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Abstract
The tractability of certain CSPs for dense or sparse instances is known from the 90s.
Recently, the densification and the sparsification of CSPs were formulated as computa-
tional tasks and the systematical study of their computational complexity was initiated. We
approach this problem by introducing the densification operator, i.e. the closure operator
that, given an instance of a CSP, outputs all constraints that are satisfied by all of its solu-
tions. According to the Galois theory of closure operators, any such operator is related to
a certain implicational system (or, a functional dependency) . We are specifically inter-
ested in those classes of fixed-template CSPs, parameterized by constraint languages , for
which there is an implicational system whose size is a polynomial in the number of vari-
ables . We show that in the Boolean case, such implicational systems exist if and only if

is of bounded width. For such languages, can be computed in log-space or in a loga-
rithmic time with a polynomial number of processors. Given an implicational system , the
densification task is equivalent to the computation of the closure of input constraints. The
sparsification task is equivalent to the computation of the minimal key.

Keywords Horn formula minimization Sparsification of CSP Densification of CSP
Polynomial densification operator Implicational system Bounded width Datalog

1 Introduction

In the constraint satisfaction problem (CSP) [1–3] we are given a set of variables with
prescribed domains and a set of constraints. The task’s goal is to assign each variable a
value such that all the constraints are satisfied. Given an instance of CSP, besides the clas-
sical formulation, one can formulate many other tasks, such as maximum/minimum CSPs
(Max/Min-CSPs) [4], valued CSP (VCSPs) [5, 6], counting CSPs [7, 8], promise CSPs [9,
10], quantified CSPs [11–13], and others. Thus, the computational task of finding a single
solution is not the only aspect that is of interest from the perspective of applications of CSPs.
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Sometimes in applications we have a CSP instance that defines a set of solutions, and
we need to preprocess the instance by making it denser (i.e. adding new constraints) or,
vice versa, sparser (removing as many constraints as we can) without changing the set of
solutions. Let us give an example of such an application. The paper by Jia Deng et al. [14] is
dedicated to the Conditional Random Field (CRF) based on the so-called HEX graphs. The
algorithm for the inference in CRFs presented there is based on the standard junction tree
algorithm [15], but with one additional trick — before constructing the junction tree of the
factor graph, the factor tree is sparsified. This step aims to make the factor graph as close
to the tree structure as possible. After that step, cliques of the junction tree are expected to
have fewer nodes. The sparsification of the HEX graph done in this approach is equivalent
to the sparsification of a CSP instance, i.e. the deletion of as many constraints as possible
while maintaining the set of solutions. The term “sparsification” is also used in a related
line of work in which the goal is, given a CSP instance, to reduce the number of constraints
without changing the satisfiability of an instance [16, 17].

As was suggested in [14], the densification of a CSP instance could also help make
inference algorithms more efficient. If the factor tree is densified, then for every clique of
the factor graph, the number of consistent assignments to variables of the clique is smaller.
Thus, reducing the state space for each clique makes the inference faster. The sparsification-
densification approach substantially accelerates the computation of the marginals as the
number of nodes grows.

It is well-known that the complexity of the sparsification problem, as well as the worst-
case sparsifiability, depends on the constraint language, i.e. the types of constraints allowed
in CSP. The computational complexity was completely classified for constraint languages
consisting of the so-called irreducible relations [18].

For a constraint language that consists of Boolean relations of the form 1 2 ...
(so-called pure Horn clauses), the sparsification task is equivalent to the problem

of finding a minimum size cover of a given functional dependency (FD) table. The last
problem was studied in database theory long ago and is considered a classical topic. It
was shown that this problem is NP-hard both in the general case and in the case a cover
is restricted to be a subset of the given FD table. Surprisingly, if we re-define the size of
a cover as the number of distinct left-hand side expressions 1 2 ... , then the
problem is polynomially solvable [19].

An important generalization of the previous constraint language is a set of Horn clauses
(i.e. can be equal to False). The sparsification problem for this language is known by
the name Horn minimization, i.e. it is a problem of finding the minimum size Horn formula
that is equivalent to an input Horn formula. Horn minimization is NP-hard if the number
of clauses is to be minimized [20, 21], or if the number of literals is to be minimized [22].
Moreover, in the former case Horn minimization cannot be 2log1

-approximated if NP
DTIME polylog [23].

An example of a tractable sparsification problem is 2-SAT formula minimization [24]
which corresponds to the constraint language of binary relations over the Boolean domain.

The key idea of this paper’s approach is to consider both densification and sparsification
as two operations defined on the same set, i.e. the set of possible constraints. We observe
that the densification is a closure operator on a finite set, and therefore, according to Galois
theory [25], it can be defined using a functional dependency table, or so-called implica-
tional system (over a set of possible constraints and, maybe, some additional literals). It
turns out that can have a size bounded by some polynomial of the number of variables
only if the constraint language is of bounded width (for tractable languages not of bounded
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width, the size of could still be substantially smaller than for NP-hard languages). For
the Boolean domain, all languages of bounded width have a polynomial-size implicational
system .

Given an implicational system , the sparsification problem can be reformulated as a
problem of finding the minimal key in , i.e. such a set of constraints whose densification is
the same as the densification of initial constraints. This task was actively studied in database
theory, and we exploit the standard algorithm for the solution of the minimal key problem,
found by Luchessi and Osborn [26]. If poly and literals of are all from the
set of possible constraints, this leads us to a poly 2 -sparsification algorithm where

is the number of non-redundant sparsifications of an input instance. This algorithm can be
applied to the Horn minimization problem, and, to our knowledge, this is the first algorithm
that is polynomial in . Of course, in the worst-case is large.

Besides the mentioned works, densification/sparsification tasks were also studied for soft
CSPs, and this unrelated research direction includes graph densification [27–29], binary
CSP sparsification [30–34] and spectral sparsification of graphs and hypergraphs [35, 36].
In the 90’s it was found that dense CSP instances (i.e. when the number of -ary constraints
is ) admit efficient algorithms for the Max- -CSP and the maximum assignment prob-
lems [37–39]. Though we deal with crisp CSPs and not any CSP instance can be densified
to constraints, the idea to densify a CSP instance seems natural in this context. Note
that the densification of a CSP that we study in our paper is substantially different from the
notion of the densification of a graph. Initially, Hardt et al. [27] define the densification of
the graph as a new graph such that the cardinalities
of cuts in and are proportional. In [28, 29] and in the Ph.D. Thesis [40] the densifi-
cation was naturally applied in a clustering problem to neighborhood graphs to make more
intra-class links and smaller overhead of inter-class links. It was shown that this makes
the Laplacian of a graph better conditioned for a subsequent application of spectral meth-
ods. A theoretical analysis of the densification/sparsification tasks for soft CSPs requires
mathematical tools substantially different from those that we develop in the paper.

2 Preliminaries

We assume that P NP. The set 1 ... is denoted by . Given a relation and
a tuple a , by and a we denote and , respectively. A relational structure is
a tuple R 1 ... where is finite set, called the domain of R, and ,

. If 0 , then pr
0 0 1 ... , if 0 1 , then

pr
0 1 0 1 1 ... etc.

2.1 The homomorphism formulation of CSP

Let us define first the notion of a homomorphism between relational structures.

Definition 1 Let R 1 ... and R 1 ... be relational structures with
a common signature (that is arities of and are the same for every ). A mapping

is called a homomorphism from R to R if for every and for any
1 ... we have that 1 ... . The set of all homomorphisms

from R to R is denoted by Hom R R .

The classical CSP can be formulated as a homomorphism problem.
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Definition 2 The CSP is a search task with:

– An instance: two relational structures with a common signature, R 1 ...
and 1 ... .

– An output: a homomorphism R if it exists, or answer None, if it does not
exist.

A finite relational structure 1 ... over a fixed finite domain is some-
times called a template. For such we will denote by (without boldface) the set of
relations 1 ... . The set is called the constraint language.

Definition 3 The fixed template CSP for a given template 1 ... , denoted
CSP , is defined as follows: given a relational structure R 1 ... of the same
signature as , solve the CSP for an instance R . If CSP is solvable in a polynomial
time, then is called tractable. Otherwise, is called NP-hard [2, 3].

2.2 Algebraic approach to CSPs

In the paper we will need standard definitions of primitive positive formulas and polymor-
phisms.

Definition 4 Let 1 ... be a set of symbols for predicates, with the arity
assigned to . A first-order formula 1 ... 1... 1 ... where

1 ... 1 1 2 ... , , is called the primi-
tive positive formula over the vocabulary . For a relational structure R 1 ... ,

, R denotes a -ary predicate

1 ... 1 1 2 ...

i.e. the result of interpreting the formula on the model R, where is interpreted as .

For 1 ... and 1 ... , let us denote the set
is primitive positive formula over by .

Definition 5 Let and . We say that the predicate is preserved by
(or, is a polymorphism of ) if, for every 1 ... 1 , we have that

1
1 ... 1 ... 1 ... .

For a set of predicates , let Pol denote the set of operations
such that is a polymorphism of all predicates in . For a set of operations

, let Inv denote the set of predicates preserved under
the operations of . The next result is well-known [41, 42].

Theorem 1 (Geiger, Bodnarchuk, Kaluznin, Kotov, Romov) For a set of predicates
over a finite set , Inv Pol .

It is well-known that the computational complexity of fixed-template CSPs, counting
CSPs, VCSPs etc. is determined by the closure , and therefore, by the corresponding
functional clone Pol .
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3 The fixed template densification and sparsification problems

Let us give a general definition of maximality and list some properties of maximal instances.

Definition 6 An instance R of CSP, where R 1 ... and 1 ... ,
is said to be maximal if for any R 1 ... such that , we have
Hom R Hom R , unless R R.

The following characterization of maximal instances is evident from Definition 6 (also,
see Theorem 1 in [43]).

Theorem 2 An instance R 1 ... 1 ... is maximal if and only
if for any and any 1 ... there exists Hom R such that

1 ... .

One can prove the following simple existence theorem (Statement 1 in [43]).

Theorem 3 For any instance R 1 ... 1 ... of CSP, there
exists a unique maximal instance R 1 ... such that and
Hom R Hom R . Moreover, if Hom R , then

Hom R

1

Thus, the maximal instance R from Theorem 3 can be called the densification of
R . Let us now formulate constructing R from R as an algorithmic problem.

Definition 7 The densification problem, denoted Dense, is a search task with:

– An instance: two relational structures with a common signature, R 1 ...
and 1 ... .

– An output: a maximal instance R 1 ... such that and
Hom R Hom R .

Also, let be a finite set and a relational structure with a domain . Then, the fixed
template densification problem for the template , denoted Dense , is defined as fol-
lows: given a relational structure R 1 ... of the same signature as , solve the
densification problem for an instance R .

Let 1 . The language is called constant-preserving if there is
such that for any . For a pair R , where is not a

constant-preserving language, the corresponding densification is non-trivial, i.e. R
1 , if and only if Hom R . Therefore, the densification problem

for such templates is at least as hard as the decision form of CSP. In other words, if the
decision form of CSP is NP-hard (which is known to be polynomially equivalent to the
search form), then all the more Dense is NP-hard.

For a Boolean constraint language , we say that is Schaefer in one of the fol-
lowing cases: 1) Pol , 2) Pol , 3) Pol , 4)
mjy Pol . The complexity of Dense
in the Boolean case can be simply described by the following theorem whose proof
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uses earlier results of [44] and [45]. For completeness, a detailed proof can be found in
Section 11.

Theorem 4 For 0 1 , Dense is polynomially solvable if and only if is Schaefer.

Let us introduce the sparsification problem.

Definition 8 An instance R of CSP, where R 1 ... and 1 ... ,
is said to be minimal if for any T 1 ... such that we have
Hom R Hom T , unless T R.

Let us define:

Min R R 1 ... Hom R Hom R R is minimal
(1)

Definition 9 The sparsification problem, denoted Sparse, is a search task with:

– An instance: two relational structures with a common signature, R 1 ...
and 1 ... .

– An output: List of all elements of Min R .

Also, let be a finite set and a relational structure with a domain . Then, the fixed
template sparsification problem for the template , denoted Sparse , is defined as fol-
lows: given a relational structure R 1 ... of the same signature as , solve the
sparsification problem for an instance R .

Remark 1 In many aplications Min R is of moderate size, though potentially it can
depend on exponentially. Also, R 1 ... Min R is not necessarily a
substructure of R, i.e. it is possible that . Enforcing in the definition
of Min R is discussed in Remark 2.

4 Densification as the closure operator

Let us introduce a set of all possible constraints over on a set of variables :

1 ... 1 ...

Any instance of CSP , a relational structure R 1 ... , induces the following
subset of :

R 1 ... 1 ...

Using that notation, the densification can be understood as an operator Dense 2 2
such that:

Dense R 1 ... 1 ...
Hom R

1

Thus, in the densification process we start from a set of constraints R and simply add
possible constraints to Dense R while the set of solutions is preserved. Let us also define
Dense R if Hom R . The densification operator satisfies the following
conditions:

– Dense R R (extensive)
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– Dense Dense R Dense R (idempotent)
– R R Dense R Dense R (isotone)

Operators that satisfy these three conditions play the central role in universal algebra and are
called the closure operators. There exists a duality between closure operators 2 2
on a finite set and the so-called implicational systems (or functional dependencies) on .
Let us briefly describe this duality (details can be found in [25]).

Definition 10 Let be a finite set. An implicational system on is a binary relation
2 2 . If , we write . A full implicational system on is an

implicational system satisfying the three following properties:

– imply
– imply
– and imply .

Any implicational system 2 2 has a minimal superset that itself is a
full implicational system on . This system is called the closure of and is denoted by .
Let us call 1 a cover of 2 if 1 2 .

Theorem 5 (p. 264 [25]) Any implicational system 2 2 defines the closure oper-
ator 2 2 by . Any closure operator 2 2
on a finite set defines the full implicational system by .

From Theorem 5 we obtain that the densification operator Dense 2 2 also
corresponds to some full implicational system 2 2 . Note that the system
depends only on the set and the template , but does not depend on relations
of the relational structure R.

Note the densification problem described in Definition 7 can be understood as a com-

putation of the monotone function Dense 12 12 . With a little abuse
of terminology, let us define the class mP/poly as a class of monotone functions

0 0 1 0 0 1 for which 0 1 0 1 and 0 1 can be com-
puted by a circuit of size poly that uses only and in gates. Thus, Dense
mP/poly denotes the fact that the corresponding densification operator is in mP/poly.

5 The polynomial densification operator

Let denote . The most general languages with a kind of polynomial densification
operator can be described as follows.

Definition 11 The template is said to have a weak polynomial densification operator, if
for any there exists an implicational system on of size poly
that acts on as the densification operator, i.e. .

Using database theory language [46], the last definition describes such languages for
which there exists an implicational system of polynomial size whose projection on coin-
cides with . Note that in Definition 11, a weak densification operator acts on a wider set
than : an addition of new literals to , sometimes, allows to substantially simplify a set
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of implications [47]. Though we are not aware of an example of a language for which any
cover of is exponential in size, but still has a weak polynomial densification
operator.

6 Main results

Recall that bounded width languages are languages for which CSP can be recognized
by a Datalog program [1]. Concerning the weak polynomial densification, we obtain the
following result.

Theorem 6 For the general domain , if has a weak polynomial densification operator,
then is of bounded width. For the Boolean case, 0 1 , has a weak polynomial
densification operator if and only if Pol contains either , or , or mjy .

The first part of the latter theorem is proved in Section 7 and the Boolean case is con-
sidered in Section 13. We also prove the following statement for the sparsification problem
(Section 9).

Theorem 7 If is a cover of that can be computed in time poly , then
given an instance R 1 ... of Sparse , all elements of Min R can be listed
in time poly Min R 2 .

7 Weak polynomial densification implies bounded width

A set of languages with a weak polynomial densification operator turns out to be a sub-
set of a set of languages of bounded width. Below we demonstrate this fact in two steps.
First, we prove that from a weak polynomial densification operator one can construct a
polynomial-size monotone circuit that computes CSP . Further, we exploit a well-
known result from a theory of fixed-template CSPs connecting the bounded width with such
circuits.

Theorem 8 If has a weak polynomial densification operator, then the decision version of
CSP can be computed by a polynomial-size monotone circuit.

Proof If is constant-preserving, then CSP is trivial, i.e. we can assume that is not
constant-preserving. Let be an implicational system on such that 2 2

and poly . We can assume that poly and every rule in
has a form , . Let R be an instance of CSP and . The rule R
is in if and only if is derivable from R using implications from . Formally, the
latter means that there is a directed acyclic graph with a labeling function

such that: (a) there is only one element with no outcoming edges, the root
, and it is labeled by , i.e. , (b) every node with no incoming edges is

labeled by an element of R, (c) if a node has incoming edges 1 ... ,
then 1 ... . Moreover, the depth of is bounded by ,
because can be derived from R in no more than steps if no attribute is derived
twice.
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Consider a monotone circuit whose set of variables, denoted by , consists of
layers 1 ... such that -th layer is a set of variables . For any rule
and every 1 there is a monotone logic gate

1

1 ...
1 2 ...

that computes the value of 1 from inputs of the previous layer.
Any instance R can be encoded as a Boolean vector vR 0 1 such that vR 1

if and only if R. If we set input variables of to vR, i.e. 1 vR , then
output variables of , i.e. , will satisfy: for any , 1 if and
only if R . Let us briefly outline the proof of the last statement.

Indeed, let 1, R. For any variable such that 1
let us define early where 1 and 1 0 and source

1 1 1 2 ... 1 if 1 ... and 1 1 1 1 2

1 ... 1 1. Then, a rooted directed acyclic graph with a labeling
can be constructed by defining early 1 and

early . Edges of are defined in the following way: if early
and was assigned to 1 by the gate 1 1 1 1 2 ...

1 where source 1 1 1 2 ... 1 , then we connect
nodes early 1 2 ... early 1 to by incoming edges. It is easy to see that

will satisfy properties (a), (b), (c) listed above. The opposite is also true, if there
is a directed acyclic graph with a root that satisfies the properties (a), (b), (c), then

1.
Thus, the expression equals 1 if and only if R . Since
is not constant-preserving, the last means Hom R . Thus, Hom R was

computed by the polynomial-size monotone circuit (with an additional gate).

The core of 1 ... is defined as core 1 1 ... , the
constraint language over , where Hom is such that and

min
Hom

.

Corollary 1 If has a weak polynomial densification operator, then core is of bounded
width.

Proof If has a weak polynomial densification operator, then by Theorem 8 CSP
can be solved by a polynomial-size monotone circuit. Therefore, CSP where
core can also be solved by a polynomial-size monotone circuit. We
can use the standard reduction of CSP to CSP core where core
is defined as pol core .

The algebra pol generates the variety of algebras v (in the
sense of Birkhoff’s HSP theorem). Proposition 5.1. from [48] states that if CSP can
be computed by a polynomial-size monotone circuit, then v omits both the unary
and the affine type. According to a well-known result [49, 50] this is equivalent to stating
that is of bounded width.
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8 Algebraic approach to the classification of languages with a
polynomial densification operator

Constraint languages for which the densification problem Dense is tractable can be clas-
sified using tools of universal algebra. An analogous approach can be applied to classify
languages with a weak polynomial densification operator.

Definition 12 Let 1 ... and 1 ... . A -ary relation
is called strongly reducible to if there exists a quantifier-free primitive positive formula

1
1 (over ) and for some such that pr1 , pr1

and . A -ary relation is called A-reducible to if 1 ,
where is strongly reducible to for .

Definition 13 A constraint language is called an A-language if any is
A-reducible to .

Examples of A-languages are stated in the following theorems, whose proofs can be
found in Section 14.

Theorem 9 Let 0 1 1 2 3 where 1 , 2
and 3 . Then, is an A-language.

Theorem 10 Let 0 1 0 1 where 1 2 3
3

1 2 3 . Then, is an A-language.

Reducibility of a relation to a language is an interesting notion because of its property
stated in the following theorem.

Theorem 11 Let be constraint languages such that , and every relation in
is A-reducible to . Then:

(a) Dense is polynomial-time Turing reducible to Dense ;
(b) if has a weak polynomial densification operator, then also has a weak polynomial

densification operator;
(c) if Dense mP/poly, then Dense mP/poly.

Proof Since , then there is where is a primitive
positive formula over the vocabulary 1 ... , such that 1 ... ,

1 ... .
Let R 1 ... be an instance of Dense . Our goal is to compute a maxi-

mal instance R 1 ... such that and Hom R
Hom R , or in other words, to compute Dense R .

First, let us introduce some notations. Let be any primitive positive formula over
, i.e. 1... 1 2 ... where and and

a 1 ... be a tuple of objects. Let us introduce a set of new distinct objects
NEW a 1 ... . Note that the sets NEW a are disjoint for different a

1A quantifier-free pp-formula is a pp-formula without existential quantification.
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(also, NEW a ). For a tuple a 1 ... , the constraint that an assign-
ment to 1 ... is in can be expressed by a collection of constraints C a

1 2 ... . In other words, we require that an image of 1 2 ...
is in for any . Note that C a is a set of constraints over a set of variables

1 ... NEW a where only relations from are allowed.
Let us start with a proof of statement (a). We will describe a reduction to Dense that

consists of two steps: first we add new variables and construct an instance of CSP in the
same way as it is done in the standard reduction of CSP to CSP ; afterwards, we add
new variables and constraints and form an instance of Dense .

First, for any a , we add objects NEW a to the set of variables
and define an extended set 0

a NEW a . Afterwards, we define

a relational structure R0 0 0
1 ... 0 where R0 a C a . By

construction, pr Hom R0 Hom R . Note that this reduction is standard in the
algebraic approach to fixed-template CSPs. This is the first step of the construction.

Let us now consider a relation and assume that its arity is . According to the assump-
tion, is A-reducible to . Therefore, 1 , where is strongly reducible
to for . Thus, there exists a quantifier-free primitive positive formula over , ,
involving variables, and , such that pr1 and pr1 and

. Since is pp-definable over , there exists a primitive pos-
itive formula over , 1 1 where is quantifier-free, such that

1 1 . Let us introduce a set of constraints:

C

1 ...

C 1 ... 1 1 .

over a set of variables

1 ...

NEW 1 ... 1 1 .

Due to pr1 , we have pr1 . Therefore,

1 1 pr1 .

Thus, the set of constraints C does not add any restrictions on assignments of
(though it adds restrictions on additional variables).

Let R 1 ... be such that a NEW a
and R a C a C . By construction, pr Hom R

Hom R . Let us treat R as an instance of Dense .
The computation of Dense R can be made by checking whether 1

Dense R for any 1 and a -ary . From the following lemma it
follows that such a checking can be reduced to a checking of certain conditions of the form

1 2 ... Dense R , i.e. to the computation of Dense R .

Lemma 1 For a -ary and 1 there is a subset 1

(that can be computed in time poly ) such that the condition 1

Dense R is equivalent to a list of conditions 1 2 ... Dense R

for 1 2 ... 1 .
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Proof Note that 1 Dense R for 1 if and only if
pr

1
Hom R . Let us assume that we have pr

1
Hom R . The

definition of R implies that we have a set of constraints

C 1 ... 1 1

imposed on 1 and

NEW 1 ... 1 1 1

(how and are related is described above). Since 1 , we con-
clude pr

1
Hom R . Therefore, pr

1
Hom R x

x1 , that is pr
1

Hom R x1 x x1 . Since is

a quantifier-free primitive positive formula over , then the fact pr
1

Hom R

can be expressed as 1 for any Hom R . In other words, if

1... 1 2 ... , then 1 2 ... Dense R
for any . Let us set

1 1 2 ... 1... 1 2 ...

In fact, we proved

1 Dense R 1 Dense R .

It can be easily checked that the last chain of arguments can be reversed, and

1 Dense R 1 Dense R .

Thus, statement (a) is proved.
Statement (b) directly follows from the previous reduction. Suppose has a weak poly-

nomial densification operator, i.e. there is a finite and an implicational system
2 2 of size poly that acts on as the densification operator,

i.e. .
If , then a 1 2

NEW a ( are
defined above) is a superset of whose size is bounded by a polynomial of . Therefore,
w.l.o.g. we can assume where poly . Let be an implicational
system on such that poly and
acts as the densification operator on subsets of . Since 2 2 , we can inter-
pret as an implicational system on , i.e. we include into a set of
literals of . Let us now add to new implications by the following rule: for

1... 1 2 ... , a and the corresponding new variables
NEW a 1 ... we add a a 1 2 ... .
Let us denote

R1

a 1 2 ...

a .

The second kind of implications that we need to add to is

R2 C .
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The last set of implications, R3, is defined by

R3 1 1 1

where 1 is described in the previous Lemma, i.e. it equals a set of constraints
for which 1 Dense R is equivalent to 1 Dense R .
Thus, we defined a set of implications R1 R2 R3. Let us denote a new system by

. By the construction of , we have poly .
Given R , using implications from R1, one can derive the set of constraints R0 (R0 is

defined above), and using implications from R2 one completes the set of derivable literals to
R. Then, using initial rules of , one can derive from R its closure Dense R . Finally,

using implications from R3 one can derive all constraints from Dense R . It is not hard to
prove that is derivable from R if and only if Dense R .

Thus, also has a weak polynomial densification operator. Note that implications R2
R3 are all from , but an implication a R1 is not, in general, from .

Statement (c) directly follows from the fact that the function 2 2 such
that R R is monotone and can be computed by a polynomial-size monotone
circuit.

9 DS-basis and algorithms for Dense( ) and Sparse( )

The notion of DS-basis is a formalization of templates for which a small cover of not
only exists but can also be computed efficiently.

Definition 14 A fixed template is called a DS-basis, if there exists an algorithm that
solves in time poly the task with:

– An instance: a natural number ;
– An output: an implicational system such that .

Theorem 12 For any DS-basis there is an algorithm 1 that, given an instance R of
Dense , solves the densification problem for R in time poly .

Proof For any implicational system 2 2 , and any , the membership
?

can be checked in time by Beeri and Bernstein’s algorithm for functional
dependencies [51].

Since is the DS-basis, then there exists an algorithm using which one can compute
in time poly an implicational system such that . Afterwards,

we check whether R
?

using Beeri and Bernstein’s algorithm for any and
compute Dense R R in time poly .
Finally we set 1 ... 1 ... Dense R for . The
instance R 1 ... is maximal.

The following theorem is equivalent to Theorem 7 announced in Section 6.

Theorem 13 For any DS-basis there is an algorithm 2 that, given an instance R of
Sparse , solves the sparsification problem for R in time poly Min R 2 .
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Proof It is easy to see that a set of all possible instances of Sparse , R , is
in one-to-one correspondence with a set 2 . For any implicational system on , let us
call a minimal key of for if , but for any proper subset ,

. Let us prove first that R Min R is and only if R is a minimal key
of for Dense R .

Indeed, if R Min R , then Hom R Hom R . Since Hom R
Hom R , then Dense R Dense R (by the definition of the densification opera-
tor). Therefore, from the duality between the closure operator Dense and the implication
system we obtain R Dense R . Since the pair R is minimal, we
obtain that R is a minimal key for Dense R .

On the contrary, let R be a minimal key for Dense R . Therefore, Dense R
Dense R , from which we obtain Hom R Hom R . Any proper subset R

R has a closure Dense R Dense R . Thus, we obtain that Hom R
Hom R (otherwise, we have Dense R Dense R ). We conclude that the pair
R is minimal.

Since is a DS-basis, we construct in advance an implicational system such
that . We proved that the problem of listing of Min R is equivalent to a listing
of all minimal keys for Dense R in the implicational system . In database theory, this
task is called the optimal cover problem and was studied in the 70s [52]. The algorithm of
Luchessi and Osborn lists all minimal keys for Dense R in time Min R
Dense R Min R Dense R (see p. 274 of [26]). It is easy to see that the

last expression is bounded by poly Min R 2 .
Note that main approaches to listing minimal keys in a functional dependency table refer

to the method of Luchessi and Osborn. Nowadays, several alternative methods are designed
for this and adjacent tasks [53], including efficient parallelization techniques [54].

Remark 2 Sometimes we are interested not in Min R , but in its subset Min R
R Min R R where . For example, if R, then listing

Min R is equivalent to a listing of all non-redundant sparsifications that are subsets
of the set of initial constraints. The latter set could have a substantially smaller cardinal-
ity than Min R . A natural approach to list Min R is to compute a cover of

2 2 2 2 and then list minimal keys of for (sometimes called can-
didate keys) by the method of Luchessi and Osborn in time Min R

Min R . For the computation of , it is natural to exploit the Reduction
by Resolution algorithm (RBR) suggested in [55]. The bottleneck of that strategy is that a
small cover of 2 R 2 may not exist. In such cases RBR’s computation takes a long
time that can be potentially exponential.

Next, we will show that DS-bases include such templates for which Dense can be
solved by a Datalog program.

10 Densification by Datalog program

The idea of using Datalog programs for CSP is classical [1, 56, 57].

Definition 15 If 1 ... is a primitive positive formula over , then the first-order
formula
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1 ... 1 ... 1 ...

is called a Horn formula2 over . If a primitive positive definition of involves variables,
then is said to be of width (or, simply, of width ). Any Horn formula of width

is equivalent to the universal formula

1 ...
1

1 2 ... 1 ...

so we will refer to both of them as Horn formulas. For a relational structure R
1 ... , , R denotes R .

For the densification task, the use of Datalog is motivated by the following theorem.

Theorem 14 Let R be a maximal instance of CSP. For any Horn formula , if ,
then R .

Proof Let 1 ... and

1 ... 1... 1 ... 1 ...

where

1 ...
1

1 2 ...

such that . Let be any mapping and 1 . Let us prove that
R where R 1 ... .

Indeed, for any a we have a , . From we obtain that the
following statement is true: if there exist 1 ... such that 1 2 ... ,

, then 1 ... .
Suppose now that we are given 1 ... such that for any we have

1 2 ... . Therefore, for any we have

1 2 ... .

From we obtain that 1 ... . Therefore, 1 ... . Thus,
we proved R .

Finally, let R be a maximal instance of CSP and R 1 ... . By the
definition of the maximal instance, we have Hom R

1 . Horn formulas

have the following simple property: if 1
1 ... 1 and 2

1 ... 2 , then
1
1

2
1 ... 1 2 . Since 1

1 ... 1 for any Hom R ,
we conclude R .

Theorem 14 motivates the following approach to the problem Dense . Let
1 ... be a finite set of Horn formulas such that , . Given an instance

R 1 ... of Dense , let us define an operator

1 ...
1 1 ... 1 ...

R

2We slightly abuse the standard terminology, according to which Horn formulas are defined more generally.
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called the immediate consequence operator, i.e. it outputs a single application of the rules
that contain as the head. This induces an operator on relational structures:

R 1 1 ... ... 1 ...

Since 1 ... , the Algorithm (2) eventually stops at the fixed point of the operator
R , i.e. at 1 R where:

R0 R R R 1 R R 1. (2)

In that algorithm we iteratively add new tuples to predicates until all Horn
formulas in are satisfied.

Let us denote the output 1 R of the Algorithm (2) by R 1 ... . In fact,
the Algorithm (2) calculates the fixed point of the operator R in R iterations,
where R 1 . It is easy to see that R 1 ... is a smallest (w.r.t.
inclusion) relational structure T 1 ... such that and T ,

. Therefore, R is a good candidate for a maximal instance R 1 ... ,
.

Definition 16 Let be a vocabulary and F be a stop symbol with an arity 0 assigned
to it. Let be a finite set of Horn formulas over such that and stop be
a finite set of formulas of the form F where is a quantifier-free primitive positive
formula over . It is said that Dense can be solved by the Datalog program stop, if
for any instance R of Dense , we have: (a) if Hom R , then R is maximal
and R for any F stop, and (b) if Hom R , then there is
F stop such that R .

Theorem 15 If Dense can be solved by the Datalog program stop, then is a
DS-basis.

Proof Any can be represented as

1 ...
1

1 2 ... 1 ... .

For any sequence 1 ... let us introduce an implication

1 ... 1 ... (3)

where 1 ... 1 2 ... . Analogously, any
stop can be represented as 1 1 2 ... F and we define

an implication

1 ... (4)

where 1 ... 1 2 ... .
Let us denote

1 ...
1 ... 1 ... (5)

if and

1 ...
1 ...
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if stop and set

stop

Let us first prove the inclusion 1 2 where

1 R R Hom R

and

2 R Hom R .

For this, it is enough to show that 1 2 is a full implicational system and 1 2.
The mapping O 2 2 , defined by O R R if Hom R and O R

if Hom R , is the closure operator by its construction. Therefore, Theorem 5
implies that the set 1 2 is a full implicational system. The fact 1 2 is
obvious, because for any rule of the form (3), there exists an instance R such that R

1 2 ... . The naive evaluation algorithm (2) will put the tuple

1 ... into at the first iteration, because 1 ... R . Thus, the head of
that rule 1 ... will be in R . Analogously, any rule of the form (4) is also in

1 2. Thus, we proved 1 2, and next we need to prove 1 2 .
Note that the operator R operates on R 1 ... by computing tuples from

1 ... in the following way: computing 1 ... 1 ... can be
modeled as a result of applying one of the rules (3) to attributes from R to obtain the
attribute 1 ... . Thus, R R . Therefore, R R for
any , and we obtain R R . Since is full, we conclude R

R . Moreover, if Hom R , we can prove that any rule R is
in . This implies 1 2 .

In fact, we proved that the implicational system corresponds to the closure operator O
2 2 (defined before) with respect to the canonical correspondence of Theorem 5.
The closure operator O coincides with the densification operator Dense.

Thus, if Dense can be solved by Datalog program , then the implicational system
satisfies and is a DS-basis.

Obviously, if Dense can be solved by some Datalog program stop, then all the
more CSP can be expressed by Datalog. The following theorems give examples of
constraint languages for which Dense can be solved by Datalog.

Theorem 16 Let 0 1 0 1 where 1 2 3
3

1 2 3 . Then, there is a finite set of Horn formulas over 1 2 3 F
such that Dense can be solved by the Datalog program .

Theorem 17 Let 0 1 1 2 3 where 1 , 2
and 3 . Then, there is a finite set of Horn formulas

over 1 2 3 F such that Dense can be solved by the Datalog program .

Proof of Theorem 16 is given in Section 15 and proof of Theorem 17 is given in
Section 16.
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11 Classification of Dense( ) for the Boolean case

The problem Dense is tightly connected with the so-called implication and equivalence
problems, parameterized by .

Definition 17 Let 1 ... . The implication problem, denoted Impl , is a
decision task with:

– An instance: two relational structures R 1 ... and R 1 ... .
– An output: yes, if Hom R Hom R , and no, if otherwise.

Theorem 6.5 from [44] (which is based on the earlier result [45]) gives a complete
classification of the computational complexity of Impl for Boolean languages.

Theorem 18 (Schnoor, Schnoor, 2008) If is Schaefer, then Impl can be solved in
polynomial time. Otherwise, it is coNP-complete under logspace reductions.

This theorem directly leads us to the classification of Dense .

Theorem 19 If is Schaefer, then Dense is polynomially solvable. Otherwise, it is
NP-hard.

Proof Let us show that Dense can be solved in polynomial time using an oracle
access to Impl . Indeed, let R 1 ... be an instance of Dense . Then,

1 is in Dense R if and only if Hom R Hom R where
R 1 . Thus, by giving R R to an oracle of Impl , we decide

whether 1 Dense R . By doing this for all 1 , we
compute the whole set Dense R in polynomial time.

Thus, Dense is polynomial time Turing reducible to Impl , and therefore, using
Theorem 18, is polynomially solvable if is Schaefer.

Let us now show that Impl is polynomial time Turing reducible to Dense . Given
an instance R R of Impl , the inclusion Hom R Hom R holds if and only
if R Dense R . Thus, by computing Dense R one can efficiently decide whether
R Dense R , i.e. whether Hom R Hom R . If R Dense R , our

reduction outputs “yes”, and it outputs “no”, if otherwise.
If is not Schaefer, then Impl is NP-complete, and therefore, Dense is NP-

hard.

12 Non-Schaefer languages andmP/poly

For our proof of Theorem 6, we need to show Dense mP/poly for non-Schaefer lan-
guages. Note that under NP P/poly (which is widely believed to be true), any NP-hard
problem is outside of P/poly. Therefore, if is not Schaefer, then Dense P/poly (and
all the more, Dense mP/poly). In the current section we prove Dense mP/poly
unconditionally and this fact will be used in Section 13.

Theorem 20 Let be a non-Schaefer language. Then, Dense mP/poly.
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Lemma 2 For any language that is not constant preserving, if Dense mP/poly, then
CSP mP/poly.

Proof Let R be an instance of CSP and be input boolean variables of a mono-

tone polynomial-size circuit that computes Dense R such that 1 if and only if
R. Let be output variables of that circuit, and 1 indicates Dense R .

Then, 1 if and only if Hom R . Thus, emptiness of Hom R can be

decided by a polynomial-size monotone circuit. Therefore, CSP mP/poly.

In the case 0 1 , there is a countable number of clones: in the list below we use
the notation from the table on page 76 of [58] (the same results can be found in the table
on page 1402 of [59]), together with the notation from the Table 1 of [60]. For every row,
listed relations form a basis of the relational co-clone corresponding to the functional clone
(notations of clones are given according to [58] and [60]). At the same time, the functional
clone equals the set of polymorphisms of the relations. Below we list all Post co-clones

except for those that: a) satisfy 0 1 and b) is Schaefer (and we are not
interested in such languages in the current section).

(6)

Next, we will concentrate on languages listed in Table 6.
Our first goal is to study the complexity of Dense where 0 1 b where

b 2 1 3 1 2 1 3 .

Lemma 3 Dense 0 1 b mP/poly.

Proof Let us introduce the restriction of CSP , 0 1 b 0 1 , in which
we assume that in its instance R the domain contains two designated
variables, and , with unary constraints, 0 and 1. This task is denoted by
CSPb.

It is easy to see that

NAE b b b 1 0

where NAE 1 2 3 1 2 1 3 . Thus, by CSPb we can model any instance
of CSP NAE . The standard reduction of CSP NAE to CSPb can be implemented as a
monotone circuit. Since NAE 0 1 is not of bounded width and CSP NAE is
equivalent to CSP NAE 0 1 modulo polynomial-size reductions by monotone
circuits (see analogous argument in the proof of Corollary 1), we conclude CSP NAE
mP/poly (using Proposition 5.1. from [48]). Therefore, CSPb mP/poly.

Let us now prove that Dense , where 0 1 b , is outside of mP/poly. Let
R be an instance of Dense 0 1 b and let R be such that

and R is a maximal instance. By construction, for any ,
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if and only if there is no such Hom R that satisfies 0 and 1. But
the last question, i.e. checking the emptiness of Hom R 0 1 is
equivalent to CSPb after setting . The latter argument can be turned into a
reduction of CSPb to Dense 0 1 b . Again, this reduction can be implemented
as a monotone circuit.

Therefore, Dense 0 1 b mP/poly.

Lemma 4 If equals one of inv 0 inv 1 inv inv and inv , then b is
strongly reducible to .

Proof Let 1 . Since b inv inv 0 inv 1 inv inv ,
then b for a primitive positive formula over 1 . Let

4... 1 2 ... .

Let us denote 1 2 ... and consider a relation x 0 1 x
or x1 3 b . Let us prove that if pol and is unary, then Pol . The

latter can be checked by considering all 4 cases: , or , or 0, or 1. A unary
is a polymorphism of any relation. If , then pol means that is a

-preserving relation. Then is also -preserving. Finally, if , then pol
means that is a self-dual relation. Therefore, 0 1 0 1 0 1 3 is
also self-dual, i.e. Pol .

From the last fact we conclude that Pol
pol . Since Pol forms a basis of Pol (in all listed cases),
then inv Pol , i.e. .

Finally, by construction we have where pr1 2 3
3

b and pr1 2 3

b. This is exactly the needed condition for b to be strongly reducible to .

Proof of Theorem 20 We have 0 1 . Our goal is to prove that if is non-Schaefer
then Dense is outside of mP/poly.

Let us first consider the subcase where CSP is NP-hard. Then, by construction,
is not constant preserving and core . Therefore, CSP and CSP 0

1 can be mutually reduced by polynomial-size monotone circuits (as in the proof of
corollary 1). Since CSP CSP 0 1 mP/poly (by proposition 5.1.
from [48]), then, by Lemma 2, Dense mP/poly.

Next, let us consider the subcase where CSP is tractable. Since we already assumed
that is not any of 4 Schaeffer classes, this can happen only if is constant preserving.
Therefore, 0 1 . All possible variants for Pol are listed in Table 6. Since

b inv inv 0 inv 1 inv inv , Lemma 3 in combination with
Lemma 4 and part (c) of Theorem 11 gives us that Dense mP/poly.

13 Proof of Theorem 6

Let us prove first that for the Boolean domain 0 1 , if satisfies one of the following
3 conditions
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(a) is a subset of 1 2 3 where 1 , 2 and
3 (2-SAT);

(b) is a subset of 0 1 (Horn case);
(c) is a subset of 0 1 (dual-Horn case).

then it has a weak polynomial densification operator.
Note that from Theorems 9 and 10 it follows that in all three cases is a subset of

the relational clone of an A-language. Part (b) of Theorem 11 claims that has a weak
polynomial densification operator if languages 1 2 3 0 1 have
one. Theorems 15, 16 and 17 give us that 1 2 3 0 1 are
DS-templates. Therefore, has a weak polynomial densification operator.

It remains to prove that, in the Boolean case, the weak polynomial densification property
implies one of these 3 conditions.

For the general domain , if a constraint language has a weak polynomial densification
operator, then its core is of bounded width (Theorem 8). Thus, in the Boolean case, if is not
constant-preserving and has a weak polynomial densification operator, then it is of bounded
width (i.e. is in one of the latter three classes). If preserves some constant , then w.l.o.g.
we can assume that 0. From Theorem 4, whose proof is given in Section 11, it is clear
that either a) Dense is NP-hard, or b) is Schaefer, i.e. 0 1 is tractable. In the
first case, existence of a polynomial-size implicational system for the densification operator
implies that there exists a monotone circuit of size poly that computes the densification
operator Dense (a construction of such a circuit is identical to the one given in Theorem 8).
In other words, Dense mP/poly. This contradicts to the claim of Theorem 20 that
Dense mP/poly for non-Schaefer languages.

Thus, we have option b), and this can happen only if either b.1) preserves , or , or
mjy , or b.2) preserves , but does not preserve

and mjy. In the first case, satisfies the needed conditions. In the second case, is a
0-preserving language, i.e. 0 Pol , but mjy Pol . According to
Table 2.1 on page 76 of Marchenkov’s textbook [58], there are only two functional clones
with these properties, i.e. either b.2.1) Pol where 0 1 1 is
a set of all linear functions, or b.2.2) Pol 0 where 0 1 1 . In both
cases 0 .

Lemma 5 If Pol 0 or Pol , then is strongly reducible to .

Proof Note that 0 . Therefore, for any we have x y x y
where is applied component-wise, i.e. is a linear subspace. Since , then there

is a quantifier-free primitive positive formula 1 such that pr1 2 3 4 .
Let us set 1 4 1 , i.e. depends on 4 fictitiously. Let us
define . Thus, we have , pr1 2 3 4 and pr1 2 3 4

pr1 2 3 4 pr1 2 3 4 x 0 0 0 1 0 0 x
pr1 2 3 4 x 0 0 0 1 0 0 x 1 4 .
The latter is the condition for strong reducibility of to .

Using part (b) of Theorem 11, the weak polynomial densification property of and
the latter lemma, we obtain that has a weak polynomial densification operator. The
following Lemma contradicts to our conclusion. Therefore, in the Boolean case, the weak
polynomial densification property implies one of 3 conditions given above.
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Lemma 6 does not have a weak polynomial densification operator.

Proof Let us prove the statement by reductio ad absurdum. Suppose that has a
weak polynomial densification operator. Therefore, Dense mP/poly.

Since the core of 0 1 where 0 is
not of bounded width, by proposition 5.1 from [48], CSP cannot be computed by a
polynomial-size monotone circuit. Let us describe a monotone reduction of CSP to
Dense which will imply CSP mP/poly. This will be a contradiction.

According to [58], is a basis of Inv 0 . Therefore, equals the set of
all linear subspaces in 0 1 . In other words, for any , Hom is
a linear subspace of 0 1 , and pr Hom 4 spans all
possible linear subspaces.

Let R be an instance of CSP 0 1 . Since
0 , a set of constraints 1 2 3 1 2 3 0

1 2 3 can be modeled as a set of constraints over
with an extended set of variables 3, or alternatively, as an instance

R of CSP . Let be an equivalence relation on 1 with equiv-
alence classes 1 and let denote an equivalence
class that contains 1 . A relational structure R 1 where

, considered as an instance of Dense , satis-
fies: 1 2 3 1 Dense R if and only if Hom R . Indeed,
the constraint 1 2 3 that is satisfied for assignments in Hom R ,
together with 1 2 3 1 Dense R , implies that 1 0 for
any Hom R . Or, equivalently, Hom R 1 1 . The latter is
equivalent to Hom R 1 , or Hom R .

By construction, the indicator Boolean vector of the subset R 2 , i.e. the Boolean

vector x 0 1 , x 1 2 3 4 1 1 2 3 4 R can be

computed from the indicator Boolean vector of R 2 by a polynomial-size monotone

circuit. Further, the indicator Boolean vector of the subset R 2 1 can be computed

by a polynomial-size monotone circuit from the indicator Boolean vector of R 2
and the indicator Boolean vector of 2 . Finally, we feed the indicator vector of R
to Dense and compute whether 1 2 3 1 Dense R . Thus, the
emptiness of Hom R can be decided by a polynomial-size monotone circuit which
contradicts CSP mP/poly.

14 Proofs of Theorems 9 and 10

Proof of Theorem 9 Let 0 1 1 2 3 where 1 , 2
and 3 .

First, let us note that any binary relation 2 is strongly reducible to , due to
where 1 2 3 2 , 2 2 (in the definition

of strong reducibility one can set
2

2 and
2 ).
It is well-known that pol mjy where mjy

is a majority operation. Every -ary relation is defined by its binary projections
1 , i.e.
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where 1 . Since is strongly reducible to , also
has this property. Thus, is A-reducible to , and therefore, is an A-language.

The Horn case Let 0 1 0 1 . In other words, is a set
of relations that is closed under component-wise conjunction, i.e. x y implies
x y .

Lemma 7 Let 0 1 and be a set of satisfying assignments of a Horn clause, i.e.

1 1 0

or

1 1 1 1 .

Then, is strongly reducible to .

Proof Let us consider first the case of 1 0 . This formula can be given
as 1 2 1 1 2 1 where

1 2 1 1 2 1 2 1 0
3

2 1 .

If we define a 2 1-ary as 1 1 , then it can be checked that is a -
closed set. Indeed, for any x and y , we have x y x . Since
both and are -closed, then we conclude the statement. Therefore, .
It remains to check that pr1 and pr1 0 1 . Thus, and

1 1 0 is strongly reducible to .
Let us now consider the case of 1 1 . Let us denote by

the formula 1 where is an additional
fixed variable. Note that is a quantifier-free primitive positive formula over .
Thus, we have 2 2 1 1 2 1 where

1 2 1 1 2 2 2 1 1

1

3
1 .

Here we define a 2 -ary as 1 0 1 1. Let us prove that is a -closed set.
Again, let us consider x and y . If 1 0, then x y x . Otherwise,
if 1 1, we have either a) x 12 1 and in that case 12 1 y y , or b)
at least one of 1 is 0. In the case of b) let be the smallest such that 0,
i.e. 1 1 . Therefore, 1 2 1 and 0 1 . It
remains to check that an assignment x y 1 0 2 2 1 also satisfies

, and therefore, is in . Thus, and is strongly reducible to .

Proof of Theorem 10 Let be -ary, i.e. is closed with respect to component-wise
conjunction. A classical result about -closed relations (see [61, 62]) states that can be
represented as:

1
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where 1 1 where is a Horn clause. From the
previous Lemma we conclude that each of is strongly reducible to . There-
fore, is A-reducible to . Since this is true for any , we conclude that is an
A-language.

15 Proof of Theorem 16

In this case we have a vocabulary 1 2 3 where 1 2 are unary and 3 is
assigned an arity 3.

Let R be an instance of Dense . Let us define an implicational system
on that consists of rules for any . The implicational system
defines a closure operator . Let R be a

maximal instance such that , , and Hom R Hom R .
Note that if and only if and .
Indeed, for any we have , because is a
consequence of rules in . On the contrary, let . Then,
defined by 1 if and 0, if otherwise, is a homomorphism
from R to . Therefore, for any we have 3. Using
Theorem 2, we obtain .

Thus, for any there exists a derivation of from using only rules
, . To such a derivation one can always correspond a rooted binary

tree whose nodes are labeled with elements of , the root is labeled with , and all leaves
are labeled by elements of . Any (non-leaf) node (a parent) of the tree has
two children 1 2 such that 1 2 is in ( is a labeling function).

Let be two leaves of the tree with a common parent such that the distance from
to the root equals the depth of the tree (i.e. is the largest possible one). The parent of
is denoted by and all possible branches under are drawn in Fig. 1: we reduced the

number of possible branches to analyze using the rule 3 3 that makes
an order of children irrelevant. Circled leaves correspond to leaves labeled by elements of

. A leaf that is not circled can be labeled either by or by an element from . For each
case, the Figure shows how to reduce the tree by deleting redundant nodes under . To
delete the redundant nodes and connect leaves to we have to verify that a new reduced
branch with a parent and 2 leaves (or, ) corresponds to a triple (or,

), i.e. the resulting triple can be obtained using rules from . Needed rules are
indicated near each deletion operation in Fig. 1.

It is easy to see that using such deletions we will eventually obtain a root with two
children labeled by 1 2 . Therefore, the triple 1 2 is in . If 1 2

, then can be obtained from 1 2 using the rule (1) from the list below. If
1 and 2 (or, 1 2 ), then can be obtained from 1 2 using the

rule (2). Thus, , i.e. we proved that .
Let us show now that . Analogously to the previous analysis, if

there is a derivation tree with a root labeled with elements of and all leaves are labeled
by elements of . Using the same reduction we finally obtain the triple ,
where . Using the rule (3), we conclude , i.e. we proved the inclusion

. Therefore, . Then, defined by 1 if
and 0, if otherwise, is a homomorphism from R to . Since for any

we have 2, then using Theorem 2, we obtain that is maximal
and .
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Fig. 1 A new reduced branch with a parent and 2 leaves (or, ) corresponds to a triple .
There is no need to list cases with 3 nodes labeled by , because they all are subcases of the listed
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Finally, let us prove that . First, let us prove .
Indeed, if is such that , then the set Hom R 1
is empty. Therefore, 0 for any Hom R , which implies . On the
contrary, if is such that , then defined by 1
if and 0, if otherwise, is a homomorphism from R to . Therefore,

.
Thus, is a set of all elements such that some element can be derived from

in the implicational system . Analogously to the previous case, there is a rooted
binary tree with a root whose nodes are labeled by elements of and leaves are
labeled by . Using the same technique this tree can be reduced to a root with two
children 1 and 2, such that 1 2 , 1 2 and 1 2 . W.l.o.g.
let 1 . If 2 , then using the rule (4) we can deduce . If 2 , then using
the rule (5) we can deduce . Thus, , and consequently, .

In the case Hom R , it is easy to see that we will eventually apply the rule (6).
The complete list of Horn formulas in is given below:

(1) 3 3
(2) 3 2 3
(3) 3 2 2 2
(4) 3 2 1 1
(5) 3 1 1
(6) 1 2 F
(7) 3 3 3
(8) 3 3 3 3
(9) 3 3 3 3

(10) 3 3 2 3
(11) 3 3 2 3
(12) 3 3 3 2 3
(13) 3 3 3 2 3
(14) 3 3 2 2 3
(15) 3 3 3 2 2

3
(16) 3 3 3 2 2

3

This list is not optimized and some formulas could be derivable from others.

16 Proof of Theorem 17

Throughout the proof we assume 0 1 and 1 2 3 where 1
, 2 and 3 . For 1 2

2 let us
denote

1 2 1 and 2

Definition 18 Let 2 be a set of all nonempty binary relations over . A subset 2

is called full if for any there exists only one . A full subset
2 is called path-consistent if for any 1 2 3 we have

3 1 2 and for any we have .
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It is well-known that for binary constraint satisfaction problems, path consistency is
equivalent to 3-local consistency [63]. Therefore, if 2 is path-consistent, then the
corresponding 2-SAT instance is satisfiable.

Let us introduce the set of formulas:

1. True 2
2. 1 1
3. 3 3
4. 2 2 2
5. 1 2 1
6. 3 2 3
7. 3 1 2

To any relational structure R 1 2 3 , where is a binary relation, one
can correspond the full subset:

R 2

where

if

Lemma 8 If R 1 2 3 satisfies the formulas 1-7 and 1 2 3 2 ,
1 3 , then R is path-consistent.

Proof Properties 2 and 3 claim that 1 and 3 are symmetric relations, therefore we have
1 1 and 3 3 . Since 1 2 3 2 , then the set

1 2 3 2 for any . Since for any proper
subset 1 2 3 2 , then for any .

Due to the property 1, we have 2 2 for any . Also, 1 3
because of 1 3 . Therefore, for any , the set

is a proper subset of 1 3 . Thus, and .
Note that for any : a) 0 0 if and only if 1, b) 1 1 if and

only if 3, c) 1 0 if and only if 2, and d) 0 1 if and only
if 2.

Let us prove that for any . Let us first consider the case
of distinct . Let . Our goal is to show that there exists such that

and . Let us prove the last statement by reductio ad absurdum.
Assume that for any we have , and .

There are 4 possibilities for : 0 0 , 1 1 , 0 1 and 1 0 . Let us list all of them
and check that and and cannot hold for any
0 1 .

The case 0 0 : 0 and 0 for 0 1 implies
1 2 and 1 2. Due to the property 5 we have 1 and this contradicts

to 0 0 .
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The case 1 1 : 1 and 1 for 0 1 implies
3 2 and 3 2 . Due to the property 6 we have 3 and this contradicts

to 1 1 .
The case 0 1 : 0 and 1 for 0 1 implies

1 2 and 3 2 . Due to the property 4 we have 2 and this contradicts
to 0 1 .

The case 1 0 : 1 and 0 for 0 1 implies
3 2 and 1 2. Due to the property 4 we have 2 and this contradicts

to 1 0 .
It remains to check path-consistency property for any triple of variables

where either or (i.e. 2-local consistency). The case is
trivial.

Let us check the case . Let . Let us assume that for any
we have . The case 0 gives 0 0 , 0 0 0 1 , and

therefore, 1, 1 2 . From property 5 we conclude 1 and obtain
a contradiction. The case 1 gives 1 1 , 1 0 1 1 , and therefore,

3, 3 2. From property 6 we conclude 3 and obtain a
contradiction.

Finally, let us check the case . Let and for any we have
.

The case 0 0 gives 0 0 , 0 0 . The last is
equivalent to 1, 1, 1 2. From property 5 we conclude

1 and obtain a contradiction.
The case 1 1 gives 1 1 , 1 1 . The last is

equivalent to 3, 3, 3 2 . From property 6 we conclude
3 and obtain a contradiction.

The case 0 1 gives 0 1 , 0 1 . The last is
equivalent to 2 , 1, 3 2 . From property 7 we conclude

2 and obtain a contradiction.
The case 1 0 gives 1 0 , 1 0 . The last is

equivalent to 2, 3, 1 2. From property 7 we conclude
2 and obtain a contradiction. Thus, the lemma is proved.

Corollary 2 Let be the set of formulas 1-7 and stop
1 2 3

2 F 1 3 F . Then, Dense can be solved by the Datalog
program stop.

Proof Let R be an instance of Dense . If Hom R , then Hom R . By
construction, R satisfies properties 1-7. If 1 2 3 2 and 1 3

, then, by Lemma 8, the subset R is path-consistent (and therefore,
is satisfiable). The last contradicts to Hom R . Therefore, either 1 2 3

2 or 1 3 . In that case the Datalog program will
identify the emptiness of Hom R by applying the rule 1 2 3

2 F to 1 2 3 2 or the rule 1 3 F to

1 3 .
Let us now consider the case Hom R . In that case we have 1 2 3

2 , 1 3 and the subset R is path-consistent. A
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well-known application of Baker-Pixley theorem to languages with a majority polymor-
phism [64] gives us that path-consistency (or, 3-consistency) implies global consistency.
Thus, any 3-consistent solution can be globally extended, i.e.

pr Hom R pr Hom R

for any R . Thus,

Hom R

1 pr Hom R

The last implies that R is a maximal pair, and this completes the proof.

17 Conclusion and open questions

We studied the size of an implicational system corresponding to a densification operator
on a set of constraints for different constraint languages. It turns out that only for bounded
width languages this size can be bounded by a polynomial of the number of variables. This
naturally led us to more efficient algorithms for the densification and the sparsification
tasks.

An unresolved issue of the paper is a relationship (equality?) between the following
classes of constraint languages: a) core languages with a weak polynomial densifica-
tion operator, b) core languages of bounded width. Also, the complexity classification of
Dense for the general domain is still open.
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