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Abstract. An important issue faced by research on distributed collective practices is the
amount and nature of the data available for study. While persistent mediated interaction offers
unprecedented opportunities for research, the wealth and richness of available data pose issues

on their own, calling for new methods of investigation. In such a context, automated tools can
offer coverage, both within and across collectives. In this paper, we investigate the potential
contributions of semantic analyses of linguistic interactions for the study of collective pro-

cesses and practices. In other words, we are interested in discovering how linguistic interaction
is related to collective action, as well as in exploring how computational tools can make use of
these relationships for the study of distributed collectives.
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1. Introduction

An important issue faced by research on Distributed Collective Practices
(DCP) is the amount and nature of the data available for study. Because
participants are not physically collocated, communication within distributed
collectives is usually limited to various forms of electronic media. In many
cases, these interactions leave a persistent trace in the form of archives, web
sites, and other forms of repositories, which can be collected for research
purposes. These data provide a great opportunity to empirically study the
structures, organizations and practices of distributed collectives. First, be-
cause electronic media represent virtually the only channels of interaction
within a collective, coordination and other social processes necessarily occur
over these channels. Second, because archives are recorded and available,
virtually all of the interactions taking place within a collective are accessible
for study, providing a rich view of a collective’s activity.
While persistent mediated interaction offers unprecedented opportunities

for research, the wealth and richness of available data pose issues on their
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own, calling for new methods of investigation. Methods relying on human
analyses simply do not scale to the size and number of emerging repositories,
and automated tools that can handle large amounts of data are increasingly
needed to assist researchers in their analyses. The main advantage of auto-
mated tools is that they can offer coverage, both within and across collec-
tives. Automation can make it possible to exploit the entirety of the available
data and provide an exhaustive view in a given analysis. Analyses can also be
reproduced more quickly on different cases, allowing for comparative studies
on a larger scale.
Furthermore, a large part of the interactions taking place within distrib-

uted collectives occurs through natural language. Language enables the
subtle, situated articulation work necessary to handle coordination and keep
a collective running (Gerson and Star, 1986; Suchman, 1996; Schmidt and
Simone, 2000). As such, it represents an important source of information
about collective practices and activity. However, language is also a form of
communication that is notoriously difficult to handle in a systematic fashion.
To be of use, automated tools should therefore be able to process and deal
with the semantics of interactions in natural language.
We believe such automated tools can provide a helpful contribution at

three levels. First, from a research perspective, automated analyses can
contribute to the building of a theory of collective activity and distributed
practices by guiding and completing finer-grained, more qualitative ap-
proaches. Also, from a systems designer’s perspective, making collective
processes more explicit and obtaining models of how they are articulated can
allow for the design of computer-supported infrastructures that could both
better address the general issues encountered by distributed collectives (by
embedding a theory of collective practices into design), as well as the specific
needs of different types of collectives (by adapting support to particular
practices in specific collectives). Finally, in the same way that researchers
have to handle large amounts of data when analyzing distributed collectives,
the collectives themselves face a problem of information overload, where
members cannot keep up with the rate at which new information is created.
Automated tools could also be made available to collectives as an additional
way to cope with data by offering alternative means to effectively access
information gathered throughout the life of the collective.
Obviously, such an approach is only possible if automated tools are able to

process linguistic information to acceptable levels of precision, and if we are
able to identify useful phenomena out of the generated models. In this paper,
we investigate some of the potential contributions of semantic analyses of
linguistic interaction for the study of collective processes and practices. In
other words, we are interested in discovering how linguistic interaction is
related to collective action, as well as in exploring how computational tools
can make use of these relationships.
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The rest of the paper will be structured in the following way: Section 2
presents our object of study and its interest for research on distributed col-
lective practices. Section 3 introduces our current model of interaction.
Section 4 reports on analyses we have carried out to illustrate our method.
Section 5 details our method for automating interaction modeling and pro-
vides an evaluation of the current status of our tools. Section 6 discusses what
we have learned from our research, listing issues we have encountered so far
and how we envision solving them.

2. Object of study: FOSS and Bugzilla

2.1. FOSS AS A PROTOTYPE OF DCP

Free/Open-Source Software (FOSS) has gathered significant interest over the
last few years, both for of its interesting new paradigm (Raymond, 2001) and
for its potential for study (Gasser et al., 2004; Howison et al., 2005). On
many aspects, FOSS communities constitute prototypical distributed col-
lectives.
First, FOSS participants are scattered around the world and communicate

virtually entirely through computer-mediated channels such as email, mailing
lists, forums, wikis, code repositories, and other electronic communication
media. These interactions are carefully archived and preserved, and for the
largest part made freely available to anyone on the Internet, providing
enormous amounts of empirical data on structures and practices of FOSS
communities (Yamauchi et al., 2000).
Also, FOSS communities are focused around complex tasks, which both

motivate and sustain the communities, and require elaborate interactions
between participants. Building software is far from being trivial and requires
complex coordination among project members (Crowston, 1997; De Souza
et al., 2003), especially in distributed contexts (Herbsleb and Grinter, 1999).
Despite this complexity, FOSS does not seem to rely on many formal
coordination mechanisms, such as work assignment or planning and sched-
uling (Scacchi, 2002), and organization emerges from the collective’s evolu-
tion as much as it is planned.
Finally, there is not one form of FOSS community, but many different

ones, with different structures and dynamics (Crowston and Howison, 2005;
Gacek and Arief, 2004). This provides an opportunity for carrying out
comparative studies across communities and for observing variations in
practices within the common context of FOSS development.
Taken together, these characteristics make FOSS a good candidate for

studies of distributed collective practices, providing both an appropriate
setting and large amounts of data to study. The rest of this paper will focus
on a specific collective we have been studying in our research: Bugzilla.
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2.2. BUGZILLA

Our initial study focuses on the Mozilla community, and more specifically on
its collective dedicated to reporting and resolving bugs found in software
developed by the community. The Mozilla project, which aims at developing
a robust, standard-compliant Internet software suite, has seen a constant
increase in popularity since its creation in 1998. Their flagship product,
Firefox, recently reached 100 million downloads, and Mozilla-based brows-
ers are approaching the 10% market share (WebSideStory, 2005).
The project counts hundreds of developers distributed across the world, and

tens of thousands of participants (users, developers, testers, etc.) who have
contributed to one of the 300,000 bug reports currently in Bugzilla, the
community’s problem-management repository (Mozilla Organization, 2005).
Software problem management plays a central role in every software

development effort (Cartensen et al., 1995) and FOSS is no exception
(Sandusky, 2005). The bug reporting system (including both the tools and
protocols developed by the community) often constitutes the main coordi-
nation mechanism within the software problem management process and as
such represents a ‘‘microcosm of coordination problems’’ (Crowston, 1997,
p. 173; Schmidt and Simone, 1996). Bug reports are key elements in a
software maintenance process, keeping track of and making visible infor-
mation about bugs and activities that surround them. However, a bug report
does more than hold facts or information; it also has interpretive, manage-
ment, and expressive functions, and provides an artifact and a corresponding
protocol that supports the software maintenance process.
Bug reports (Figure 1) in Bugzilla contain (Bugzilla Team, 2005a):

(a) Descriptive information giving a synthetic view of the problem, includ-
ing: Short description, classification of the issue (component, module),

Figure 1. Screenshots of a bug report, showing the formally encoded information

(left) and the free-form comments (right).
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current bug report status (status, resolution, priority), relations to other
bugs in the repository, etc. In a large proportion, these different
elements take the form of coded entries selected from controlled vocab-
ularies, which can evolve as the practices and needs of the maintenance
process evolve. Some entries are entered as free text, but usually with
constraints on the length and (collectively defined) acceptable form of
input.

(b) A record of the identity of the people involved in the different aspects
of the bug resolution process. Some roles are explicitly identified as
part of the description of a bug report (reporter, developer in charge
of the bug, QA contact), while others are less clearly tracked.

(c) A record (called ‘‘activity log’’ in Bugzilla) of all modifications made to
the bug report, identifying who made the change, when it happened,
and what the change was about.

(d) Attached documents such as patches, screen shots, stack traces, docu-
ments used as references, test cases.

(e) Comments in free text made by participants (i.e. anyone with a Bugzilla
account), providing a weakly structured way for participants to con-
tribute additional information. Typical uses of these comments include
descriptions of the problem, instructions to reproduce, opinions,
hypotheses, conjectures, requests, reports of actions taken, etc. Bug re-
ports contain an average of ten comments ordered chronologically.
Comments vary greatly in length, ranging from one-word instructions
to multi-paragraph contributions, with an average of a few sentences.

At any given time, a very large number of reports (tens of thousands) are
open, with thousands of them being simultaneously handled. This requires
high amounts of coordination between the members of the collective to
manage resources, avoid conflicting fixes, and reduce the amount of duplicate
effort (Gasser and Ripoche, 2003).
The Bugzilla environment is in this way representative of large-scale,

task-oriented distributed collectives, and provides important data about
collectively enacted processes related to problem solving activities. From the
perspective of developing analysis tools, we are interested in the two
following questions:

– What does interaction look like in bug reports? (How can we character-
ize interaction?)

– Does interaction occurring in the comments map in some way to the
bug resolution process(es)? (How can we learn about practices by study-
ing interaction?)

It is these questions we attempt to address in our analyses, using the model
we detail in the following section.
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3. Model

3.1. TOWARD A MODEL OF INTERACTION

Schmidt and Simone (2000) discuss the inherent interlacing of formally
defined work flows and ad hoc alignment in every collaborative work sit-
uation: ‘‘In cooperative work, ad hoc alignment and improvisation on the
basis of mutual awareness is inexorably interlaced with the execution of
predefined procedures and similar formal constructs, and vice versa’’ (p. 2).
Bug reports explicitly support this duality, providing both formal constructs
in the form of formally encoded information, and a shared space sup-
porting ad hoc alignment through free form comments in natural language.
Our model aims at exploiting both formally encoded (items a–c in Section
2.2) and linguistically expressed (item e) information to obtain representa-
tions that can help us make sense of collective practices occurring in
Bugzilla.
Formally encoded information materializes the predefined process of bug

resolution and enables the collective to keep track of the progress they make
in this process. But this information captures more than just the evolution of
a process. We think of it as information provided by the collective about
various aspects of the bug resolution process, about the bug itself, and also
about the structure and organization of the collective. For instance, marking
a bug ‘‘assigned’’ and filling the corresponding ‘‘assigned to’’ field tells us
something about the state of a given bug, in that there now is someone in
charge of the problem. In addition, it also tells us something about the role of
a specific individual in a particular resolution process, and to a certain extent,
about her role within the collective in general. It thus provides information
about how the collective is organizing around a set of bugs. Therefore, we see
formally encoded information as clues given by the collective about its state,
progress, priorities, etc.
While formally encoded information gives us precious information about

the structure of the collective and the different stages a bug report goes
through, it does not provide a complete picture of how these structures and
processes are articulated, because coordination also occurs through informal,
situated alignments that cannot be captured in a formal, static structure.
Bugzilla comments therefore play a critical role in letting participants artic-
ulate around the processes embedded in, and enabled by, the formally en-
coded information. As such, the comments constitute an important source of
information about collective practices.
Therefore, both ‘‘sides’’ of the coordination process complement each

other and should not be interpreted without the support of the other (Gerson
and Star, 1986). These two sides will always be present in every context of
interaction, albeit not in the same proportion or the same form. For instance,
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forums will provide much less formal structure, but message headers do
contribute to shape, constrain, and guide the interaction. At the other
extreme (staying in software development), environments such as version
control systems provide a very codified structure and leave little room for
informal articulation; but they still rely on free form short comments asso-
ciated to code submissions to help developers make sense of particular
actions and how they fit in the process.
Our model aims at exploiting this duality by using both formally encoded

information and information extracted from linguistic interactions to identify
patterns associated with specific collective practices, processes and structures
(Gasser and Ripoche, 2003; Ripoche and Gasser, 2003). We illustrate our
general model in Figure 2.
In order to use both sides of the interaction, the first step consists in

extracting useable information from collected raw data. Because data is not
generated for research purposes but as a byproduct of the collective’s func-
tioning, some formatting is often required, and extracting information from
FOSS repositories can be quite complex depending on the source of the data
(Howison et al., 2005). However, in the case of Bugzilla, we had direct access
to the repository database, which made extraction relatively straightforward.
In this paper, we consider data to be properly extracted and focus on the
following steps.
Modeling semantic information from linguistic interactions will be treated

in the rest of this section and in Section 5, and examples of analyses relying
on both formal and linguistic data will be provided in Section 4.

Processing

Extraction Extraction

Coded
semantic

representation

Coded
representation

Bugzilla bug report

Free-form
comments
 in natural
language

Formally
encoded

information
Analysis of the
relationships

between formal
and semantic

representations

Model of
distributed
collectives

Figure 2. Our general approach.

ANALYSIS OF LINGUISTIC INTERACTIONS 155



3.2. FOUNDATIONS

Put simply, our objective is to capture activity by processing linguistic
interactions. We adopt Winograd, Flores and colleagues’ view of ‘‘language
as the primary dimension of human cooperative activity’’ (Winograd, 1987,
p. 4; Flores et al., 1988). The language/action perspective relies on speech
act theory (Searle, 1975) for the modeling of interaction, on the basis that it
provides an interesting foundation for understanding language as a reflec-
tion of what people do. Speech act theory emerged from the observation
that not all utterances are statements aimed at asserting the truth or falsity
of a fact, but that language can also be used to make promises, to request
something, to give one’s opinion, etc. – in short, to perform actions. The
language/action perspective observes that speech acts are not isolated events
but participate in larger patterns of conversation that structure human
organization.
The language/action perspective and theory of speech acts have been at the

center of a heated debate in the field of CSCW (Suchman, 1994; Winograd,
1994; Bannon, 1995), from which two threads of critiques need to be
distinguished and addressed in the context of our study.
The first thread concerns the suitability (or lack thereof) of a theory

based on speech acts as an account of human conduct. Critiques point out
the arbitrariness of ‘‘universal’’, a priori taxonomies and their inability to
deal with the situatedness of human interaction. While we acknowledge
these limitations, we believe speech acts still constitute a useful device
for the analysis of interaction from a computational perspective, providing
a semantic, ‘‘action oriented’’ representation that lends itself well to mod-
eling.
The second thread of critiques discusses the impact of explicit, externally

defined categories on organizational life and control structures, focusing on
the Coordinator, a tool based on the language/action perspective. These cri-
tiques have to be framed in a perspective of design, as it is the embedding of
such categories into support tools that becomes problematic. However, not
adopting a design perspective (our current objective is to model and analyze
processes of interaction, not to design them), we do not find issues of control
and discipline to be relevant to our problematic: Speech acts – or any other
features we may extract from interaction – are not used as a communicative
device within the observed collective but as a post hoc analytic device.
To summarize, we view speech acts as a useful device to abstract interac-

tion and extract some of its semantics in order to put in evidence patterns of
interaction. While necessarily incomplete (like any representation), speech
acts give one perspective on some of the things people are doing through their
interactions, as well as on how coordination and collective activity occurs
through linguistic interaction.

GABRIEL RIPOCHE & JEAN-PAUL SANSONNET156



More recently, many variants of speech act theory have been proposed. In
the literature, speech acts have been alternatively referred to under different
terms, such as ‘‘communicative acts’’ or ‘‘dialogue acts’’, both for practical
reasons (e.g. to avoid being understood as a speech-only phenomenon), and
to address issues with Searle’s original definition. To clarify our use of the
concept, we adopt Bunt’s definition of dialogue acts – along with the
terminology – as the starting point for our model:

A dialogue act is a unit in the semantic description of communicative
behaviour produced by a sender and directed at an addressee, specifying
how the behaviour is intended to influence the context through under-
standing of the behaviour. (Bunt, 2005, p. 2)

However, because we are not concerned with dialogue per se but instead with
interactions within loosely defined groups, we believe it is important to
specify that the addressee is more of a role than a precise, physical inter-
locutor within a dialogue. In Bugzilla, it is perfectly possible to address ‘‘the
collective’’ in its entirety, or rather, any potential participant who might feel
concerned by the problem at hand.
Dialogue acts therefore provide a model of interaction as the articulation

of joint action, through the representation of ‘‘the way in which the utterance
is meant to change the information state of an interpreting system upon
understanding the utterance’’ (Bunt, 2005, p. 2).

3.3. DIALOGUE ACT TAXONOMY

Our taxonomy is inspired by Searle’s initial taxonomy (1975) and by recent
work proposed in the field of dialogue modeling (e.g., Allen and Core,
1997; Jurafsky et al., 1998). The latter taxonomies provide finer grained
categories and rely on empirical analyses of relatively large corpora. The
selection of our taxonomy is guided by several criteria that attempt to
balance issues of genericity with specific needs in the types of analyses we
want to conduct.
While we believe it is necessary to take into consideration previous work in

the domain of interaction modeling, it is also important to recognize the
divergences between existing studies in conventional dialogue and the type of
interaction we are attempting to model. Previous work focused on short,
synchronous, oral, two-person dialogues with a specific and relatively simple
task, such as itinerary planning (Core and Allen, 1997) or casual telephone
conversation (Jurafsky et al., 1998). In the case of Bugzilla, interaction is
asynchronous, written, involves multiple people, and handles much more
complex and sometimes ill-defined problems. As such, some of the categories
adapted to conventional dialogues may have a different meaning, or be
irrelevant in the context of Bugzilla interactions. In addition, the Bugzilla
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interaction process shows some specificities that are important to capture in a
taxonomy, because they may help characterize important aspects of the
processes and practices of the Bugzilla collective.
We are making incremental progress in our analyses of interaction, and are

still at the stage of identifying useful constructs for out study. In this context,
using an overly precise taxonomy (Switchboard DAMSL contains 42 tags
(Jurafsky et al., 1998)) may not be the best way to approach our problem.
Instead, adopting a relatively simple taxonomy – which at first contains
coarse categories but can be further detailed as needed – seems like a more
appropriate exploratory approach. This led us to keep the original high-level
taxonomy proposed by Searle as our foundation, which we progressively
detailed as we were identifying interesting phenomena.
This method presents the main advantage that we do not have to go

through an annotation process that is more complex than it needs to be.
Annotation reliability tends to decrease as the taxonomy becomes more re-
fined, and by reducing the complexity of the taxonomy to the minimum
needed, we avoid reliability issues to the best of our ability. The taxonomy
is likely to change as our needs evolve, and it has in fact already done so a
few times as we were making progress in our understanding of Bugzilla
interactions.
Our taxonomy (Table 1, detailed in Appendix A) thus attempts to strike a

balance between the existing models proposed by research in interaction
modeling, the characteristics of the type of interactions studied, and the
specific needs of our investigations.
At our stage of analysis, this taxonomy presents a good tradeoff between

coverage and complexity, and has allowed us to design experiments to
empirically investigate interactions in Bugzilla and their relationships to
different aspects of the Bugzilla resolution process.

Table 1. Bugzilla dialogue act taxonomy (detailed in Appendix A)

Assertives Commissives Expressives

Description (dsc) Commitment (com) Acknowledgement (ack)

Prescription (pre) Offer (off) Agreement (agr)
Statement (sta) Directives Apology (apo)

Performatives Direction (dir) Disagreement (dis)
Action (act) Instruction (ins) Exclamation (xcl)

Others Question (que) Expression (xpr)
Introduction (int) Request (req) Greeting (grt)
Label (lbl) Requirement (rqr) Opinion (opi)

Unknown (ukn) Suggestion (sug) Smiley (smi)
Summon (sum) Thank (thx)
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4. Experiments

In this section, we report some early results of an ongoing analysis of patterns
of interaction in Bugzilla, using the model we just described. While it would
be too early to draw conclusions at the level of the corpus based on these
results, we hope that our initial observations can suggest trends to be ex-
pected from studying interaction in distributed collectives and orient further
research in this area.

4.1. METHOD

Our analyses are based on a systematic sample of 252 bug reports drawn from a
March 2002 snapshot of the Bugzilla repository containing over 128,000
reports. Each bug report was extracted from the Bugzilla database and man-
ually annotated with dialogue act information (further details on the annota-
tion process will be given in Section 5), leading to a total of 7626 dialogue acts.
For each bug report, the following information is available for analysis:

– General descriptive data: Number of participants, number of comments,
date the bug was opened and date it was closed.

– Trajectory data: Number of status changes, final resolution, and status
trajectory.1

– Interaction data: Dialogue acts indexed by sentence, comment, and re-
port number, and providing a semantic representation of the content of
the comments of a bug report.

4.2. OVERVIEW OF INTERACTION IN BUGZILLA

Before any attempt at analyzing interactions and their relationships to
collective processes, it is useful take a look at the general characteristics of
Bugzilla interactions, in order to get a broad understanding of the object we
are studying: Are interactions in Bugzilla similar to other forms of dialogue
such as the ones studied in dialogue modeling, or are there significant
differences? Furthermore, in case such differences do exist, what can they tell
us about the type of interactions taking place in the collective?
Figure 3 provides an overview of the distribution of dialogue acts in the

practice of managing bugs, based on the complete sample of 252 reports.
Interaction is largely dominated by assertives (49.1%), followed by directives
(15.6%), performatives (14.0%), expressives (9.3%), and commissives
(1.9%). Other types constitute 10.1% of the sample, with only 2.1% of
unknown utterances. There is a wide gap between a few dominant categories
and the remaining ones: Nearly two-thirds (61.8%) of the dialogue acts fall
into one of the three main categories (statement, 25.6%; description,
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22.3%; action, 14.0%), with none of the other categories representing more
than 6% of the total.
A distinction can be made between dialogue acts directly contributing to a

dialogue and those that have more of a ‘‘stand alone’’ status. By this dis-
tinction, we mean that some dialogue acts can reliably indicate a dialogue
between participants. For example, dialogue acts such as question, request
or suggestion expect an answer from a participant, and as such initiate a
more direct interaction. In the same way, dialogue acts such as
acknowledgement, agreement or disagreement respond directly to a pre-
vious intervention. In opposition, description or statement do not nec-
essarily initiate or react to a direct interaction, and multiple people can just
‘‘stack up’’ information comment after comment without specifically
engaging in a dialogue. Looking at the proportion of direct dialogue acts can
help us characterize the structure of interaction in Bugzilla.
We find that only 14.4% of the dialogue acts in the sample are direct

dialogue acts,2 which can be compared to the proportion of 38.1% of such
acts in dialogues annotated in the Switchboard project (Jurafsky et al.,
1998).3 The comparison has to be carefully interpreted since, as we men-
tioned earlier, there are differences between annotation schemes and be-
tween the two types of interaction. Also, our estimation necessarily
underestimates the true proportion of direct dialogue acts, since acts such
as statement or action can occur as an answer in the context of a dia-
logue. However, the large difference between the two types of interaction
does give us a first approximation of the sort of interactions going on in
Bugzilla. This tendency is consistent with informal observations we made
while annotating the reports, in that it suggests that interactions in Bugzilla
are much less direct than in conventional dialogue. Instead information is
accumulated more in the style of a ‘‘black board process’’ (Hayes-Roth and
Hayes-Roth, 1979), in which each participant contributes without neces-
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Figure 3. Distribution of dialogue acts in the sample (Nr=252; Nda=7626).
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sarily articulating directly with the previous posters. This of course does not
mean that there is no articulation at the level of the process, but that it
happens mostly without being made explicit through traditional dialogue
conventions.

4.3. INTERACTION AND RESOLUTION PROCESS

According to our model, we are attempting to identify relationships between
formally encoded data (which we consider as information provided by the
collective about its own state, structure and activity) and patterns of lin-
guistic interaction, in order to better describe the processes and practices
enacted by the collective.
One the most prominent indicator of the bug resolution process is the

status of the bug. Bugzilla, like most development efforts (Cartensen et al.,
1995), has a normative resolution process, which is explicitly described in
the Bugzilla documentation and shown in Figure 4 (Bugzilla Team, 2005b).
A bug report keeps track of the progress made in the resolution process of
a bug through the status field (which indicates the state the process is
currently in), and through the activity log (which tracks changes in status
throughout the life of the report). Each status corresponds to a different
stage in the resolution process, as identified by the collective. Typically, a
report will be created as UNCONFIRMED or NEW, depending on the privileges
of the reporter of the bug. After the bug report has been triaged, it is
ASSIGNED to a developer, who becomes responsible for its resolution. Once
the bug is solved, the bug report is marked as being RESOLVED, and then as
VERIFIED once the QA team confirms that the bug is indeed fixed. Finally,
the report is CLOSED when no more action is required. Eventually, a bug
can be REOPENED if problems reappear after the bug was identified as being
resolved.
The sequence of status changes of a given bug, together with the collective

processes and articulation enacted at each step of the process can be thought
as the trajectory of the resolution process for that bug (Strauss, 1988), and
provides a useful structure to analyze and compare reports. For instance,
looking at trajectories, one can ask what a ‘‘normal’’ trajectory is and what
sorts of deviations can occur. In other words, do all bug trajectories corre-
spond to the process explicitly defined by the Bugzilla community, or are
there exceptions (and how common are the exceptions)? Within our model,
we can ask the following questions to better characterize the bug resolution
process and eventual variations of it:

– Do linguistic interactions differ at various stages of the resolution process?
– If so, what can the differences tell us about the process(es) of fixing bugs?
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To investigate these questions, each comment was associated with the status of
its bug report at the time the comment was posted, by matching the timestamps
available both in the activity log and in the comment list. All the comments were
then grouped by status in order to analyze eventual variations in the distribution
of dialogue acts across different stages of the life cycle of a bug.
Figure 5 displays the distribution of each type of dialogue act for each of

the six statuses a bug report can go through during its life.4 The graphs show
large variations in dialogue act profiles at different stages of the resolution
process. Most of them are shown to be significant through an analysis of

Figure 4. The Bugzilla bug resolution process (Bugzilla Team, 2005b).
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variance (Kruskal–Wallis5) performed for each category of dialogue acts and
reported in Table 2 (significance levels are also given in Figure 5 in the title
for each dialogue act category).
Looking at the variations of the distribution of dialogue acts, four stages

can be identified, with four distinct profiles of interaction:

– Description. This stage is characterized by high levels of
description, instruction, prescription and direction. In this
phase – corresponding roughly to the UNCONFIRMED and NEW statuses –
a new bug has been reported and the collective is trying to get a precise
picture of the problem by providing elements such as descriptions of the
problem, descriptions of the environment in which the problem occurs,
instructions on how to reproduce the problem, and prescriptive descrip-
tions of what the ‘‘normal’’ behavior should be.
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Figure 5. Dialogue act proportion by status (Kruskal–Wallis: Nr=252; Nda=7494;
df=5; p: ***< 0.001, **< 0.01, *< 0.05, ‘< 0.1).
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– Investigation and organization. Once the collective has a ‘‘good idea’’ of
what the problem is, discussion starts around what could and should be
done, who should do it, etc. Commissives (offer, commit), directives
(question, request, summon, requirement), ‘‘opinionated’’ expressives
(expression and opinion), along with non-descriptive assertives
(statement) increase significantly. People are also more often referred to
by name (label) in this phase, showing a need for more direct organiza-
tion of the interaction. This phase corresponds to theNEW andASSIGNED

statuses (ASSIGNED is often skipped, in which case bug reports keep a
NEW status until the resolution phase).

– Resolution. At this stage, the problem is identified, a solution has been dis-
cussed, people have been assigned to handle the bug; it is time to take ac-
tion and fix the problem. Performatives (action) clearly dominate this
phase, representing 32.9% of acts in RESOLVED and 46.0% in VERIFIED.
Each of the two statuses has a slightly different profile however: the earlier

Table 2. Analyses of variance for each dialogue act category (Kruskal–Wallis: Nr=255;

Nda=7494; df=5; p: ***< 0.001, **< 0.01, *< 0.05, ‘< 0.1)

D. act N reports N d. acts H p

ack 32 43 9.3449 0.09607 ‘

act 234 1078 295.0309 <2.2e)16 ***
agr 41 59 21.7145 0.0005932 ***
apo 35 42 7.529 0.1842
com 67 116 50.1176 1.311e)09 ***

dir 41 50 16.0681 0.006652 ***
dis 9 11 7.5669 0.1818
dsc 228 1701 227.1521 <2.2e)16 ***

grt 6 7 17.5062 0.003633 **
ins 115 412 181.4445 <2.2e)16 ***
int 138 444 224.4199 <2.2e)16 ***

lbl 86 172 51.0526 8.437e)10 ***
off 20 27 23.8378 0.0002333 ***
opi 83 213 52.565 4.131e)10 ***

pre 63 96 71.2994 5.497e)14 ***
que 107 269 76.6306 4.248e)15 ***
req 98 224 48.2193 3.204e)09 ***
rqr 46 92 57.2863 4.414e)11 ***

smi 35 51 28.7358 2.613e)05 ***
sta 227 1953 96.2009 <2.2e)16 ***
sug 47 136 48.4663 2.853e)09 ***

sum 9 12 16.6628 0.005186 **
thx 35 48 8.8131 0.1168
xcl 41 64 27.8254 3.937e)05 ***

xpr 75 174 54.4913 1.661e)10 ***

The results show that for most categories, bug status has an effect on dialogue act profiles.
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period (RESOLVED) has higher levels of commissives and directives, likely
to correspond to ‘‘late’’ organization. The VERIFIED stage shows much less
variation, with action, statement and description representing 79.2%
of the dialogue acts present in this stage (vs. 71.6% for RESOLVED). Con-
trary to the early phases in which descriptions show problematic behav-
iors, descriptions in these stages confirm the ‘‘fixed’’ behavior.6

– Breakdown. In this stage, a bug report is marked REOPENED, indicating
that a problem that was thought to be solved turns out not to be. At
this point, the collective has to reopen the investigation, evaluate what is
wrong, look for more information, reassess the problem, and reorganize
to solve it. This stage can be thought as a combination of the other
stages in the ‘‘normal’’ life of a bug report (investigation, organization,
and attempt to take corrective action). The profile of interaction shows a
surge in directives (request, requirement, suggestion), along with an
increase in commitments and slightly above average levels of performa-
tives. Expressives with social function also increase (expression,
greeting, smiley; apology increases as well but is not significant), indi-
cating that there is a need to handle the breakdown at a social level as
well as at a technical one.

This analysis demonstrates that profiles of interaction vary depending on
the stage of resolution of a bug report. This gives us an alternative charac-
terization of the resolution process that is not based on arbitrary steps in a
process, but rather on different forms of interaction among the participants
during the resolution process.
Using this relationship, we can envision detecting mismatches between the

status of a report and its profile of interaction, which may point to mis-
alignments or breakdowns in the resolution process. Furthermore, the mixed
profile of the REOPENED status indicates that it might be useful to further
decompose this phase. REOPENED covers many different steps in the resolution
process, and looks like a condensed version of a complete trajectory, mixing
together features of all the other phases. Identifying distinct stages in this
status might be useful for research, and may as well be for the collective itself.
In the same way that the collective finds it useful to decompose the initial
trajectory in several steps, there may be advantages in characterizing a
reopening with more details.

4.4. INTERACTION AND BUG DURATION

One of the largest variations across the Bugzilla repository is the time bug
reports stay open. Some reports stay open only a few hours, while others take
years to be resolved. Figure 6 shows the distribution of the 80,000 resolved
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reports contained in our Bugzilla snapshot, based on the duration of their
resolution process.
As can be seen in Figure 6, there is a large percentage of bug reports that

take a significant amount of time to be solved. More than half (60.4%) of the
bug reports took more than thirty days to be resolved, and over a fourth
(27.7%) took more than six months.
Bug resolution speed has been proposed as a measure of collective

efficiency (Crowston et al., 2004) and can be used to study the impact of
different practices on the outcome of the resolution process. Bug reso-
lution depends on technical factors such as the complexity of the prob-
lem, but also on social and organizational factors, such as resource
availability and coordination. Since coordination occurs in a large part
through linguistic interaction, variations in patterns of interaction among
participants may be related to variations observed in the duration of the
resolution process. Our objective is therefore to investigate the eventual
relationship between profiles of interaction and duration of the bug
resolution process.
The analysis was carried out on the 155 completed reports (sta-

tus = RESOLVED) present in our sample. Reports were split among four
equal-size subsets based on their duration, with the following limits: less than
8 days, less than 56 days, less than 188 days, and over 188 days. Figure 7
shows the variation in dialogue act profiles for each category (significance
levels are given in the figure; the statistics table is omitted as the testing
procedure is identical to the previous experiment).
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Initial analyses show little correlation between interaction and duration.
Only five categories show significant variations over bug duration at the 0.05
level. Some other categories display promising trends, but variations here are
not as clear as the variations related to stages of resolution. While inter-
pretations concerning the relationship between interaction and bug duration
would be risky given the data, the results provide interesting observations
about the problems faced by such studies.
First, as in every statistical measure, sample size is critical. The sample used

in this analysis was almost half the size of the one used for the previous
analysis, which is a likely cause for the lack of significant results. Increasing
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Figure 7. Dialogue act proportion by duration. Reports were grouped in categories
of: less than 8 days, less than 56 days, less than 188 days, and more than 188 days
(Kruskal–Wallis: Nr=155; Nda=4140; df = 3; p: ***< 0.001, **< 0.01, *<0.05,

‘< 0.1).
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the size of the sample should make it possible to draw more reliable con-
clusions, be they positive or negative.
However, beyond the size of the sample, we observe a wide variability in

our current sample that may introduce too much noise. The sample used for
this analysis was selected to be as representative of the corpus as possible,
with the primary goal of training our automated tools; therefore, no
parameters were controlled during the sample selection process. This results
in a large variability on every dimension (bug duration, types of problems,
proportions of dialogue acts, etc.). While it is suitable for our primary task, it
weakens potential relationships among specific parameters. For instance, in
our present analysis, duration is likely to be influenced by many other
parameters besides patterns of interaction (e.g., technical difficulty, resource
availability, etc.), which are not controlled in the sample. In order to properly
test for the impact of interaction on duration, it would be necessary to
control for all these other parameters.
Variability is also caused by the fact that bug duration may not be a precise

enough measurement. Taken alone, process duration might be a misleading
measure of collective activity, because it may cause distinct patterns of
activity to be mixed together. For instance, many bugs take time due to
insufficient resources, while others may be due to social misalignments. By
only measuring the time a bug takes to be resolved, we may not be able to
single out specific patterns of coordination from problems of resource allo-
cation. It is only once the variability created by other factors is controlled
that we can hope to see meaningful variations in interaction patterns.
This attempt at modeling relationships between duration and profiles of

interaction therefore identifies the need for both better sampling based on an
understanding of the sources of variability in the corpus, and for the careful
selection of precise outcome measures that are relatively well understood in
terms of dependencies with other parameters, so that specific phenomena can
be singled out for study. As for increasing the size of the samples used for
analysis, it is the focus of the following section.

5. Automating dialogue act recognition

In the previous section we demonstrated the interest of an approach based on
the semantic modeling of linguistic interactions, and on the study of the
relationships between such representations and more formal measures of
collective activity. However, these studies relied on manual annotations of a
small sample. This seriously limits the potential of the approach and the
domain of possible analyses, as we found out in Section 4.4. In order to scale
to the size of entire corpora containing years of interaction between partic-
ipants in a collective, we need automated ways to annotate interaction with
semantic information such as the dialogue acts we use in our analyses.
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Our approach consists in using machine learning techniques to extract
linguistic patterns that can reliably identify specific types of dialogue acts,
based on a small initial sample of manually annotated data. Our method is
based on the following observations:

– As we already mentioned, manually annotating entire corpora is not fea-
sible. However, annotating a small number of reports can be done in a
reasonable amount of time, and can be used as training data for a ma-
chine learning approach.

– Different collectives may present significantly different patterns of inter-
action. Using a machine learning approach makes it possible to train the
tools on specific corpora with relatively little extra effort (simply requir-
ing the annotation of a sample of the new corpora). Inversely, using ap-
proaches which attempt to directly describe the patterns (such as rule-
based systems) instead of automatically learn them would require at least
partial reengineering for each new corpora.

– Annotating reports is easier than elaborating extraction rules. A machine
learning approach makes it more feasible to carry out studies on new
corpora or using different semantic information, since it does not require
as much technical expertise.

In the following paragraphs, we describe our procedure and present our
current results in automated annotation, along with analyses of where future
improvements can be made. The process is decomposed into three main
phases: preprocessing, manual sample annotation, and machine learning.

5.1. PHASE 1: PREPROCESSING

The first phase consists in transforming the raw data into a form that can
be further processed using automated tools. Comments are directly
extracted from the Bugzilla database snapshot in raw textual form, and
have to undergo a series of steps aimed at formatting the data and adding
information necessary for the machine learning process. The three following
steps are performed:

(a) Segmentation of comments into tokens. In most cases, tokens corre-
spond to words, but may also represent specific entities such as times,
URLs, or composed words.

(b) Lexical and grammatical annotation of comments. Information is added
to each token, providing the part of speech (verb, noun, etc.) and
lemmatized form of the token.

(c) Segmentation of comments into utterances. Utterances constitute the ele-
mentary entity used to annotate dialogue acts. In many cases, utter-
ances correspond to sentences, but several utterances can occur in a
single sentence.
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In our sample, steps a and b were done automatically. Step a was
carried out using a segmenter developed specifically to handle some of
Bugzilla’s specificities (such as program naming schemes and computer
code entities). Step b relied on standard morphosyntactic tools. Step c was
done manually to insure high reliability, as utterance segmentation poses a
number of issues from a computational perspective that we have not yet
addressed.

5.2. PHASE 2: MANUAL SAMPLE ANNOTATION

This phase consists in creating example data to be used as training data in the
machine learning phase. A small sample was manually annotated using the
taxonomy of dialogue acts detailed in Section 3.3, resulting in utterance/
dialogue act pairs.
For this phase, we developed an annotation tool aimed at facilitating the

task of annotating utterances. Our tool, Zentag, allows for the rapid anno-
tation of dialogue acts through a simple graphical interface.

5.3. PHASE 3: MACHINE LEARNING

Machine learning techniques are used to identify patterns of linguistic fea-
tures allowing for the annotation of the type of dialogue act performed by a
given utterance. Once a learning algorithm is trained, it can be used to
automatically annotate the entire corpus with dialogue act information. The
learning step is composed of two phases.

5.3.1. Feature extraction
Before a correspondence between linguistic patterns and dialogue acts can be
established, features on which to base the patterns have to be extracted from
the utterances. We use a series of filters we implemented to extract infor-
mation such as:

– Information about words present in the utterance. This includes the words
themselves (either surface or lemmatized form), but also the potential
presence of modals verbs, ‘‘wh-’’ forms (e.g., what, who, ...), evaluative
language, etc.

– Information about specific chains of words (n-grams). These chains take
into account the relative position of the words in the chain. For instance,
‘‘you do’’ and ‘‘do you’’ would be two different chains, and are likely to
have a different semantic role.

– Information at the utterance level. This includes the tense of an utterance,
its form (interrogative, affirmative), etc.
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5.3.2. Learning process
Feature extraction provides an alternative representation of utterances as a
set of features and a corresponding category of dialogue act. A learning
algorithm uses this representation to associate patterns of features to specific
categories of dialogue act.
In the following section, we report results obtained with the Weka learning

environment (Witten and Frank, 2000) using an implementation of the C4.5
decision tree algorithm. In some cases, better results may be attained from the
tuning of more specific algorithms, but we currently are elaborating the entire
learning procedure and are not focusing on optimization. Decision trees have
the advantage of not requiring much tuning and being easily interpretable,
thus reducing the amount of time needed for setting up experiments. We see
tuning improvements as too costly for the experimental phase of our research,
in which we favor ease of development and speed of experimentation.

5.4. EVALUATION OF AUTOMATED ANNOTATION OF DIALOGUE ACTS

Our evaluation is based on the manually annotated sample described in
Section 4.1.7 Evaluation was done using the complete sample following
standard evaluation procedures in natural language processing (ten-fold
cross-validation, percentages indicate accuracy).

5.4.1. Results
The first column (TOT) of Figure 8 shows the results of automated anno-
tation obtained with varying sizes of the training set. The best overall
accuracy is 64.2%, compared to a baseline8 of 25.5%. These results are
consistent with those summarized in (Stolcke et al., 2000, p. 365) given the
number of categories learned and the size of the sample used.
The overall results (column TOT) have to be interpreted with care, as the

distribution of dialogue acts is highly skewed (see Figure 3) and tends to bias
the learning process. Because of the skew in distribution, the number of
training instances used in the learning process varies considerably between
categories. Categories such as disagreement, offer and acknowledgement

have less than 50 instances each, while the three dominant categories
(action, description, statement) range between 1000 and 2000 instances.
Since by default machine learning algorithms reward overall accuracy, an

increase of 1% in accuracy in a category such as statement will weight much
more than a 1% increase in the offer category, because of the total number of
instances in each category (1947 vs. 27 instances). To reduce this effect, we can
set a limit m to the number of examples of each category that will be used as
the training set during the learning process, by randomly selecting at most m
instances out of the set available for each category. By setting a limit, we
ensure that the difference in the number of instances between frequent and
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infrequent categories is smaller, and we can observe the impact on the per-
category accuracy. However, limiting the number of instances also means that
there will be less training instances overall, which is likely to significantly
influence the learning process as well.9

Each shade of grey in Figure 8 shows a different run of the learning
algorithm on a sub-sample using a different value of m (darker shades
indicate lower limits). We see that as the training limit increases, overall
performance increases. However, significant drops in infrequent categories
are observed. Several categories (such as commitment or expression) see
their accuracy decrease as the sample becomes more and more biased toward
high-frequency categories. This is compensated at the global level by an
increase in accuracy in the frequent categories (description and statement,
and action to a lesser extent). As the unbalance increases between infrequent
and frequent categories, accuracy for infrequent categories becomes less
relevant and is overruled by accuracy in frequent categories. This results in
better labeling of frequent categories but at the expense of other less frequent
categories.
In addition to this tradeoff, two other phenomena can be observed. Some

categories are stable and likely to have reached their maximum accuracy
given the current approach. Simple categories, such as apology, smiley or
thank do not take many linguistic forms in the corpus and thus do not
require many training instances, yielding quick saturation of the algorithm
for these categories. On the other hand, some categories are not learned at
all, and correspond to categories with very few instances in the sample:
disagreement counts only eight instances, and summon six.
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Figure 8. Accuracy of automated dialogue act annotation by category, with different
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5.4.2. Improvements
Given these results, increasing the size of the training data should increase
both per-category and overall accuracy. The tradeoff illustrated above be-
comes less important if all categories contain more examples. In this way,
more data can be used to train the learning algorithms without creating an
unbalanced situation that favors frequent categories.
In addition to simply adding data, the use of more elaborate features

should provide further increase in accuracy. Probably the most significant
issue in machine learning is that most entities occur very few times, which
makes identifying patterns a complex task, as the data presents large
amounts of variation. Increasing the training size will always help, but other
techniques aimed at abstracting utterances to increase similarity may be more
viable. For instance, categorizing verbs into semantic classes might indicate
that a sentence using the verb ‘‘fix’’ and another using the verb ‘‘repair’’ are
semantically close, thus helping the learning process to establish similarities
between the two sentences.
Finally, besides simply aiming for better overall performance, it is

important to pay attention to the per-category accuracy, and to draw
conclusions based on the contribution of each category to the final
analysis, which is likely to vary depending on the experiments that are to
be carried out with the data. Section 4 showed that not all dialogue act
categories are equally informative in a given context of analysis. In our
context, better performance does not mean better overall accuracy, but
better suitability for a given analysis. Such increase in performance may
be attained by defining priorities in the learning process concerning what
categories are critical for experimentation. Even more simply, it may not
be necessary to learn every category for a given analysis, in which case less
complex learners (which generally translate into more efficient ones) can
be trained on a subset of relevant categories, instead of on the complete
set.

6. Discussion: Issues in computational interaction modeling

In the following paragraphs, we summarize the issues we have encountered
so far, discuss what they mean in the context of studies of distributed
practices, and provide directions on how we intend to address them in the
future.

6.1. DATA AND AUTOMATED APPROACHES

Data collected from Bugzilla is very noisy, in that there are many
typographical mistakes, incomplete sentences, specialized words, and even
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computer code or other non-linguistic entities. Such problemswill be present to
a certain extent regardless of the collective studied. The quality of the corpus
may vary significantly depending on the type of collective but also on the
communication media employed, which will impact on the style of interaction.
However, most natural interactions will be noisier than traditional corpora
used in computational linguistics. Consequently, language processing tools
that perform well on relatively clean corpora see their performance drop very
significantly on corpora such as the Bugzilla corpus, and new approaches are
needed to handle the higher noise level.
Fortunately, research in computational linguistics is increasingly preoc-

cupied with ‘‘web data’’ and we can expect important improvements in
natural language processing tools, which should translate directly into
improvements for empirical computational approaches.

6.2. SAMPLING

Sample size is an important factor in statistical analyses, and given the rel-
ative complexity of our measures and the wide variation in the data, it is
important to collect large samples. Despite this limitation, we were able to
demonstrate some significant effects with a small sample, but there is no
doubt that the scale and types of analyses are restricted by our current
sample, as shown by our third experiment (Section 4.4).
Our approach offers a way to overcome this limitation by automat-

ing annotation, which constitutes the most time consuming step. As our
tools’ performances increase, more complex analyses will be possible
on larger samples (complexity and size are tied, as complexity introduces
more variability, which can be overcome statistically with larger sample
sizes).
Beyond sample size, sample selection is critical. Getting more data is al-

ways preferable, but in cases such as Bugzilla, where variability is large and
multiple constraints weight in the resolution process, it is important to select
samples geared toward specific analyses. For instance, in our experiment on
bug duration, stronger effects may have been found if the sample had been
selected specifically to study this factor. By selecting only short- and long-
duration bugs, the difference between the two groups would have been
maximized. Instead, our current sample has been primarily designed for the
training of our machine learning tools, and to allow for exploration of
multiple hypotheses, and as such is an unbiased sample of the entire
population of Bugzilla reports.
Further analyses should design samples that facilitate experimentation and

maximize the chance of showing specific effects, by isolating variables of
interest from other potential sources of variation.
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6.3. MEASUREMENTS

The issue of sampling leads to another one: measurement. The success of
models such as the one proposed in this paper depends on the selection of
appropriate measures of the outcomes of a given process, since it is what
provides a frame for the meaningful interpretation of observed patterns of
interaction. As we found out in our last experiment (Section 4.4), selecting a
good outcome measure is not a straightforward task. The selection not only
requires that we be able to measure the outcomes, but also that we possess a
good understanding of the relationships between the outcome measure and
other processes. Computational techniques, by their inherent formality, re-
quire that measures be explicit and ‘‘formalizable’’. We saw in Section 4.4
that some seemingly simple measure such as bug duration can turn out to be
too imprecise. Measures standing for very complex, entangled processes
therefore need to be further taken apart before any model can be built.
With the increasing use of computational techniques, efforts have been

started to identify useful measures for the study of collective activity in the
context of FOSS research (Crowston et al., 2004). Creating such a ‘‘portfo-
lio’’ of measures would be an invaluable asset for research on collective
practices, by providing agreed upon, well understood, and meaningful
measurements that could be used in studies such as ours. Furthermore, these
measures could also be used more generally to establish links between
different studies and to compare results.

6.4. SEMANTICS OF INTERACTION

Part of the difficulty with analyzing the semantic content of interactions is to
make categories that are useful and sufficiently clearly defined so that they
can be learned with computational approaches. Dialogue acts represent a
tradeoff between what can possibly be extracted and the expressivity of the
entity (the more semantic the structures, the harder it is to extract them
reliably using computational techniques). Dialogue acts provide information
about ‘‘what is going on’’ in the collective, and therefore are appropriate for
the study of collective activity. This tradeoff between feasibility and ex-
pressivity is something that needs to be cautiously considered when
designing new analyses, and also when moving to other types of corpora.
For instance, in the case of large discussion forums, dialogue acts might not
represent an appropriate level of analysis, and larger entities (such as
arguments, themes, etc.) might be more relevant. However, in the present
case, comments contain only a few utterances, and most often do not contain
very developed arguments, making dialogue acts a useful representation.
Regardless of the type of corpus, dialogue acts do not constitute the only

type of semantic marker, and research is needed to identify other entities that
can contribute to a model of interaction in the context of studying collective
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practices. Furthermore, once several levels of semantics have been identified,
it becomes important to understand how to link the different levels into a
coherent and meaningful model.
Many efforts in computational linguistics and artificial intelligence already

aim at representing interaction for different purpose, such as question
answering, information retrieval, or text mining (Mitkov, 2003, part 3). We
believe the requirements of DCP studies (and of what we could call ‘‘com-
putational sociology’’ in general) are significantly different and require an
approach that explicitly addresses these particularities and needs. In the same
way that linguistics provides an important theoretical foundation to language
processing, computational tools such as the ones we are developing cannot
ignore social models of distributed collectives.

6.5. GENERICITY

When designing a model of interaction, we have to ask if such a model can be
generalized to other collectives (1) in similar settings, and (2) in different
settings. A significant part of our motivation to automate analyses finds its
root in the capacity to reproduce analyses on multiple corpora, in order to
carry out comparative studies. Thus, models have to be able to function on
different corpora. This involves several levels of complexity, as different
corpora might mean:

– Varying levels of accuracy of computational tools, depending on the
quality of the data, and the complexity of the interaction (Section 6.1).

– Different measures and outcome variables, due to the presence of differ-
ent processes, structures, or organization in different collectives (Section
6.3). The importance of this issue is likely to increase as we compare col-
lectives using 1) the same environment (e.g., two collectives using Bugzil-
la), (2) different ones, but similar in functionalities and representations
(e.g., Bugzilla and Sourceforge’s bug reporting system), and (3) com-
pletely different ones (e.g., Bugzilla and a developers’ mailing list).

– Different levels of semantic analysis, required by different types of inter-
action (Section 6.4).

These differences across corpora and studies should be kept in mind when
designing computational models, to keep the need for modifications in the
tools and models to a minimum when moving to different corpora, and to be
able to reproduce and compare analyses in a variety of contexts. We expect
further research to lead to a better understanding of the modeling require-
ments in different contexts, leading in turn to a better understanding of the
levels of representation, types of tools, and methods to be used to minimize
the amount of development specific to a given corpus, and inversely to
maximize the portability of the models across different corpora.
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6.6. CONTRIBUTION: WHAT, AND FOR WHOM?

Finally, while we have focused so far on developing computational tools to
support research on distributed collectives, it would be restrictive to think of
our approach only in these terms. Models based on the semantics of linguistic
interactions can benefit different types of users. First, as shown in this paper,
they can help researchers to better understand collective practices. Second,
they can provide models for designers to build better tools for the support of
collective activity based on an improved understanding of the role of inter-
actions in collective activity. Finally, they can offer new ways for the col-
lective itself to access information and keep track of its evolution, by enabling
a form of reflexivity.
Computational models can also be used with different objectives. In this

paper, we have shown how to observe and evaluate the functioning of a
collective, using descriptive techniques. Alternatively, once processes are
better understood and relationships established, tools could be developed to
predict future evolutions of a given collective, and eventually to run simu-
lations to test hypotheses.
These many possibilities do not mean however that such tools and repre-

sentations will be useful or appropriate in all of these distinct settings. A
reflection on the uses and contributions of computational models, along with
empirical validation in the form of tools providing the different functional-
ities we mentioned should be undertaken.

7. Conclusion

Our objective with this paper was to provide a picture of the different aspects
involved in computational studies of distributed collective practices based on
our experience in modeling interactions, implementing tools, and analyzing
resulting representations. We have presented our tools and model, provided
illustrations of how they could be used to highlight properties of the inter-
actions and processes occurring in Bugzilla, and discussed issues that remain
to be addressed.
Automated approaches to the study of collective practices are going to be

needed to face the amount of data that is accumulating as the by-product of
the activity of these collectives. More specifically, techniques that go beyond
simply using structural information to also look at the semantics (the con-
tent) of the interactions will be necessary. Much research remains to be done
to address the issues we have identified, and to develop computational tools
that have the appropriate coverage, reliability and genericity to provide
useful insights into distributed collective practices. Our research represents a
first step in this direction.
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Notes

1. A trajectory is the series of changes in status that have occurred throughout the life of a
bug report, as recorded in the activity log of a bug report.

2. The following categories of dialogue acts were considered to be ‘‘direct’’ dialogue acts:
ack, agr, apo, dir, dis, grt, lbl, off, que, req, sug, sum, thx.

3. The Switchboard score was obtained by adding the proportion of all the categories in-

volved in ‘‘direct’’ dialogue listed in Table 2 in (Jurafsky et al., 1998).
4. The CLOSED status was excluded from the analysis as it did not appear in the sample and

appears in less than 1% of the reports in the corpus. The unknown category of dialogue
acts was excluded as it does not have a meaningful interpretation.

5. The Kruskal–Wallis test was used as the sample departs significantly from ANOVA
assumptions.

6. This, however, cannot be seen simply by using dialogue acts. Information about the

propositional content of the acts would be required. The observations given here about
the content of the descriptions result from informal analyses made during the manual
annotation process.

7. Not including the unknown category.
8. The baseline is computed by always assigning the most frequent category to every in-

stance in the test data. In the present case, the most frequent category is statement,
which represents 25.5% of the utterances in the sample.

9. In general, more data means better machine learning performances. This tendency
diminishes as the learning algorithm reaches saturation. However, in our case the
amount of data used for learning is relatively small, so we can expect that more data

will lead to better performances.

Appendix A – Dialogue act taxonomy

Details of Table 1: For each category, a definition and a few examples are
provided. Examples are left uncorrected.

Assertives

Describe an actual state of the world.
STATEMENT (sta)
Present objective information about a fact or the current state of the world.
my pc has an amd k6 233 mhz cpu and 64 mb ram and a 4,3 gb quantum

fireball se [1005-5]
it in not the exact same problem [18090-16]

DESCRIPTION (dsc)
Present objective information about the behavior (or state) of the focus of

the collective (which is to say Mozilla).
mozilla 1998--10--03 crashed [1005-1]
on a freshly booted system, viewer.exe refuses to load anything

more than the banner.gifs [4020-3]
PRESCRIPTION (pre)
Present objective information about what the behavior (or state) of the

focus of the collective should be. Prescriptions usually appear as contrast to

GABRIEL RIPOCHE & JEAN-PAUL SANSONNET178



descriptions (descriptions detail how things actually are, and prescriptions
how things are expected to be).

i the bookmarks manager should open and have usable menus and

editable bookmarks [9380-1]
docshell should be setting validate always [96480-21]

Commissives

Commit the speaker (to varying levels) to a future action (the action can
itself be linguistic or not).
COMMIT (com)
Commit the speaker to a future course of action.
i’ll take a look at this [15075-25]
this stuff will getnbsp;all fixed up again [17085-38]

OFFER (off)
Indicate that the speaker is willing to perform a future course of action (but
does not commit to doing it through the enunciation of the utterance).

i have a fix for this [2010-17]
if necessary, i will file a seperate bug [10050-27]

Directives

Attempt (to varying levels) to make the hearer perform some action (lin-
guistic or not).
REQUEST (req)
Request that an action be taken.
could you fix this one? [2010-3]
please verify [9045-20]

REQUIREMENT (rqr)
Request that a behavior (or state) related to the focus of the collective

(Mozilla) be made to happen.
at the least, it needs to be corrected soon [7035-1]
we really need something that works on all platforms
[97485-23]

QUESTION (que)
Request information about the current state of the world.
how’s this look now? [4020-12]
can you reproduce under windows 98? [12060-11]

SUGGESTION (sug)
Suggest a course of action.
i think the border code is at the point where it needs a

restructuring [2010-11]
rather than just delete after x days, it would be more
useful to perform other actions [11055-17]

SUMMON (sum)
Request acknowledgement, with the main purpose of establishing, main-

taining, or reestablishing contact.
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eh? [21105-17]
Simon? [54270-27]

INSTRUCTION (ins)
Provide instruction to perform an action (in the way a recipe does). It does

not constrain the interlocutor(s) to a course of action, but specifies how to
perform the action in case the interlocutor would want to do it.
for definitions of milestones, see: http://www.mozilla.org/

projects/seamonkey/milestones/50/m7plan.html, [5025-3]
go to bookmarks on the menu bar [9045-4]

Expressives

Describe a mental state of the speaker about the state of affairs described
by the utterance.
OPINION (opi)
Present a subjective information or a personal position on a state of the

world.
it’s crystal-clear in the css1 spec [16080-14]
i love it it works great! [19095-4]

EXPRESSION (xpr)
Present a (subjective) information about the mental state of the locutor.
wish i could test more [16080-10]
i’d like to think this means the bug is fixed [18090-28]

ACKNOWLEDGEMENT (ack)
Acknolwedge a previous utterance.
ok [5025-4]
yeah [17085-37]

AGREEMENT (agr) / DISAGREEMENT (dis)
State agreement or disagreement with a previous utterance or a state of the

world.
i agree with that [109545-38]
totally disagree with your assessement [42210-33]

EXCLAMATION (xcl) / SMILEY (smi)
All forms of exclamations without informational content. Smileys are a

specific case.
*grumble* [10050-8]
good luck! [19095-42]
:-),; -), etc.

APOLOGY (apo) / GREETING (grt) / THANK (thx)
Respectively present an apology, a greeting, and a thank.
i am *really* sorry about the spam [2010-29]
hey [59270-22]
many thanks for looking into this [124620-113]
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Performatives

Perform the action represented by the utterance, and bring about the
corresponding new state of the world.
ACTION (act)
Perform an action directly or reports the performance of an action related

to the utterance.
marking verified [1005-14]
*** this bug has been marked as a duplicate of X ***

Others

INTRODUCTION (int)
Any segment which purpose is to introduce or place in context another

utterance.
here’s an example, from one of my folders: [19095-21]
as you can see [19095-22]

LABEL (lbl)
Any segment used to explicitly address another utterance to a specific

addressee.
Tom – [...] [12060-2]
Submitter: [...] [56615-4]

UNKNOWN (ukn)
Any segment which force is unknown or uncertain.
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