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Abstract. The lack of a clear classification structure and the use of a variety of names for the same
solution method for stochastic control models in economics, create communications inefficiencies
in the field. A proposal is made for a classification system based on a number of attributes of these
models including stochastic elements, solution classes, estimation method, forward-looking variables
and policies-to-parameters effects. Tables are provided which categorize some well-known example
models into this structure. Our work focuses on models with quadratic criterion functions and linear
systems equations and without game theory elements. Thus it is a mere start of a larger effort which is
much needed since there has been a proliferation of stochastic control models in economics in recent
years.
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1. Introduction

The use of stochastic control methods in economics has increased rapidly in recent
years and the complexity of the models has grown at the same time. As this has
occurred it has become apparent that communication between modelers would be
greatly facilitated by the availability of a classification system for these models. At
times in the past we have had the experience of hearing a lecture on a new method
and having considerable difficulty relating the new approach to existing methods.
However, if we had had in place a classification system, communication about the
new method could have been achieved much more quickly.

Also, the need for a classification system stems, in part, from a confusing set of
names that we economists have inherited from control engineers and used in ways
that have added to the confusion. In addition, game theory contains a set of names
that sometimes overlap with those used in control theory. As a consequence of the
confusion, the two authors of this paper have debated on numerous occasions what
name should be applied to one or another solution method.

Thus this paper provides a classification scheme for stochastic control models in
economics. It might be possible, as in Rausser and Pekelman (1978), to return to our
roots and adopt a classification scheme closely akin to that used in the engineering
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literature. However, the development of the methodology in economics has taken a
separate course since the famous meeting on economics and control theory in May
of 1972 at Princeton University hosted by Edwin Kuh, Gregory Chow, M. Ishaq
Nadiri and Michael Athans, cf. Kendrick (2005). Also, it is useful while setting out
the classification scheme to cite well-known models in economics as examples of
each of the different methods. These models can provide landmarks on the terrain
already crossed and the hills yet to be climbed in the application of stochastic
control methods to economics.

The classification system used here is restricted to models with quadratic cri-
terion functions and linear systems equations.1 Many economic models are either
naturally quadratic-linear models or can be reasonably approximated in the neigh-
borhood of the solution by quadratic-linear systems. Also, the models can be it-
eratively solved with the approximations redone at each step. None-the-less, at a
later date we would hope to extend the system to include general nonlinear models.
Also, we have not yet extended the classification system in any significant way
to game theory models – rather the reader is referred to Basar and Olsder (1999).
Thus our work is a mere start of a much larger effort that is needed to cover the
proliferation of stochastic control models that have been developed in economics
in recent years.2

Prior to beginning the discussion of the classification systems it is useful to write
the mathematics of the basic quadratic-linear optimal control models in order to
establish notation that will be helpful later. This is followed by a section on the
major attributes of the classification system such as the various types of stochastic
elements, the solution procedure and the estimation procedure. These attributes are
then used in a section on the core of the classification system and in the following
section this system is applied to a small set of example models. The focus then
shifts briefly to the naming system with a discussion of the defaults for that system
while the number of options for each attribute is still small.

In the following section the core classification systems is extended to more
options within each attribute in order to expand the coverage to a substantial portion
of the quadratic linear stochastic control models that have been used in the past.
Then in the next-to-last section of the paper this extended classification system is
applied to a larger set of example models. The last section of the paper contains the
conclusions.

2. Mathematics of the Basic Quadratic-Linear Optimal Control Models

The criterion function for most economic control theory models with finite horizons
may be written as

J = E

{
L N (xN ) +

N−1∑
k=0

Lk(xk, uk)

}
(2.1)
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where J = criterion value; E = expectations operator; LN = criterion function for
the terminal period N; xN = state vector for the terminal period N – an n vector; Lk
= criterion function for period k; xk = state vector for period k – an n vector; uk =
control vector for period k – an m vector, and the system equations may be written
as

xk+1 = fk(xk, uk) + ξk (2.2)

where fk = vector of n system equation functions for period k; ξk = vector of
additive noise terms – an n vector.

Most of the time a quadratic criterion function is normed. It contains desired
paths for both state and control variables but does not contain cross terms between
states and controls. Thus the criterion function may be written as

L N (xN ) = 1

2
(xN − x̃N )′WN (xN − x̃N ) (2.3)

and

Lk(xk, uk) = 1

2
[(xk − x̃k)′Wk(xk − x̃k) + (uk − ũk)′�k(uk − ũk)] (2.4)

where x̃N =desired state vector for terminal period N – an n vector; WN = symmetric
state variable penalty matrix for terminal period, N; x̃k = desired state vector for
period k – an n vector; Wk = symmetric state variable penalty matrix for period k;
ũk = desired control vector for period k – an m vector; �k = symmetric control
variable penalty matrix for period k.

In other cases the criterion function is written as the more general quadratic
form as shown below. It contains quadratic and linear terms in the state and control
vectors as well as cross terms between the states and controls. In this case the
criterion function elements are

L N (xN ) = 1

2
x ′

N WN xN + w′
N xn (2.5)

Lk(xk, uk) = 1

2
x ′

k Wk xk + w′
k xk + x ′

k Fkuk + 1

2
u′

k�kuk + λ′
kuk (2.6)

where wN = linear state coefficient vector for period N; wk = linear state coeffi-
cient vector for period k; λk = linear control coefficient vector for period k; Fk =
coefficient matrix for the xk − uk cross term for period k.

Quadratic-linear computer codes are usually based on the more general form in
Equation (2.5) so quadratic tracking functions in Equation (2.3) are transformed in
the computer codes to the quadratic form before the model is solved (see Kendrick,
1981, 2002, pp. 7–8).
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The systems Equations3 (2.2) in the quadratic linear case are specialized to

xk+1 = Ak xk + Bkuk + Ckzk + ξk (2.7)

where k ∈ [0, N − 1] is the time index; zk= the exogenous vector for period k with
� elements; Ak = state vector coefficient matrix for period k; Bk = control vector
coefficient matrix for period k; Ck= exogenous vector coefficient matrix for period
k; ξk = vector of additive noise terms for period k.

In many cases the zk vector consists of a single variable that is one in all time
periods and the elements of the only column of the Ck matrix are the intercept
terms in the system equations. In the additive noise case to be discussed below the
only uncertainty is in the ξk term and theAk , Bk and Ck matrices contain constant
parameters.

In contrast, in the case of uncertain parameters a subset of the elements of these
parameter matrices have true constant values but these true values are unknown
to the policy maker. Rather the policy maker knows only the first two moments
(mean and variances) of the parameter estimates. This situation is represented in
the notation by creating a vector θk that contains the uncertain parameters. For
example if the model had three state variables and two control variables the Ak
matrix would be 3×3, theBk matrix would 3×2 and the Ck matrix would be 3×1.
Then if only the coefficients a11, a23, b22 and c31 were to be treated as uncertain the
θk vector of uncertain parameters would be

θk =

⎡⎢⎢⎢⎣
a11,k

a23,k

b22,k

c31,k

⎤⎥⎥⎥⎦ (2.8)

with this notation in hand we can begin a description of the classification system
with a discussion of the main attributes of stochastic control models.

3. Attributes of the System

Some of the confusion of the past stems from the failure to appreciate fully the
different attributes of stochastic control models. In this regard we find it useful to
classify solution methods using the following attributes:

1. stochastic elements
2. solution classes
3. estimation procedure
4. forward-looking variables
5. policies-to-parameters effects

Each of these attributes is considered in turn in the following.
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3.1. STOCHASTIC ELEMENTS

The simplest stochastic control models have a single uncertain vector, namely the
additive noise terms, ξk , in the systems Equations (2.7). More complicated models
have uncertain parameters, measurement errors, uncertain initial state vectors and
time-varying parameters.

3.2. SOLUTION CLASSES

The term solution “classes” is used here because it is useful to create first a set
each of whose elements is a solution class, i.e. a broad category of solution meth-
ods. Then, since the method used to solve a model depends on the other attributes
of the model as well as on the solution class, a set is created for each solution
class whose elements are solution methods. For example “optimal feedback rule”
and “expected optimal feedback rule” are two solution classes. In turn, the op-
timal feedback rule class consists of methods that differ when they are applied
to models without and with additive noise terms. Thus it is useful to think of
a set of solution classes with each solution class consisting of a set of solution
methods.

The use of a “set of sets” here is confusing at first; however it can prove to
be most useful in helping individuals to communicate with one another about the
methods used to solve stochastic control models.

Five solution classes are used as options for the solution classes attribute. The first
of these is handcrafted feedback rules (Taylor rules) that are developed without the
benefit of optimization procedures. The second is optimal feedback rules in which
dynamic programming is used for optimization that yields Riccati equations.4 The
third is the min–max solution class in which the criterion function is minimized
over some arguments and maximized over others. The fourth, expected optimal
feedback, is use when there is parameter uncertainty. In this case expectations
operators are used in the optimal feedback rules. Finally, methods in the dual control
class consider tradeoffs between reaching target paths and improving parameter
estimates.

3.3. ESTIMATION PROCEDURE

The simplest models treat the parameters as constant and known so there is no
estimation and no parameter updating. More complex models use the Kalman filter,
least-square or other estimation procedures.

3.4. FORWARD-LOOKING VARIABLES

Forward-looking variables are used in the systems equations of some models,
i.e. the state variables in period k + 1 are a function not only of states and
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controls in period k but also of expected values of state variables in periods
k + 2, k + 3, etc. This is a specification that is used to incorporate rational expec-
tation into models. Since the presence of forward-looking variables has substan-
tial effect on the solution method it is an important attribute of the classification
system.

3.5. POLICIES-TO-PARAMETERS EFFECTS

In a critique of the use of optimal control in macroeconomics Lucas (1976) ex-
pressed concern that the announcement of policy variables would results in changes
in behavioral parameters and thus invalidation of the previously computed optimal
feedback rule.5

Though this critique can be addressed with game theory, a simpler approach is to
use a model with time-varying parameters and to employ a Kalman filter to update
parameter estimates each time period. Thus the optimal controller is only one period
behind the change in behavior, so if the changes are relatively small the optimal
feedback policy will be close. In order to evaluate “close” one needs a policy based
on prior knowledge of the changes in behavior in response to changes in policy.
This policy is an example of different information sets and is called “insight” by
Amman and Kendrick (2003).

Rather than dealing with all of these attributes at once it is useful to begin with
a simple structure that uses only the core of the classification system.

4. The Core of the Classification System

The core system focuses on the first two attributes, namely the stochastic elements
and the solution classes. Moreover, the core system is limited to three options for
each attribute.

The three options for the stochastic elements are (1) none (deterministic), (2)
additive noise terms in the systems equations and (3) uncertain parameters in the
systems equations.6 The three options for the solution classes are (1) handcrafted
feedback rules, (2) optimal feedback rules obtained from the Riccati equations or
(3) optimal feedback rules obtained when the expected value operator is applied in
the Riccati equations. The core classification scheme for this situation is as shown
in Figure 1.

The stochastic elements are in the top part of the diagram and the solution classes
are shown in the bottom part. For example, if there are no stochastic element and
the solution class is “no feedback” the method will be like the one used by Pindyck
(1972, 1973a,b). This method is also frequently called “open loop” because the
feedback loop is not closed and the solution to the model is computed for all time
periods at once without the necessity to wait to solve the model in later periods
after the stochastic elements from earlier periods have been manifest. The use of
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Figure 1. The core of the classification system in tree format.

the term “open loop” here is akin to its use in game theory where it means that a
player devises his strategy without taking into account feedback from other players.
In the control case “open loop” means that there is no account taken of feedback
from nature in the form of uncertain events.

While the quadratic-linear Riccati method used by Pindyck also provides a
feedback rule, it is not necessary to use that rule in a feedback manner to solve the
model since there are no stochastic elements.

The third column in Figure 1 is the case when the stochastic elements include
parameter uncertainty and the solution class is “expected optimal feedback”. In
this case the method is like the method developed by Farison, Graham and Shelton
(1967) and Aoki (1967) that is sometimes called “open loop feedback”. It is similar
to the methods used by Brainard (1967) and Tinsley, Craine and Havenner (1974)
and Chow (1975) on macroeconomic models.

Examples are not given for some of the methods shown in Figure 1 because
these methods are only used for purposes of comparison. For example, when there
is parameter uncertainty in a model, it can be useful to solve the model with (1)
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Table I. The core classification system in table format.

Solution Classes

Stochastic Handcrafted Optimal Expected optimal
elements feedback feedback feedback

None Handcrafted
feedback (HF)

Open loop (OL)

Additive noise Handcrafted
feedback (HF)

Optimal feedback
(OF)

Parameter
uncertainty

Handcrafted
feedback (HF)

Optimal feedback
(OF)

Expected optimal
feedback with EOF

methods that ignore and (2) methods that take account of that source of uncertainty.
See for example Amman and Kendrick (1999b) for a comparison of optimal feed-
back and expected optimal feedback solution classes applied to a macroeconomic
model with parameter uncertainty.

The tree format used in Figure 1 becomes too unwieldy when more than two
attributes are used; therefore we will mostly use a table format like that shown in
Table I to depict the classification system.

In this table the row and column headings are “options” for the attributes. The
entries in the table are “methods”. Thus the method that uses the optimal feedback
solution class to solve a model that has no stochastic elements is called Open Loop
(OL) and the method that uses this same solution class to solve a model that includes
additive noise terms is called Optimal Feedback (OF).7

In this and subsequent tables the stochastic element options will be treated
as nested. Thus models with parameter uncertainty will also have additive noise
terms. The handcrafted feedback rules are those that are crafted without the ben-
efit of optimization methods, but which nonetheless may be carefully developed
based on experience with simulating alternate rules. They might alternatively be
called “Phillips rules” after A. W. Phillips who was one of the pioneers of the
use of classical control feedback rules for use in economics models. Currently
the macroeconomic applications of handcrafted feedback rules are sometimes
called “Taylor rules” after John B. Taylor; however the Taylor label is also ap-
plied at times to a variety of types of feedback rules and not just to handcrafted
rules.

Linear optimal feedback rules are obtained for models with quadratic criterion
functions and linear systems equations when one uses either of the latter two solution
class options. These two options differ only in the use of the expectations operator
over the uncertain parameters. In the first of these two solution classes the optimal
feedback rule is written (see Kendrick, 2002, Ch. 2) as

uk = Gk xk + gk (4.1)



A CLASSIFICATION SYSTEM FOR ECONOMIC STOCHASTIC CONTROL MODELS 461

where Gk = the feedback gain matrix; gk = the feedback gain vector, with

Gk = −[B ′
k Kk+1 Bk + �′

k]−1[F ′
k + B ′

k Kk+1 Ak] (4.2)

and the gk vector computed in a similar manner.
In contrast, the expected optimal feedback rule (see Kendrick (2002), Ch. 6) is

written as

uk = G†
k xk + g†

k (4.3)

with

G†
k = −[E{B ′

k Kk+1 Bk} + �′
k]−1[F ′

k + E{B ′
k Kk+1 Ak}] (4.4)

and with the gk vector computed in a similar manner. In this expression the E is the
expectations operator that is taken over the uncertainty in the parameter estimates
in the matrices Ak , Bk and Ck . Also the expectations operator plays a similar role
in the computation of the Riccati matrices, Kk . This expectation operator comes
from the objective function for the model.

It is significant that the only difference between the optimal feedback rule in
Equation (4.2) and the optimal feedback rule with expectations is the expectations
operator used in the calculation of the feedback gain matrix, G†

k , and vector, g†
k .8

Consider next examples of each of the types of stochastic control listed in
Table I.9

5. Examples from the Core Classification

In the discussion below the examples are categorized primarily by the attribute of
stochastic elements and then secondarily by the solution classes.

5.1. NO STOCHASTIC ELEMENTS

One of the first applications of handcrafted feedback rules to economic models was
Phillips (1954) who used PID (proportional, integral, differential) controllers from
engineering on macroeconomic models. Twenty years later Healey and Summers
(1974) used a procedure in which a linear feedback rule was written down and
a systematic search was performed to find the best values for the feedback gain
matrix and vector. Later Karakitsos and Rustem (1984, 1985) applied handcrafted
feedback rules to large macroeconomic models. Recently handcrafted rules have
achieved substantial influence from the prominence they have been given by the
works of John B. Taylor including Taylor (1993, 1999). The rules are crafted by
beginning with a feedback gain matrix, Gk , and vector, gk , and using this rule to
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simulate the model. Then the elements are altered and the simulation is repeated
until useful stabilization policies are obtained.

In contrast, optimal feedback rules are computed using dynamic programming
to obtain Riccati equations that in turn provide the key elements to compute the
feedback gain matrix and vector as in Equation (4.1) above. One of the first ap-
plications of this approach to macroeconomic models was Holt (1962). This was
followed ten years later by the work of Pindyck (1972, 1973a,b) on a ten-equation
macroeconomic model of the U.S. economy. Models of this type are labeled in
Table I as “Open Loop (OL)”. This means that there is no explicit use of feedback
and thus the feedback loop is “open”. Thus the solution for a multiperiod model
can be computed for all periods at one time. While a feedback rule is computed
that could be used period by period, the controls and states are computed for all
periods at time zero and do not change with the evolution of the system over time.
This is so because these are deterministic solutions with no uncertain elements, not
even an additive noise term. For an innovative use of this modeling approach to the
relative macroeconomic performance of U.S. presidents see Fair (1978).

In the past this method has sometimes been called QLP (Quadratic Linear Prob-
lems). This name is not descriptive but has come to be associated with methods
used to solve models with quadratic criterion functions and linear systems equa-
tions with no uncertainty. The term Open Loop is used in both engineering and
economics circles as a label for solution methods used to solve models with no
uncertainty so it seems nicely descriptive of this method.

5.2. ADDITIVE NOISE TERMS

Additive noise terms are the most common addition to deterministic models when
stochastic control is first considered, viz Simon (1956) and Theil (1957). To focus
on these terms, consider a subset of elements of Table I that contains only the
simplest two stochastic element options and the simplest two solution classes as in
Table II below.

The distinction to be made here is between systems equations without and with
the additive noise terms, ξk , in Equation (2.7) i.e.

xk+1 = Ak xk + Bkuk + Ckzk + ξk k = 0, . . . , N − 1 (5.1)

Table II. Illustrative examples with a focus on additive noise elements.

Solution classes
Stochastic
elements Handcrafted feedback rule Optimal feedback rule

None HF Taylor (1993, 1999) OL Holt (1962), Pindyck
(1973a), Fair (1978)

Additive noise HF Taylor (1993, 1999) OF Hall and Taylor (1993) in
Duali
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When these noise terms are absent the solution can be computed for all time periods
from period zero. In contrast, when there is an additive noise term the control in
each period cannot be computed from the feedback rule until the state is known and
the state will not be known until the additive noise is manifest in the previous period.
Thus ξk is instrumental in determining xk+1 through the systems Equations (5.1)
before xk+1 can be used to compute uk+1 with the feedback rule

uk+1 = Gk+1xk+1 + gk+1 (5.2)

This applies whether the feedback rule is handcrafted or optimal.
The Optimal Feedback (OF) method in the lower right corner of Table II has

frequently been called Certainty Equivalence (CE) in the past; however we have
used Optimal Feedback here to distinguish this method from the Expected Optimal
Feedback (EOF) method to be discussed later. Also the phrase “certainty equiva-
lence” gives the connotation that the uncertainty can be ignored. While this is true
in computing the feedback rule in each time period, it is not true in computing the
state for the next time period when the additive noise term must be used.

For examples of variants of models with additive noise terms see Amman and
Kendrick (1999c). This User’s Guide for the Duali software provides additive noise
versions of many well-known models such as those of Pindyck (1973a), Abel
(1975), MacRae (1972) and Hall and Taylor (1993) [in Mercado and Kendrick
(1999)].10

Next we return to the core classification system in Table I and progress to the
third stochastic element option, namely parameter uncertainty.

5.3. PARAMETER UNCERTAINTY

Parameter uncertainty occurs when a subset of the parameters in the Ak , Bk and
Ck matrices in the systems equations are treated as uncertain. Two cases need to
be distinguished here. The one occurs when the true parameters are constant and
the estimates are time varying and treated as uncertain. The other occurs when the
true parameters are themselves time-varying. We will consider in this part of the
paper only the case where the true parameters are constant and postpone until later
discussion of the time-varying true parameters case.

As was discussed in the mathematics near the beginning of this paper a subset
of the parameters from the Ak , Bk matrices and Ck matrices are treated as uncertain
and a stacked up in a vector like

θk =

⎡⎢⎢⎢⎣
a11,k

a23,k

b22,k

c31,k

⎤⎥⎥⎥⎦ (5.3)
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Table III. Illustrative examples for models with parameter uncertainty.

Solution classes

Stochastic Handcrafted Optimal Expected
elements feedback feedback optimal feedback

Parameter uncertainty HF for
comparison
only

OF for
comparison
only

EOF Brainard (1967),
Tinsley, Craine and
Havenner (1974),
Amman and
Kendrick (1999b)

in a case where the (1, 1) and (2, 3) elements from the Ak matrix, the (2, 2) element
from the Bk matrix and the (3, 1) element from the Ck matrix are treated as uncertain.
The estimates of these parameters include both the means θ̂k and the covariance
estimates �

θθ

k|k .
As shown in Table III, models of this type are ordinarily solved with the methods

from Expected Optimal Feedback (EOF) class making use of both the means θ̂k
and the covariances �θθ

k|k through the expectations operator that was discussed
above.

However, models of this type can also be solved for comparative purposes with
Handcrafted Feedback (HF) and Optimal Feedback (OF) methods by ignoring the
variances of the uncertain parameters. Thus there are three solution classes that can
be used to solve models with these stochastic elements and therefore three methods,
namely Handcrafted Feedback (HF), Optimal Feedback (OF) and Expected Optimal
Feedback (EOF). This possibility is implemented in the Duali software that was
mentioned above. Indeed, it is an important research question as to whether or
not HF and OF methods will do almost as well as EOF methods when applied to
models with parameter uncertainty. For a discussion of these issues see the paper
by Amman and Kendrick (1999b).

There is a rich literature on the application of EOF methods to macroeconomic
control models. The engineering literature that was drawn on by economists near the
start of this work was the paper by Farison, Graham and Shelton (1967) and the book
by Aoki (1967). Some early papers in this genre were those by Brainard (1967),
Shupp (1972, 1976c), Henderson and Turnovsky (1972), Chow (1973, 1975),11

Kendrick and Majors (1974), Tinsley, Craine and Havenner (1974), Turnovsky
(1973, 1975, 1977), Craine, Havenner and Tinsley (1976), Kalchbrenner and Tinsley
(1976), Craine (1979), Tinsley, von zur Muehlen and Fries (1982) and Soderstrom
(2002). In recent years this work has been extended to a rather large model by Lee
(1998).

This completes the discussion of the core system with only the two attributes of
stochastic elements and solution class. Next we extend the system to include the
other three attributes.
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6. Extension of the Core System to Other Attributes

The remaining three attributes of stochastic control models are:

estimation procedure
forward-looking variables
policies-to-parameters effects

Each will be discussed in turn.

6.1. ESTIMATION PROCEDURE

The third attribute of the classification system is the estimation procedure for pa-
rameter updating. One has estimates of the parameters at period k and receives an
additional observation on the state of the system that can be used to update param-
eter estimates for period k + 1. Thus this procedure is embodied in equations that
update the means in θ̂k and the covariances in �

θθ

k|k . A common estimation method
is the Kalman filter.12 Other methods are used by Ljung and Soderstrom (1983),
Ljung, Pflug and Walk (1992) and Marcet and Sargent (1989).

Of course some stochastic control models do not use estimation, i.e. the param-
eters are treated as known and constant so no updating is employed. Models of this
type are sometimes used as intermediate steps in a project that will progress later
to more complicated methods. For example, Chapter 5 of the Duali User’s Guide
(Amman and Kendrick, 1999c)) includes a model that has uncertain parameters
but no updating. This is included in this guide in order to let the user first gain
an understanding of the use of the expectations operator in the Riccati equations
and the feedback rules before progressing to the more complicated case including
parameter updating.

Also, estimation and parameter updating may be omitted at times in order
to provide a standard for comparison. For example, we used an optimal feed-
back (OF) method without updating to compare to an expected optimal feedback
(EOF) method and a method with “insight” in a comparison of various stochas-
tic control methods in a policy-to-parameter setting in Amman and Kendrick
(2003).

The earlier literature focused on learning by the policy makers about the behavior
of decentralized agents while a newer line of literature has focused on learning by
decentralized agents, viz Marcet and Sargent (1989), Evans and Honkapohja (2001),
Kozicki and Tinsley (2001) and Bullard and Mitra (2002).

A discussion of estimation also raises the question of whether the learning
implicit in updating is “passive” or “active”. However, this can be a source of
confusion because the use of these phrases actually refers to solution methods and
not to estimation procedures. An active learning solution method is one in which
the degree of learning is considered while deciding on the optimal control variables
in each time period. In contrast, in passive learning solution methods one does not
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consider the impact of the policy choices on learning the parameter values. We will
return to a more complete discussion of passive and active learning methods later
in this paper.

The term “passive” has been used by others, and by us, in the past in a way that
is confusing. For example, we have sometimes debated with one another whether
or not to call an expected optimal feedback (EOF) solution method an “open loop
feedback” (OLF) method or a “passive” method. The engineering literature has
used OLF as a labeled for such solutions but we felt that economists might find
that term confusing and therefore on occasion elected to label those solutions as
“passive”. Also, passive learning may be done in a variety of methods such as
Handcrafted Feedback (HF) and Optimal Feedback (OF) as well as in Expected
Optimal Feedback (EOF) so the term is not narrow enough to uniquely describe
a solution method. See Appendix A for a table of alternate names that have been
used at various times to describe the same stochastic control methods.

6.2. FORWARD-LOOKING VARIABLES

When the model includes forward-looking variables to represent rational expecta-
tions the system equations become

xk+1 = Ak xk + Bkuk + Ckzk + D1xe
k+1|k + D2xe

k+2|k + ξk

k = 0, . . . , N − 1 (6.1)

where xe
k+1|k = the expected value of the state variable at period k + 1 as projected

from; period k; xe
k+2|k = the expected value of the state variable at period k + 2

as projected from period k; D1 = forward looking variable parameter matrix for
the k + 1 | k variables; D2 = forward looking variables parameter matrix for the
k + 2 | k variables.

Thus the state variable in period k is a function of the expected value of future
state variables as well as of the lagged state and control variables.

There are many methods to solve models with forward variables including those
of Blanchard and Khan (1980), Anderson and Moore (1985), Fisher, Holly and
Hughes Hallett (1986), Fair and Taylor (1993), Juillard (1996), Zadrozny and Chen
(1999) and Sims (2002). If the model is deterministic the equations for all time
periods can simply be stacked up and solved all at once with an open loop (OL)
method. If there are additive noise terms or more complicated stochastic specifi-
cations a simple recursive method like Fair-Taylor can be used or alternatively the
methods of Blanchard-Khan or the QZ method of Sims can be employed. For high-
speed solution of large models with forward variables many have found it useful to
employ Anderson and Moore’s method.

One of the classic examples of models with forward variables in a deterministic
framework is Sargent and Wallace (1975). This was followed by a number of papers
that dealt with forward variables in the optimal policy context viz Oudiz and Sachs
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(1985), Backus and Driffill (1986), Levine and Currie (1987) and Pearlman, Currie
and Levine (1986).13 We have done a series of papers on models with forward
variables starting with deterministic models in Amman and Kendrick (1996), then
moving to models with additive noise terms (1999a) and finally optimal feedback
with expectations (2000). For a recent paper using handcrafted rules in models
with forward variables see Levin, Wieland and Williams (2003). See also Giannoni
(2002) and Woodford and Svensson (2003) for studies that devise optimal rules that
are robust to alternative model specification in the presence of forward variables.
For examples of restricted optimal handcrafted decision rules in this context see
Tetlow and von zur Muehlen (2001c).

6.3. POLICIES-TO-PARAMETERS EFFECTS

As was discussed above the policies-to-parameters effects have been used by
Amman and Kendrick (2003) to represent a comparative but unrealistic situation
in which policy makers have the “insight” to know the effect of policy changes
on behavioral parameters in the sense of Lucas (1976). This is used as a standard
with which to compare more realistic solutions in which the policy makers uses a
Kalman filter to update estimates of the behavioral parameters after they change
due to policy effects. Our experience with numerical results in this area is mixed so
far and we think that much work remains to be done to sort out correctly the effects
of insight.

7. Defaults

When there are a number of attributes to consider and each attribute has a number
of options it is possible to spell out the specification of a method with a phrase or
sentence. This is most useful and can save considerable time in communicating the
nature of the stochastic control model under study. For example a method might be
described as

expected optimal feedback in a model with parameter uncertainty and with
forward variables

However, in many cases it would be convenient to be able to describe a model
with a simple acronym rather than to use a phrase or sentence. This has the drawback
that various individuals may use a given acronym to refer to different things. Also,
in the early use of a set of acronyms, before they became a part of the lexicon in a
field, their use adds to the confusion rather than dissipates it. Thus in reading the
next few paragraphs the reader should expect to feel that the proposed acronyms
create a fog rather than a clear view. However, it is inevitable that we will want to
use a set of acronyms to refer to the various stochastic control methods, so please
bear with us.
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A set of acronyms can help in communication if there is some agreement about
the default specification associated with the more widely used acronyms. Thus the
most frequently used acronyms can consist of only a few letters rather than a long
list and can still communicate accurately the intent of the user. For example, the
default for expected optimal feedback (EOF) could be that there is

(1) parameter uncertainty
(2) updating of parameter estimates
(3) no forward-looking variables

Thus EOF could be used for the specification above and EOF with F could be
used for the same case but where there are forward variables. Consider a few such
defaults

HF handcrafted feedback handcrafted feedback rule, no uncertain
elements, no updating

OL open loop no uncertain elements, no forward variables

OF optimal feedback optimal feedback rule, additive noise,
updating of parameter estimates.

no forward variablesa

EOF expected optimal feedback optimal feedback rule, uncertain
parameters, no forward variables

aOne might also add to this list OHF for optimal handcrafted rules – a kind of half-way
house between HF and OF.

Modifications of these acronyms could be accomplished by adding letters such
as

wA with additive noise

wP with parameter uncertainty

woU without updating

wF with forward variables

wM with measurement error

wL with policies-to-parameters (Lucas) effects

wT with time-varying parameters

Then some example specifications could be described as follows:

OLwF open loop with forward variables

OFwF optimal feedback with forward variables

EOFwoU expected optimal feedback without updating

EOFwM expected optimal feedback with measurement error

EOFwL expected optimal feedback with policies-to-parameters (Lucas) effects
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8. Extension of the Core Classification System

In the extension, like in the core system, we will focus at the beginning on the first
two attributes, namely the stochastic elements and the solution classes. However,
instead of limiting the system to three options for each attribute we will include the
full array. For example, as sources of uncertainty we will now consider

none
additive
uncertain parameter
measurement noise
time-varying parameters

In models with measurement noise the state variables are not known perfectly
but rather are seen through a noisy observer of the form14

yk = H xk + ζk (8.1)

where yk = observation vector (rx1); H = a known matrix (rxn); ζk = measurement
noise (rx1).

One implication of this is that solution methods may include the use of the mean
and covariance of the state, i.e. x̂k|k and �xx

k|k for the estimates of these statistics at
time k using data obtained through period k. Thus it is useful to consider that there
are really two additional sources of uncertainty in models that have measurement
error. The first is the additive noise in the measurement error, ζk , in Equation (8.1)
and the other is the uncertainty of the state in the initial time period as represented
in the initial mean, x̂0|0 and covariance �xx

0|0.
Models with time-varying parameters are most commonly specified with a first

order Markov process in the parameters, i.e.

θk+1 = Dθk + ηk (8.2)

where θk = parameter vector; D = a known matrix; ηk = a random vector.
As was discussed above, it is important to make a distinction between models in

which the estimates of the parameters are time varying while the true parameters are
constant and models in which both the estimates and the true parameters are time
varying. Any model in which there is parameter updating will have time-varying
parameter estimates but most of these models will have constant true parameters. For
example, the solution software, such as Duali, may support the use of Equation (8.2);
however in most cases the user sets D = I and ηk = 0 so that in fact the true
parameters are constant.

In the core system the solution types included only three options. Here we extend
this to five options, namely
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handcrafted feedback rule
optimal feedback rule
min–max feedback rule
optimal feedback rule with expectations
dual control

The min–max solution class has been used for some years in economic mod-
eling, viz Becker, Dwolatzky, Karakitsos and Rustem (1986), Deissenberg (1987),
Rustem (1992, 1998), Rustem, Wieland and Zakovic (2001) and Rustem and Howe
(2002) but has gained recent prominence in the form of robust control, viz Hansen
and Sargent (2001). In the previous methods that we have discussed the criterion
function is either minimized or maximized. In contrast, in min–max control the
criterion is minimized with respect to one set of control variables and maximized
with respect to another set. For example, in robust control the criterion function
could be minimized with respect to the usual control vector, uk , and maximized
with respect to a second set of additive noise terms,w, which represent misspecifi-
cation of the model. Thus an engineer designing a bridge may want to select steel
girder sizes which minimize the likelihood of collapse of the bridge since nature
might challenging the design with the worst possible additive noise terms. For some
recent applications of robust control methods to U.S. macroeconomic models see
Onatski and Stock (2002) and Tetlow and von zur Muehlen (2001a,b).

Dual control is best understood as an active learning method, in contrast to
the passive learning methods discussed so far. In passive learning methods new
observations are obtained each period and used to update the parameter estimates;
however, no effort is made to choose control variables that will improve the learning.
In contrast, in active learning methods control variables are chosen with the dual
purpose of moving the system in desired directions and of perturbing the system so
as to improve the parameter estimates. Thus the method is called “dual” control.
Also, it is referred to as adaptive control; however this term is less descriptive since
even in passive learning the system is adapting over time.

The earliest applications of dual control to economic models were by Prescott
(1972), Taylor (1974) and MacRae (1975) followed by Norman (1976, 1979, 1981)
and Kendrick (1982) and later by Tucci (1989), Mizrach (1991), Wieland (2000a,b),
Beck and Wieland (2002), Cosimano (2003) and Cosimano and Gapen (2005).

The extended classification system is shown below in Table IV The abbreviations
for the methods used in the table are shown below.

HF handcrafted feedback rule
HFwA handcrafted feedback rule with additive noise
HFwP handcrafted feedback rule with parameter uncertainty
OL open loop
OF optimal feedback
OFwP optimal feedback with uncertain parameters
OFwM optimal feedback with measurement error
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EOF expected optimal feedback
EOFwM expected optimal feedback with measurement error
MMC min–max control
RC robust control with two additive noise terms
RCwM robust control with measurement error
RCwT robust control with time-varying parameters
EOFwT expected optimal feedback with time-varying param.
DC dual control
DCwM dual control with measurement error
DCwT dual control with time-varying parameters

Note that in the Handcrafted Feedback column and Parameter Uncertain row
of Table IV the method is HFwA, i.e. handcrafted feedback with additive noise.
Thus the method in each box need not reflect the stochastic elements. For example,
the handcrafted feedback class does not include a class that considers the effects
of parameter uncertainty. None-the-less, it may be instructive to use a handcrafted
feedback with additive noise method on a model that has parameter uncertainty in
order to compare the result to the use of an expected optimal feedback method (in
the Expected Optimal Feedback column and Parameter Uncertainty row). Thus the
method name indicates the types of uncertainty considered in the method but not
necessarily the types of stochastic elements in the model to which the method is
applied.

9. Examples from the Extended Classification System

As before, the examples are categorized primarily by the attribute of stochastic
elements and then secondarily by the solution class. However the focus here is
on the additional options for both attributes that have been added in the extended
system.

The names of a few selected authors whose studies are illustrative of the various
methodologies are shown in Table V. A listing of many studies using each method
is contained later in the paper. Some additional abbreviations for the methods used
in the table are shown below.

OFwMF optimal feedback with measurement error and forward variables
EOFwoU expected optimal feedback & without updating
EOFwFTL expected optimal feedback with forward variables, time-varying parameters and

policies-to-parameters (Lucas) effects
DC dual control
DCwMT dual control with measurement errors and time-varying parameters

We have arranged the columns of Table V from left to right according to the
increasing level of complexity of the solution method. Since some methods include
allowance for measurement error but not for time-varying parameters and vice-
versa, we depart from the nesting rule for stochastic elements in the table lines
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below parameter uncertainty. Thus we explicitly include separate categories for
measurement error and time-varying parameters as well as a joint category when
both sources of uncertainty are included.

9.1. MEASUREMENT ERROR

One of the early uses of models with measurement error was the study by
Kendrick (1982) using dual control methods on a small macroeconomic model
of the U.S. economy. The measurement error was approximated by using revisions
data from the primary macroeconomic time series. A measurement equation like
Equation (8.1) was used with the specification that H = I so that each state xk was
observed with one and only one observation variable yk . In contrast, consider recent
studies by Coenen and Wieland (2001) and Coenen, Levin and Wieland (2001). The
first of these two studies uses a more general form for H . This opens the door for
the possibility that the state vector will be augmented with past values and that the
more recent states will have noise terms with higher variances since these data have
not yet been revised as thoroughly. Also Onatski and Stock (2002) consider noisy
observations.

Measurement error can also be used when firms imperfectly observe one an-
other’s behavior to result in imperfect common knowledge, viz. Adam (2003).
Finally, for a recent study of the Australian economy using observer equations see
Herbert (1998).

9.2. TIME-VARYING PARAMETERS

One of the first uses of time-varying parameters in control models was by Sarris
(1973) who employed a Kalman filter to estimate the parameters. This was followed
later by a number of other studies on estimation of time-varying parameters includ-
ing the study by Swamy and Tinsley (1980). However one of the first inclusions of
this kind of uncertainty in a stochastic control models was by Tucci (1989, 1997).
He employed dual control (DC) methods so that one was faced with a tradeoff
in which active perturbations today produced coefficients estimates with smaller
standard errors. However, these standard errors increased again as the coefficients
varied over time. Recently, Amman and Kendrick (2003) have returned to the Tucci
framework but have used expected optimal feedback with time-varying parameters
and policies-to-parameters (Lucas) effects (EOFwTL) instead of dual control. Also,
see Tucci (2004) which deals with time-varying parameters in the forward variables
case.

10. Conclusions

It is likely that in the years to come there will be many studies of economic models
using stochastic control methods and many of these studies will compare various
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methods. As this occurs it will greatly facilitate communication between economists
if we can move toward a classification system and a naming system that enables us
to quickly and easily describe to one another the types of methods in use. In our
view the classification system is more important and will be less controversial than
the naming system. Thus it would seem useful to edge toward some agreement on
a classification system and then follow with discussion of a naming system.

We have proposed both a classification system and a naming system here and are
hopeful that discussion within the community over time will enable us to develop a
system that enough of us feel comfortable with to improve communications amongst
us.

Appendix A: Alternate Names and Acronyms for Stochastic Control Methods

New Previous

Handcrafted Feedback Rule (HF) Handcrafted Feedback Rule (HCFR)
Open Loop (OL) Quadratic Linear Problem (QLP)
Optimal Feedback (OF) Certainty Equivalence (CE)
Expected Optimal Feedback (EOF) Open Loop Feedback (OLF), Passive Learning

(OLF)
Expected Optimal Feedback with

Time-varying Parameters and
Policies-to-Parameters (Lucas) Effects
(EOFwTL)

Open Loop Feedback with Insight (OLIN)

Dual Control (DC) Active Learning (DUAL), Adaptive Control (DUAL)

Acknowledgments

We are grateful to Gregory Chow, Ray Fair, Ric Herbert, Ruben Mercado, Berc
Rustem, Robert Tetlow, Peter Tinsley, Marco Tucci, Stephen Turnovsky, Peter von
zur Muehlen and Volker Wieland for comments on earlier drafts of this paper.

Notes

1Most of the papers we refer to here are those that influenced our own intellectual development with
dynamic quadratic linear models. For an alternative line of development begin with Tinsley (1971)
and work backward in the references to papers on optimal dynamic decisions rules associated with
quadratic criteria and cost of adjustment. A more recent paper in this research line is Sargent (1978).

2Also, this paper is limited to models in which uncertain parameters are treated as continuous
rather than discrete. Thus we have not tried to cover the growing literature on economic models with
Markov switching on uncertain parameter estimates.

3These equations are called the “state equations” in the control engineering literature.
4Also there is a kind of half-way house between handcrafted rules and optimal feedback rules in

which there is optimization but using only a subset of the state variables. Such rules might be called
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“restricted optimal feedback rules”. For discussion of this class of rules see Levine and Curry (1987),
Tetlow and von zur Muehlen (2001c) and Onatski and Stock (2002).

5See also Kydland and Prescott (1982).
6Peter von zur Muehlen has suggested a fourth option for the attribute of stochastic elements,

namely model uncertainty, which is Knightian so that no probability distribution can be provided.
Peter divides this option into two subclasses of structured and unstructured model uncertainty. In
the first the analyst thinks of bounded perturbations around some central values and in the second
the analyst thinks of the model as being in some bounded ball. Examples of the first are von zur
Muehlen (1982) and Giannoni (2002) and examples of the second are Rustem (1992), Onatski and
Stock (2002), Tetlow and von zur Muehlen (2001a) and Hansen and Sargent (2001). For more about
this topic see the discussion of robust control later in the paper.

7As discussed in an earlier footnote it might be useful to have an intermediate solution class
between handcrafted and optimal feedback that is called “restricted optimal feedback” in which the
optimization procedure does not make use of the full set of state variables, but rather a restricted set
in order to have simple feedback rules. An example in addition to those mentioned above is Soderlind
(1999).

8See Kendrick (1981, 2002) Appendix B for a discussion of the method of computing the expected
values of matrix products.

9Also, for a comparison of old and new names for the solution methods see Appendix A.
10The Duali software also includes variants of several of these models with parameter uncertainty,

viz MacRae (1972) and Mercado and Kendrick (1999).
11For a later work by Chow on Lagrangian methods for solving dynamic models see Chow (1997).
12For example see Eqs. (10-61) and (10-68) in Kendrick (2002)
13For a more recent review of a number of these papers see Soderlind (1999).
14Ric Herbert remarks that in much of the control engineering literature this equation is called the

“output” equation. He points out that in large models containing many leads or lags this equation
may be particularly useful to pick out variables of interest such as consumption in the current period.
Also, if the model contains control variables that affect state variables in the same period, it is useful
to include the control variables in the output equation.
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