
Supporting the Collaborative Appropriation
of an Open Software Ecosystem

Sebastian Draxler & Gunnar Stevens
University of Siegen, Hölderlinstrasse 3 57068 Siegen, Germany (E-mail: sebastian.draxler@uni-
siegen.de; E-mail: gunnar.stevens@uni-siegen.de)

Abstract. Since the beginning of CSCW there was an intense interest for research on workplace
design using tailorable applications and sharing customizations. However, in the meantime the
forms of production, distribution, configuration and appropriation of software have changed
fundamentally. In order to reflect these developments, we enlarge the topic of discussion beyond
customizing single applications, but focusing on how people design their workplaces making use of
software ecosystems. We contribute to understand the new phenomenon from within the users’
local context. By empirically studying the Eclipse software ecosystem and its appropriation, we
show the improved flexibility users achieve at designing their workplaces. Further the uncovered
practices demonstrate, why design strategies like mass-customization are a bad guiding principle as
they just focus on the individual user. In contrast we outline an alternative design methodology
based on existing CSCW approaches, but also envision where the workplace design in the age of
software ecosystems has to go beyond.

Key words: appropriation, CSCW, end user development, software eco-systems, tailoring,
workplace design, eclipse

1. Introduction

“How do users design their digital workplaces in an age of open, dynamically
evolving software ecosystems?”—this presents the overall guiding question in
this work.

In the past, the question of tailoring working environments was intensively
investigated by HCI as well as CSCW research (i.a.Mackay 1990; MacLean et
al. 1990; Mørch 1997; Kahler 2001; Lieberman et al. 2006). This is no wonder as
inappropriate designed workplaces are considered to interfere with work instead
of supporting it. Searching for reasons why supporting workplace design is so
complicated, Henderson and Kyng (1991) argued that the worlds’ complexity
itself makes it difficult for the designer to anticipate all that will eventually be of
importance in the users actual work situation. And even the best design can not
solve the problem once and for all, if it is inflexible. The strategy therefore must
be to design customizable applications that can be adapted within the use

Computer Supported Cooperative Work (2011) 20:403–448 © Springer 2011
DOI 10.1007/s10606-011-9148-9



situation in order to fit to the personal preferences as well as to the task at hand.
Early solutions did focus on the individual user only, but empirical studies
conducted in the CSCW community made aware of this issues’ collaborative
dimension.

Standing on the shoulder of this research, this work explores a paradigm
change in software development with regard to possible futures of the workplace
design at the shop floor. This paradigm change can be categorized by several
trends like the establishment of the Internet as the dominating infrastructure for
mass communication as well as the dissemination and marketing of digital goods;
the establishment of new business- and development-models that foster a gift
culture, encouraging users to share software with others; the establishment of
loosely coupled networks of manufacturers, semi-professionals, and hobbyists,
creating small-scale components which can be individually assembled by users.

Messerschmitt and Szyperski (2005) coined the term “software ecosystem” to
label this new paradigm. It is semantically related to concepts such as production
networks or network economies; however, it tries to integrate the economical and
the technological point of view. A Software ecosystem can be defined as a
network of related actors, interacting with a shared market (Vasilis et al. 2009).
These relationships are frequently underpinned by a common technological
platform or market and operate through the exchange of information, resources
and artifacts. Technologically, software ecosystems need new architectures to
integrate assemblies of coexisting and coevolving software in a deep and
seamless manner, to be perceived by the user as a unit solving the task at hand
(Bosch 2010).

This new paradigm has been anticipated to some extent by McIlroy’s (1968)
vision of component-based software development. As early as 1968, he saw
future application development as a plugging together of different components
bought on the free market. He envisaged the role of a general contractor, offering
application services similar to roles in the manufacturing industry; yet today this
task often becomes the responsibility of end users. Like many things in life the
new responsibility has a twofold character: while it introduces a new freedom to
create personal software portfolios, it also requires new competencies to keep an
overview over useful and trustworthy material available on the software
ecosystem and competencies to assemble them in a reliable way.

The discovery of the local appropriation practices and the change in the global
software development practices give reasons to take a closer look on the new
paradigm and how this is reflected in the users appropriation practices. Yet, there
is still a lack on empirical research on the situated practices, people employ to
manage and share personal software portfolios while coping with the complexity
of dynamically evolving software ecosystems. This work therefore attempts to
address this gap by studying Eclipse as one of the most vivid software
ecosystems today. Eclipse is based on an advanced software architecture where
‘everything is a plug-in’ (Gamma and Beck 2003). Build on this architecture

404 Sebastian Draxler and Gunnar Stevens



more than thousand plugins are available on the Internet, provided by a large
number of open source projects and commercial vendors.

Our research agenda for investigating into workplace design in the age of
software ecosystems is constituted by the following questions:
1. How is the coexistence and coevolution of software structured at the large

scale of software ecosystems?
2. Is there evidence that people make use of the new opportunities (including the

integration of coevolving software pieces—a work that was previously done
by designers)?

3. How is appropriation structured and what situations contextualize this work?
Contributing to the conceptual foundation of CSCW, we further use the

empirical findings as a sensitizing lens to adapt existing approaches to support the
appropriation work (Pipek 2005) in the local context. Keeping the advantages of
software ecosystems, but lowering the burden of using of it, we especially
address the following issues:
A. How can we support individual persons when selecting appropriate tools from

the ecosystems to design their workplaces?
B. How can we support collaborative appropriation practices?
C. How to foster the collaboration among the ecosystem in mediating the local

global context a better way?
Guided by our research topic this work is structured as follows: Section 2 gives

an introduction into the related research on workplace design and appropriation
work. Section 3 outlines the mixed method research approach we applied,
discussing the relation between the ecosystem analysis, the survey and
ethnographically oriented study in detail. Section 4 gives a brief introduction
into the Eclipse ecosystem, illustrating, how the Eclipse ecosystem functions as a
decentralized, open production network. This addresses our first research
question. Against this backdrop, Section 5 presents the findings of the survey,
contributing to the second research question. Section 6 presents the findings of
the in depth case study, answering the third question. Section 7 interprets the
empirical findings in terms of technological and organizational opportunities to
support the appropriation of software ecosystems. In Section 8 we give a
conclusion and we discuss the transferability of our findings in more detail.

2. Workplace design as “artful integration”

In this section we want to draw a rich picture of designing workplace at the shop
floor. The tour is guided by our primary research interest: workplace design in the
age of software ecosystems. Our tour starts with a Tayloristic view, where the
workers’ efforts to get a useful workplace are almost invisible. Studying the topic
from the different research threads in CSCW, we uncover more and more facets
of this phenomenon. These facets show the artfulness of situated workplace

405Supporting Collaborative Appropriation



design as integrating and managing the coevolution of diverse resources coming
from different contexts.

2.1. Tayloristic workplace design

In the field of Information Systems theoretic models about adoption of
technology in organizations have been suggested from a positivistic stance (e.g.
Fichman 2000; Venkatesh and Davis 2000). Empirically these models are
typically validated with the help of standardized surveys. In addition, there is a
growing literature on using a practice lens to study the appropriation of
technology in organizations (e.g. Orlikowski 2000; Boudreau and Robey 2005).
However, there are only few ethnographic studies that examine how workers deal
with the design of their workplaces in order to get their work done.

This lack of research might also be an outcome of the implicit assumption of a
Tayloristic view that workers should not design their workplaces themselves.
Following Taylor’s (1911) principles of Scientific Management this issue is in the
duty of the management and should rest on the expertise of system analysts.
Despite the fact that these principles rarely appear in pure form, Jirotka et al.
(1992) point to the fact that they

“permeated deeply into management philosophy and appear to form part of
the background assumptions of many of those who design computer systems
for organizations” (Jirotka et al. 1992).

With regard to the design of computerized workplaces we found such
permeation in the common standards for IT management like ITIL and CobiT
(van Bon et al. 2004). These standards describe a set of ‘best practices’ including
the provisioning of IT services and the maintenance and operation of IT
infrastructures. The provision and configuration of IT systems is thereby a part of
common IT services, which are carried out by service providers. The service
provider can be the internal IT department, or outsourced to an external partner.
The ITIL standard does not address the single user as the customer of an IT
service, but the organization as a whole. Therefore it is not surprising that the topic
of tailoring is not addressed within the ITIL standard (neither by end users
alone nor cooperatively with the service provider).

2.2. From taylorism to tailorability

A central demand of Participatory Design was the democratization of work;
giving the end user a voice in the workplace design (Ehn 1990). In the beginning
Participatory Design focused mainly on giving the end user a voice at the early
stages of software development projects. Methods like future workshops or
mock-up prototyping were used to support the mutual learning between designers
and users (Floyd et al. 1989). However, even if design is conducted in a

406 Sebastian Draxler and Gunnar Stevens



participatory manner it became clear that monolithic or too inflexible systems
cannot cope with the complexity and the dynamics of the world. The
democratization of work therefore should include the design of tailorable systems
(i.a. Henderson and Kyng 1991; Wulf 1994; Muller et al. 1997). Kahler (1995)
emphasized this as “from taylorism to tailorability” to characterize this new
workplace design paradigm.

Tailorability comes along with new challenges as anticipating the scope of
possible changes (Stevens et al. 2006); considering the variety of tailoring skills of an
heterogeneous group of users (MacLean et al. 1990); and bridging the gulf between
surface and deep customization (Bentley and Dourish 1995). Tailorable systems
should therefore follow a gentle slope of complexity allowing the user to use broader
tailoring features step-by-step (MacLean et al. 1990) and keep a reasonable trade-off
between ease-of-use and degree of freedom (Costabile et al. 2006).

Away for implementing stepwise increasing freedom and complexity is to provide
three levels of tailoring (Henderson and Kyng 1991; Mørch 1997). These levels can
be defined as follows (cf. Mørch 1997): customization (or parameterization) as
modifying attribute values by selecting among set of predefined configuration
options; integration (or composing) as linking together modular pieces of
functionality by script mechanisms (e.g. macros recorder) or by plugin mechanisms
(e.g. extension managers); and extension (or programming) as adding new
functionality by changing existing program code or develop new modules.

To demonstrate the technical feasibility of tailorable systems several systems
have been developed in research. Examples are OVAL (Malone et al. 1995),
Prospero (Dourish 1996), DODE (Fischer 1994) or FreEvolve (Wulf et al. 2008).
These design studies showed that systems could provide tailoring options at
different levels of complexity. However, most of them served only as research
prototypes that were never used in practice. Accordingly no ethnographic studies
exist about how end users use and tailor these systems in the wild.

2.3. Patterns of sharing customizable working environments

A large body of literature has considered tailoring to be an individual effort (cf.
Paetau 1991) and research on tailoring support therefore mainly focused on
personalization (i.a. Kobsa and Wahlster 1990; Oppermann 1994). This focus
shifted in reaction to empirical studies that uncovered the collaborative dimension
of tailoring (i.a. Mackay 1990; MacLean et al. 1990; Gantt and Nardi 1992; Wulf
1999; Kahler 2001). These studies raised awareness of the existence of sharing
habits and different types of users who are involved in these processes. To
categorize the different user types several similar classification schemes have
been developed, e.g. the one of Mackay (1990). Following her, we can
distinguish between: lead users of new technology as users who intensively
look into new software and create and share adaptations with others; translators
as less technical oriented users, who connect the lead users to ordinary users by

407Supporting Collaborative Appropriation



relying on the work of lead users and adapting this to the users needs; ordinary
users as people who do no adapt themselves but use adaptations of other persons.

The existence of different user types and their collaboration seems to be a
general phenomenon that is not limited to the organizational domain. In the
domestic domain, for example, Grinter et al. (2005) found that the party with the
biggest technical competence usually configures home IT for the others. In the
general domain of adopting individual products the classical Diffusion of
Innovation (DOI) also identified different types of users including innovators,
early adaptors, the majority, and the laggards. There are several similarities
between both classification schemes. However, there is also an interesting
difference: Mackay described lead users as creators of innovations within the
local context, while the Rogers described the innovators as adaptors of
innovation coming from the outside. Therefore they have a slightly different
function:

“[Most individuals do adopt new products] not on the basis of scientific
research by experts, but on the basis of the subjective evaluations of near
peers who have already adopted the innovation. These peers [typically
innovators and early adopters] serve as models whose behavior is imitated by
others in the social system.” (Rogers 2003).

In addition to the empirical research, several authors also exploited
opportunities to support collaborative tailoring adequately: Understanding group-
ware tailoring as a kind of collaborative design process in the small, Oberquelle
(1994) argued to support the stages from getting aware and discussing tailoring
needs over the evaluation possible solutions to the implementation of one
solution and the notification of affected users. Further, Kahler (2001) suggested
technical as well as organizational support, including: sharing of configurations
and tailored artifacts e.g. via email or built-in mechanisms, curating a repository
of tailored artifacts e.g. via a shared file system, enabling the exploration of
tailored artifacts in a sandbox, raising awareness of tailoring activities and
fostering a tailoring culture including the cooperation among colleagues, the
cooperation between users and local experts and the organizational recognition of
tailoring efforts.

2.4. From tailoring to appropriation research

In the last 10 years the term appropriation appears in CSCW research and since
then broadened our understanding about the ways how users give technology a
meaning and how they fit technology into the patterns of their everyday life (cf.
Silverstone and Haddon 1996; Dourish 2003; Pipek 2005; Balka and Wagner
2006; Stevens 2009). The appearance of the concept was encouraged by
phenomena of unanticipated use (Robinson 1993), the situated, cultural

408 Sebastian Draxler and Gunnar Stevens



production of meaning (du Gay et al. 1997), and the transformation of work
practice in the process of adopting and adapting technologies (Dourish 1996).

Etymologically, the term appropriation is rooted in the Latin word appropriare,
“to make one’s own”. Historically the theoretical concept can be traced back to
the Marxian/Hegelian evolutionary anthropology (cf. Stevens 2009). The central
idea of this anthropology is that man is constituted by labor as the self-realization
of man in nature through the appropriation of nature (cf. Márkus 1978; Röhr
1979). Appropriation, in this tradition, refers to the relation between the socio-
historically given world and human agency constituting a dialectic unity, where
the things we live with only exist within this relation. Appropriation presents an
open process of the situated maintenance and development of the relation and the
boundary between one’s own and the foreign. This process has a productive
achievement, but is a formative event as well. What a thing is depends therefore
on how it is used, and how it appears into human activity. In particular, things
itself can change as people change their mode of using it (Ruël 2002).

The salient point in the dialectic view is that giving things another form and
giving things another meaning are not two independent phenomena, but express
two facets of solving the challenge to use things constructively, incorporated into
one’s life for better or worse (Ollman 1971).

Appropriation work (Pipek 2005) as a dedicated activity becomes especially
relevant in breakdown situations. During these situations users can try to tailor
the features of system as well as explore the existing features in more detail
(Stevens 2009). The appropriation work is typically embedded in activities of
situated experimentation and explorative learning. It has typically the form of an
artful integration or bricolage “using ready-at-hand materials, combinations of
already existing pieces of technology—hardware, software and facilities […]—as
well as additional, mostly ‘off-the shelf’ ones” (Büscher et al. 2001).

A facet of Appropriation work is explorative learning. It is closely related (but
seldom discussed) to Twidale’s (2005) work on the informal, spontaneous
workplace help-giving among colleagues who learn to use computer applications
according to the local needs. He identified several dimensions to characterize
informal learning situations, including: the time, the location, the formality and
the topic of the situation. Drawing on the implications for design, Twidale (2000)
stressed that in addition to support individual learnability (e.g. by context help)
features to support collaborative learnability should also be included into the
application. In a similar vein, Pipek (2005) argues for appropriation support,
including features to share use experiences and to foster use discourses.

Appropriation research made another important topic visible: the cross-
application nature of the people’s work. The boundary of a system as intended
by designers is often not congruent with the one, perceived and needed by the
users when solving the task at hand. Hence, appropriation work is typically
accompanied by altering boundaries, re-assembling work materials, and re-
configuring organizational, technological as well as spatial relations (Balka and

409Supporting Collaborative Appropriation



Wagner 2006). Technology should therefore provide an outer-tailorability (Pipek
and Kahler 2006), that enables the selection and combination of technologies
coming from different sources.

Providing and managing the cross-application tailorability is also a serious
topic in the evolution of IT-infrastructures:

“Changes—independently of whether they are implemented by tailoring or by
evolving the software—can depend on and affect changes in other applications
of the IT-infrastructure and the interaction between applications. This requires
coordination between tailoring and development, and cooperation between the
persons responsible for tailoring and developing the different applications.
And this, in turn, requires a different set of competences from users and
developers.” (Eriksson and Dittrich 2009).

The artful integration of materials coming from different contexts should
therefore be studied from the background, how the coevolution of these materials
is organized at the large scale.

2.5. Managing the coevolution of artifacts within software ecosystems

The term software ecosystem refers to a new software production paradigm in
Software Engineering (Messerschmitt and Szyperski 2005). In the past,
development efforts of software companies were described rather static and
individual. Instead, the new paradigm emphasizes the dynamic character of a
network of multi agencies. The autonomous actors function as a unit and have to
interact with each other either directly or mediated e.g. through market processes.

The software ecosystem paradigm raises new challenges to be solved: the design
of software architectures that enable the deep and seamless integration of software
components (Bosch 2009; Bosch and Bosch-Sijtsema 2010a); methods to specify the
basic architectural structure that (implicitly) defines what is fixed and what is
adaptable or extendable (Dittrich et al. 2006); mechanisms to coordinate globally
distributed software development (Crowston et al. 2005; Bosch and Bosch-Sijtsema
2010b); dealing with the collaboration and competition at the same time (Henkel
2004; Jansen et al. 2009); and building and managing a software ecosystem around a
product including a community of external developers, domain experts and users
(Bosch and Bosch-Sijtsema 2010a).

Additionally, there is an increasing awareness that the active role of users has
to be considered more seriously. For example Bosch (2009) argues to provide
effective mechanism for facilitating mass customization. Yet the topic is still
under investigated. In particular, Software Engineering has to consider at a deeper
level that developing software will increasingly be mixed and interlaced with the
tailoring (Dittrich et al. 2006; Eriksson and Dittrich 2007; Dittrich et al. 2009).

Part of the design problem is the difficulty to anticipate changes for which to
provide (Dittrich et al. 2006) and—with regard to open software ecosystems—to

410 Sebastian Draxler and Gunnar Stevens



anticipate the participating actors. Another challenge to cope with the multi
agencies of software ecosystems is to align common goals with issues of
particular interest. The wickedness of “designing for change” cannot be solved in
advance, but is in an ongoing accomplishment that requires a continuous
communication between software engineers, local experts, and ordinary users
(Dittrich et al. 2006). Beyond an organizational tailoring culture, therefore, a
cross-boundary culture of participation is needed (Eriksson and Dittrich 2009;
Fischer 2009). In addition, Andersen and Mørch (2009) identified five interrelated
activities in the coevolution of software: adaptation of the product to a specific
customer, generalization of new release that is available to more than one
customer, improvement request articulated from the customers’ perspectives,
specialization created in-house to improve the products for their own internal
work, and tailoring made by end users for their purposes. These activities
constitute a system of mutual development and the role of tailoring activities has
to be understood from within that system: “Tailoring is better conceived of as
evolutionary design, in the sense that the local (customer) solution serves as a
design for the general (company) solution, assuming it is accepted” (Andersen
and Mørch 2009).

2.6. Local production of large-scale technologies

Another thread of research on the local production of large-scale technologies is
given by the studies on ‘infrastructuring’ (i.a. Bowers 1994; Star and Ruhleder
1994; Karasti et al. 2006; Pipek and Wulf 2009). In a narrow sense infrastructures
are large-scale technical systems that are deeply integrated into society. Examples
are the telephone system, the railroad system, or electricity. In a broader sense an
infrastructure also covers the norms, routines and practices by which the technical
system becomes deeply integrated into society. Dropping the idea that
infrastructures have an essential substrate, but asking instead when and how to
infrastructure, Star and Bowker (Star and Bowker 2006) focused on local
practices by which infrastructure becomes a salient, stable resource of action.
They call these situated activities of creating order ‘infrastructuring’.

Through these practices infrastructures are usually invisible and taken for
granted:

“Something that was once an object of development and design becomes sunk
into infrastructure over time.” (Star and Bowker 2006)

Only when routinized actions become inhibited (e.g. in reaction to a power
blackout) practices that were before taken for granted become visible and
improvisational recovery work becomes a dedicated activity.

Star and Ruhleder (2001) further explored infrastructures in their quality of
decentralized evolving technologies. They uncover a tension between local,
customized, intimate and flexible use on the one hand, and the need for global

411Supporting Collaborative Appropriation



standards and continuity on the other hand. This tension cannot be resolved once
and for all, since

“One person’s standard is in fact another one’s chaos” (Star and Ruhleder
2001).

Managing the field of tension of local/global and flexibility/standardization,
respectively is instead an ongoing accomplished that is manifested in the concrete
practices of infrastructuring.

From this stance, Star and Ruhleder (1994) have studied the local context of
using the Worm Community System (WCS), a collaborative system for biologists
to support sequencing of genetic structure. Similar to the appropriation studies,
they observed that getting the system up and running covers a variety of activities
that typically become invisible in a standardized description of technology
adoption as finding out about the system, installing it, and learning to use it.
Bowers (1994) described similar effects for the complexity of work to make a
network work. He visualized the unanticipated work that requires users to
integrate technical infrastructures into the local context. He notes that there is no
unique way to deal with this issue. The significant extra work is not always
recognized by others and can even be a reason for abandoning technologies or
certain courses of action.

The temporal scales of infrastructure and infrastructuring were further enriched by
the work of Karasti et al., who studied the data management within the NSF funded
LTER network on long term ecological research (Karasti et al. 2006; Karasti et al.
2010). The central goal of LTER is to promote synthesis and comparative long-term
studies across independent research sites. One strategy was to make it mandatory to
share the “raw” field data within 2 years of collection. In addition, a long-term
oriented information infrastructure was established, where data sharing, data and
meta-data standardization, curation and stewardship are necessary, ongoing activities
to maintain the long-term usefulness of data. This maintenance is a complex, socio-
technical endeavor. Further, Karasti et al. (2006) recognized that the infrastructure in
general targets towards a long life span, while the actual infrastructuring activities are
often dominated by a short-term perspective. This creates a field of tension between
short-term and long-term concerns people have to manage. Therefore, Karasti et al.
(2006) argued to supplement the spatial focus of Star and Ruhleder by a temporal
scope. According to this, an infrastructure occurs when the tension between local/
global and short-term/long-term is resolved, when here-and-now practices are
afforded by large-and-long scale technologies, which can then be used in a natural
and reliable ready-to-hand fashion.

2.7. Discussion

The users’ work to make things work is often invisible and recognized as part of
daily work. Further there are efforts in Tayloristic approaches that users should

412 Sebastian Draxler and Gunnar Stevens



not have the responsibility to design their workplaces. In contrast, because of the
situatedness of work as well as from the normative stance of work democrati-
zation there are good reasons to replace the Tayloristic workplace design with
tailorable workplace design.

Demonstrating the technical feasibility of radical tailorability, several research
prototypes have been built in CSCW. However, because of the experimental
character of these prototypes, we know very little about the usage of radically
tailorable working environments, in the wild. To cope with this problem, we have
to consult the research on customization practices of less sophisticated, but used-
in-daily-life applications. They enrich the picture demonstrating that tailoring is
not just an individual activity, but has a collaborative quality. The results were
enriched by the appropriation studies, which revealed the close entanglement
of designing and using workplaces; showing the embeddedness of tailoring in
the explorative learning of what an application provides. A similar picture is
drawn by the research on infrastructuring. This research thread highlighted
that artful integration has to manage a field of tension between the here-and-
now of the local context and the once-and-there of decentralized evolving
infrastructures. This view was complemented by research that understood
production and appropriation of technology not as separate spheres of
existence but rather as mutually constitutive of one another. Hence, we have
to consider the local practices within their function in the loosely coupled
system of mutual development.

Parallel to these threads of research (and partially enforced by them) there is an
ongoing trend from monolithic software applications to applications assembled
from multiple, coevolving resources of software ecosystems.

From the outlined research, we can make the educated guess that it will
become an emerging topic for CSCW to support the fluent and seamless meshing
of individual, cooperative and organizational practices (Schmidt 2000) of
designing workplaces by managing coevolving resources coming from global
software ecosystems within the local context.

3. Methodology

Since the 80ties there is a growing market of tools In the software industry
supporting the various tasks like compiling, debugging, code control, etc.
(Alan 1991; Chikofsky 1992). But using the diverse tools together was clumsy and
error-prone. Permeated by tayloristic thinking, in the 90ties the CASE
paradigm arose to solve the serious obstacle by the idea of integrated working
environments (Bergin 1993) combined with the automation and standardization
of work processes (McLure 1989). However, despite great efforts in design and
research the paradigm failed to realize the promises (Sommerville 2006) and did
not reach acceptance of the practitioners (Elshazly and Gover 1993; Juhani 1996;
Lending and Chervany 1998).

413Supporting Collaborative Appropriation



From a CSCW stance the failure of the CASE paradigm might not be as
surprising as it sounds like the story about the rise and fall of the Office
Automation program (Schmidt 2011). However, what makes the story interesting
is the change of the paradigm and the nowadays existing universal tool platforms
like Eclipse that are open for a growing tool market. In particular, Eclipse has
become one of the dominating working environments for software developers in
the last years.

In addition, we decided to investigate in Eclipse as kind of leading domain
(Von Hippel 1986) that provides favorable conditions to study the emerging
practices of designing workplaces by using the new opportunities of open
software ecosystems in the wild. Methodologically, we studied the appropriation
of the Eclipse ecosystem with the help of a mixed method approach (Kelle 2001):

To answer question #1 we took a closer look on the development rhythm as
well as coevolution mechanisms of the Eclipse ecosystem at the large scale. This
work is mainly based on studying existing literature and online documents about
Eclipse. Our knowledge was further shaped by personal experience and talks with
various Eclipse stakeholders (committers, participating companies, and represen-
tatives of the foundation).

To answer question #2 we conducted an online survey from February 2008
until April 2008. The online survey consisted of a questionnaire, which
additionally asked the participants to add certain Eclipse installation data. This
allowed us to analyze which plug-ins had been installed by the participants. The
study was announced in different online forums, mailing lists, at our project
partners and in two research institutes (however to protect the anonymity it was
not possible to determine which respond came from which context). We
addressed several different target groups of the Eclipse user community
(computer science students, software professionals, project leaders etc.). The
survey asked for information on the local Eclipse installation, which gave insights
into the features and plug-ins the users had installed. In addition we asked how
often they adapt their configuration, in what setting Eclipse is used and how the
people stay informed. 138 persons participated in the survey and 59 additionally
sent us their Eclipse installation data, which we analyzed in detail. Surprisingly,
we received 76 sets of Eclipse installation data for our analysis, because some
persons were using more than one installation. This also means that these users
own more than one Eclipse installation on their computer.

To answer question #3 we conducted an ethnographically oriented case study
about the appropriation of Eclipse in the organizational context of Alpha, a small
software company. Previous research on collaboration tailoring (Mackay 1990)
and technology adoption in general (Rogers 2003) mainly focused on patterns
observed in the social network. In contrast we addressed this topic from a slightly
different angle. We took the situatedness of appropriation work more serious and
therefore investigated in more detail into the diverse situations that constitute
appropriation work.

414 Sebastian Draxler and Gunnar Stevens



The study was part of a publicly funded research project on component-based
end user development. In the project, we cooperated with different software
companies in Germany—one of them being Alpha. We had a special and
trustworthy relationship to this company grounded on a close cooperation with a
software project, where Alpha took over the source code written by us. Because
of this, we visited Alpha and met the developers several times at their workplaces
to support their understanding of our source code. We discussed open topics
during visits, by telephone or email. One disadvantage of such a kind of
ethnographically informed study was our strong engagement during our site
visits. This left almost no time for field notes. However, this setting also had
certain advantages. We were e.g. not perceived as outsiders. Instead, a collegial
atmosphere among people who work together on a task characterized our
meetings. This personal relationship was very helpful to gain profound insights
into the specific context.

In addition, together with some master students who wrote their thesis on the
topic of Eclipse appropriation, we interviewed five persons from Alpha (the CEO,
one senior developer and three junior developers). The interviews were semi-
structured and took about one hour each. They covered questions about the role,
the tasks and the responsibility of the interviewees in the company. In addition,
we asked questions about their experience with Eclipse as well as their update
and learning strategies. And finally, we searched for ways to improve the
diffusion of tools and tool-expertise in the company.

All interviews were recorded, partly transcribed and analyzed together with field
notes. While interpreting the context, we made use of our personal knowledge that is
grounded on the close relationship with Alpha. We supplemented these by again
analyzing selected pieces of the empirical data in detail, by applying the principles of
the Objective Hermeneutics (Oevermann et al. 1987).

The structural ecosystem analysis, the online survey and the ethnographical
oriented investigation, triangulate the phenomena from alternate points of view.
The structural analysis outlines, how the ecosystem works at the large. The
survey visualizes from a bird’s-eye view some general patterns about users’
adaptation behaviors, yet without the concrete context. Hence, in order to
understand how people design their workplaces as part of their daily work, the
case study follows the advice of Livingston (1987) to move, metaphorically, the
camera to eye level.

To answer questions #A, #B and #C, we analyzed the case especially with
regard to identifying support opportunities. The aim is to envision possible
futures of designing digital workplaces grounded in the empirical material.
Methodologically, the link between our empirical studies and design considera-
tions is not a causal, but an inspirational one. Further, we try to uncover the links
between the Eclipse case and existing literature, in order to conclude by analogy,
how existing approaches could be adapted to the new possibilities given by
software ecosystems and modern software architectures.

415Supporting Collaborative Appropriation



We want to close this section with a general methodological remark: Like
Grounded Theory and Ethnomethodology, the Objective Hermeneutics is a
reconstruction-logical methodology (Bohnsack 2003). It is guided by interpreta-
tion principles such as the immanent, extensive and verbatim interpretation of
records that follow the sequential structure by applying the principle of austerity.
The aim is to reconstruct the practical accountable orderliness of the social world
as it is expressed in the concrete situation of practical action and practical
reasoning (Livingston 1987; Pilz 2007).

The literature on reconstruction-logic approaches shows a common agreement to

“remain sensitive to the data by being able to record events and detect
happenings without first having them filtered through and squared with pre-
existing hypothesizes and biases” (Glaser 1978).

However, there is a general methodological dispute about the role of previous
knowledge and the—in our opinion—too restricting advise that researchers
should not read related literature until the end of an inquiry (cf. Kelle 2005). Our
position in this regard is that we should not subsume the phenomena under
existing categories taken from somewhere else (e.g. form related literature). Yet, a
profound knowledge about related literature is often quite helpful to see through
existing categories.

To give an example: In an early stage of our research we reconstruct from our an
interview transcripts that one fundamental action problem need to solve for all
practical purposes is to manage the field of tension between having a stable working
environment, while keep up date with the technology developments at the large scale
(a detailed documentation of this analysis is published in Schwartz 2007). At that
time we did not know the work of Karasti et al. (2010), who in parallel also found
that balancing this tension is a serious issue of infrastructuring work. Yet, even if we
knew this work beforehand, our analysis would not have become less “grounded”. In
contrast, knowing Karasti et al.’s work might have helped us to get aware more
previously that we uncover a phenomenon that is of general interest for CSCW.

With regard to the collaborative dimension we studied, the situation was
slightly different. In this area we had a profound knowledge about the previous
research on collaborative tailoring and appropriation. In addition we had a partial
knowledge of Twidale’s studies on collaborative learning. This sensitized us to
take closer look on that topic. Yet, we would insist that the observed orderliness
of the concrete practices itself lead us to the categories outlined in Section 6.

4. Eclipse as a global ecosystem

The case of Eclipse is in several dimensions an example for a global software
ecosystem. Each of them is worth being studied for its own sake. With regard to our
research interest we concentrate on three relevant facets: the growth of a large-scale
ecosystems; the architectural strategies at the large to cope with the spatial tension

416 Sebastian Draxler and Gunnar Stevens



between flexibility and standardization; and the socio-organizational practices at the
large to cope with temporal tension between reliability and innovation.

4.1. Transformation of eclipse into a global ecosystem

Eclipse, with all its historical contingencies can be described as the transforma-
tion of internal solutions of the problem on how to integrate a heterogeneous
network of product development divisions into a global informational production
ecosystem (cf. O’Mahony et al. 2005), where a distributed development process
has to be coordinated (Grinter et al. 1999). IBM started the story of Eclipse in the
1990s as an answer to several internal and external challenges. In the mid-1990s,
IBM shifted its strategy to a software- and service-oriented enterprise. The IBM
Software group had grown rapidly, also by the fact that IBM had acquired a large
number of other software development companies. As a result, IBM’s software
portfolio was only loosely coordinated. This led to several problems of ‘inter-
usability’ (e.g. tools did not have a common ‘look and feel’,) and inter-operability
(e.g. it was difficult to exchange data among the applications). IBM was also
confronted with the problem that the applications had been independently developed
from the beginning and that components could not be shared in order to save costs.
As a result of this organizational context, the idea of Eclipse as a common integration
platform for several software tools was born. It was planned as a coordination
strategy (cf. Grinter et al. 1999) to manage the loosely coupled production and
product network inside the firm. Extensibility was a critical design decision: IBM
and its partners wanted to integrate different modules and applications seamlessly.

The next step in the history of Eclipse was related to IBM’s middleware strategies,
which consisted of three parts: the applications—built by ISVs, the application-
development tools (like IBM Visual Age, Sun’s NetBeans or MS Visual Studio) and
the server software (the cash cow in the strategy of IBM). In order to convince ISVs
to adopt Eclipse and to send out a clear signal not to lock out developers on a
proprietary platform, Eclipse was made an open-source product. An egalitarian
Eclipse Consortium (now the Eclipse Foundation) was founded. All members of the
consortium were to have equal decision rights:

“[W]e created this dual edged or bi-polar organization that on the one side
would play by Open Source rules of engagement to develop the technology and
of the other side was the eco-system side, or the commercialization of the
technology.” (O’Mahony et al. 2005).

Today, Eclipse is a multi-facetted brand with millions of users. Eclipse stands for
example for a platform technology (e.g. the whole Lotus product line is based on
Eclipse) that is available on multiple operating systems (including Mac, Windows,
Linux and others), for the second most used IDE today, for an Open-Source project,
for a standard-like consortium (organized in the Eclipse Foundation, supported by
big players like IBM, SAP, Oracle, etc.), for a software ecosystem (where ISVs built

417Supporting Collaborative Appropriation



more than 1000 different extensions and applications on top of the Eclipse platform)
and/or for an ecosystem (where an Open-Source community co-exists with
commercial players). In addition, commercial products like ondemand.yoxos.com
or poweredbypulse.com are specialized in maintaining repositories of 3 rd party
plug-ins for Eclipse and supporting organizations as well as end users to pick up
plug-ins from these repositories in a safe manner.

4.2. “Everything is a plug-in”: the technological fundament of an ecosystem

Eclipse is a living software ecosystem that faces the problem of a consistent
evolution of the heterogeneous network of producers and products. The strategy
Eclipse implements to provide consistency can mainly be studied from a structural
and process perspective.

On the structural level, Eclipse applies an ‘everything is a plug-in’ philosophy
(Beck and Gamma 2003) to address the requirements of flexible and extensible
infrastructure. This means that Eclipse is decomposed into hundreds of
components (so called plug-ins), which use features of other plug-ins themselves
and provide extension points to be used by other plug-ins. Through this
component architecture, an Eclipse installation is technically specified by the
acyclic dependency graph between the plug-ins of the installation.

In the first two versions, Eclipse was based on a proprietary component model,
but since version 3 it is based on the industry standard “OSGi”. OSGi defines a
sophisticated component model supporting independent loading mechanisms,
dependency resolving, versioning control, etc. This architecture is to protect
components from corruption by others and to address the integration problem at
the same time. In particular it manages situations where two components are used
by a third component (but in a different version).

The component networks do not only create dependency graphs in a technical
sense, but also in an organizational sense, i.e. between different actors in the
Eclipse ecosystem. This means the component architecture is a technical as well
as a social artifact. Therefore, the component architecture also affects the power
structure and negotiation processes inside the Eclipse ecosystem, as changes of
plug-ins included in the core distribution have a greater effect than changing
peripheral plug-ins, distributed by 3rd parties:

“You need someone who can be a strong advocate to protect the integrity
of the platform; you need someone who has the strength to say: ‘no we are
not going to put that in the platform if it is only for your tool.’”
(O’Mahony et al. 2005).

An interesting aspect from an End User Development research perspective is
how Beck and Gamma translate the Eclipse plug-in philosophy into a discourse
of empowerment that is based on the idea that designers should

418 Sebastian Draxler and Gunnar Stevens



“[g]ive the users an empowering computing experience and provide learning
environments as a path to greater power” (Beck and Gamma 2003).

Based on this idea, they argue that the plug-in concept constitutes a pyramid of
increasing commitments and rewards, in which the committers of the Eclipse
Foundation are at the top. In the middle of the pyramid are publisher and
enablers, who contribute third-party plug-ins to the Eclipse Ecosystem without
being part of the Eclipse core. End users are also part of the game, as they build
the bottom of the pyramid. They can influence the design of Eclipse directly by
configuring and extending their Eclipse installations. Since we take a CSCW and
HCI perspective on Eclipse, the view of these end-users at the bottom of the
pyramid, constitute our field for research.

4.3. The “Eclipse Way”: the rhythm of evolution

On the process level, Eclipse has to face the challenge of providing a stable and
consistent network of plug-ins and simultaneously innovating it. One of the major
problems in this process is that the further development of one piece in the global
plug-in network can lead to defects in other parts. The only secure method to
prevent this is to stop any changes, but this also hinders the innovation and
reaction to dynamics in the environment. Unlike this draconic solution, the
Eclipse strategy (sometimes called The Eclipse Way) is to create as much
transparency as possible, and to establish a generally accepted evolution rhythm,
so that independent production processes can be synchronized with each other.
The transparency helps Eclipse core projects as well as third parties to stay aware
of changes (e.g. through API or plug-in refactoring) and project progress. In
addition, the transparency allows users to give feedback at early stages to
influence further developments.

The heart of the Eclipse evolution is a specific development rhythm. It is
structured as follows: 12 months pass between every major Eclipse release. This
time is split into different phases: warm-up (1 month), several milestone builds
(9 months) and endgame (1–2 months). The warm-up and milestone phase are
innovation-oriented and allow for new features to be implemented. All milestone
goals are released in form of a release plan at the Eclipse foundations website, as
well as the resulting milestone builds themselves, which was announced with a
“news and noteworthy” description in order to foster community feedback. The
endgame phase is stabilization-oriented and consists of continuous switches
between integration, testing phases and bug fixing phases. In the endgame,
different release candidates are published (like 3.2RC6). Each release candidate is
more stable than its predecessor, ending in a new major release (like 3.2).

In addition, public nightly builds and integration builds are created. Their
target groups are users and developers who are eager to figure out the quality of
the integration of the components they use or develop and to detect integration

419Supporting Collaborative Appropriation



problems. Supporting the integration work on the producer network side is
important for global quality management.

4.4. Discussion

Summarizing the background of Eclipse, we can describe it as an evolving socio-
technical network, where technical dependencies between individual plug-ins are
negotiated between different actors in the environment of related socio-economic
dependencies. The Eclipse Foundation—which is a non-homogenous organiza-
tion, a political institution of different interest groups—presents the center of the
network. Dealing with the problem of how to organize the global evolution and
integration of an independently produced, but inter-dependently operating
network of products, Eclipse applies innovative professional strategies: on the
structural level, the plug-in concept helps to establish trust in the beneficial nature
of the existing technology among the different stakeholders in the network. On
the process level, the strict evolution rhythm with the transparency strategies
helps to establish similar trust in the beneficial nature of its future technology
among the different stakeholders in the network.

The analysis shows that the spatial and temporal dimensions outlined by
Karasti et al. (2010) are also relevant the software production. In particular, agree
with Karasti et al. that a structural analysis of large-scale ecosystems is only
complete, if it investigates both dimensions. The main difference between studies
like Bowers (1994), Star and Ruhleder (1994), or Pipek and Wulf (2009) and our
case, however, is that the software architecture of Eclipse is better prepared to
integrate resources coming form different actors (Beck and Gamma 2003) and the
existing Eclipse configuration manager provides some rudimentary mass-
customization features (Bosch 2009). With regard to the several feedback
processes between design and use, the mutual development concept (Andersen
and Mørch 2009) seems an interesting candidate. However, the concept should be
extended with regard to the multi-organizational character of Eclipse and the
institutionalized government structure of the Eclipse Foundation.

5. A Survey on eclipse appropriation

In this section we present the findings of the online survey. The major goal was to
find evidence of the work to make things work by managing coevolving
resources coming from different contexts (Bowers 1994; Balka and Wagner
2006). By its nature this artful integration is almost invisible and difficult to
quantity (Star and Ruhleder 1994; Dörner et al. 2008). Existing research mainly
relies on qualitative evidence for the existence of users’ integration work. In order
to quantify it, we use the tailoring at the level of integration (Mørch 1997) as a
proxy to measure users’ integration work. Of course, this proxy captures a small
fraction of the whole phenomenon, but it nevertheless is helpful to get an

420 Sebastian Draxler and Gunnar Stevens



impression. On the other hand, every feature in Eclipse is a plugin, and therefore
tailoring at the level of integration is mainly expressed by adapting Eclipse at the
level of plugins. Hence, in our survey we focus on plug-ins.

5.1. Adapting eclipse as a regular activity

As a first step, wewere interested in howmany plug-ins are used in practice. This should
help us to answer several questions (1) how complex is the appropriation task users are
confronted with in their efforts to manage the Eclipse ecosystem, (2) is the modification
of Eclipse installations a common practice and (3) what do Eclipse users usually modify.

We were surprised to find 2,428 different plug-ins within the collected sample
(the number rises to 4,944 when we take the different versions into account. This
means that on average each plug-in was installed in two different versions). The
average number was 326 plug-ins per installation.

Furthermore, we analyzed the so-called features of the captured Eclipse
installation data, as these are the basic elements of update management and
installation management in Eclipse.1 The concept of features reduces the complexity
of the plug-in network for the users. Instead of managing about 326 plug-ins, the user
only has to manage around 40 features (cf. Table 1). The standard deviation of
features σf=36.8 is an indicator for the diversity individualizing Eclipse.
Furthermore, we calculated the normalized average distance between two Eclipse
installations. The value of ūfeature=0.42 confirms the findings of other empirical data,
which stated that practically no Eclipse installation resembles another one.2

Regarding the integration of a heterogeneous network of producers, we tried to
find out, if Eclipse is used as an off-shelf product or if 3rd party plug-ins from
independent ISVs are integrated into Eclipse installations. We therefore focused
on features that are not delivered by the Eclipse foundation. One of these features
is the support for the Subversion source-code version control system for Eclipse,
which was by this time provided by two different independent open source
projects. At the time of the survey, none of these tools were integrated into
Eclipse by default; instead it is up to the user to integrate this extension into the
Eclipse installation if Subversion support is needed. In our sample 40% of the
Eclipse installations included Subversion plug-ins, which is a strong indicator
that the users make use of the global market of Eclipse extensions.

Table 1. Amount of plug-ins found in Eclipse installations (with n=76 Eclipse installations).

Overall number of features (no versions counted) 418
Overall number of features found (version sensitive) 865
Min. number of features in an Eclipse installation 3
Max. number of features in an Eclipse installation 196
Average number of features per Eclipse installation 42
Standard deviation of features per Eclipse installation 36.8

421Supporting Collaborative Appropriation



In order to learn how the evolution of Eclipse is reflected in the installation data,
we took a closer look at the version number of the core feature org.eclipse.platform
(which is part of every Eclipse installation). In our data, we found 11 different
versions. 60 installations are of the 3.3.X release (published June 2007), 12 cases of
the 3.2.X release (published June 2006) and 3 cases of the 3.1.X release (published
June 2005). We did not find an installation based on one of the Eclipse 3.4 milestone
builds, released a few weeks before the survey (which we expected after our
workplace study). Within the range of 3.3.X releases, 36 cases were not older than
2 months. On average, a version in use is approximately half a year old.

In addition the online survey asks several questions on the practices to integrate
the global plug-in network into the local context. In a first step, we were interested
whether the adaptation of Eclipse is a common and regularly practice. Therefore we
asked: “How often do you adapt your Eclipse (installation and update of plug-ins, or
configuration settings)?”. Almost all participants (92.66%) declared they would
adapt their installation to their needs (7.34% never, 14.71% right after the
installation, 77.21% sometimes, 0.74% daily). This result corresponds with the
analysis of the installation data. In addition, it shows that adapting the working
environment is not only a singular, but in most cases a regular activity.

5.2. Local network of eclipse users

Wewere also interested in strategies that inform people about activities of the Eclipse
ecosystem, the role of collaboration and installation sharing practices. In particular,
we were interested in seeing whether a local network of Eclipse users exists.
Therefore, we asked: “How many of colleagues of you also use Eclipse?” The
majority (71.32%) explained that in local environments also other persons use
Eclipse (only 4.41% say no other person uses Eclipse, 24.27% give no answer to that
question). This confirmed our workplace observation of existing local social
networks of Eclipse.

5.3. Getting tools and tool information

We also asked: “How do you inform yourself about new plug-ins?” The most
frequent answer was the Internet with 78.48%, colleagues were mentioned by
54.43%, 21.52% use magazines and 6.33% use special online plug-in market-
places (multiple answers were possible). This demonstrates that the Internet as a
global resource is the most used source for information, but also it demonstrates
that local social networks play an important role.

The question “Do you have ever received plug-ins from colleagues?” also
addresses the aspect of collaboration, but directly focuses on the diffusion of
plug-ins. The answers also indicate that local social networks play an important
role in the appropriation of the global network of plug-ins (65.44% of the
participants stated ‘yes’, 17.65% stated never and 16.91% gave no answer).

422 Sebastian Draxler and Gunnar Stevens



Furthermore we were interested in the channels used for the diffusion of plug-
ins, therefore we asked: “Which ways did you use to receive these plug-ins?”.
Figure 1 gives an overview of the answers (it was possible to choose multiple
answers). The answers demonstrate that there is not just one way used for plug-in
diffusion. However, 69.41% of the Eclipse user state that they receive plug-ins via
personal communication and 32.94% say that in some cases they have used a file
copy strategy to get the plug-in on the desktop. Both answers are a indicators that
local networks also play an important role in the diffusion of plug-ins, although
this was not anticipated by Eclipse designers and although it is not well supported
by Eclipse.

The analysis of the online survey shows that the dynamics of the global Eclipse
evolution and the heterogeneity of the Eclipse plug-in universe are reflected at the
micro-level of Eclipse installation. It also demonstrates that local social networks
play an important role in the appropriation of global Eclipse network of loosely
coupled components.

5.4. Discussion

Eclipse is one of the most advanced technologies today. It’s architecture in
combination with a living software ecosystem enables users to design their
workplaces by assembling tools from different vendors. The survey gives
quantitative evidence that this not just as a theoretically given option. The given
answers as well as the returned installation details shows that almost every user
adapted his Eclipse configuration to his needs. This finding emphasizes the
significance of integration work mentioned in literature (Star and Ruhleder 1996;
Balka and Wagner 2006). Moreover, the survey demonstrated to what extend
adapting Eclipse became part of ordinary work activities and ordinary work
situations.

What ways did you use to receive these plug-ins?

miscellaneous

personal communication

URL to the plug-ins website

URL to the direct download

URL to the update site

copied the plug-ins by hand

0% 18% 35% 53% 70%

32,9%

55,3%

30,6%

31,8%

69,4%

2,4%

Figure 1. Channels used to receive plug-ins and plug-in information. The other way round
“Did you ever share plug-ins with colleagues?” and “Which way did you use to share these
plug-ins?” provide nearly identical pictures.

423Supporting Collaborative Appropriation



The survey also shows that colleagues are an important resource to get
information about plugins as well as plugins itself. The findings are in line with
the Diffusion of Innovation theory (Rogers 2003) as well as the research on
collaborative tailoring (Mackay 1990). However, neither Rogers nor Mackay
discuss that people share digital 3rd party goods. With regard to the observed
patterns, we should therefore have in mind Eclipse’ open source character that
legalizes this gift culture.

6. Appropriating eclipse in an organizational context

In this section, we present the findings of the in depth case study at the small
software development company Alpha. Our primary goal was to understand and
describe the structure of appropriation work that is carried out at the shop floor.
We expected to learn about, how people get aware of new tools, how they learn to
integrate them into their work places and how they learn to use these tools and
related methods.

Taken the situatedness of appropriation work seriously, we especially focus on
diverse situations that constitute appropriation work. The Table 2 presents a list of
diverse types of situations we found is. These situations were relevant for the
collaborative appropriation, yet we did not claim that this list was exhaustive by
any means. Before we discuss the diverse situation in detail, we start with a
general description of Alpha to help the reader to grasp the context of our results.

Table 2. List of situations that contextualized appropriation work.

Team meetings Institutionalized auditorium to discuss tools in the whole group. The
meetings are typically co-located and conducted regularly.

Shared infrastructure
breakdown

Work to fix problems of the commonly used IT-infrastructure. These
situations are not planned, but occur in reaction to an accidental event.
Typically, the effects are distributed and cover an assembly of tools and
IT systems.

Looking over the
shoulder

Observing new tools or tool usage by working together or by chance
encounters. Typically, these are ad-hoc peer-to-peer situations, where
the people are co-located. Usually they are embedded in actual work
situations.

Giving a jump start Joining a new team or project. In order to save the new person from
unnecessary preparation work on his own, whole working environments
are copied or information about the used tools is given. Typically these
peer-to-peer situations are embedded in work situations where people
are co-located.

Getting contextualized
help

A new task or problem during work drives a person to ask colleagues
that are for some reasons considered more experienced in this topic.
These are peer-to-peer, ad-hoc situations that occur embedded in work
situations. Mostly co-located.

424 Sebastian Draxler and Gunnar Stevens



6.1. Organizational context

Alpha is a small software company, which is quite typical for German software
industry. The company was founded 20 years ago as a spin off to commercialize
AlphaProduct, a web application that was developed during a research project.
The application was implemented by making use of the Python programming
language and was extended by several Java applications. Today, the web
application presents the main asset of the company. Alpha’s market strategy is
based on selling AlphaProduct licenses and creating customer-specific adapta-
tions. Furthermore, they are regularly involved in research projects, in which the
application is constantly extended by innovative features.

The company permanently employs about ten persons. In addition, there are a
small number of university students, working part time for the company. The
customer relations are mainly in the duty of the CEO, who is supported by
assistants that accomplish general administrative chores and office work. The
software development carried out at Alpha, deals with the maintenance and the
continuous enhancement of AlphaProduct. This work is mainly conducted by
eight software developers.

The development work at Alpha is organized as projects that can be
categorized as follows: The first type involves client projects that are carried
out to realize customizations or new features for a specific customer. Typically,
client projects have short durations. Usually, there are 2 or 3 developers involved,
depending on the complexity of the tasks. The second type covers projects that
realize innovative features, which are typically conducted as a part of funded
research projects. These projects are typically larger as for the amount of work,
are long running and are carried out with other partners.

In client projects, the CEO typically serves as the interface between the
costumer and the software developer. The CEO obtains the wishes and
requirements of the client and discusses them internally with the developers in
order to create an offer. At project start, the staffing depends on the actual
workload of the workers as well as on their general expertise, prior knowledge
and experience to work the job. The staffing of the project decides, to a large
extend, how the project is decomposed into individual work packages and how
work tasks are assigned. The work is coordinated mainly by communication. In
addition, also other mechanisms like implicit coordination by using a shared
repository are applied:

“….well, during my studies I have come to know eXtreme-programming to
manage things. Here, we set things up so that we can divide everything up into
sub-projects…we divide projects into sub-projects, that means into special
areas so that there will be a specialist for each area…and every specialist
works in his area of the project. […] The specialists do of course exchange
implementation ideas …and we have also introduced a common repository.”
(John, Junior Software Developer)

425Supporting Collaborative Appropriation



If possible, developers are assigned to certain tasks based on their
previous experience. This promotes the formation of knowledge niches,
meaning that the developers become specialists in one part of the application
(e.g. adapting the data layer, implementing the user interface or writing Java
applets). However, the overall rule in the company is that “whatever is
necessary has to be done” (Paul, Junior Software Developer). This can lead
to the situation that developers have to work on tasks, even if they are not
specialists for this. Through this, they also gain knowledge in other parts of
the application.

6.1.1. Laissez-faire management
Taylor (1911) argued that standardized tool equipment is needed for certain tasks
and that only the management will be able to determine this set of tools for the
best results. This basic assumption is still reflected by Information Systems
standards such as CobiT and ITIL (van Bon et al. 2004) as they make the tasks of
tool selection and provisioning the business of the management. Yet, at Alpha we
observed that every employee is allowed to freely choose his/her tools to work
with. As a result, the workplace installations of the developers are quite
heterogeneous. In particular, the management gives its blessing to this
autonomous working style:

“People that have been brought up with Unix and vi and Emacs and stuff, they
have a hard time dealing with it [Eclipse]. They’ve worked with it once in a
while but don’t really see its benefits for themselves. And feel more at home in
their environment. And I don’t tell people how to do their work as long as they
get it done.” (Peter, CEO)

We asked the CEO whether the heterogeneity of the workplace installations
does not increase the complexity of their working together. His position on this
subject was that the cooperation among the team members is reached not through
tools, but through discussions, working on the same source code and using the
organizational bug tracking system.

6.1.2. Dissemination of eclipse
This freedom or autonomy also affects the adoption of Eclipse. In the
company a camp of younger developers as well as the CEO adopted Eclipse,
while the older generation constituted of senior employees (about 40 years and
older), does not use Eclipse. The older generation was socialized by old-
fashioned Unix systems, using textual consoles rather than graphical user
interfaces and a set of mostly command line tools. They “grew up” with those
tools and workflows and feel more at home with their existing situation. From
their point of view, Eclipse has its merits, but is generally not perceived as a
beneficial tool:

426 Sebastian Draxler and Gunnar Stevens



“We once discussed it [the use of Eclipse]. Actually, the main point of
criticism is the slow operational time vs. that of a simple text editor…still
features are quite interesting. Especially the integrated version management.
Seeing how you don’t need an additional external tool … that has something
to it.” (Peter, CEO)

The young generation of employees is constituted of two students (about 20 to
25 years old) studying computer science at the local university. They work part
time at Alpha. Both are socialized with Windows and feel more at home in a
graphical user interface environment than in command line environments.

The first student works about 10 h per week at Alpha. Within the company, he
is employed in software development work. He calls himself the Java and Eclipse
expert. He has known Eclipse for about 8 to 9 years now (since Version 2.1) and
sees himself as an experienced user. The second student works about 2 days per
week at Alpha. His tasks are software developments with Python and Java. He
describes himself as a mature Eclipse user. Both know Eclipse from programming
courses at the university.

In addition to the younger developers as well as the CEO use Eclipse. The
CEO holds a degree in computer science and knows both the old and the new
tools. He has used Eclipse for 8 years and regularly joins software development
tasks. He did not portray himself as an expert or power user when it comes to
Eclipse, but he appreciates it as a toolbox capable of integrating quite different
tools, and offering a common look and behavior over the whole range of tools.

For newcomers who join the community of practice (Wenger 2007) at Alpha,
the laissez-faire management creates opportunities to bring new software
engineering methodologies and tools into the company. This especially holds
for Eclipse as their preferred working environment. In this case, they serve as
innovators, while old-timers could profit from their expertise. Such a case of
switched roles, regarding learning activities, was described by the CEO:

“Well, you know Paul recently downloaded and installed some files for editing
JavaScript files. It was from Aptana. There is this bundled Aptana studio
version and one that could be installed into Eclipse as individual plug-ins….
and since I needed it too, I’ve asked him about the plug-in version before
installing it. As it also looks so nice, but you know, he told me that it wasn’t
that good. […] So I downloaded the Aptana Studio…which is a good
alternative to it. Apart from that I don’t have that many special plug-ins
running.” (Peter, CEO)

6.2. Situations of collaborative appropriation

Throughout our study, we observed or found traces of appropriation work,
contextualized by situations. Analyzing these situations in addition to the

427Supporting Collaborative Appropriation



practices that had been carried out, helped us to understand the structure or
practices of appropriation work at Alpha. But furthermore this focus on
appropriation situations helped us to understand the constituting situational
context that renders certain observed practices useful or not.

In the following subsections, we present detailed information on these
situations of collaborative appropriation work.

6.2.1. Team meetings
One opportunity to share appropriation experiences with each other is the team
meeting that takes place once a month. In this meeting, all developers at Alpha
get together and discuss the current state of running projects and topics that
occurred during day-to-day work. Tools and their usage or management are not
regular topics. However, we found different incidents that the issue of tools
becomes important enough to be discussed during the meeting.

For example, the company is dependent on certain technologies like the
Python interpreter used by customers to run AlphaProduct. This forces Alpha
to take care of the development plan and release-rhythm of the Python project.
In particular, if the currently used interpreter version is going to be deprecated
in the near future and if one employee of Alpha gets to know about this, he
will make it a topic in a team meeting.

Another example would be to explore technological options in order to
realize emerging requirements like the integration of AJAX features into
AlphaProduct. Sometimes one of the developers is asked to carry out an
inquiry about tools and technologies on the market. If the results of the
investigation turn out to be interesting for the others, they are presented and
discussed during the meeting.

6.2.2. Shared infrastructure breakdowns
The separately used, but tightly interwoven tools and technologies, constitute a
shared infrastructure in an organization (Pipek 2005). This infrastructure evolves
in a decentralized manner through the situated activities of the people. In the case
of Alpha, the mentioned Python interpreter is part of the shared infrastructure.
Each employee should use the same interpreter when developing, testing and
debugging AlphaProduct to prevent incompatibilities at the customer’s site. Other
critical systems are the ones that are used by all developers like the bug tracking
system or the version control system.

In principle, modifications made on the shared infrastructure should be
coordinated in order to prevent breakdowns. However, because of hidden
dependencies, it is not always easy to judge what modifications could lead to a
breakdown situation. Therefore, activities to prevent breakdowns are not
coordinated beforehand, but in reaction to dealing with an occurred breakdown
situation (Pipek and Wulf 2009).

428 Sebastian Draxler and Gunnar Stevens



The chance of breakdowns is increased by the laissez-faire management, which
does not regulate the workplace design, but leaves it to the individual’s choice. In
the case of Alpha, we observed dealing with a breakdown that occurred during
the regular maintenance of the Subversion server, which is the version control
system used in the company. We recognized this when we visited Alpha and
someone told us that we can’t connect to their subversion system. We were told
that the responsible person updated the repository service software. Unfortunately,
this was incompatible with the clients in use and caused a breakdown for several
developers. Later, during an interview, we recognized that since everyone who
had noticed the problem asked the maintenance person, he was quick to search a
fix for the problem. He found that a certain version of the repository client
would enable his colleagues to work again and thus spread this information.
After the rest of the developers updated their clients, they could use the
repository again:

“then all the others installed it [the subversion client] and then it finally worked
again. You see, based on these problems, we started communicating.” (John,
Junior developer)

The shared infrastructure breakdown constraints the laissez-fair rule that the
workplace design lies within the individual’s authority. Moreover, the breakdown
was one of the sparse situations where the software developers adapted their
workplaces collectively.

6.2.3. Looking over the shoulder
One important type of informal situation of the collaborative appropriation that
we observed is what we call “over-the-shoulder appropriation”. We adopted this
term from Twidale’s (2005) concept of over the shoulder learning. Originally, the
concept describes forms of informal learning in organizations that happen in over-
the-shoulder situations. The case of Alpha, however, shows that the core concept
is suitable to describe certain forms of collaborative appropriation too.

When working together, it happened occasionally that one developer got aware
of a new tool or trick just by looking over his colleagues shoulder:

“If we now sit down on something and work on it together…we can borrow
from each other. Features like key combinations or if we see that someone uses
a plug-in we don’t know about yet.” (Peter, CEO)

In order to become aware of new things, experience will have to be shared.
Because of the shared context, situated and tacit knowledge could be used in the
over-the-shoulder setting to explain special features and demonstrate tricks of how to
use the tool. As demonstrated by Twidale (2005), one typically took over the role of
the teacher and one took over the role of the learner. However, as we have seen in the
example of the CEO who received advice from a newcomer, the roles were not
necessarily ascribed according to their status as a senior or junior developer. In

429Supporting Collaborative Appropriation



addition, the roles could also switch during the situation. An essential point is that the
appropriation effect emerged spontaneously from within the situation and was not
intended beforehand. We therefore speak about opportunity based appropriation,
which is fundamentally different from other forms of informal situations like asking
for help or jumpstarting, as we will describe below. This is not just an analytic
difference made by us as researchers, but also creates a difference in practice:

“You know it wasn’t like I actually went down there and had him show me his
(Eclipse] installations and stuff…Like only when we are working together in
front of his PC I say..hey man, this is a new icon. What’s that?” (Peter, CEO)

But over-the-shoulder situations are not only important for the dissemination of
tool expertise. They are also important for the dissemination of the tools (the
plug-ins as an artifact) themselves. Either in an over-the-shoulder situation or
later, as a reaction to the situation, tools were exchanged and integrated into the
personal working environment. However, the fact that the collaborative
appropriation is not intended does not mean that a person is aware of the
opportunity when sitting together with someone else:

“I am still curious to look over someone’s shoulder. You know, I peek
interestedly at what is now written there on the title bar…even if those are
totally unknown applications to me.” (Peter, CEO)

6.2.4. Giving a jump start
The work preparation is a typical situation to appropriate new tools. In opposite
to the ordinary flow of work where tools are ready-to-hand, in such situations the
tools and their installation become present-at-hand. We found a collaborative
form of this kind of appropriation situation in cases where someone new joins the
team. In such situations the members of the already existing team introduce the
new colleague to the current tasks, problems, infrastructure that is used, etc.
Additionally, the individual working styles are coordinated among the team
members. This covers issues as for applied code conventions, strategies for code
integration etc. but also for the installation of the workplace.

An innovative practice we found to cope with this challenge is that a teammember
gives a jump start to the newcomer. In other words, the newcomer receives all of the
needed tools and tool information to be able to directly start working in the team.
This saves time and prevents errors through configuring the environment in a proper
way by himself. Through jump starting, the newcomer finds an environment that is
adjusted to the situated project context and that also helps to prevent breakdowns of
the shared infrastructure as described above. In the case of Alpha, one of the people,
who in the past gave jump starts, is the CEO:

“If someone is new or joins a project…we have some tools we use like the plug-in
for Python and for Subversion and most often I send off emails or tell people

430 Sebastian Draxler and Gunnar Stevens



where they can find these and they can arrange their own stuff…or otherwise
everyone is free to make adjustments and to extend their things.” (Peter, CEO)

6.2.5. Getting contextualized help
The user’s small, individual breakdowns in the flow of work also play a critical
role in the appropriation of software systems. The remarkable aspect of
breakdown situations is the user’s switch in focus. The concerns around the
original work task are pushed into the background, while the reflection on tools
and methods to get the work done is being initiated. This reflection phase now
often results in asking colleagues for specific help. We found different initial
situations that resulted in specific requests for help. Sometimes users had installed
an incompatible update, in other cases they faced a new task that required a
special tool that was not yet within the personal toolbox. Such situations have in
common that they refer to a “need driven” (Peter, CEO) appropriation. This is in
contrast to the opportunity given appropriation, which we defined as becoming
aware of new things, e.g. in the mentioned over-the-shoulder situation or by
reading in a magazine or website about new developments in the Eclipse
ecosystem.

One of the major problems of need driven appropriation is to obtain a market
overview. Since there exist hundreds of vendors, it is quite difficult to find the
exact solution for a problem. Therefore, to ask colleagues for help to enhance the
view on the market is a standard practice at Alpha. Only if this is not successful,
one must start the quest himself:

“Well the thing is…I want to have a plug-in for something…and if someone tells
me it is this plug-in, the whatever it is called, and it solves your problem.… Then I
try to get the name of the plug-in, I will google it and then I have no trouble finding
it—fortunately. But if there is no one else in the company that knows about it, then
of course I myself have to search for it.” (John, Junior developer)

Asking colleagues rather than Internet forums comes with another advantage.
Quite likely, Alpha employees share the same context. This again eases the
expression of the problem and results in better advice. Especially, since the advice
giver is maybe an experienced user of the tool in question:

“Before I bother to somehow download it [a plug-in] and then realize that I
need something else and then spend half a day to install it…to realize that it
doesn’t meet my requirements…I rather meet up with someone of whom I know
he might already have used it or that he still uses it… I ask for his experience
with it, and if he tells me it is super or alright, then I would follow his
example…if he says it’s crap, I would drop it.” (Peter, CEO)

A key challenge the people have to cope with when appropriating new
tools is to innovate while keeping the work going. Yet, getting familiar with a

431Supporting Collaborative Appropriation



new tool involves a lot of time. Furthermore, it may be uncertain if there
will be improvements of the work practice at all. Instead, the existing
workplace may be corrupted. In our interview, the CEO gives a quite good
illustration of the related problems and the role of asking colleagues to deal
with them:

“It’s about efficient usage of time or even about saving time. It also is a
trial. I think that for some it’s also always an obstacle…new tools also
require learning curves…that is to say I must make someone else provide
me with it and install it, etc.….and then I have to be able to manage it and
learn how to use it…and have to see how it works and to see what I can do
with it…and finally realize that either all my requirements have been met so
that it makes work easier…or I realize that it is not what I have been looking
for…then I’ve spent hours and hours for nothing….and that I could already be
done with it. That’s why I think that many don’t take the trouble to get it or that
they cannot do it because they lack time….to simply try something out is often
not possible. So you are happy if someone else has already experienced this.”
(Peter, CEO)

In general, we observed that the advice of colleagues is perceived to be more
important than advice found in magazines or the Internet. However, this varies
depending on the personal taste as well as the specific situation. In addition, if
colleagues cannot help, searching the web or magazines is the usual fallback
solution:

“If I know that someone makes use of it on a regular basis, and if I have
problems with it but he could know it…then I will ask him about it…or don’t
even hesitate to ask the developers’ community about the plug-in. Often they
have mailing lists.” (John, Junior developer)

6.3. Discussion

The case study helped us to understand how the members of Alpha make use of
the possibilities to adapt their Eclipse configurations and which situations
contextualized their actions.

One of its merits was to get a closer insight in the new competencies that users
need because of the rising interdependency of tailoring and development
(Eriksson and Dittrich 2009). Our research revealed that one of the new
competencies is to keep the personal skills and tools up to date with the
development of the ecosystem. This is a general infrastructuring competency
(Star and Bowker 2006; Karasti et al. 2010) to manage the spatiotemporal tension
between the local and the global context. The need and the specific form of the
competencies are shaped by the dialectic between the specific structuring of the
software ecosystem at the large and the work practices at the shop floor. At the

432 Sebastian Draxler and Gunnar Stevens



large, users have to deal with a decentrally organized Eclipse ecosystem (see
Section 4). In particular there is no general quality standard of the tools, as they
come from quite different sources as manufactures and hobbyists. In addition the
market of tools is quite dynamic and furthermore fragmented as no centralized
distribution instance exists (an example for such an instance would be Apples
App Store). Hence, part of the specific competence is to keep track of a
fragmented market as well as dealing with the uncertainty that integrating a new
tool could corrupt the entire working environment.

Another key result of this study is to show that designing the workplace by
making use of software ecosystems is not a competence of the individual user, but
a collective competence of the workgroup or whole company. This collective
competence is maintained in various situations like regular team meetings, break
downs, asking for help or introducing juniors to a new field of work.

Taking care about the own working environment is further closely linked to the
habitus of software developers. Strübing (1992), described this habitus rather as a
craftsmanship than assembly-line work. He concluded that software developers
tend to stay on the bleeding edge of technology, as it is perceived as a part of their
professional ethics. Our case study complements his finding, but in this case
showed the co-existence of two different camps of software developers. The first
camp mainly consisted of older developers. They retained the old style of
command line oriented programming, as they rely on their well-proven tools. In
opposite, the second camp, mainly consisting of younger developers, followed an
always be up to date or “bleeding edge of technology” attitude as described by
Strübing. However, both camps commonly felt responsible for their work tasks
and their tools.

In general, the case study also confirms the findings of the survey (Section 5)
and the previous research on collaborative tailoring (Mackay 1990; MacLean et
al. 1990) or technology adoption in general (Rogers 2003). In particular we saw
that local networks and interpersonal communication are part and parcel of the
appropriation of new tools and methods. In addition, we see different types of
user with their specific roles in the process of adopting and disseminating new
technologies. For example, we observe that users collaborate by acting as experts
(by sharing knowledge and giving advice) as well as by sharing appropriation
artifacts (e.g. components or preference settings) when modifications are
necessary.

However, the roles are not static, but could vary between situations as well as
within a situation (Twidale 2005). In particular, a general assumption in the
Community of Practice (CoP) theory is that newcomers learn form the old-timers
(Wenger 1999). However, our study nuanced picture concerning the adoption of
new tools and the learning of the usages. An example of an opposite case as
outlined in the CoP is the CEO, who adapted a whole new toolset from the junior
developers. Murphy-Hill and Murphy (2011) mentioned a similar case, showing
that seniors can learn very much from junior developers. Their explanation is that

433Supporting Collaborative Appropriation



juniors have more time at their hands to play around with bleeding edge
technology.

Getting aware of new tools or tool usages often happens in informal situations
based on peer interaction. A typical example for this kind peer interaction the is
“over the shoulder” situation described by Twidale (2005). Our case study
demonstrates that in this kind of situation learning, configuring, and adopting are
closely entangled. All these activities constitute the appropriation as a whole (in
the outlined Marxian/Hegelian sense). We therefore argue to extend Twidale’s
concept by the notion “Over the shoulder appropriation”, where we have to study
the different parts within their function of appropriation.

A common assumption is that people start to learn a new tool in reaction to a
concrete need. Yet, in our case study we have also seen that people play with new
tools “just for fun”. Taking the “infrastructuring” perspective (Karasti et al., 2006;
2010), the function of this kind of appropriation is defined by satisfying a latent
need to resolve the temporal tension between the actual work practices and the
innovation development at the large scale and in the long run. In particular,
innovations are not adopted because there is a need, but also because there is an
opportunity. In our work we therefore distinguish “opportunity driven” and “need
driven” appropriation.

Good opportunities to appropriate a new tool or tool usage are over-the-
shoulder situations. However, in advance one cannot ensure that a tool, satisfying
an existing need, can be found by accident. Need driven situations are therefore
differently structured. We found two examples of such kinds of situations: The
situations of contextualized help and the situations of shared infrastructure
breakdowns.

Getting contextualized help is typically carried out by interaction with near
peers. Murphy-Hill and Murphy (2011) discussed “over the shoulder learning”
and “getting contextualized help” as one category, named peer-interaction.
Through this lens they got a fine-grained analysis of the diverse peer interaction
situations, where people talked about tools and tool usages. This is a valuable
addition to our findings. However, they did not distinguish between concrete
(need) and latent (opportunity) needs.

In particular, satisfying a concrete need has typically a much higher priority
than satisfying a latent need, as one is under time pressure. The most prominent
example of satisfying a concrete need in our case study was the failure the
common used version control system. This situation of a shared infrastructure
breakdown (Pipek 2005) brings the users’ attention to reflect the current
infrastructure and furthermore enables him to think of actions to fix the
breakdown. We have seen that fixing the breakdown was not an individual need,
but a collective and a collaborative effort was necessary to fix the problem for the
involved persons.

By highlighting the peer interaction and the ad hoc situation, we should not
downsize the institutional situations for the collaborative appropriation. Team

434 Sebastian Draxler and Gunnar Stevens



meetings, for example, serve as a platform within companies for knowledge
sharing and work coordination. Therefore we wanted to categorize these
situations as the natural arena to discuss appropriation efforts. And we were
surprised to find, that previous work had not described team meetings as
platforms for appropriation work. However, there is a note in the literature on
agile methods, that one standard topic in the daily meetings should be

“What problems are preventing me from making progress” (Pipek 2005).

Projecting our findings that tools play an important role in making or not
making progress, we expect the daily meeting also to serve as a platform for
appropriation work. However, this has to be explored by empirical work.

Another category we haven’t found in the existing research on appropriation
and related topics was the situation of “giving a jump start”. This activity is some
related to sharing tailored artifacts as well as knowledge sharing fostering
organizational learning. However in the scope of software workplaces and their
appropriation it has never been discussed. Yet we found that it was the mix of
sharing information and readily tailored artifacts that constitute a good jump start.

7. Some futures of supporting the appropriation of software ecosystems

The previous section has outlined that the openness of software ecosystems is
double-edged: while it introduces a new freedom, it also comes with new
burdens. Bosch (2009) has stressed mass-customization as an appropriate strategy
to keep the advantages of software ecosystems, but lower the burden for the users
to make use of it. Bosch does not further elaborate this thought, but typically
mass-customization is understood as means for individualization focusing on the
individual user only (Franke and Piller 2003). The CSCW research on
collaborative tailoring as well as the case study, however, demonstrated the
shortcomings of this design philosophy: instead of designing for the individual
user, a design that integrated the needs at the shop floor has to be created. From
this stance we will discuss in the following sections support opportunities at three
levels: The personal level, the level of the local team and the organization and at
the global level of the ecosystem.

7.1. The personal level

The personal level addresses the appropriation work of the individual user, as he
adapts and adopts tools from the Eclipse ecosystem. An important aspect of the
individual appropriation work is to safely manage the different plug-ins of an
Eclipse installation. Eclipse already includes several features to support this issue.
First of all, its software architecture itself is an enabling technology. It is designed
to make plug-ins coming from different vendors work together. In addition, the

435Supporting Collaborative Appropriation



integrated configuration manager (see Section 4.4) provides a build-in mechanism
to download, install and remove components.

Despite these support mechanisms we observed several workarounds that users
developed because the support provided by Eclipse was not sufficient. In the
process of adoption (Rogers 2003), we can analytically separate the issues of
keeping the tool competence up-to-date, keeping the tools up-to-date and
managing multiple installations. In practice, however, they are typically
interwoven. Therefore, a design concept should cover these activities in an
integrated manner.

7.1.1. Keeping the tool competence up-to-date
Adapting the system is just one part of appropriation (Dourish 2003). In
particular, before installing new tools one has to be aware of their existence. In
addition, one has to know their purpose and one has to learn, how to use tools
effectively. To support these activities, we should distinguish two cases:
& Keeping the competence up-to-date with regard to a tool that is already in

use and
& Keeping the competence up-to-date with the general development in the

plug-in market and the general software engineering field.
With regard to the first case, a solution should make users aware of available

updates for tools they already use, e.g. by a service that regularly performs checks
in the background. Such a mechanism is already provided by Eclipse. And as
long as the manufacturers of a plug-in follow certain specifications, it works quite
well. This mechanism on the other hand lacks to present information that
describes what an update is good for. In principle, updating existing tools means
that a user does not have to learn to use the tool from scratch. Instead, migrating
to the new version is mainly determined by the question: “what has changed
since the last version?” Hence, in the context of updating a tool this kind of
information should be given.

With regard to the second case our study reveals that we should distinguish
between need driven and an opportunity driven appropriation. Need driven
appropriation refers to activities as searching solutions for a specific problem, e.g.
searching a plug-in to integrate the bug-tracker into the working environment. As
seen, users typically ask colleagues for help, use general purpose search engines
like Google or make use of special web sites (see Section 4). From a user’s point
of view, the search mechanisms should also be integrated into the working
environment. This provides the opportunity to use information about the actual
installation, in order to only show plug-ins that are compatible and/or
recommended.

Opportunity driven appropriation refers to situations, where people keep
the tool competence up-to-date through regularly reading magazines, studying
web sites or becoming aware of interesting tools by looking over a
colleagues shoulder. However, supporting opportunity driven appropriation

436 Sebastian Draxler and Gunnar Stevens



can only be supported in a heuristic manner. We will discuss this issue in
more detail in Section 7.2 within supporting the tool awareness among
colleagues.

7.1.2. Keeping the tools up-to-date
After becoming aware of either a new tool or an update to an existing tool
and the decision that this tool/update might be worth a try, it must be
integrated into the Eclipse installation. Technically, this means the user has to
modify the Eclipse installation, including all issues of transferring and
installing plug-ins as well as mechanisms to recover the installation in the
case of a breakdown.

Several issues are supported by Eclipse. However, the functionality is split into
several user interfaces like a dialog to update installed plug-ins, a dialog to
enhance the workplace by installing new plug-ins. Another dialog allows for
inspecting, and disposing plug-ins as well as recovering older states of the
installation.

Furthermore, Eclipse does support the exchange of tools among team members
(see Section 6.2.4). Because of this, the user must change to the file system level
to install plug-ins that he copied from a colleague.

Following the easy-to-adapt principle of End User Development (Lieberman et
al. 2006), the functionality could be improved by integrating the diverse features
into one tailoring environment that could directly activated form the use context
(Wulf and Golombek 2001).

7.1.3. Managing multiple installations
Appropriation processes do not just add to an Eclipse installation. Instead,
managing multiple installations and removing plug-ins is just as important. A first
reason to use more than one installation is the skepticism that the made
modifications are reliable. Because of this, some developers do not just remove
outdated installations, but keep different old versions as kind of fallback system.
For example, we observed a developer, who always creates a backup copy, before
installing new plug-ins. After an adequate period of testing, he copies the fallback
system to a folder containing older installations, which are outdated. Then he uses
the testing environment as his new productive system.

Furthermore, because Eclipse installations are adapted to the specific demands
of a project, one might want to be able to access them later. Even if a project had
been finished and one turned towards a new project, there was still a possibility
that a bug had to be fixed or the customer requested new features. In such case
one can benefit, if the old installation is still available and can be reactivated.

A third reason is that people sometimes work on more than one project.
Because of this they want to be able to switch quickly between different toolset
installations.

437Supporting Collaborative Appropriation



One drawback of the outlined Eclipse installation manager is the missing
support for having multiple installations. Instead, the design rests on the
underlying assumption that a user has only one Eclipse installation, ignoring
above usage scenarios like using explorative and fallback installation or having
special installations for each project.

Because of these shortcomings, users have created their own workarounds.
Examples are installing Eclipse for each project in separated folders, manually
backing up Eclipse installations at file system level or disposing plug-ins at
file system level that caused a breakdown. The existing literature addresses
these issues partially by introducing the idea of exploration environments.
These should allow users to try adaptations in a sandbox and revert if
anything went wrong (Kahler 2001; Wulf and Golombek 2001). Yet the case
study showed that the need to explore is not the only reason to create backup
copies of software work places. Another reason is the need to work on
different projects in parallel that may need differently configured tools.
Therefore we need a broader concept than exploration to support the practices
we observed.

Commercial solutions like Yoxos or Pulse are more sophisticated regarding the
management of multiple Eclipse installations. In particular, they offer the opportunity
to specify and name different installations - so called profiles. This simplifies the
management of software portfolios and the selection of the right installation for the
task at hand. However, at the moment these solutions do not respect certain
organizational decisions (e.g. having a set of tools as base) and specific demands of a
project or personal favorite addition. As a result, it is awkward to maintain the
diverse profiles when personal preferences or organizational constraints did change.
In addition, features are still missing to define exploration environments (Wulf 2000),
which allows to experiment with new tools in a safe manner.

7.2. Local level of the organization

Appropriation work inherently has a collaborative facet (Pipek 2005).
Furthermore, at Alpha we found a kind of informal collaboration (Mackay
1990). This also holds true in the case of sharing Eclipse plug-ins. As we
have seen, sharing plug-ins is often rooted in personal contacts who work in
the same project. Furthermore, we observed that cooperation could even
cross-organizational boundaries, as people interact with the community or
external workers, as students, who join a project team.

The finding that people in local context give advice to install, update or try
something new also holds for the case of appropriating the Eclipse ecosystem in the
organizational context. But differently to the work of Mackay (1990), innovators are
usually not the creators of themodification. Instead, they are usually the first adaptors
of a new tool that was built by someone else. This feature refers to the work of
Rogers (2003), who described the process of social systems, adopting externally

438 Sebastian Draxler and Gunnar Stevens



developed innovations. However, he reflected on the adoption of individual artifacts
only and did not take the users creativity and the complexity into account that arises
when dealing with multiple artifacts, coming from different sources, at once. In
addition, he did not further investigate into the structure of the situations where forms
of collaborative appropriation could be observed.

With regard to this, the merits of our case study are not just to demonstrate that
social networks are important for the appropriation of software ecosystems. In
Section 6.2 we further outlined the structure of the related situations that are
constituted by collaborative forms of appropriation.

An interesting approach to support opportunity driven appropriation is to
address online over-the-shoulder situations. Awareness mechanisms for tailoring
activities as described by Kahler (2001) look like promising approaches. As an
example, notifications could be used if something important happens within the
organizational network. The design of this awareness support additionally should
be tightly integrated in the user interface (Twidale 2000; Pipek 2005; Stevens and
Wiedenhöfer 2006).

To support need driven appropriation, search based user interfaces and
recommender techniques seem promising. Concepts like the Expert Finder
(Reichling et al. 2009), originally developed to support knowledge management,
are also a promising approach for collaborative appropriation. They can be used
to identify tool expertise in the organization and the personal social network and
draw connections between experienced and advice-seeking users.

In addition in the case of a collective need affecting the whole team (which is
sometimes subtle to answer), the collaborative tailoring mechanisms outlined by
Oberquelle (1994) seem to be promising to make the collaborative negotiation
and realization processes more effective.

While the different forms of appropriation result in different requirements
on the level of user interaction, the required data and data gathering
mechanisms are very similar for both forms. A promising approach to gather
the needed data is to trace changes of the Eclipse installations within the
team. Even more detailed information can be provided by tracing usage
histories, as this leads to more precise results (see also Pipek 2005).
Additionally, we can enable users to rate and comment plug-ins to provide
advice that can be accessed later.

A further general requirement to support collaborative appropriation is to
enable the sharing of plug-ins among team members and colleagues from within
the working environment. At the moment, users are forced to copy plug-ins on
the file system level, which is awkward and error prone.

A first research prototype that realizes some of the mentioned require-
ments is Peerclipse (Draxler et al. 2009). The intention of Peerclipse is to
respect the habitus of the developers being responsible for their tools, but at
the same time to support the collaborative appropriation among the team
members. Peerclipse is integrated into the working environment and

439Supporting Collaborative Appropriation



establishes a local peer-to-peer network support awareness of tool expertise
and sharing plug-ins with each other.

7.3. Global level of the ecosystem

Existing research on tailorability focuses mainly on the local context. However,
our case demonstrated that individuals and groups who tailor Eclipse are at the
same time linked to the global community. This underlines Eriksson and
Dittrich’s (2009) remark that Kahler’s (2001) work has to be adapted to mutual
development of situated tailoring and software development in the large. In
particular the concept of an organizational tailoring culture should be enlarged
and embedded in a culture of participation at a large scale. We therefore want to
both discuss the global level of the Eclipse ecosystem as a whole and discuss the
way the individual user is connected to it.

The Eclipse ecosystem today consists of millions of users, thousands of
developers, dozens of organizations and several thousand software artifacts (see
Section 3 and 4). We observed that users who go beyond the scope of their team
or organization (e.g. because no one else in the organization tested this new code
repository client before), interact with people from the global community as to
figure out what the market looks like, how stable is a plug-in, if its features are
sufficient and how it can be utilized.

On the global level, there is a good chance that someone very experienced for
the current problem exists. Unfortunately, finding these people and fostering the
collaboration is only poorly supported today. The global level presents therefore a
new challenge and a chance we should consider when designing appropriation
support. Through this new dimension the personal and local level do not become
obsolete. Instead, they support each other and supporting design concepts need to
connect and integrate them.

On the global level efforts like the Eclipse marketplace (a plug-in market) and
its integration into the working environment as well as commercial products like
Yoxos on Demand or Pulse are highly interesting. They all try to offer to the user
a single point of access to all independent vendors and their products. In addition,
they try to bring the tool market closer to the use context in order to overcome the
separation between distributing digital goods and configuring the working
environment. This indicates a transformation of the traditional mediation between
an open network of producers and users. However, they do not fully grasp the
opportunities to foster cooperation among the ecosystem members.

For example in a further step these systems should visualize available expertise
as well as implicit or latent cooperation needs. In particular, they should integrate
a social infrastructure closer into the Eclipse application system. Realizing such
ideas, we should consider that users typically try to identify expertise within the
nearby social network first. If this fails, they try to do the same for the whole

440 Sebastian Draxler and Gunnar Stevens



ecosystem. One example of system design that supports such cascading strategies
of collaboration is outlined by Stevens (2009).

However, we just began to explore the interplay of local to global collaboration and
further research is needed to support a smooth transition between the different levels.

8. Conclusion

In the last years, software ecosystems that are constituted by networks of coexisting
and coevolving software are grown. This new way of software development is
primarily studied from a software engineering point of view, neglecting the
consequences for the design of software workplaces. To address this gap we
investigated in Eclipse as one most successful examples of the new software
ecosystem paradigm. Methodologically, we used a mixed method approach to
measure to what extend people make use of new opportunities as well as to
understand how appropriation work is structured at the shop floor.

The results of the online survey confirmed the literatures qualitative evidence that
people tailor their applications to fit them into the local context. Moreover, our
survey also showed evidence that over 90% of the users adapt their Eclipse
configuration by integrating plug-ins that come from different places. This indicates
that tailoring activities have become part of their everyday work practices.

The survey results furthermore showed that peers and colleagues are important
resources to get new artifacts as well as information about what’s is going on in
the software ecosystem. Similar patterns were mentioned before in the context of
collaborative tailoring (Mackay 1990) as well as general technology adoption
(Rogers 2003). Because of these similarities, future research on end user issues of
software ecosystems should attempt to synthesize both research threads,
enhanced by the dimension of integrating coevolving materials (which is neither
addressed by Mackay nor by Rogers).

How is appropriation work structured and what situations contextualize this work?
To answer this question, we conducted an ethnographically oriented study in a small
German software company. The study uncovered the crucial problem that is resolved
by appropriation work. Namely to maintain a reliable working environment at the
shop floor, while keeping technologically informedwith the fragmented developments
in the software ecosystem. These results show the deep link between appropriating
ecosystems and the general ‘infrastructuring’ activities (Star and Bowker 2006)
studied so far. Both have to resolve the structurally homologue tension between the
here-and-now practices and the evolutionary technologies at the large-scale (cf.
Karasti et al. 2010). The structural analysis of the Eclipse ecosystem revealed that this
tension is also a product of Eclipse’s short release cycles. However, Karasti et al. noted
the effects of an increased speed of technological change on infrastructuring as

“[i]t is a constant battle to keep up with things, to remain current in
technology” (Information Manager quoted by Karasti et al. 2006).

441Supporting Collaborative Appropriation



In contrast to Karasti et al., we took a closer look on the collaborative
dimensions of this issue. In particular, we systematically analyzed the diverse
situations of collaborative appropriation. We identified different types of
situations that contextualize appropriation. Some were already mentioned in
literature, like the over-the-shoulder-appropriation that generalizes Twidale’s
(2005) work by stressing on the close entanglement of adaptation and explorative
learning. Another example is the infrastructure-breakdown situation, which is
closely related by the work of Pipek (2005) work on dealing with breakdowns in
general. However, we also found practices like giving a jump start that were not
mentioned in literature beforehand and are solely grounded in the empirical data.

This work underscores Bosch’s (2009) remark that end-user oriented strategies
for software ecosystem are needed. However, its seems that the software
ecosystem research so far either neglect this topic or primary focused on the
individual user only. A key contribution of this work is therefore to correct this
view, showing that appropriating software ecosystems is not primary an
individual competence, but a collective competence.

Form this stance we envision at different levels the opportunities to support
the appropriation work: We outlined, how existing tailoring approaches
(Oberquelle 1994; Kahler 2001; Pipek 2005) could be applied to support the
appropriation work at the personal as well as organizational level. However,
we must go beyond these approaches and integrate an organizational tailoring
culture with a participation culture of the ecosystem at the large (Eriksson and
Dittrich 2009). We especially made aware of the new role of intermediary
parties that can lower the burdens to collaborate between the manifold actors
of the ecosystem. The most popular example of such an intermediary party is
Apple with its AppStore. Users do not even consider it tailoring anymore if
new Apps are bought and installed by a single click. In the case of Eclipse,
mass-customization toolkits that provide a repository of 3rd party extensions,
like Yoxos on Demand or Pulse, become more popular.

Eclipse nowadays is a quite polished version of a software ecosystem. But
even here we can observe that the users’ role of establishing (collaboration)
relations between different actors has to be further explored in order to be
supported. In particular we argue that the guiding principle of mass-customization
should be replaced by the concept of appropriation infrastructures (Stevens et al.
2010) that provide an integrated customization and collaboration platform.

With all precautions to generalize a single case, we assume that tailoring
applications by making use of software ecosystems will become an important
issue in general. However, we have to be careful when transferring our findings to
other cases. We have to consider three issues:
& At the large, we have to consider that the Eclipse platform is very successful,

as it addresses a market with more than a million users and more than
thousand contributors. In addition, it follows a rapid innovation cycle. Other
successful and dynamic software ecosystems, like Mozilla, as well as Karasti

442 Sebastian Draxler and Gunnar Stevens



et al.’s findings indicate that an increased technological change is a general
issue. However, we cannot take this for granted. We therefore argue that
attempts to transfer these findings should include a structural analysis of the
ecosystem in question.

& At the local context, we have to consider that a laissez-faire management
practice was applied during our case study. This gives the responsibility for
the workplace design to the hands of the people on the shop floor. As
discussed is Section 2.1 this is not the usual view on workplace design (at
least considering the literature on IT management). Therefore the findings
might not be easy to transfer to other contexts. The survey on the other hand
(see Section 4) helped us understanding that a wide range of Eclipse users
actively adapt their workplaces, even if we do not know their organizational
backgrounds. Moreover, from a normative stance of work democratization,
we would argue that this case demonstrates that flexibility is possible and
useful.

& Additionally, we have to admit that software developers are usually not
considered end-users, but trained to solve technical problems. Several
studies confirm their habitus as “following technological trends”. We should
therefore not expect that in other domains users have the same interest in
their tools and keeping up-to-date. If we try to transfer these results to other
domains, we have especially have to invent a set of methods, techniques and
tools that allow less technical skilled users to modify or extend their working
environments (Lieberman et al. 2006). In Section 7 we address this
challenge by outlining, how the appropriation of software ecosystems could
be made easier in the future.

Considering this, further research has to expand in three different directions.
First, we should carry out studies in other companies in order to obtain a richer
picture of the diverse appropriation practices in organizations. Additionally, we
should consider studying different software ecosystems, like Mozilla or Linux,
and comparing them to our results. Finally, we have to study the different user
types, their different strategies and needs to maintain a reliable working
environment at the shop floor, while keeping informed with increasing speed of
technological change.

Note

1. A feature in Eclipse defines a set of plug-ins and sub features which must be installed when the
feature is installed.

2. We calculated the distance of two installations with the set of features Ci and Cj as follows:
ufeature Ci;Cj

� � ¼ ð CinCj þ CjnCi

�� ��Þ=ð Ci þ Cj

�� ��Þ�������� . Based on this, we calculated the average
distance: �ufeature C1; . . . ; Cnð Þ ¼ 1=n � ðn� 1Þ � �0<�i<j<�nufeature Ci;Cj

� �
. A value of ū near 0

means that the different Eclipse installations are almost identical; a value near 1 means that the
installations are most different.

443Supporting Collaborative Appropriation



References

Alan, S. F. (1991). Case: Using software development tools. John Wiley and Sons, Inc.
Andersen, R. & Mørch, A. (2009). Mutual development: a case study in customer-initiated software

product development. End-User Development, 31–49.
Balka, E. & Wagner, I. (2006). Making things work: Dimensions of configurability as appropriation

work. Proc. of CSCW 2006, ACM: 229–238.
Beck, K. &Gamma, E. (2003). Contributing to eclipse: Principles, patterns and plugins. Addison-Wesley.
Bentley, R. & Dourish, P. (1995). Medium versus mechanism: Supporting collaboration through

customisation. Proceeding of Fourth European Conference on Computer-Supported Cooperative
Work (ECSCW’95): 133–148.

Bergin, T. J., Ed. (1993). Computer-aided software engineering: issues and trends for the 1990s and
beyond, IGI Publishing.

Bohnsack, R. (2003). Rekonstruktive Sozialforschung: Einführung in qualitative Methoden, Utb.
Bosch, J. (2009). From software product lines to software ecosystems. Proceedings of the 13th

International Software Product Line Conference (SPLC ‘09): 111–119.
Bosch, J. (2010). Architecture challenges for software ecosystems. Proceedings of the Fourth

European Conference on Software Architecture: ECSA ‘10 ACM: 93–95.
Bosch, J., & Bosch-Sijtsema, P. (2010a). From integration to composition: on the impact of software

product lines, global development and ecosystems. Journal of Systems and Software, 83(1), 67–76.
Bosch, J., & Bosch-Sijtsema, P. M. (2010b). Softwares product lines, global development and

ecosystems: collaboration in software engineering. Collaborative Software Engineering, 1, 77.
Boudreau, M. C., & Robey, D. (2005). Enacting integrated information technology: a human

agency perspective. Organization Science, 16(1), 3–18.
Bowers, J. (1994). The work to make a network work: studying CSCW in action. ACM: 298.
Büscher, M., Gill, S., et al. (2001). Landscapes of practice: bricolage as a method for situated

design. Computer Supported Cooperative Work (CSCW), 10(1), 1–28.
Chikofsky, E. J. (1992). Computer-aided software engineering (2nd ed.). U.S.: IEEE Computer

Society Press.
Costabile, M. F., Fogli, D. et al. (2006). End-user development: The software shaping workshop

approach. End User Development, 183–205.
Crowston, K., Wei, K., et al. (2005). Coordination of free/libre open source software development.

Citeseer.
Dittrich, Y., Lindeberg, O., et al. (2006). End-user development as adaptive maintenance. End User

Development, Springer: 295–313.
Dittrich, Y., Vaucouleur, S., et al. (2009). ERP customization as software engineering. IEEE

Software, 26(6), 41–47.
Dörner, C., Heß, J., et al. (2008). Fostering user-developer collaboration with infrastructure probes.

Proceedings of the 2008 international workshop on Cooperative and human aspects of software
engineering, ACM: 48–44.

Dourish, P. (1996). Open Implementation and Flexibility in CSCW Toolkits. Ph.D. dissertation,
London, UK.

Dourish, P. (2003). The appropriation of interactive technologies: some lessons from placeless
documents. Computer Supported Cooperative Work (CSCW), 12(4), 465–490.

Draxler, S., Sander, H., et al. (2009). Peerclipse: Tool awareness in local communities.
Demonstration on the ECSCW 2009.

du Gay, P., Hall, S., et al. (1997). Doing cultural studies: The story of the Sony Walkman. London:
Sage.

Ehn, P. (1990). Work-oriented design of computer artifacts. Lawrence Erlbaum Associates Inc.
Elshazly, H. & Gover, V. (1993). A study on the evaluation of CASE technology. Journal of

Information Technology Management, 4(1).

444 Sebastian Draxler and Gunnar Stevens



Eriksson, J., &Dittrich, Y. (2007). Combining tailoring and evolutionary software development for rapidly
changing business systems. Journal of Organizational and End-User Computing, 19(2), 47–64.

Eriksson, J. & Dittrich, Y. (2009). Achieving sustainable tailorable software systems by
collaboration between end-users and developers. Evolutionary Concepts in End User
Productivity and Performance, IGI Global: 19–34.

Fichman, R. G. (2000). The diffusion and assimilation of information technology innovations.
Framing the Domains of IT Management: Projecting the Future Through the Past,≈, Pinnaflex
Educational Resources: 105–128.

Fischer, G. (1994). Domain-oriented design environments. Automated Software Engineering, 1(2),
177–203.

Fischer, G. (2009). End-user development and meta-design: Foundations for cultures of
participation. End-User Development. Pipek, V., Rosson, M., de Ruyter, B., Wulf, V. Springer
Berlin/Heidelberg. 5435:3–14.

Floyd, C., Mehl, W. M., et al. (1989). Out of Scandinavia: alternative approaches to software design
and system development. Human Computer Interaction, 4(4), 253–350.

Franke, N. & Piller, F. (2003). Configuration Toolkits for Mass Customization. International
Journal of Technology Management.

Gamma, E. & Beck, K. (2003). Contributing to eclipse: Principles, patterns, and plugins. Addison
Wesley.

Gantt, M. & Nardi, B. (1992). Gardeners and gurus: patterns of cooperation among CAD users.
Proc. of CHI’92, ACM: 107–117.

Glaser, B. (1978). Theoretical sensitivity: Advances in the methodology of grounded theory. Mill
Valley: Sociology Press.

Grinter, R., Edwards, K., et al. (2005). The work to make a home network work. Proc. of the
ECSCW’05: 469–488.

Grinter, R. E., Herbsleb, J. D., et al. (1999). The geography of coordination: dealing with distance
in R&D work. Proc. of GROUP ‘99, Phoenix, Arizona, United States, ACM: 306–315.

Henderson, A. & Kyng, M. (1991). There’s no place like home: Continuing design in use. Design at
work: cooperative design of computer systems: 219–240.

Henkel, J. (2004). Open source software from commercial firmsñTools, complements, and
collective invention. Zeitschrift f¸r Betriebswirtschaft, 4, 1–23.

Jansen, S., Finkelstein, A., et al. (2009). A sense of community: A research agenda for software
ecosystems. Proc of. 31st International Conference on Software Engineering, New and Emerging
Research Track, IEEE: 187–190.

Jirotka, M., Gilbert, N., et al. (1992). On the social organisation of organisations. Computer
Supported Cooperative Work (CSCW), 1(1), 95–118.

Juhani, I. (1996). Why are CASE tools not used? Communications of the ACM, 39(10), 94–103.
Kahler, H. (1995). From taylorism to tailorability supporting organizations with tailorable software

and object orientation. Advances in Human Factors/Ergonomics, 20, 995–1000.
Kahler, H. (2001). Supporting collaborative tailoring PhD Thesis, Roskilde University.
Karasti, H., Baker, K. S., et al. (2006). Enriching the notion of data curation in e-science: data

managing and information infrastructuring in the long term ecological research (LTER) network.
Computer Supported Cooperative Work (CSCW), 15(4), 321–358.

Karasti, H., Baker, K. S., et al. (2010). Infrastructure time: long-term matters in collaborative
development. Computer Supported Cooperative Work, 19(3–4), 377–415.

Kelle, U. (2001). Sociological explanations between micro and macro and the integration of
qualitative and quantitative methods. Forum: Qualitative Social Researchs, 2, 5–24.

Kelle, U. (2005). ““Emergence” vs.“Forcing” of empirical data? A Crucial Problem of “Grounded
Theory” Reconsidered.” Forum Qualitative Sozial Research, 6(2).

Kobsa, A., & Wahlster, W. (Eds.). (1990). User models in dialog systems. New York:
Springer.

445Supporting Collaborative Appropriation



Lending, D. & Chervany, N. L. (1998). CASE tools: Understanding the reasons for non-use. Computer: 13.
Lieberman, H., Paterno, F., et al. Eds. (2006). End-user development, Springer.
Livingston, E. (1987). Making sense of ethnomethodology. Routledge & Kegan Paul.
Mackay, W. (1990). Patterns of sharing customizable software. Proc. Of Conference on Computer-

Supported Cooperative Work: 209–221.
MacLean, A., Carter, K., et al. (1990). User-tailorable systems: Pressing the issues with buttons.

Proc. of CHI 90, ACM Press: 175–182.
Malone, T. W., Lai, K. Y., et al. (1995). Experiments with oval: a radically tailorable tool for

cooperative work. ACM Transactions on Information Systems (TOIS), 13(2), 177–205.
Márkus, G. (1978). Marxism and anthropology: The concept of human essence in the philosophy of

Marx. Van Gorcum.
McIlroy, M. (1968). Software Engineering. Report on a conference sponsored by the NATO Science

Committee.
McLure. (1989). CASE in software automation. Englewood Cliffs: Prentice-Hall.
Messerschmitt, D. G. & Szyperski, C. (2005). Software ecosystem: understanding an indispensable

technology and industry. MIT Press Books.
Mørch, A. (1997). Three levels of end-user tailoring: Customization, integration, and extension.

Computers and design in context: 51–76.
Muller, M. J., Haslwanter, J. H., et al. (1997). Participatory practices in the software lifecycle.

Handbook of human-computer interaction, 2, 255–313.
Murphy-Hill, E. & Murphy, G. C. (2011). Peer interaction effectively, yet infrequently, enables

programmers to discover new tools. Proceedings of the ACM 2011 conference on Computer
supported cooperative work (CSCW ‘11), ACM: 405–414.

O’Mahony, S., Diaz, F. C., et al. (2005). IBM and Eclipse.
Oberquelle, H. (1994). Situationsbedingte und benutzerorientierte Anpaflbarkeit von Groupware.

Menschengerechte Groupware-Softwareergonomische Gestaltung und partizipative Umsetzung
(pp. 31–50). Stuttgart: Teubner Verlag.

Oevermann, U., Allert, T., et al. (1987). Structures of meaning and objective hermeneutics. Modern
German sociology: An anthology (European Perspectives) (pp. 352–434). New York: Columbia
University Press.

Ollman, B. (1971). Alienation: Marx’s conception of man in a capitalist society. Cambridge Studies.
Oppermann, R. (1994). Adaptively supported adaptability. International Journal of Human

Computer Studies, 40(3), 455–472.
Orlikowski, W. J. (2000). Using technology and constituting structures: a practice lens for studying

technology in organizations. Organization Science, 11(4), 404–428.
Paetau, M. (1991). Kooperative Konfiguration [Cooperative Configuration]. Proc. of DCSCW’91:

137–151.
Pilz, D. (2007). Krisengeschöpfe: zur Theorie und Methodologie der objektiven Hermeneutik,

Duv.
Pipek, V. (2005). From tailoring to appropriation support: Negotiating groupware usage. PhD

Thesis, University of Oulu.
Pipek, V. & Kahler, H. (2006). Supporting collaborative tailoring. End User Development, 315–

345.
Pipek, V., & Wulf, V. (2009). Infrastructuring: towards an integrated perspective on the design and

use of Information technology. JAIS, 10(5), 447–473.
Reichling, T., Veith, M., et al. (2009). Expert recommender: Designing for a network organization.

Learning in Communities, 139–171.
Robinson, M. (1993). Design for unanticipated use. Kluwer Academic Publishers: 187–202.
Rogers, E. M. (2003). Diffusion of innovations. Free Press.
Röhr, W. (1979). Aneignung und Persönlichkeit (Appropriation and Personality). Berlin: Akademie

Verlag.

446 Sebastian Draxler and Gunnar Stevens



Ruël, H. J. M. (2002). The non-technical side of office technology: managing the clarity of the spirit
and the appropriation of office technology. Managing the human side of information technology:
challenges and solutions, Idea Group Publishing: 78–105.

Schmidt, K. (2000). The critical role of workplace studies in. Workplace studies: Recovering work
practice and informing system design: 141–149.

Schmidt, K. (2011). Cooperative work and coordinative practices. Cooperative Work and
Coordinative Practices, 3–27.

Schwartz, T. (2007). Praxisgerechte Unterstützung kooperativer Aneignung am Beispiel der Eclipse
IDE. Diplomarbeit, Universität Siegen.

Silverstone, R., & Haddon, L. (1996). Design and the domestication of information and
communication technologies. Technical change and everyday life. Communication by design:
The politics of information and communication technologies (pp. 44–74). Oxford: Oxford
University Press.

Sommerville, I. (2006). Software engineering. Addison Wesley.
Star, S. L. & Bowker, G. C. (2006). How to infrastructure. Handbook of new media: Social shaping

and social consequences of ICTs: 230–245.
Star, S. L. & Ruhleder, K. (1994). Steps towards an ecology of infrastructure: complex problems in

design and access for large-scale collaborative systems. Proceedings of the 1994 ACM
conference on Computer supported cooperative work. Chapel Hill, North Carolina, United
States, ACM: 253–264.

Star, S. L., & Ruhleder, K. (1996). Steps toward an ecology of infrastructure: Design and access for
large information spaces. Information System Research, 7, 111–134.

Star, S. L. & Ruhleder, K. (2001). Steps toward an Ecology of Infrastructure: Design and Access for
Large Information Spaces1. Information technology and organizational transformation: history,
rhetoric, and practice, SAGE: 305–346.

Stevens, G. (2009). Understanding and Designing Appropriation Infrastructures. Disseration,
University of Siegen.

Stevens, G., Pipek, V., et al. (2010). Appropriation infrastructure: mediating appropriation and
production work. Journal of Organizational and End User Computing (JOEUC), 22(2), 58–81.

Stevens, G., Quaisser, G, et al. (2006). Breaking it up: An industrial case study of component-based
tailorable software design. End User Development, 269–294.

Stevens, G. & Wiedenhöfer, T. (2006). CHIC-A pluggable solution for community help in context.
ACM: 212–221.

Strübing, J. (1992). Arbeitsstil und Habitus—zur Bedeutung kultureller Phänomene in der
Programmierarbeit (working style and habitus—to the meaning of cultural phenomena of
programming work). Universität Kassel.

Taylor, F. (1911). The principles of scientific management. Harper & Brothers.
Twidale, M. (2005). Over the shoulder learning: supporting brief informal learning. Computer

Supported Cooperative Work (CSCW), 14(6), 505–547.
Twidale, M. B. (2000). Interfaces for supporting over-the-shoulder learning: 33–37.
van Bon, J., Pieper, M., et al. (2004). IT service management: An introduction based on ITIL. Van

Haren Publishing.
Vasilis, B., Slinger, J., et al. (2009). Formalizing software ecosystem modeling. Proceedings of the

1st international workshop on Open component ecosystems. Amsterdam, The Netherlands, ACM.
Venkatesh, V. & Davis, F. D. (2000). A theoretical extension of the technology acceptance model:

Four longitudinal field studies. Management science: 186–204.
Von Hippel, E. (1986). Lead users: a source of novel product concepts. Management Science, 32(7),

791–805.
Wenger, E. (1999). Communities of practice: Learning, meaning, and identity. Cambridge Univ Pr.
Wenger, E. (2007). Communities of practice: Learning, meanings, and identity. Cambridge

university press.

447Supporting Collaborative Appropriation



Wulf, V. (1994). Anpaßbarbarkeit im Prozeß evolutionärer Systementwicklung, GMD-Spiegel.
Wulf, V. (1999). “Let’s see your search-tool!”—collaborative use of tailored artifacts in groupware.

ACM: 59.
Wulf, V. (2000). Exploration environments: supporting users to learn groupware functions.

Interacting with Computers, 13(2), 265–299.
Wulf, V., & Golombek, B. (2001). Direct activation: a concept to encourage tailoring activities.

Behaviour & Information Technology, 20(4), 249–263.
Wulf, V., Pipek, V., et al. (2008). Component-based tailorability: enabling highly flexible software

applications. International Journal of Human Computer Studies, 66(1), 1–22.

448 Sebastian Draxler and Gunnar Stevens


	Supporting the Collaborative Appropriation of an Open Software Ecosystem
	Abstract
	Introduction
	Workplace design as “artful integration”
	Tayloristic workplace design
	From taylorism to tailorability
	Patterns of sharing customizable working environments
	From tailoring to appropriation research
	Managing the coevolution of artifacts within software ecosystems
	Local production of large-scale technologies
	Discussion

	Methodology
	Eclipse as a global ecosystem
	Transformation of eclipse into a global ecosystem
	“Everything is a plug-in”: the technological fundament of an ecosystem
	The “Eclipse Way”: the rhythm of evolution
	Discussion

	A Survey on eclipse appropriation
	Adapting eclipse as a regular activity
	Local network of eclipse users
	Getting tools and tool information
	Discussion

	Appropriating eclipse in an organizational context
	Organizational context
	Laissez-faire management
	Dissemination of eclipse

	Situations of collaborative appropriation
	Team meetings
	Shared infrastructure breakdowns
	Looking over the shoulder
	Giving a jump start
	Getting contextualized help

	Discussion

	Some futures of supporting the appropriation of software ecosystems
	The personal level
	Keeping the tool competence up-to-date
	Keeping the tools up-to-date
	Managing multiple installations

	Local level of the organization
	Global level of the ecosystem

	Conclusion
	References


