the average linear factor throughout the preceding iterations, denoted as avg c̄i j ,
subtracted by the average reduced cost, while the linear factors of the rest arcs
are set to the average linear factor of the whole search history. Therefore, the
initial linearization scheme for a new round of DSSP phase immediately after the
diversification is given as follows:

c̄0
i j =

{
avg c̄i j − avg rci j if (i, j) ∈ β

avg c̄i j otherwise.
(15)

The computational results show that this incentive imposed on the arcs in β is quite
sufficient to make the most inactive arcs enter the basis in the following DSSP
phase. It seems that setting the maximum number of the diversification iterations
to 20 empirically is sufficient for all tested problems.

Taking into account the fact that there are many more non-basic variables than
basic variables in a basic feasible solution, we implement the tabu structure so
that the period of time the arcs are eligible to be selected into candidate list β

is usually several times longer than the period of time the arcs are forbidden in
the diversification process (i.e. tm max lm < tb max lm). Yet the selection of
tm max lm and tb max lm is empirical. We will discuss this in greater detail in
Section 5.2.

4.4. OVERALL PROCEDURES

Phase 1: Initialization
Let Z denote the best objective value obtained through the iterations to date,
which, in its turn, is the best solution the heuristic finds in the end, and let xi j
denote the variable value corresponding to Z. Let Z local denote the objec-
tive value of the current DSSP iteration and x locali j denote the variable value
corresponding to Z local. Let xprei j denote the variable value found in the
previous DSSP iteration. Initially set Z = ∞, xi j = 0 and t xnonzero lmi j =
0, tmi j = 0, tbi j = 0. Initiate FCNFP problem by transforming it into the linear
approximation as described in (5).

Step 1: Solve the linear approximation.
Step 2: Compute the actual objective value of FCNFP, Z local.
Step 3: If Z local < Z ,

i. Z = Z local; xi j = x locali j ;
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ii. If x locali j > 0 and x prei j = 0, include (i, j) into the inspiration set ζ ;
iii. Update the linear factors of the other arcs, c̄b

i j = c̄i j .

Step 4: Record the solution information:

i. If x locali j > 0, t xnonzero shi j = t xnonzero shi j + 1;
t xnonezero I mi j = t xnonzero lmi j + 1;

ii. Compute the average reduced costs, avg rci j.

Step 5: If the process reaches the maximum iterations of DSSP phase or there
are the same solutions in two consecutive iterations, go to Phase 2; otherwise,
update the linear factor in the objective function of the linear approximation
according to (10). Go to Step 2.

Phase 2: Intensification

Step 1: Set t xnonzero shi j = 0;
Step 2: Examine the tabu status of the arcs with t xnonzero shi j 	= 0:

i. If tbi j = tb max sh, remove arc (i, j) from tabu set τ ;
ii. If tmi j = tm max sh, add arc (i, j) into τ .

Step 3: Move the arcs in ζ into the intensification candidate set α;
Step 4: Examine the other arcs with t xnonzero shi j ≥ k/2;

If arc (i, j) /∈ τ. add arc (i, j) into α; tmi j = tmi j +1; otherwise, tbi j = tbi j +1.
Step 5: If the process reaches the maximum iterations of the intensification

function, go to Phase 3; otherwise, update the linear factor according to (11)
and go to Step1 of Phase 1.

Phase 3: Diversification

Step 1: Examine the tabu status of the arcs with t xnonzero lmi j 	= 0:

i. If tbi j = tb max lm, remove arc (i, j) from the tabu set τ ;
ii. If tmi j = tm max lm, add arc (i, j) into τ .

Step 2: Examine the arcs with t xnonzero lmi j = 0:

i. Find the arcs with the 1st through the (divno)-th least average reduced
cost, avg rci j among the set of {(i, j)|(i, j) /∈ τ };

ii. Move these arcs into the diversification set β. Set tmi j = tmi j + 1;
iii. For those arcs with the least avg rci j , that belong to the tabu set τ , set

tb i j = tbi j + 1.

Step 3: If the process completes the maximum iterations of diversification, stop;
otherwise update the linear factor according to (15) and go to step 1 of
Phase 1.
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5. Computational Experiment

The computational experiment was designed to test the performance of the enhanced
DSSP in solving FCNFP problems, compared to the pure DSSP and CPLEX B&B.
The enhanced DSSP, the pure DSSP and B&B method were implemented in C
with callable library of CPLEX 7.0. The experiment was performed on a SunBlade
UNIX machine with two 750 MHz 64-bit UltraSPARC-II processors and 1 GB of
memory. The FCNFP problems are generated randomly in line with the convention
of the difficult instances from the online OR test problem library.

5.1. TEST PROBLEMS

The test problems range from 50 nodes to 250 nodes with the density ranging from
0.1 to 0.5, i.e., the number of arcs ranging from 245 through 10973. The problems
were divided into three groups in terms of the network density and, in each group,
were further categorized into the types of problems with the different number of
nodes. For each problem type, 6 to 12 test problems were randomly generated and
solved. The design of the test problems is given in Table I. The column “Node”
indicates the number of nodes in each test problem type. Let n denote the number
of nodes and d denote the density of the test problem. The number of arcs in the
column “Arc” is given as the integer part of n × (n − 1) × d. The column “Tested
problems” shows the number of tested problems for each problem type. “Total in
group” indicates the total number of tested problems for each group.

Table I. Test problem category.

Tested
Group Node Density Arc problems Total in group

1 50 0.10 245 12 45

100 990 12

150 2235 9

180 3222 6

210 4398 6

2 50 0.25 613 12 39

100 2475 9

150 5588 6

180 8055 6

210 10973∗ 6

3 50 0.50 1225 9 15

100 4950 6

∗CPLEX B&B solved 6 problems out of 7 test problems. For the
problem, B&B failed to obtain the exact solution, it reported out of
memory after running 191455.24s (53.18 hours).
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5.2. PARAMETERS

The enhanced DSSP uses the following six parameters:

• the size of MOVE set α for intensification;
• the number of times of an arc being a tabu in intensification;
• the number of times of an arc being a move in intensification;
• the size of MOVE set β for diversification;
• the number of times of an arc being a tabu in diversification;
• the number of times of an arc being a move in diversification.

We conducted a preliminary experiment to obtain some insight into the pure
DSSP process in terms of active and non-active arcs. 5 to 10 problems were tested
for each problem type to find the average active and non-active arcs in the pure
DSSP. The preliminary experiment studies the solutions of the pure DSSP. It is
found that the problems with density of 0.1–0.15 have on average 80–97% of
arcs never visited in the pure DSSP, the problems with 0.15–0.25, 76–94%, and the
problems with 0.25–0.5, 65–84%. In addition, it is observed that there is a relatively
constant number of visited arcs regardless of individual problem instance in each
type of problems, if we use the condition t nonzerox shi j > k/2. These arcs can
be considered as the virtually frequently visited arcs in the initial DSSP and will
be selected into α. Let r be the number of arcs with t nonzerox shi j ≥ k/2 in
the DSSP phase immediately before the current intensification process, which do
not belong to the tabu set. Let s be the number of arcs in the aspiration set ζ .
Consequently, the size of α, denoted as intno = r + s.

Two sets of parameters were tested with tb max sh: tm max sh = 1 : 2 and
2:1 in order to have the search process focus on the frequent and promising solution
neighborhood.

The purpose of the diversification is to explore more various regions of the
solution space that have never been visited by DSSP phases in the search history.
The setting of divno is related to the number m of inactive arcs in the first DSSP phase
of the enhanced DSSP. Note that the later DSSP phases are distorted by the penalties
and incentives purposely imposed during the intensification and diversification. The
process counts m during the first DSSP phase. It is obvious that the size of MOVE
set β, divno should be increased as the problem size increases, so divno is set in
terms of percentage of m. The settings of m = 2%, 5%, 10% and 20% are tested.

Since there are considerably more non-basic arcs than basic arcs in the problems,
we set tb max lm greater than tm max lm in the diversification process with
tm max lm fixed to

1. Three settings were tested initially, including (m/divno): 1, (m /(2divno)): 1
and 1:1. Note that tb max lm is greater than the preset diversification iteration, (i.e.
20), when divno < 5% × m, which means some of the arcs will not be explored
by any means at the end of the search process even if tb max lm > 20. Therefore,
the maximum value of (m/divno) is set to 20. The results show that the latter two
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Table II. Final experiment scenarios (S1–S8).

intno tb max sh : tm max sh divno tb max lm : tm max lm Scenario

r + s 1:2 0.02 m 20:1 S1

0.05 m 20:1 S2

0.1 m 10:1 S3

0.2 m 5:1 S4

2:1 0.02 m 20:1 S5

0.05 m 20:1 S6

0.1 m 10:1 S7

0.2 m 5:1 S8

settings found inferior solutions during the entire experiment. Hence, we eliminate
those settings to simplify the experimental scenarios. The final scenarios are given
in Table II.

5.3. SOLUTION QUALITY

We adopted the relative errors to evaluate and compare the performances of the
enhanced DSSP and the pure DSSP by comparing the solutions found by the two
heuristics with the exact solutions found by B&B. The relative errors are evaluated
as follows:

ERRDSSP = fDSSP − fexact

fexact

ERRDSSP tabu = fDSSP tabu − fexact

fexact
.

The numerical results are shown in Table III–V (group 1–3) separated in the
eight scenarios of the enhanced DSSP. The tables show the performance comparison
between the pure DSSP and the enhanced DSSP in terms of the average, minimum
and maximum relative errors compared with the exact solutions and the number
of exact solutions found by the pure DSSP and the enhanced DSSP. The column
“Number” represents the number of test problems. The columns labeled “Exact”
indicate the number of problems for which the exact solution was found by the pure
DSSP or the enhanced DSSP.

Tables III, IV,and V indicate that in the sparse networks, both the enhanced DSSP
and the pure DSSP found good solutions. As the network size and, particularly, the
density increase, it becomes harder for both heuristics to find the exact solutions,
and the solutions obtained by the two heuristics deteriorate slightly. Nonetheless,
except in the problems with 210×0.25, the mean relative errors of the solutions from
the enhanced DSSP are still fairly stable as the problems become more difficult,
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Table III. Relative error comparison between the pure DSSP and the enhanced DSSP
[Group 1].

Problem DSSP DSSP Tabu

Type
(# of arcs) Number Mean Min Max Exact Scenario Mean Min Max Exact

50 × 0.1 12 0.0005 0.0000 0.0063 11 S1 0.0000 0.0000 0.0000 12

(245) S2 0.0000 0.0000 0.0000 12

S3 0.0000 0.0000 0.0000 12

S4 0.0000 0.0000 0.0000 12

S5 0.0000 0.0000 0.0000 12

S6 0.0000 0.0000 0.0000 12

S7 0.0000 0.0000 0.0000 12

S8 0.0000 0.0000 0.0000 12

100 × 0.1 12 0.0163 0.0000 0.0550 4 S1 0.0148 0.0000 0.0538 6

(990) S2 0.0148 0.0000 0.0538 6

S3 0.0148 0.0000 0.0538 6

S4 0.0148 0.0000 0.0538 6

S5 0.0148 0.0000 0.0538 6

S6 0.0148 0.0000 0.0538 6

S7 0.0148 0.0000 0.0538 6

S8 0.0148 0.0000 0.0538 6

150 × 0.1 9 0.0125 0.0000 0.0650 4 S1 0.0122 0.0000 0.0643 5

(2235) S2 0.0104 0.0000 0.0480 5

S3 0.0096 0.0000 0.0643 6

S4 0.0055 0.0000 0.0228 5

S5 0.0117 0.0000 0.0650 5

S6 0.0106 0.0000 0.0498 5

S7 0.0055 0.0000 0.0228 5

S8 0.0104 0.0000 0.0480 5

180 × 0.1 6 0.0155 0.0000 0.0375 1 S1 0.0130 0.0000 0.0315 2

(3222) S2 0.0130 0.0000 0.0315 2

S3 0.0130 0.0000 0.0315 2

S4 0.0130 0.0000 0.0315 2

S5 0.0101 0.0000 0.0315 2

S6 0.0095 0.0000 0.0315 2

S7 0.0095 0.0000 0.0315 2

S8 0.0102 0.0000 0.0315 2

210 × 0.1 6 0.0175 0.0077 0.0285 0 S1 0.0142 0.0000 0.0254 1

(4398) S2 0.0142 0.0000 0.0254 1

S3 0.0142 0.0000 0.0254 1

(Continued on next page)
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Table III. (Continued)

Problem DSSP DSSP Tabu

Type
(# of arcs) Number Mean Min Max Exact Scenario Mean Min Max Exact

S4 0.0142 0.0000 0.0254 1

S5 0.0133 0.0000 0.0254 1

S6 0.0142 0.0000 0.0254 1

S7 0.0153 0.0067 0.0254 0

S8 0.0142 0.0000 0.0254 1

changing from 0.00% to 1.48% in the best scenarios and 0.00% to 1.82% in the
worst scenarios; while the relative errors for the pure DSSP increase somewhat dra-
matically, from 0.05% to 3.50%. Furthermore, based on the average relative errors,
the improvements in the solution quality of the enhanced DSSP over the pure DSSP
in the best scenarios (S1–S8) and the worst scenarios for each type of problems
are shown in Table VI. Two columns with heading “Si” represent the scenarios in
the enhanced DSSP that the least/most relative errors appear. The columns “Qual.
Imp.” represent the percentage of the solution quality improvement by comparing
the mean relative errors of the enhanced DSSP, denoted as ERRdssp tabu and the
mean relative errors of the pure DSSP for each problem type, denoted as ERRdssp.
In other words, the “Qual. Imp.” is computed as:

ERRdssp − ERRdssp tabu

ERRdssp
.

The improvement in solution quality of the enhanced DSSP over the pure DSSP
is over 20% in the best scenarios and over 10% in the worst scenarios. This shows
that the enhanced DSSP provides substantial improvement for most of tested prob-
lems.

5.4. CPU TIMES

Let Tb&b, Tdssp, and Tdssp tabu be the CPU times in seconds used by the CPLEX
B&B, the pure DSSP and the enhanced DSSP, respectively. The comparison of
CPU times is given in Table VII. We averaged CPU times of all 8 scenarios in the
enhanced DSSP as there is no significant difference of solution time among them.

CPLEX is well known for its fast MIP optimizer with multiple cutting-edge
techniques involved in B&B method. However, the CPU times used by CPLEX
B&B increase exponentially as the problem size and the network density increase.
For the problems with similar sizes (e.g. 150 × 0.1 with 2235 arcs and 100 × 0.25
with 2475 arcs), the ones with higher density are more difficult for B&B to solve.
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Table IV. Relative error comparison between the pure DSSP and the Enhanced DSSP
[Group2].

Problem DSSP DSSP Tabu

Type
(# of arcs) Number Mean Min Max Exact Scenario Mean Min Max Exact

50 × 0.25 12 0.0112 0.0000 0.0643 5 S3 0.0040 0.0000 0.0280 8

(613) S4 0.0040 0.0000 0.0280 8

S5 0.0040 0.0000 0.0280 8

S6 0.0040 0.0000 0.0280 8

S7 0.0041 0.0000 0.0280 8

S8 0.0041 0.0000 0.0280 8

100 × 0.25 9 0.0350 0.0000 0.1312 1 S3 0.0170 0.0000 0.0435 1

(2475) S4 0.0169 0.0000 0.0435 1

S5 0.0150 0.0000 0.0416 2

S6 0.0117 0.0000 0.0344 2

S7 0.0149 0.0000 0.0357 1

S8 0.0130 0.0000 0.0344 1

150 × 0.25 6 0.0236 0.0032 0.0335 0 S1 0.0141 0.0000 0.0332 1

(5588) S2 0.0155 0.0000 0.0332 1

S3 0.0138 0.0000 0.0332 1

S4 0.0136 0.0000 0.0332 1

S5 0.0154 0.0000 0.0313 1

S6 0.0137 0.0000 0.0332 1

S7 0.0127 0.0000 0.0332 1

S8 0.0144 0.0000 0.0332 1

180 × 0.25 6 0.0177 0.0047 0.0377 0 S1 0.0132 0.0031 0.0248 0

(8055) S2 0.0131 0.0031 0.0248 0

S3 0.0123 0.0006 0.0272 0

S4 0.0117 0.0031 0.0248 0

S5 0.0144 0.0031 0.0269 0

S6 0.0145 0.0031 0.0281 0

210 × 0.25 6 0.0332 0.0080 0.0463 0 S1 0.0199 0.0057 0.0353 0

(10973) S2 0.0227 0.0080 0.0424 0

S3 0.0194 0.0080 0.0340 0

S4 0.0236 0.0080 0.0389 0

S5 0.0245 0.0080 0.0410 0

S6 0.0296 0.0080 0.0424 0

When the number of arcs in a problem is close to/exceeds 5000, the problems with
high density of 0.25 and 0.5 become particularly hard for B&B, and it becomes
impractical to apply B&B. In addition, there is a large variation in the CPU time
that is required by B&B to find the exact solutions. One extreme case is that B&B
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Table V. Relative error comparison between the pure DSSP and the Enhanced DSSP [Group3].

Problem DSSP DSSP Tabu

Type
(# of arcs) Number Mean Min Max Exact Scenario Mean Min Max Exact

50 × 0.5 9 0.0228 0.0088 0.0403 0 S1 0.0171 0.0021 0.0351 0

(1225) S2 0.0167 0.0021 0.0351 0

S3 0.0159 0.0021 0.0311 0

S4 0.0167 0.0021 0.0350 0

S5 0.0169 0.0064 0.0281 0

S6 0.0173 0.0021 0.0351 0

S7 0.0132 0.0021 0.0350 0

S8 0.0182 0.0064 0.0351 0

100 × 0.5 6 0.0218 0.0000 0.0416 1 S1 0.0195 0.0000 0.0391 1

(4950) S2 0.0208 0.0000 0.0370 1

S3 0.0186 0.0000 0.0365 1

S4 0.0152 0.0000 0.0365 1

S5 0.0176 0.0000 0.0365 1

S6 0.0166 0.0000 0.0365 1

Table VI. Solution quality improvement of the enhanced DSSP over the pure DSSP.

Best scenario Worst scenario

Group Type Si Qual. Imp.(%) Si Qual. Imp.(%)

1 50 × 0.1 S1–S8 100 S1–S8 100

100 × 0.1 S1–S8 9.0 S1–S8 9.0

150 × 0.1 S4–S7 55.9 S1 2.3

180 × 0.1 S6–S7 38.7 S1–S4 16.1

210 × 0.1 S5 24.4 S7 12.9

2 50 × 0.25 S3–S6 64.7 S7–S8 63.5

100 × 0.25 S6 66.7 S3 51.5

150 × 0.25 S7 46.1 S2 34.6

180 × 0.25 S4 34.1 S6 18.0

210 × 0.25 S3 41.5 S6 11.0

3 50 × 0.5 S7 42.0 S8 20.1

100 × 0.5 S3 30.2 S2 4.4

used 113.68 hours (about 5 days) to solve a test problem in one of 210 × 0.25
problem category. By contrast, the pure DSSP and the enhanced DSSP used much
less CPU time. The enhanced DSSP used more CPU time than the pure DSSP.
However, since the increase in CPU time is of a relatively small magnitude (only
10–20 minutes more than the pure DSSP, yet hours or even days less than B&B),
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and taking into account the solution quality improvement, we can conclude that the
enhanced DSSP has its advantage.

6. Conclusions

In the paper, an enhanced DSSP algorithm with the tabu search scheme is presented
for solving FCNFP problems. The algorithm integrates the pure DSSP and the tabu
mechanism including intensification and diversification with short-term and long-
term memory, respectively. The short-term memory based on recency, quality and
frequency is used for the intensification process in selecting trigger arcs, while the
concept of reduced cost and long-term memory based on recency and infrequency
are used for the diversification process in selecting trigger arcs. The linear factors of
these arcs are the imposed incentives and hence lead DSSP search process deeper
or divert the search for better solutions. The results of computational experiments
performed on large and various sets of problem instances show the efficiency of the
enhanced DSSP compared with the pure DSSP and B&B in terms of the solution
quality and CUP times.

In real world applications, B&B approach can be used if the problem is not
too complex (small number of nodes and low density). However, if the problem
becomes large scale and has high density, heuristic methods would be a better option
for finding the solution. The computational experiments have demonstrated that the
proposed enhanced DSSP is competitive in solving larger and difficult problems.
For many cases, we recommend to use a combination of two or more different
scenarios (S1–S12) to attack the same problem, since none of single scenarios
could guarantee finding better solutions all the time. The best solution obtained
by the proposed heuristic can serve as the upper bound of the exact algorithm in
finding the optimal solution, which will drastically decrease the search time of the
exact solution.
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