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Abstract. Genome science is rapidly shifting from research labs and biobanks to the clinical setting.
The resulting genomic big data, or large-scale networked geneticmaterial, is a disruptive technology. On
one hand, clinical genomics advances life-saving innovation through precision medicine. On the other,
the digital databases they are built upon raise new concerns for informational risk to personal privacy.
While a traditional biomedical approach focuses on risks and benefits to the human body, our socio-
technical analysis sheds lights on the emerging terrain of the human body as digital code. In this paper,
we analyze emerging issues related to clinical genomics based on a 3-year collaborative clinical research
project to develop a genomic test for AcuteMyeloid Leukemia (AML) cancer in British Columbia (BC),
the first of its kind in Canada. We found the most pressing issues for genomic researchers and clinicians
were challenges around informed consent, return of results and return of incidental findings. In light of
technological advances and the emerging context of networked privacy, we outline several recommen-
dations for best practices in diffusing clinical genomics to the healthcare system.
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1. Introduction

Genome science is rapidly shifting from research labs and biobanks to the clinical
setting. Over the past decade, information technologies such as whole-genome
sequencing (WGS) and digital genome databases have transformed the complex
process of recording an individual’s entire genetic code from a decade-long, billion-
dollar, global endeavor, to a week-long, $1000 service (Burn-Murdoch 2012). These
advances have sparked debate over the benefits and drawbacks of a future healthcare
system based on precision medicine, or the practice of using genetic information and
other biological features to tailor healthcare to individual patients (Bush and Moore
2012). For example, a woman with incurable colorectal cancer in British Columbia
(BC), Canada, recently received treatment through the BC Cancer Agency’s
Personalized Onco-Genomics Program (POG). After genomic sequencing, they
administered a drug normally used to treat high blood pressure, which reduced her
advanced condition to undetectable in just 5 weeks (CTV 2015). Even her oncolo-
gist, Dr. Howard Lim, was surprised with the results: BTo be quite honest I did not
anticipate the kind of response that she would get, but this is what POG is
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about—trying to find surprises.^ This is a prime example of how genomic big data,
or large-scale, networked analysis of patient genetic material, is fueling life-saving
medical innovation. At the same time, clinical genomics also produces an abundance
of individual DNA information to be managed (Caulfield et al. 2010; Wright et al.
2011; PCSB 2012, 2013). As patients’ DNA are translated into petabytes of digital
data, our shifting socio-technical landscape is also characterized by informational
risks to privacy (Frizzo-Barker and Chow-White 2014). While a traditional biomed-
ical approach focuses on risks and benefits to the human body, our analysis sheds
lights on the emerging terrain of the human body as digital code.

Advanced information technologies form the bedrock of data-sensitive eScience
projects such as genomics. They enable scientists to experiment with reusing exper-
imental information to overcome barriers to knowledge exchange, and connect
different databases to facilitate data sharing and publication (Zhao et. al. 2011). Yet
genomic big data presents new challenges to both individuals and families. For
instance, genetic discrimination may prevent an individual from accessing insurance
coverage or employment opportunities. Beyond this risk, a human genome is not
only a unique identifier of an individual but a network identifier of familial relations
and hereditary diseases—information that may be more easily identified, accessed
and replicated via digital databases (Allyse et. al. 2012; Lunshof et. al. 2008).
Therefore within our discussion of best practices for clinical genomics, we must
now consider the right to know, and the right not to know as elements of privacy.
Critical research on the social implications of genomic big data is both timely and
important. Genomic datafication, governance of digital health information, and
networked privacy must be addressed in the earliest stages in order for clinical
genomics to be adopted into healthcare systems with socially and ethically sustain-
able practices.

In this paper, we analyze emerging socio-technical issues related to clinical
genomics within the Canadian context. The authors of this article have recently
completed a 3-year collaborative clinical research project to develop a genomic test
for Acute Myeloid Leukemia (AML) cancer. It is potentially the first molecular test
in Canada and a key moment in the translation of genomics from the research lab to
the hospital bedside. Over a 3 year period, we conducted documentary and policy
analysis, as well as interviews with active genome researchers, clinicians and
decision-makers in the Vancouver, BC, area to examine opportunities, challenges,
and risks to different stakeholders in clinical genomics. We also worked side by side
with genome scientists, bioinformaticians, clinicians, and health economists. In our
research and collaborations, we identified key issues regarding privacy and manage-
ment of sensitive genomic information related to informed consent, return of results
and incidental findings at the point of care. We found the adoption of genome
technologies presented privacy challenges for both clinicians and patients. In the
policy environment, we found that although many regulations and guidelines exist,
the state of best practices is uncertain. Our findings reveal a number of socio-
technical problems with the shaping of genomic technologies in the clinical setting.
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Our recommendations are intended to inform researchers, clinicians, and policy and
decision-makers in government and the health care system.

One of the central concerns of Computer-Supported Cooperative Work (CSCW)
is to close the social-technical gap between social problems and technical systems
(Ackerman 2000). As genomics diffuses from the bench to the bedside, bridging this
gap will be of chief importance in order to avoid Bthe last mile problem,^ when new
technologies with enormous investment backing fail to integrate into society in a
widespread, useful way (Blumenthal-Barby et al. 2015). Scientists and
bioinformaticians can now conduct large scale genomic data analysis, however there
is a lack of consensus on the social implications of predictive analytics, or guidelines
on how to apply results clinically or procedurally.

In many ways, genomic research represents a quintessential CSCW project. The
mapping of the first human genome, spanning from 1990 to 2003, set the precedent
for genomic research as a collaborative field of scientific research involving a global
group of scientists, organizations, and funding (Collins et al. 2003). This endeavor
involved participants from disparate geographical locations and disciplinary fields,
using technological infrastructures to support communication and painstakingly
large-scale data analysis, in order to produce results that could not have been
otherwise realized. The significance of this research model reflected the ethos of
the human genome project itself: sharing such important data via Internet databases
made it widely accessible for the greater good of society.

Since the late 1990s, the rise of the Internet and related information technologies
amplified the networked potential for genomic research to reach a wider sphere of
medical innovation. CSCW scholars have developed key concepts that help to
inform our analysis of genomic research, including Bcontext-based metadata^
(Schuurman and Balka 2008, p. 83), Bcyberinfrastructures^ (Bietz et al. 2010, p.
245), and Bmetagenomics,^ which highlights the social aspect of databases as
Bcontested sites around which particular research questions are supported or
disenfranchised through the inclusion or exclusion of necessary metadata^ (Jirotka
et al. 2013, p. 688).

In addition, scholars of communication, science and technology studies (STS) and
critical race studies have traced the coevolution of biomedicine and information
technologies for over 30 years. Scholars of communication and STS have analyzed
the socio-cultural impacts of mediated information, information technologies, and
the network society (McLuhan 1964; Williams 1975; Castells 2000; Bowker and
Star 2000; Boczkowski and Lievrouw 2008). And over the past decade, scholars of
biotechnology, race and politics have explored key tensions at the intersection of this
rapidly evolving field (Thacker 2004, 2005; Condit et al. 2004; Condit 2007). Chow-
White and Garcia-Sancho (2012) conceptualized DNA databases as Bspaces of
convergence for computing and biology^ that have evolved in both form and
function over the past 50 years, setting the stage for today’s genomic research in
which Bthe biological and computational are currently indivisible^ (p. 128). The
convergence between biology and computing transformed genomics from wet lab
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science into a big data project. The emergence of clinical genomics is another
transformative moment.

Kitchin (2014) highlights the need for empirical studies of data assemblages to
provide Bholistic accounts of how they are constituted and operate in practice^
(p.190). Our paper contributes to this gap in the literature through a socio-technical,
ethnographic study of front-line stakeholders bridging genomic research and medi-
cine. We begin by exploring some of the benefits, challenges and risks that arise in
the space of convergence where personal genomes become digital big data. Next we
outline the concept of networked privacy and its implications for researchers,
healthcare providers, policy makers, and the general public. We then describe the
methodology for our empirical study of genomic researchers, clinicians and deci-
sion-makers. Finally, we report our findings and recommendations for best practices
in diffusing clinical genomics to the healthcare system. While our study is based in
the Canadian context, it has implications for researchers, clinicians and policy
makers globally.

2. Genomic big data

Both technically and culturally, genomics is big data. A single human genome is a
complex formation made up of six billion bases of information. The file size of a
single genome can range from about 700 MB of raw data to 200GB of annotated
variant and metadata. Genomic sequencing is no longer a process built on test tubes
and pipettes, but on information technologies and databases. The world’s largest
genomics research institute, China-based BGI, sequences the equivalent of 2000
human genomes per day, limited only by the fact that Bthe ability to determine DNA
sequences is starting to outrun the ability of researchers to store, transmit and
especially to analyze the data^ (Pollack 2011).

The most popular definition of big data focuses on these technical aspects: the
immense volume, variety, and velocity of available data (IBM 2012). Kitchin (2014)
expands on the 3 Vs, identifying other features of big data: exhaustive data sets
(n=all), fine grained resolution, relational in nature, flexibility and scalability. Others
highlight that big data is all about predictions, connections, and relationships
amongst vast data sets (Mayer-Schönberger and Cukier 2013). These approaches
to defining the phenomenon are helpful in identifying its material capacities.
However, greater volumes, variety and velocity of data are not necessarily revolu-
tionary (Strasser 2012). Rather, we argue that beyond bigger, better, networked data,
today’s big data is defined by its novel applications.

Big data represents a diffusion of data-driven approaches to decision-making into
new industries and enterprises and an expansion of uses in data-friendly environ-
ments. For example of the former, actors in professional sports use new analytical
approaches and collect new forms of data to understand player valuation and team
dynamics. The development of genomics for clinical practice is an example of the
latter. Big data also represents a cultural shift where actors gather around databases
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and form new types of collaborations. Chow-White and Garcia-Sancho (2012) show
how early big data ventures, such as genomics, brought together different groups in
the academy, such as molecular biologists and computer scientists, which had not
traditionally worked together. This type of collaboration became a new scientific
field, with new methodological approaches that influenced the development of both
disciplines.

The mapping of the first human genome, spanning from 1990 to 2003, set
several important precedents. First, it represented a global, collaborative field of
big data research involving a global group of scientists, organizations, and
funding (Collins et. al. 2003). Second, it marked a victory for the open-
access approach of the multidisciplinary Human Genome Project (HGP), which
trumped the simultaneous attempts of Celera, a private company, to map and
patent the first human genome (Marris 2005). The significance of this collab-
orative, open access research model reflected the ethos of the HGP itself:
sharing such important data via Internet databases made it widely accessible
for the greater good of society. In the middle of the HGP, American and British
project scientists met in neutral Bermuda to discuss the progress of the project.
One of the main issues they raised was how to ensure genomic data would be
a public good rather than privately owned. They developed a set of principles
requiring all DNA sequence data to be copyright-free and released to open
access networks within 24 hours of generation, in stark contrast to traditional
scientific practices of releasing experimental data only after publication
(Contreras 2010). The resulting BBermuda Principles^ policy initiative shaped
contemporary open access scientific practices and the very concept of viewing
information as a global knowledge resource.

Kitchin (2014) points to some of the new uses and insights facilitated by big data
in his definition of data assemblages: Bamalgams of systems of thought, forms of
knowledge, finance, political economies, governmentalities and legalities, material-
ities and infrastructures, practices, organizations and institutions, subjectivities and
communities, places, andmarketplaces^ (p. xvi). This highlights the fact that big data
is not a single technology. Rather, it is a cluster of different information technologies
and techniques for finding patterns in large data sets, with social and cultural
ramifications. In light of this definition, we identify a weak spot in big data
approaches: they are useful in terms of what to analyze, but not why or how we
ought to go about it. The how acknowledges the challenges of data analysis, and the
why points to a larger range of social and ethical issues, before we focus on the what,
smallest and most crucial aspect of the data itself. As Bowker notes, Braw data is both
an oxymoron and a bad idea; to the contrary, data should be cookedwith care^ (2005,
p. 184). In communication terms, data are representations. They are Bcultural objects
that stand in for stimuli and mediate relations^ (Chow-White and Green 2013 p. 6).
Genomic data holds new social significance, not only because it represents an
individual’s unique DNA, but also because it can take on a tangible, material life
of its own as it enters the digital database. This is especially true for genomic data,
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which may be accessed, replicated, or analyzed in unforeseen ways with unknown
implications, especially with the rise of data mining techniques.

Data mining refers to the process of attempting to discover patterns and meanings
from large data sets, with the Internet being the most obvious example of such a
database (Manovich 2001). Data mining involves gathering Bdisparate types of
information from users and consumers—sometimes with the users’ knowledge,
sometimes without—and turn[ing] this information into analytical data points for
measurement, sorting, and classification to achieve different organizational and
institutional goals^ (Chow-White and Green 2013, p. 556). Medical researchers
and clinicians are eager to employ such information technologies for the purposes
of predictive analytics in genomics to aid in medical discovery, streamline policies
and programs, and evaluate critical data (Gordon and Pai 2012). For example, the
International HapMap Project traces genes associated with human disease, the 1000
Genomes Project aims to identify common genetic variants, and the $20 million
International Cancer Genome Consortium gathers comprehensive data on genomic,
transcriptnomic and epigenomic changes in 50 different tumor types (Gulland 2010).
Data is continually uploaded to these open access databases, which are accessible to
anyone with the ability to make sense of the information (HapMap 2015; ICGC
2015; 1000 Genomes 2015). In comparison, direct-to-consumer genetic testing
services such as 23andMe involve Google-backed databases closed to public access,
but have sparked their own controversy such as an FDA lawsuit over accuracy of test
results (Rukovets 2014).

Data can be seen as the life-blood of the scientific realm, and a perceived
advantage of eScience is precisely this Bcommons of information^ or Bdata
that can be easily accessed, reused and shared in collaborations across both
geographical and disciplinary boundaries^ (Jirotka et al. 2013, p. 671). Yet
however altruistic in design, open access genomic databases raise several
thorny questions. For example, where does responsibility for the stewardship
and governance of data ultimately lie? As we bargain for medical innovation,
how is personal privacy challenged? Although genomic data is intended for
research purposes, what happens if corporations access it for unintended
purposes? Scholars of CSCW and STS have shed light on the dynamic nature
of networks by studying infrastructure, which Brepresent complex sets of
relationships embedded in and constrained by other systems, making it im-
possible to predict perfectly in advance what the infrastructure will be or how
it will be used^ (Bietz et al. 2010 p. 246). Infrastructures evolve through use:
Bbecause it means different things locally, it is never changed from above.
Changes take time and negotiation, and adjustment with other aspects of the
systems are involved. Nobody is really in charge of infrastructure^ (Star 1999,
p. 382). These perspectives reinforce the importance of studying the social,
legal and communication-based elements necessary for genomics to effectively
and ethically diffuse into the healthcare setting. With this in mind, we turn to
look at networked privacy in clinical genomics.
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3. Networked privacy and informational risk

The general public has become more comfortable sharing highly personal informa-
tion online as the Internet has become increasingly enmeshed in everyday life over
the past decade. In the early 2000s we disguised our identities behind pseudonyms
and avatars and felt insecure about putting our credit card information online. Now
we give out our credits cards regularly and post our names and photos across all sorts
of social media platforms. Latour describes one of the effects of this social shift,
which further exposes our subjectivities to the realm of empirical inquiry: Bit is as if
the inner workings of private worlds have been pried open because their inputs and
outputs have become thoroughly traceable^ (2007, p. 2). More and more of our
personal data is accessible and can be downloaded, shared, analyzed and sorted. One
significant consequence of the pervasive nature of information and communication
technologies (ICTs) in contemporary society is that they have become part of an
invisible infrastructure of daily life that only becomes noticeable when it breaks
down (Boczkowski and Lievrouw 2008). Precisely because they are so embedded,
convenient and reliable, ICTs make our personal data more prone to invasions of
privacy in unforeseen ways.

Issues of privacy in clinical genomics may seem like a highly specialized area
affecting a small percentage of the population. However, privacy of health informa-
tion in the context of digital networks increasingly affects the vast majority of us who
use the Internet, whether or not we are aware of it. For example, a recent study of
over 80,000 health-related websites revealed that nine out of ten visits result in
personal health information being leaked to third parties, including online advertisers
and data brokers (Libert 2014). Why is this a problem? First, one’s health interests
and name may be linked and publicly identifiable. Second, many online databases
and algorithmic tools are designed to sort web users into groups such as Btarget^ and
Bwaste,^with serious ramifications in terms of insurability, employability and access
to public or retail services.

Bowker and Star (2000) have exposed the informational risks involved when
classification systems and algorithms are used as social tools for surveillance. In the
network society (Castells 2000), personal information becomes much more signifi-
cant. At times, having our personal preferences tracked can be experienced as a
benefit, such as when Amazon recommends a book. However, the downside to
tracking and sorting individuals by their data trails, is that certain people pass through
various borders and barriers in society with greater ease than others. Frequent flier
cards and customer loyalty cards are the visible tip of a personal information iceberg
(Bennett et al. 2014).

Information privacy, typically based on Bfair information practices,^ pertains to
Bcommunication control, that is, how far data subjects have a say over how their
personal data are collected, processed, and used,^ (Lyon 2005, p. 19). Both Lyon and
Fuchs (2013) argue that current legislation on privacy rights disproportionately favor
financial privacy of the elite, while exploiting personal privacy of the masses. These
advantages can go unnoticed by the average citizen because in Canada and the
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United States discourses of privacy have historically been defined by individuals’
rights, characterized by secrecy, anonymity, and solitude in personal matters
(Gavison 1980; Solove 2008). In contrast, countries such as Iceland have a well-
established communitarian approach to privacy and biotechnological innovation. In
1998, the Icelandic government partnered with deCode Genetics to map the genome
of the nation as part of a broad computerizedmedical database (Pálsson and Rabinow
2001). But, as open access genomic databases continue to develop globally, we are
forced to redefine traditional notions of privacy created in earlier techno-social
contexts, and consequently, address new informational risks. The reality is that in
today’s context of the network society, personal data is Bpublic by default, private by
effort^ (Boyd 2010). Rainie (2015) further clarifies that privacy is not a simple
binary—context matters, personal agency matters, and various trade-offs are increas-
ingly becoming part of the bargain of big data innovation.

The future of data is characterized by Bnetworked privacy,^ and it is therefore
important to shift toward Ba model that focuses on usage and interpretation. Who has
the ability—and the right—to interpret what data they think they see?^ (Boyd 2012,
p. 349). These new sensibilities will require a solid understanding of the Internet,
databases and the social shaping of technology (MacKenzie and Wajcman 1999).
Nissenbaum (2010) argues that social and contextual-relative information
norms can help guide our thinking about privacy in a networked society.
Early regulation on human research, based on the Tuskegee experiments of
the 1970s, focused mainly on protecting participants against physical and
psychological harm, and thus informational risk is only mentioned tangentially
(Hudson 2011). Informational risk refers to the economic and social conse-
quences involved in making one’s private data public, the impact of incidental
findings that may also affect one’s family members, and the long-term partic-
ipatory risks for research participants (Allyse et al. 2012).

As STS scholars have shown, when a new technology moves from a small group
of expert users into another context, in this case a population-wide health care system
with a broad set of stakeholders including patients and clinicians, new challenges
arise (Hackett 2008). For instance, the gold standard for privacy in health sciences
has traditionally been the de-identification of personal data and, with genomic data,
aggregation. However, advanced big data techniques of advanced algorithms and
database linkage challenge the security of this method of anonymization. In a key
study, Homer et al. (2008) used high-density single nucleotide polymorphism (SNP)
genotyping microarrays from a complex DNA mixture to correctly re-identify
individual identities, and to demonstrate privacy limits through simulation. The
implications of their findings show that de-anonymization of genetics data from a
database is possible by using simple allele frequencies or genotype counts. A similar
study was conducted by Israeli scientists which demonstrated that DNA evidence
can be fabricated for manipulating a crime scene or medical records (Pollack 2009).
Schadt et al. (2012) also released a study proving that it is possible to confirm the
identity of a study participant from public genetic data, if one already knows the
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person’s genetic makeup. In short, genome-wide association studies cannot
completely conceal identities of patients or subject participants.

The studies outlined above also demonstrate the fact that in the context of
genomics, it is nearly impossible to gain patient consent in the traditional sense,
since the potential uses of one’s data cannot be identified at the time of collection. For
instance, privacy concerns were recently raised over the UK’s 100,000 Genome
Project which is the first phase of the projected 50million Genome Project, a national
genomic database of all National Health Services patients in England and Wales
(Hockings and Coyne 2015). Like many open access databases, the project claims to
make anonymous clinical and genomic data available to academics, researchers, and
industry members, yet a Freedom of Information request to the Department of Health
clarified that in fact pseudonymized data would be available to third parties including
commercial entities.

Data breaches present another informational risk to the privacy of digital
genomic data. Since October 2009, health and business organizations have
reported 1142 large-scale data breaches to the U.S. Department of Health and
Human Services, affecting at least 500 people, and of those only seven cases
have resulted in fines (Wei et al. 2015). The US National Institute of General
Medical Sciences (NIGMS) reacted to a breach of their database by removing
the data from public view, but computational biologist Eric Schadt says such
measures do not constitute a real solution to the privacy issues at hand;
instead, Bwe should be up front with participants that we can’t protect their
privacy completely, and we should ensure that the most appropriate legislation
is in place to protect participants from being exploited in any way^ (Check
Hayden 2013). This is an increasing concern, especially as black markets for
medical data emerge (Pasquale 2015a).

4. Spaces of convergence

Genomics is a disruptive technology in the clinical work and healthcare setting. It
requires scientists and doctors to work together in a new space of convergence, not
just alongside one another but to co-produce results. This culture of collaboration
poses a challenge: while these groups share an epistemological background, they
differ in organizational culture and goals. For instance, the failure of a scientific
experiment may represent progress in the discovery process. Whereas the failure of
an oncologist’s prescribed treatment can result in the death of a patient. Genomics is a
new type of medical literacy that doctors and health workers are grappling to
understand and integrate into their work practices. A recent survey of 329 BC
physicians showed that despite believing genomic knowledge is of great importance,
67.8 % assessed their own knowledge of genomic technologies as poor (Friedman
2013). Genome scientists need to collaborate with doctors to understand what
information is useful and actionable. In this sense, the communication between the
groups is a critical technology.
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Since we included both researchers (non-physician) and clinical researchers (dual
role as researcher and physician) in our sample population, we captured the blurring
of this boundary as patient samples crossed between these jurisdictions. Our data
illustrated that this divide is very significant for collaboration. For example, a clinical
researcher may collaborate with a genomic scientist (researcher) thereby allowing the
researcher to analyze the patient samples collected for a clinical study. One genomic
researcher who works in a team with clinicians explained,

The separation between the clinic and the research, the church and the state, is an
uncomfortable space in which we have to operate. There are, I think, very blurry
lines that start to interfere with our recognition of what is what. And not everyone
agrees onwhat is the definition. So I have a debate with a surgeon colleague all the
time, [in which] I say, BYou know, what we are doing for research is not clinically
relevant,^ and I get a lot of feedback on that. (1027, researcher).

This clinician identifies the gap between the clinical setting and the research
setting as an Buncomfortable^ space, which illustrates the uncertainty in the space
of convergence between different institutional cultures. As Pool (1983) reminds us,
convergence is always pushing different organizational actors together while pro-
ducing a dynamic tension towards change. This uncertainty often arises when
determining what type of variation is valid and relevant for clinical practice. In
clinical genomics, for instance, the two camps work through an iterative feedback
process where colleagues co-construct the facts and meanings of research innova-
tions. Their interaction is not simply instrumental. They become inherently
interdependent.

5. Methodology

The goal of the AML project was to create a genome-based test for an acute form of
cancer, to understand the social and economic issues for deploying the test in a public
health system, and to develop strategies for addressing professional and social risks.
The funder, a non-profit publically supported research organization, mandated this
type of collaborative approach. We worked closely with a diverse project group to
identify and understand issues that connect the different sub-teams (clinical, geno-
mic, economic, communication). Our own team focused on understanding the
potential social and professional benefits, challenges, and risks for key stakeholders
in the diffusion and uptake of the new technology. We use the word Bpotential^
because genomic tests had not been used in the healthcare system in Canada at the
time. However, scholars and policy makers have been discussing issues such as
privacy for some time. We focused on the clinicians who would be the front line
users of the technology, healthcare decision makers at the local and provincial levels
who would enable or constrain its adoption, and the provincial privacy commissioner
who would be a key regulator of data and information management. We found a need
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to understand the role of the Internet, digital databases, and the social shaping of
information technologies in the operationalization of scientific discoveries in public
healthcare. The test is now in use and is the first of its kind in Canada.

We identified 98 active clinical genome researchers in the province of British
Columbia. We excluded those who work solely on animals, contacted the 67
remaining via email to request an interview, and ultimately interviewed 36 people.
In addition to this, we interviewed seven policy officials, for a total of 43 inter-
viewees. Over half of the interviewees (57 %) use whole genome sequencing in their
projects and all used genomics in their research and/or practice. We conducted semi-
structured interviews based on a series of questions we developed from the literature
and our project experiences with genome and clinical experts and tested during the
initial pilot interviews. We conducted the majority of the interviews face-to-face and
four interviews over the phone when a face-to-face situation was not possible.
Shortly after completing the interview, the researcher reviewed her notes and made
annotations for issues and items that could be addressed in subsequent interviews or
analysis. After transcribing the interviews verbatim, the interviewer checked the
transcripts against the recordings for accuracy. Finally, we assigned the interviewees
numbers in order to anonymize their identities when reporting their quotes.

We conducted a qualitative analysis of the interviews for expected and emergent
themes as well as generated descriptive statistics. Quantitative data analysis involved
turning words into numbers to understand general trends and inform qualitative
analysis. The process involved two individuals coding independently to ensure a
high level of intercoder reliability, which tested at over 90 %. A team of four
researchers developed content categories using an iterative process of reviewing
data and literature, which was subsequently tested and validated. When disagree-
ments could not be resolved, the coders consulted the principle investigator to
develop a consensus. The researcher then used a qualitative analysis software
program, NVivo, to code the interviews. The resultant themes were then presented
to our research team and project leader for further review and discussion. The most
pressing topics for analysis, as determined by the literature and the interviews,
included informed consent, return of research results, and incidental findings.

6. Findings

6.1. Managing privacy in informed consent

One of the most pressing challenges we found for clinical genomics revolves around
the process of gathering informed consent. As outlined above, the Internet plays a
significant role in clinical genomics as a benefit to the development of personalized
medicine, a risk to individual privacy, and a challenge to the management of patient
information in the healthcare system. Despite its central role in genomic medicine,
we found that most stakeholder discussions fail to address the role of the Internet and
information technologies with patients. In particular, we found a complete lack of
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direct references to the Internet within information for patients, including informed
consent documents and education manuals.

The traditional bioethical model for privacy of patients positions anonymization
and informed consent as two sides of the same coin. However, with clinical genomics
it is nearly impossible to outline and attain genuinely informed consent since health
data in open access databases may be used in numerous unforeseen ways. As
outlined above, these infrastructures represent a space of convergence – each time
data is uploaded, something new is created, and no person or process is in charge of
when or how this information may be accessed or used. As one researcher explained:
BWe usually have a very broad [consent] where we say we will use the material for
genomic research related to lung cancer, for example, because it's hard to predict
what information will come out of it in the future^ (1014, clinical researcher).
Another challenge we found is that the majority of interviewees felt that the forms
are too long and not written in accessible language that most research participants
understand. Yet participants, especially those with diseases they want researched and
treated, are eager to participate in potentially life-saving research, and genomics
represents an exciting new avenue: BPatients like technology so they like the idea that
they’re getting something new and cutting-edge^ (1004, researcher).

Patients with incurable diseases (by conventional treatment) may enter clinical
trials offering alternative or experimental treatments. Genomic profiling may be part
of these studies. One clinical researcher expressed how motivated patients could be
in these situations,

Because patients, as soon as they understand that we don’t know which drugs will
work for them, they are highly motivated to help us figure out which drugs might
work for them. And the problem of course is this information may or may not help
us. But this is the only way to figure that out. So our patients are highly motivated.
And so are clinicians because we all learn a tremendous amount. (1024, clinical
researcher)

Interviewees also expressed the over-hyping of genomics in the media and how
patients may misunderstand what the information can do for them. One researcher
working with clinicians remarks, BOh, nobody understands what it means. They get
the idea that these fancy machines read the DNA of cancer and these guys have a
fancy way to find the mistake,^ (1027, researcher).

The very idea of Bbiotechnology^ can be confusing to the general public as it
Boften encompasses existing, emerging and imaginary scientific techniques^
(Gerlach and Hamilton 2005, p. 80). We can see the lack of knowledge of informa-
tional risk in one study of patients with diabetes, in which participants were more
concerned with the privacy of their physical tissue samples entering biobanks than
with their digital health data entering an online registry, despite similarities in their
purposes and long-term uses (Gibson et al. 2008). The physical samples were seen as
more tangible, bearing more serious privacy implications, where the digital data was
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seen as more anonymous. One of our interviewees reported a similar example,
contrasting a patient’s contradictory perception of risk in sharing her health infor-
mation online:

I think right now we still have a lot of old fashion concepts of privacy and we're
trying to apply those same rules now and it may not work. There’s a case
now—say somebody has TB, a young person, and she didn’t want anyone to
know she had TB. So she wanted all the nurses to treat her [privately]. BDon’t treat
me at school, don’t show up, don't talk to me, you can hand me the drug and I’ll
sneak it in and nobody will see it.^ But then at same point she went on Facebook
and told everybody, BI have TB and am taking all these gross drugs.^ I was like,
people don’t really understand what privacy means. We really don’t understand
what should be private. And it’s changing so quickly that I think we’re caught in
two different worlds. (1011, researcher).

This case exemplifies the problem of digital dualism (Jurgenson 2012), treating
the online and offline worlds as discrete realms, when in fact information technolo-
gies are so pervasively enmeshed in contemporary society that this notion no longer
holds water. The online and offline spheres are complexly intertwined in continuous,
bi-directional feedback loops, and most web users remain unaware of the potential
ramifications. The hidden complexity of Internet algorithms can anesthetize the
public to informational risk. They can also mask exploitation by Bextend[ing] an
open invitation for quants or traders or managers to bully their way past gatekeepers,
like rating agencies, accountants, and regulators^ (Pasquale 2015a, p. 137).

Based on our findings, we developed recommendations for best practices on
managing privacy in terms of informed consent. Underlying each is the need for
increased transparency in the data collection process for patients, researchers and
practitioners. First, researchers should develop a proactive consent process that
stresses risks and benefits of digital genetic information. Hand in hand with this,
medical practitioners require a greater understanding of the digital pathways genomic
data may take. We found that even some of the top oncologists on the front lines of
genomic testing were not aware of which data may enter open access databases.
Second, the role of the Internet and digital information should be clearly emphasized
in the process of sharing, managing and storing of genetic data. This may seem like a
given nowadays, but among the dozens of consent documents we analyzed including
the one used in the AML project, none of them mentioned the Internet at all. Third,
consent forms should contain a clear disclaimer that privacy is not absolute. Details
of data release and the potential for re-identification of anonymized data should be
included. Fourth, consent forms should note that patients cannot always exercise the
choice to withdraw their data.While it is generally an option for research participants
to withdraw from clinical research, once genomic data is uploaded to a database in a
clinical trial, it cannot always be withdrawn. Finally, researchers, organizations and
companies ought to be transparent in the use of patients’ genetic information,
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whether it will be shared with another third party or where and for how long
biological and digital samples will be stored for research purposes.

In the AML project, we have argued that the frame of reference in patients’minds
when they consider their privacy is closer to Facebook, not biomedical history. This
is problematic, because Facebook’s privacy controls do not represent informed
consent. Rather, they are user agreements to gain access to the site, with nothing
preventing Facebook from reversing the original terms of agreement in place when a
user joined. Indeed, Facebook has done this on a number of occasions in the past.
Open access genomic databases represent a similar challenge to personal privacy
since its various future uses remain unknown. Scholars have proposed various
solutions to this. On a macro level, Kosseim et. al. suggest a data sharing model
for global genomic research based on international business networks that are
Bflexible, externally endorsed, multilateral arrangements, combined with an objec-
tive third-party assurance mechanism^ (2014, p. 430). On a meso level, Kaye (2012)
advocates for an e-governance system to complement existing legislation, and make
better use of available technologies to ensure compliance with ethical and legal
requirements. On a micro level, Pasquale (2015b) recommends that Bgenetic data
companies should set aside 10 to 20 % of revenues from data sales to compensate
victims of information breaches if they occur.^ In other words, genomic research
organizations and companies should be held responsible for the misuse of genetic
information against its participants.

6.2. Return of results and incidental findings

One of the major tensions we identified in the AML project was the right to know
versus the right not to know in terms of the return of results and incidental findings.
Incidental findings are discoveries of genomic conditions that may cause disease,
unrelated to the original clinical tests. The emerging consensus from the interview
data and the literature is to return results, including incidental findings, if they are
material, scientifically valid, and clinically actionable. In particular, we found that
specific reasons to return results to include: result indicates a change in treatment,
result answers clinical question, or result is asked for by the patient. The literature
suggests that whether a result is returned should be based on the ACCEmodel (CDC
2010), which states results should be evaluated on four criteria: 1) Analytic validity:
how accurately and reliably it measures the results; 2) Clinical validity: how consis-
tently and accurately the test can detect or predict outcomes; 3) Clinical utility: how
likely the result may significantly improve health or health related decisions made by
the participant; and 4) Ethical, legal, and social implications (ELSI) (Lévesque et al.
2011). However, this does not solve the problem of who decides whether the results
meet this criteria or how to actually return the results.

We found one of the major obstacles expressed by clinicians and researchers was a
lack of consensus of whether or how to return results. This is a significant issue to be
resolved as genomics shifts from the bench to the bedside. Researchers are not
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obligated to return any results to participants.Whereas doctors work under a different
ethical regime guided by the Hippocratic Oath that requires them to prioritize patient
care and act on any medical information that has a clinical action. The problem right
now is that there is very little genomic information that has clear and agreed-upon
clinical action. Somany decisions about the return of results are currently made on an
ad hoc basis which highlights the need for agreed-upon protocols in this new space.
In some cases, the Breturn of results^ and Bthe right to know^ was positive and
welcomed by patients. Some of our interviewees shared encouraging medical break-
throughs facilitated by genomic databases, especially in cases of rare or undiagnosed
conditions:

It’s important because families often feel like there’s nobody else in the world like
that—that their kid is just immensely weird. And finding a cause often means you
can find other affected patients and it’s pretty amazing. One of the conditions that
one of my graduate students found was the first case [of an extremely rare
condition]. She recognized the second case clinically and tested it and showed
the same thing. And a third case was recognized and referred to her. Those three
were published. She’s had about a half dozen other cases referred to her from all
over the world because she’s the only one who’s written anything about this. So
for those families, knowing that there are just 2 or 3 others around the world, they
have asked to be put in touch with each other. (1026, clinical researcher).

In other cases, returning incidental findings turned into an unwelcome situation
that reflects the Bright not to know^ position:

When I first started in medical genetics, a friend of mine who is now a retired
medical geneticist, had discovered in a family in Vancouver a particular allele of a
gene with devastating consequences. And he learned that the rest of the family
were in Michigan. This was 1966. So he flew to Michigan out of his own pocket,
to visit the family and explain what he’d found. Because of the genetics tree
certain members of the family there were carriers of that gene. They might want to
be tested to see what their status was. [Depending on your feelings], it might make
no difference if your future kids might have muscular dystrophy, or it might make
a big difference. And he got sued. He got sued for revealing information to them
that they didn’t want to know. (1022, researcher).

Researchers expressed clear reasons for not returning research results (including
incidental findings). Research involves investigating genomic questions that have yet
to be solved. Often data is aggregated and researchers are looking for trends, not
individual results. The consent document clarifies the use of data and returning
research results might not be ethically appropriate. A researcher may analyze a
sample for a specific mutation in a research study, but returning the mutation status
to the sample donor may be inappropriate since the result is not clinically validated or
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necessarily linked to a medical diagnosis. One exception seemed to be researchers
involved in population health who have access to anonymized genomic data to look
for trends in a group of samples. If they find a result that needs to be communicated to
the individual, there is a protocol in place to inform the individual’s physician. One
researcher explains,

We’re looking at the population and you’re basically looking for trends and then
as I pointed out we have those consents where there’s no consent to the patient, but
the approval enables us to re-link the patient if necessary. And there’s a process to
do the re-linking and that process is outside of my hands. That would go up to the
medical health officer, but I would clearly have the responsibility to highlight that
there is a finding that is suspicious. (1006, clinical researcher).

In contrast, clinical researchers navigate a very different ethical paradigm. As
physicians, they have an ethical responsibility to do what is best for the patient. The
genomic samples they use are de-identified for research purposes but can be re-linked
if necessary. This allows the possibility of returning research results and incidental
findings. One clinical researchers explains,

So all of our information is reversibly de-identified. It’s rendered anonymous, in a
reversible fashion. So there is always a master key, that allows us to reconnect any
data, proportion of the data set, with the individual from which it came because
that’s necessary in doing any kind of clinically connected work because [what]
gathers additional information about people with the passage of time that you may
need to relink to the information. (1002, clinical researcher).

Clinical researchers expressed three reasons in favor of returning research results.
First, if the result can change treatment for the patient it is imperative to communicate
the result. Second, if the result is part of the clinical question then it would naturally
be returned. Third, many clinicians indicated patients often ask for results and they
are either required to (by funder or consent agreements) or desire to fulfill the request.
Some highly knowledgeable patients ask for specific information, especially those
with rare diseases who have become advocates for themselves. The detail of result
given depends on the patient as described by one clinical researcher: BSo there’s
some patients who want to go through all the different permutations and there are
some that just don’t have that level of sophistication and they just want to know the
basics of what we came up with so we have a meeting about the results^ (1024,
clinical researcher).

At the start of the AML project in 2011, we found the discussion in the literature
and among our interviewees focused on the issues of whether or not to return results
and incidental findings: BThere’s not one consensus on how data should be explained
or discussed with a patient or how much or what to do with germline mutations and
all that. So it’s an ongoing discussion and we have a lot of discussion about it^ (1024,
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clinical researcher). Just a few years later as we concluded our data collection, the
conversation had notably shifted from whether or not to return the results, toward the
need for guidelines and processes to help determine which results and findings are
scientifically valid, clinically useful, and actionable. One clinical researcher dis-
cusses his thoughts on returning results:

Well again, if there’s a pipeline in place then yes we should. It’s my opinion that
we should. But that has to be done in an ethically sustainable manner. It has to be
done…it’s not up to me to decide, it’s up to the team to decide. There has to be
policy put into place for these types of things (1010, clinical researcher).

Based on our findings regarding the dilemma of return of results and incidental
findings, we recommended the development of a Bgreen-yellow-red^ light decision-
making matrix. BGreen^ class findings includes the results with both clinical utility
and scientific validity; and thus, it should be returned. BYellow^ results could have
scientific validity but no consensus on clinical utility. Therefore, clinical researchers
or medical practitioners should take this Byellow^ class result into discrete consid-
eration. BRed^ class results have no scientific validity nor clinical utility and should
not be returned. In addition, we put forth a recommendation to develop a multi-
stakeholder network and a multidisciplinary effort in British Columbia to address the
limitations of current healthcare and privacy policies, as well as the potential need for
new health information and data guidelines.

7. Conclusion

The expansion of genomic big data presents new challenges for medical practi-
tioners, researchers, policymakers and the public, as it introduces a disruptive new
type of personal information in the healthcare system. Both medical innovation and
personal privacy hang in the balance—not as opposing forces, but as equally
important factors to be addressed in the socio-technical gap of clinical genomics.
As technological systems, social requirements and medical advances collide in
spaces of convergence, solutions developed today will not be seen as adequate
tomorrow. We have outlined some of the informational risks to do with genomic
data above. In closing, we also highlight the risks tomedical innovation if sustainable
practices in genomic data sharing fail to develop. For example, Bbetween 2011 and
2013, a network of Canadian geneticists uncovered the precise molecular causes of
146 conditions, solving 55 % of their undiagnosed cases^ (Regalado 2015). But
success rates are now plateauing for more obscure cases, which require broader
systematic data sharing.

On first look, the informational risk associated with genomic big data is similar to
other types of personal information. Privacy is a major concern for handling any
sensitive medical data. Yet the information-sharing model of genomics has further-
reaching implications than traditional electronic health records. Researchers wanting
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to treat genomic data as a public good set up open access databases. This approach
facilitated genomic research globally and enabled one of the original goals of the
HGP specifically and academic and public researchers more generally of open access
genomics. More recently, however, researchers have identified some of the unfore-
seen risks for individuals because of open access databases due to technological
advances. Computers have become faster and smarter due to innovations by pro-
grammers in data mining and database linkage. Our research uncovered another
information risk issue, which merits future research. Scientists and medical practi-
tioners are working with data that is highly uncertain. In the translation process,
scientists and doctors are negotiating the validity of genomic variation. They collab-
orate to identify genomic variation, understand which ones are meaningful, and
which of those are actionable clinically and should be communicated to the patient.
This type of risk does not fit typical privacy or surveillance discussions. However, it
is of equal importance and may be more critical to the effective adoption of genomic
technologies hospitals and clinics.

Unresolved issues in the diffusion of clinical genomics include re-identification of
anonymized samples, determining effective privacy protection measures for down-
stream data, and creating effective processes of informed consent to allow scientists
and clinicians to realize the full potential of genomic data while still respecting
participants’ privacy and autonomy. Other challenges include the dissemination of
research results and incidental findings such as what to return, who should return,
who is liable, and whether results should be returned to family members. In light of
our findings in the AML project, we highlight the need for greater transparency with
patients, acknowledging the role of the Internet around informed consent. We also
recommend the development of a systematic Bgreen-yellow-red^ decision scheme to
guide the return of results and incidental findings. These steps will begin to address
the socio-technical gap of informational risk around clinical genomics, by acknowl-
edging the way networked privacy challenges the traditional biomedical approach.
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