
https://doi.org/10.1007/s10601-018-9290-9

On a new extension of BTP for binary CSPs

Achref El Mouelhi1

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract The study of broken-triangles is becoming increasingly ambitious, by both solv-
ing constraint satisfaction problems (CSPs) in polynomial time and reducing search space
size through either value merging or variable elimination. Considerable progress has been
made in extending this important concept, such as dual broken-triangle and weakly broken-
triangle, in order to maximize the number of captured tractable CSP instances and/or the
number of merged values. Specifically, m-wBTP allows us to merge more values than BTP.
DBTP, ∀∃-BTP, k-BTP, WBTP and m-wBTP permit us to capture more tractable instances
than BTP. However, except BTP, none of these extensions allows variable elimination while
preserving satisfiability. Moreover, k-BTP and m-wBTP define bigger tractable classes
around BTP but both of them generally need a high level of consistency. Here, we intro-
duce a new weaker form of BTP, called m-fBTP for flexible broken-triangle property, which
will represent a compromise between most of these previous tractable properties based on
BTP. m-fBTP allows us on the one hand to eliminate more variables than BTP while pre-
serving satisfiability and on the other to define a new bigger tractable class for which arc
consistency is a decision procedure. Likewise, m-fBTP permits to merge more values than
BTP but fewer than m-wBTP. The binary CSP instances satisfying m-fBTP are solved by
algorithms of the state-of-the-art like MAC and RFL in polynomial time. An open ques-
tion is whether it is possible to compute, in polynomial time, the existence of some variable
ordering for which a given instance satisfies m-fBTP.

Keywords Broken triangle · Variable elimination · Value merging · Tractable class · Arc
consistency

� Achref El Mouelhi
elmouelhi.achref@gmail.org

1 H&H: Research and Training, Marseille, France

Constraints (2018) 23:355–38

Published online: 30 June 2018

2

http://crossmark.crossref.org/dialog/?doi=10.1007/s10601-018-9290-9&domain=pdf
http://orcid.org/0000-0003-4880-8941
mailto: elmouelhi.achref@gmail.org


1 Introduction

A wide range of real-life problems issue from Artificial Intelligence (AI) and Operational
Research (OR) like spatial and temporal planning, scheduling and configuration can be
expressed as a binary Constraint Satisfaction Problems (CSPs [1]). A binary CSP consists
of a set of variables X, each one has a finite set of values called domain D, and a finite
set of constraints C. Each constraint is defined over a pair of variables and represents a set
of valid assignment of values to these two variables, involved by the constraint. A solution
to a CSP instance is an assignment of value to each variable satisfying all the constraints.
Checking whether a given CSP instance has a solution is known to be NP-complete.

In general, the main techniques to achieve this task are based on backtracking algo-
rithms, whose worst-case time complexity is O(edn) where e, n and d are the number of
constraints, the number of variables and the maximum domain size, respectively. In order
to reduce this exponential time complexity, many different approaches have been proposed.
The first one, called filtering by consistency, consists of removing inconsistent values [2],
values which cannot take part in any solution. Obviously this approach leaves the set of solu-
tions unchanged. The second relies onmerging values (consistent or inconsistent), satisfying
some conditions, without affecting the existence of a solution [3–6]. The last eliminates
variables [7, 8] or constraints [9] while preserving the satisfiability of the instance.

In a somewhat orthogonal direction, much research has been devoted to identifying
tractable classes. In the literature, several tractable classes have been defined but the
Broken-Triangle Property (BTP [10, 11]) still remains at the heart of this research area. This
property has some interesting characteristics from a solving viewpoint as well as reduction
operations viewpoint. Indeed, BTP is not only defined for solving CSP in polynomial time,
but also for reducing the size of CSP instances while preserving satisfiability. Specifically,
the absence of broken-triangles has led, under some conditions, to variable elimination [7,
8] or domain reduction by value merging [5, 6] while preserving satisfiability.

More recently, it has been proved that the presence of certain broken-triangles does not neces-
sarily preclude defining tractable classes [12–19] and/ormerging values [19]. For example, ETP
[16] and more generally k-BTP [17] authorizes some broken-triangles and defines larger
tractable classes than BTP but does not permit value merging. Likewise, m-wBTP [19] does
not forbid all broken-triangles and defines a maximal value-merging condition. Unfortu-
nately, none of them allow variable elimination (see [19]) although the initial definition of
BTP permits it [8]. Moreover, k-BTP seems to be unusable beyond k = 3 and m-wBTP
appears to be inexploitable when m > 2 because of the level of consistency required.

The main contribution of this work is providing a new weaker-form of BTP, called m-
fBTP, which allows value merging, variable elimination and defines a new hybrid tractable
class for which arc consistency is a decision procedure. The results proven in this paper also
provide theoretical insight into the relationship between m-fBTP and some others previous
extension of BTP.

So, our paper will be organized as follows: Section 2 recalls some definitions and nota-
tions. In Section 3, we introduce the flexible broken-triangle property. Next, we show
that m-fBTP is a maximal variable-elimination condition. Section 5 proves that m-fBTP
instances defines a tractable class which can be efficiently solved by algorithms of the
state-of-the-art like MAC [20] and RFL [21]. In section 6, we compare m-fBTP to some
known tractable classes like DBTP, ∀∃-BTP [13], k-BTP, m-wBTP and WBTP [18]. After,
we experimmentally show the existence of our patterns in benchmark problems of the CSP

356 Constraints (2018) 23:355–382



competition 2008. Finally we give a discussion and perspective for future work. Some
results of this paper first published in [22].

2 Formal background

Constraint satisfaction problems constitute an important tool for modeling and solving
many different practical problems in Artificial Intelligence and Operations Research. A
non-binary CSP instance, also called n-ary, is defined as below:

Definition 1 (CSP instance) A CSP instance is a pair I = (X,C) with:

• X: a set of n variables denoted by {x1, ..., xn}. Each variable xi has a domain D(xi)

containing at most d values.
• C: a set of e constraints. Each constraint Ci is a pair (Scp(Ci), Rel(Ci)) where:

• Scp(Ci) = {xi1 , ..., xiai
} ⊆ X, is the scope of Ci ,

• Rel(Ci) ⊆ D(xi1) × ... × D(xiai
), is the associated relation.

Recall that any non-binary CSP instance can be converted into an equivalent binary
instance by using dual encoding or hidden-variable transformation [23, 24]. In this paper,
we consider only binary CSP instances, defined formally as follows:

Definition 2 (Binary CSP instance) A binary CSP instance is a pair I = (X,C) with:

• X: a set of n variables denoted by {x1, ..., xn}. Each variable xi has a domain D(xi)

containing at most d values.
• C: a set of e binary constraints. Each binary constraint Cij (with i �= j ) is a pair

(Scp(Cij ), Rel(Cij )) where:

• Scp(Cij ) = {xi, xj } ⊆ X, is the scope of Cij , i.e. a set of two variables
involved by the constraint.

• Rel(Cij ) ⊆ D(xi) × D(xj ), is the associated relation, a set of compatible
pair of values called tuples.

If the constraint Cij is not defined in C, then we consider Cij to be a universal constraint
(i.e. such that Rel(Cij ) = D(xi) × D(xj )).

Given a binary CSP instance I = (X,C), an assignment of values to Y ⊆ X is a set of
pairs {(xi, vi) | xi ∈ Y } with vi ∈ D(xi) and 1 ≤ i ≤ n, denoted generally (v1, ...vk). A
partial solution of Y = {x�1 , . . . , x�m} is an assignment A = (v�1 , . . . , v�m) ∈ D(x�1) ×
. . .×D(x�m) which satisfies all constraints Cij such that {xi, xj } ⊆ Y . A partial solutionA
is said to be complete solution (or solution for short) if Y = X i.e. if

• A contains a value to each variable in X

• no pair of values of A violates any constraint of C

Given a CSP instance I , deciding whether I has a solution is well known to be NP-
complete even for binary CSPs. Neverthless, there are some cases for which solving can
be realized in polynomial time. In this case we speak about tractable classes. For example,

357Constraints (2018) 23:355–382



Fig. 1 The assignments (v′
k, vi , vj , v

′′
k ) form a broken-triangle in (a) but do not in (b)

BTP (for Broken-Triangle Property [11]) represents an important tractable class from a
solving viewpoint as well as reduction operations viewpoint. BTP requires the absence of
broken-triangles with respect to a given variable ordering. Formally, it is defined as follows:

Definition 3 (Broken-Triangle Property [10, 11]) Given a binary CSP instance I with a
variable order <. A pair of values v′

k, v
′′
k ∈ D(xk) satisfies BTP if, for each pair of variables

(xi, xj ) (with i �= j �= k) such that, ∀vi ∈ D(xi), ∀vj ∈ D(xj ), if

• (vi, vj ) ∈ Rel(Cij ),
• (vi, v

′
k) ∈ Rel(Cik) and

• (vj , v
′′
k ) ∈ Rel(Cjk),

then

• either (vi, v
′′
k ) ∈ Rel(Cik)

• or (vj , v
′
k) ∈ Rel(Cjk).

A variable xk satisfies BTP if each pair of values in D(xk) satisfies BTP. The instance I

satisfies BTP with respect to < if for all variables xk , xk satisfies BTP in the sub-instance
of I on variables xi ≤ xk .

If (vi, v
′′
k ) /∈ Rel(Cik) and (vj , v

′
k) /∈ Rel(Cjk), we say that (v′

k, vi, vj , v
′′
k ) constitute a

broken-triangle on the values v′
k and v′′

k (or more generally on xk).
Graphically, BTP can be represented in the micro-structure1 [25] of I as shown in Fig. 1.

For each pair of values (vi, vj ) (with vi ∈ D(xi), vj ∈ D(xj ) and i �= j ), a solid line will
be used to connect vi and vj if they are compatible (i.e. (vi, vj ) ∈ Rel(Cij )), a dotted line
if they are incompatible (i.e. (vi, vj ) /∈ Rij ), or no line if (vi, vj ) is an undefined tuple (i.e.
a tuple which can be valid or invalid).

1Given a binary CSP instance I = (X,C), the micro-structure of I is the undirected graph μ(I) = (V ,E)

with:

• V = {(xi , vi ) : xi ∈ X, vi ∈ D(xi)},
• E = { {(xi , vi ), (xj , vj )} | i �= j, Cij /∈ C or Cij ∈ C, (vi , vj ) ∈ Rel(Cij )}

358 Constraints (2018) 23:355–382



Considering the variable ordering xi < xj < xk , the CSP instance of Fig. 1a is not
BTP because of the incompatibility of (vj , v

′
k) and (vi, v

′′
k ). Thus, (v′

k, vi, vj , v
′′
k ) constitute

a broken-triangle. In Fig. 1b, (vi, v
′′
k ) ∈ Rel(Cik) and (vj , v

′
k) ∈ Rel(Cjk), then the BTP

is satisfied. The set of binary CSP instances which satisfy BTP constitutes a tractable class
solved by enforcing Arc Consistency.

Definition 4 [2] Given a binary CSP instance I = (X,C), a value vi ∈ D(xi) is arc-
consistent with respect to Cij ∈ C if and only if there exists a value vj ∈ D(xj ) such that
(vi, vj ) ∈ Rel(Cij ). A domain D(xi) is arc-consistent with respect to Rel(Cij ) if and only
of ∀vi ∈ D(xi), the value vi is arc-consistent with respect to Rel(Cij ), and the binary CSP
instance I is arc-consistent if and only if ∀xi ∈ X, the domain D(xi) is arc-consistent with
respect to all Rel(Cij ) such that Cij ∈ C .

Enforcing arc consistency consists of removing any value that is not arc-consistent. After
enforcing arc consistency, if no domain has been wipped out, the binary CSP instance is
consistent otherwise it is inconsistent. We have to mention that enforcing arc consistency
preserves equivalence (and also satisfiability)

We now define value merging and variable elimination operations.

Definition 5 [5, 6] Merging the values v′
k, v

′′
k ∈ D(xk) in a binary CSP instance I con-

sists of replacing v′
k, v

′′
k ∈ D(xk) by a new value vk which is compatible with all values

which are compatible with either v′
k or v′′

k . A value-merging condition is a polytime-
computable property such that when it holds on a pair of values v′

k, v
′′
k ∈ D(xk), the

instance obtained after merging the values v′
k and v′′

k is satisfiable if and only if I was
satisfiable.

Definition 6 [7, 8] Eliminating a variable xk in a binary CSP instance I = (X,C) consists
of replacing X by X \ {xk} and C by C \ {Cik ∈ C | i �= k}. A variable-elimination
condition is a polytime-computable property such that when it holds on a variable xk , the
instance obtained after eliminating xk is satisfiable if and only if I was satisfiable.

In [8], it has been shown that if there is no broken-triangle on each pair of values of
a given variable xk in an arc-consistent binary CSP instance I , then xk can be eliminated
from I without changing the satisfiability. For example, the variable xk of Fig. 1b can be
eliminated while preserving satisfiability, contrary to xk of Fig. 1a.

In [6], the authors have proved that even when this rule cannot be applied because of
the presence of some broken-triangles, it is possible that there is a pair of values v′

k, v
′′
k in

D(xk) which satisfies BTP. In this case, these two values are mergeable. For example, in
Fig. 1b, the values v′

k and v′′
k are mergeable.

More recently, [19] showed that even when some broken-triangles are present on a pair of
values v′

k, v
′′
k which satisfies m-wBTP, merging v′

k and v′′
k does not affect the satisfiability.

Formally, m-wBTP is defined as follows:

Definition 7 (Weakly Broken-Triangle Property [19]) A pair of values v′
k, v

′′
k ∈ D(xk)

satisfies m-wBTP where m ≤ n − 3 if for each broken-triangle (v′
k, vi , vj , v

′′
k )

with vi ∈ D(xi) and vj ∈ D(xj ), there is a set of r ≤ m support variables
{x�1 , . . . , x�r } ⊆ X \ {xi, xj , xk} such that for all (v�1 , . . . , v�r ) ∈ D(x�1) × . . . × D(x�r ),
if (v�1 , . . . , v�r , vi , vj ) is a partial solution, then there is α ∈ {1, . . . , r} such that
(v�α , v′

k), (v�α , v′′
k ) /∈ Rel(C�αk).

359Constraints (2018) 23:355–382



Graphically, this definition can be represented through the micro-structure graph of
Fig. 2. The pair v′

k, v
′′
k satisfies 1-wBTP because the value v� in D(x�) is compatible with

both vi and vj but is not with v′
k and v′′

k . So we say that the assignments (v′
k, vi , vj , v

′′
k )

forms a weakly broken-triangle which is supported by x�.
m-wBTP was designed primarily to merge a maximum number of values. This prop-

erty seems to be very weak and it may be for this reason that it does not allow variable
elimination (contrary to BTP) and it requires a high level of filtering by consistency to be
polynomial. So, next section introduces the flexible broken-triangle concept which allows
merging value and variable elimination while preserving satisfiability. Like m-wBTP, this
new property will use the support variable concept but in a more restrictive way.

3 Flexible broken-triangles

A total absence of broken-triangles on a given variable in an arc-consistent CSP instance
allows us to eliminate it without changing the satisfiability of the instance. In contrast, a
total absence of weakly broken-triangles does not permit variable elimination.

Theoretically, we can define many examples of variables which can be eliminated
despite the presence of certain broken-triangles while preserving satisfiability. As shown
in the inconsistent CSP instance of Fig. 3, there is a broken-triangle on v′

k and v′′
k , but

after eliminating xk this CSP instance still remains inconsistent. So, the presence of some
broken-triangle on a given variable does not preclude variable elimination while preserving
satisfiability. For this, we introduce the flexible broken-triangles.

3.1 1-fBTP

Similar to m-wBTP, the m-fBTP is based on the concept of variable support. We begin by
formally defining the simplest case (i.e. when m = 1).

Definition 8 A pair of values v′
k, v

′′
k ∈ D(xk) satisfies 1-fBTP if for each broken-triangle

(vi, vj , v
′
k, v

′′
k ) with vi ∈ D(xi), vj ∈ D(xj ), then there is at least one variable x� ∈

X \ {xi, xj , xk} such that ∀ v� ∈ D(x�), if (vi, v�) ∈ Rel(Ci�) then (vj , v�) /∈ Rel(Cj�).

Fig. 2 A weakly broken-triangle
(v′

k, vi , vj , v
′′
k ) since

(v′
k, v�), (v

′′
k , v�) /∈ Rel(Ck�)

360 Constraints (2018) 23:355–382



Fig. 3 The dashed variable xk

can be eliminated despite the
presence of a broken-triangle

If this is the case, (v′
k, vi, vj , v

′′
k ) is known as a flexible broken-triangle supported by the

variable x�. A variable xk ∈ X satisfies 1-fBTP if each pair of values v′
k, v

′′
k ∈ D(xk)

satisfies 1-fBTP.

In other words, each value in D(x�) cannot be compatible with both vi and vj at the same
time. If there is no variable x� which satisfies the previous conditions, then the pair v′

k, v
′′
k

does not satisfy 1-fBTP and (v′
k, vi , vj , v

′′
k ) will be called purely broken-triangle.

We specify that the broken-triangle in Fig. 3 is flexible because it is supported by the
variable x� ((vi, v�) ∈ Rel(Ci�), (vj , v

′
�) ∈ Rel(Cj�), (vj , v�) /∈ Rel(Cj�) and (vi, v

′
�) /∈

Rel(Cj�)).
We can intuitively deduce the following proposition:

Proposition 1 In a binary CSP instance I = (X,C), if a pair v′
k, v

′′
k ∈ D(xk) satisfies

1-fBTP, then it also satisfies 1-wBTP.

Proof Straightforward. Indeed, to be 1-fBTP, we must have for each broken-triangle on
v′
k and v′′

k at least a support variable x� (for 1-fBTP) such that, each value v� in D(x�) is
not compatible with both vi and vj at the same time. Thus, we do not have to check the
compatibility of v� with v′

k and v′′
k because x� is also a support variable for 1-wBTP. Finally,

the pair v′
k, v

′′
k ∈ D(xk) also satisfies 1-wBTP.

The converse is obiously false by means of Fig. 2 where the pair (v′
k, v

′′
k ) is 1-wBTP but

is not 1-fBTP.
We immediately obtain the following result from Proposition 1 since m-wBTP allows

value merging.

Corollary 1 In a binary CSP instance I = (X,C), merging a pair of values v′
k, v

′′
k ∈ D(xk)

which satisfies 1-fBTP does not change the satisfiability of an instance.

In the rest of this subsection, support variable will refer to fBTP.
It is known that if for a given variable xk in an arc-consistent binary CSP instance I ,

the set of broken-triangles does not contain any pair of values v′
k, v

′′
k in D(xk) with two

361Constraints (2018) 23:355–382



assignments to two other variables, then the variable xk can be eliminated from I without
modifying the satisfiability of I [8]. A similar result can also be shown for the variables
satisfying 1-fBTP. To do it, we should prove the following lemma:

Lemma 1 Given a variable xk which satisfies 1-fBTP, after merging a pair of values
v′′
k , v′′′

k ∈ D(xk) into a new value v′
k , no purely broken-triangle can appear on xk .

Proof We assume, for a contradiction, that after merging a pair of values v′′
k , v′′′

k of a
variable xk which satisfies 1-fBTP into a new value v′

k , we introduced a new purely
broken-triangle (vk, vi, vj , v

′
k). This can be translated into the following relations:

• (1) (vi, vj ) ∈ Rel(Cij ),
• (2) (vi, vk) ∈ Rel(Cik),
• (3) (vj , v

′
k) ∈ Rel(Cjk),

• (4) (vj , vk) /∈ Rel(Cjk) and
• (5) (vi, v

′
k) /∈ Rel(Cik).

By Definition 5, we also have:
(5) ⇒
• (vi, v

′′
k ) /∈ Rel(Cik) (a) and

• (vi, v
′′′
k ) /∈ Rel(Cik) (b).

(3) ⇒
• either (vj , v

′′
k ) ∈ Rel(Cjk) (c)

• or (vj , v
′′′
k ) ∈ Rel(Cjk) (d).

(2), (1), (c), (a), and (4) ⇒ a broken-triangle (vi, vj , vk, v
′′
k ) and (2), (1), (d), (b) and (4) ⇒

a broken-triangle (vk, vi, vj , v
′′′
k ). In both cases, we had at least one broken-triangle before

merging v′′
k and v′′′

k . So, there is at least one variable x� such that for each value v� ∈ D(x�),
if (vi, v�) ∈ Rel(Ci�) then (vj , v�) /∈ Rel(Cj�). In this way, the variable x� also supports
the broken-triangle (vk, vi, vj , v

′
k). Thus, (vk, vi, vj , v

′
k) is not a purely broken-triangle. But

this contradicts our initial assumption. Therefore, merging two values v′′
k , v′′′

k in the domain
of a variable xk which satisfies 1-fBTP does not introduce a purely broken-triangle.

We now establish the link with the variable elimination.

Theorem 1 Given an arc-consistent CSP instance I = (X,C), if a variable xk ∈ X

satisfies 1-fBTP, then it can be eliminated from I while preserving satisfiability.

Proof Given an arc-consistent CSP instance I = (X,C) and a variable xk ∈ X which
satisfies 1-fBTP. As value merging makes no empty domain, we will merge each pair of
values in D(xk) until we obtain a unique value since (thanks to Lemma 1) merging a pair
of values does not introduce a new purely broken-triangle on xk . As I is arc-consistent,
so any consistent assignment A to X\{xk} can be easily extended to xk because D(xk)

contains a unique value and each value A[xi] has a support in D(xk). So, the unique value
in D(xk) is compatible with each value in A. Thus, xk can be eliminated without changing
the satisfiability of I .

362 Constraints (2018) 23:355–382



Like the majority of BTP extensions, the principle of support variable introduced for
flexible broken-triangles can be expanded to more than one variable. This will allows us
to capture more variables that can be eliminated in binary CSP instances and to define a
maximal variable-elimination condition.

3.2 m-fBTP

We now enlarge the definition of flexible broken-triangle property by using m support vari-
ables. These variables guarantee the incompatibility of at least one of their value with at
least one of two values vi and vj of the broken trinagle on xk . From a micro-structure view-
point, these variables prevent the emergence of a new clique2 which did not exist previously
(as shown in Fig. 4).

We begin by formally defining m-fBTP.

Definition 9 A pair of values v′
k, v

′′
k ∈ D(xk) satisfies m-fBTP where m ≤ n − 3 if for

each broken-triangle (v′
k, vi , vj , v

′′
k ) with vi ∈ D(xi) and vj ∈ D(xj ), there is a set of

r ≤ m support variables {x�1 , . . . , x�r } ⊆ X \ {xi, xj , xk} such that for all partial solution
(v�1 , . . . , v�r ) ∈ D(x�1) × . . . × D(x�r ), there is α ∈ {1, . . . , r} such that if (v�α , vi) ∈
Rel(C�αi), then (v�α , vj ) /∈ Rel(C�αj ). In this case, we say that (v′

k, vi, vj , v
′′
k ) is a flexible

broken-triangle. A variable xk ∈ X satisfies m-fBTP if each pair of values v′
k, v

′′
k ∈ D(xk)

satisfies m-fBTP.

As for 1-fBTP, if there is no set of m support variables which satisfies the previous
conditions, then we will say that (v′

k, vi, vj , v
′′
k ) is a purely broken-triangle.

Three different configurations of Definition 9 are given in Fig. 4. In (a), there is no
partial solution on the set of variables {x�β , x�γ }. Hence v′

k, v
′′
k in D(xk) clearly satisfies

2-fBTP. In (b), the pair of values v′
k, v

′′
k in D(xk) satisfies 2-fBTP because for the two

partial solutions (v′
�β

, v′
�γ

) and (v′′
�β

, v′′
�γ

), we have (v′
�γ

, vj ) /∈ Rel(C�γ j ) and (v′′
�β

, vi) /∈
Rel(C�β i). In (c), the pair of values v′

k, v
′′
k inD(xk) also satisfies 2-fBTP because for the two

partial solutions (v′
�β

, v′
�γ

) and (v′′
�β

, v′′
�γ

), we have (v′
�γ

, vj ) /∈ Rel(C�γ j ) and (v′′
�γ

, vi) /∈
Rel(C�γ i). Obviously, these three examples are unsolvable (inconsistent). But it is possible
to make them consistent by adding new solutions whose values are completely disjoint with
the values present in the examples. Unfortunately, this will make the figures too dense and
difficult to understand.

Note that in Fig. 4c, the variable x�γ alone supports the broken-triangle (v′
k, vi , vj , v

′′
k ),

so we can deduce that x�γ and x�β together support it. In Fig. 4a and b, x�γ and x�β together
support the broken-triangle (v′

k, vi , vj , v
′′
k ) none of them alone support it. From this, one

can easily deduce the following result:

Proposition 2 Given a binary CSP instance I = (X,C), if a pair of values v′
k, v

′′
k ∈ D(xk)

satisfies m-fBTP then it satisfies (m + 1)-fBTP (0 ≤ m ≤ n − 4).

We now generalize Proposition 1 to any pair of values satisfying m-fBTP.

Proposition 3 In a binary CSP instance I = (X,C), ∀m, 0 ≤ m ≤ n − 4, if a pair
v′
k, v

′′
k ∈ D(xk) satisfies m-fBTP, then it also satisfies m-wBTP.

2A complete subgraph where each pair of vertices are connected.

363Constraints (2018) 23:355–382



Fig. 4 Three different cases of
two values v′

k and v′′
k which

satisfy 2-fBTP.

Proof For each broken-triangle on v′
k, v

′′
k , there is a set of r ≤ m (with 0 ≤ m ≤

n − 3) support variables {x�1 , . . . , x�r } ⊆ X \ {xi, xj , xk} such that for all partial solution
(v�1 , . . . , v�r ) ∈ D(x�1) × . . . × D(x�r ), there is α ∈ {1, . . . , r} such that if (v�α , vi) ∈
Rel(C�αi), then (v�α , vj ) /∈ Rel(C�αj ). So each value v�α in D(x�α ) cannot be compatible
with vi and vj at the same time. Thus, there can be no partial solution (v�1 , . . . , v�r ). As a
result, the pair v′

k, v
′′
k ∈ D(xk) also satisfies m-wBTP.

Corollary 2 In a binary CSP instance I = (X,C), merging a pair of values v′
k, v

′′
k ∈ D(xk)

which satisfies m-fBTP does not change the satisfiability of I .

364 Constraints (2018) 23:355–382



If we denote by m-fBTP-merging the merging operation based on m-fBTP, we can
deduce that 0-wBTP-merging [19] and 0-fBTP-merging correspond to BTP-merging
defined in [6] since they are based on zero support variables. Since BTP-merging gener-
alizes both neighborhood substitution [3] and virtual interchangeability [4] and m-fBTP-
merging generalizes BTP-merging for all m ≥ 0, we immediately obtain the following
results:

Corollary 3 m-fBTP-merging generalizes neighborhood substitution and virtual inter-
changeability.

Corollary 4 m-fBTP-merging merges more values than BTP-merging and less than m-
wBTP-merging.

It is known that if a given variable xk in an arc-consistent binary CSP instance I satis-
fies BTP then xk can be eliminated without modifying the satisfiability of I [8]. A similar
result can also be shown for the variables satisfying m-fBTP. To do it, we should prove the
following lemma:

Lemma 2 Given a variable xk which satisfies m-fBTP, after merging a pair of values
v′′
k , v′′′

k ∈ D(xk) into a new value v′
k , no purely broken-triangle can appear on xk .

Proof We assume, for a contradiction, that after merging a pair of values v′′
k , v′′′

k of a
variable xk which satisfies m-fBTP into a new value v′

k , we introduced a new purely
broken-triangle (vk, vi, vj , v

′
k). So we have:

• (1) (vi, vj ) ∈ Rel(Cij ),
• (2) (vi, vk) ∈ Rel(Cik),
• (3) (vj , v

′
k) ∈ Rel(Cjk),

• (4) (vj , vk) /∈ Rel(Cjk) and
• (5) (vi, v

′
k) /∈ Rel(Cik).

By definition 5, we obtain:

• (vi, v
′′
k ) /∈ Rel(Cik) (a),

• (vi, v
′′′
k ) /∈ Rel(Cik) (b), and

• either (vj , v
′′
k ) ∈ Rel(Cjk) (c) or (vj , v

′′′
k ) ∈ Rel(Cjk) (d).

(2), (1), (c), (a), and (4) ⇒ a broken-triangle (vk, vi, vj , v
′′
k ) and (2), (1), (d), (b) and

(4) ⇒ a broken-triangle (vk, vi, vj , v
′′′
k ). In both cases, we had at least one broken-triangle

before merging v′′
k and v′′′

k . So, there is a set of r ≤ m support variables {x�1 , . . . , x�r } ⊆
X \ {xi, xj , xk} such that for all partial solution (v�1 , . . . , v�r ) ∈ D(x�1) × . . . × D(x�r ),
there is α ∈ {1, . . . , r} such that if (v�α , vi) ∈ Rel(C�αi), then (v�α , vj ) /∈ Rel(C�αj ).
In this way, the set of r support variables {x�1 , . . . , x�r } also support the broken-triangle
(vk, vi, vj , v

′
k). Thus, (vk, vi, vj , v

′
k) is not a purely broken-triangle. But this contradicts

our initial assumption. Finally, merging two values v′′
k , v′′′

k in the domain of a variable xk

which satisfies m-fBTP does not introduce a purely broken-triangle.

Lemma 2 cannot be extended to all pair of values which satisfies m-wBTP (and does not
satisfy m-fBTP) [19]. Indeed, Fig. 5a illustrates the case of a variable x4 which satisfies 1-
wBTP since the variable x3 supports all the broken-triangles on x4. Figure 5b is obtained

365Constraints (2018) 23:355–382



Fig. 5 a A variable x4 which satisfies 1-wBTP in an arc-consistent CSP instance. b The CSP instance
obtained from I after merging the values 1 and 2 into a new value 3

after merging the values 2 and 1 into a new value 3. Hence, the variable x3 no longer support
the broken-triangle (3, 2, 2, 0) (in bold) because the value 2 ∈ D(x3) is compatible at the
same time with 2 (∈ D(x1)), 2 (∈ D(x2)) and 3 (∈ D(x4)).

We now establish the link with variable elimination.

Theorem 2 Given an arc-consistent CSP instance I = (X,C), if a variable xk ∈ X

satisfies m-fBTP, then it can be eliminated from I while preserving satisfiability.

Proof Given an arc-consistent binary CSP instance I = (X,C) and a variable xk ∈ X

which satisfies m-fBTP. Since value merging makes no empty domain and does not affect
the satisfiability of I (thanks to Corollary 2, we will merge each pair of values inD(xk) until
obtaining a unique value since merging a pair of values does not introduce a new purely
broken-triangle on xk (thanks to Lemma 2).

As I is arc-consistent, so any consistent assignment A to X\{xk} can be consistenly
extended to xk because D(xk) contains a unique value and each value A[xi] has a support
in D(xk). So, the unique value in D(xk) is compatible with each value in A. Thus, xk can
be eliminated without changing the satisfiability of I .

4 A maximal variable-elimination condition

It has been proved that the variable which satisfies BTP can be eliminated while preserving
satisfiability [8]. In Section 3, we have shown that even if a variable does not satisfy BTP
it can be eliminated without changing the satisfiability of the instance while this variable
satisfies m-fBTP. Thus, in an obvious sense, satisfying BTP is not a maximal variable-
elimination condition.

Definition 10 A variable-elimination condition is maximal if the elimination of any other
variable not respecting the condition necessarily leads to a modification of the satisfiability
of some instance.

366 Constraints (2018) 23:355–382



In this section, we show that m-fBTP is a maximal variable-elimination condition when
m = n − 3.

Theorem 3 In an unsatisfiable binary CSP instance I = (X,C), there is no variable not
satisfyingm-fBTP form = n−3 and which can be eliminated while preserving satisfiability.

Proof Considering an unsatisfiable binary CSP instance I = (X,C) and a variable xk

which does not satisfy m-fBTP for m = n − 3. By the definition of m-fBTP, there is a
broken-triangle (v′

k, vi , vj , v
′′
k ), with vi ∈ D(xi), vj ∈ D(xj ) and v′

k, v
′′
k ∈ D(xk). And

there is (v�1 , . . . , v�m) ∈ D(x�1) × . . . × D(x�m), where {x�1 , . . . , x�m} = X \ {xi, xj , xk},
such that (v�1 , . . . , v�m) is a partial solution and for all α ∈ {1, . . . , m} we have:
• (v�α , vi) ∈ Rel(C�αi) and
• (v�α , vj ) ∈ Rel(C�αj )

In terms of micro-structure we have a (n − 1)-clique (a subset of n − 1 vertices that
induces a complete subgraph) that we denote Cl. We have a broken-triangle, and so:

• (vi, v
′′
k ) /∈ Rel(Cik),

• (vj , v
′
k) /∈ Rel(Cjk),

• (vi, v
′
k) ∈ Rel(Cik) and

• (vj , v
′′
k ) ∈ Rel(Cjk)

After eliminating xk , and by definition of elimination, the obtained instance I ′ has (n−1)
variables and its micro-structure contains the (n − 1)-clique Cl. According to Property 2 in
[25], Cl corresponds to a solution of I ′. Thus, we introduced a solution which did not exist
in the initial instance since (vi, v

′′
k ) /∈ Rel(Cik) and (vj , v

′
k) /∈ Rel(Cjk). It follows that the

elimination of variable which does not satisfy m-fBTP does not preserve satisfiability.

We can now deduce the desired result.

Corollary 5 (n − 3)-fBTP is a maximal variable-elimination condition.

5 m-fBTP: tractability and solving

In this section, we show the tractability of instances satisfying m-fBTP. Next, we prove
that these instances will be efficiently solved by algorithms of the state-of-the-art like MAC
(Maintaining Arc Consistency [20]) and RFL (Real Full Look-ahead [21]).

5.1 Tractability of m-fBTP instances

Contrary to k-BTP and m-wBTP which sometimes need a high level of consistency, we
show that arc consistency is a decision procedure for m-fBTP. After defining m-fBTP for
pair of values and variable, we now extend the definition to binary CSP instances.

Definition 11 A binary CSP instance I with a variable ordering < satisfiesm-fBTP relative
to this order if for all variables xk , each pair of values in D(xk) satisfies m-fBTP in the
sub-instance of I on variables xi ≤ xk (m ≤ n − 3).

367Constraints (2018) 23:355–382



We now prove that m-fBTP is conservative3 [11], m-fBTP holds even after enforcing any
filtering consistency which only removes values from domains.

Lemma 3 m-fBTP with respect to any fixed variable ordering is conservative.

Proof It is clear that m-fBTP holds for a binary CSP instance thanks to the absence of
some tuples. Obviously, removing values from the domain of any variable in a binary CSP
instance cannot add new tuples. Thus, m-fBTP still holds.

We now investigate the consequence of Lemma 3 on m-fBTP instances solving.

Theorem 4 Arc consistency is a decision procedure for any binary CSP instance which
satisfies m-fBTP (1 ≤ m ≤ n − 3).

Proof Let I = (X,C) be a binary CSP instance satisfyingm-fBTP with respect to a variable
ordering <. We begin by enforcing arc consistency. If this results to an empty domain,
then obviously the obtained instance has no solution. Otherwise, thanks to Lemma 3, we
know that the obtained instance will also satisfy m-fBTP. According to Theorem 2, we can
proceed iteratively to eliminate the last variable with respect to < until obtaining an instance
with three variables x1, x2 and x3. As I is becoming arc-consistent, so there is no empty
domain. Hence, D(x1) (respectively D(x2)) must contain at least a value v1 (resp. v2) such
that (v1, v2) ∈ Rel(C12) (1). We will suppose, for a contradiction, that the assignment
A = (v1, v2) cannot be consistenly extended to x3. For this, we assume that there is no
v3 ∈ D(x3) which is consistent with both v1 and v2. But, by arc consistency, we should
have two values v′

3, v
′′
3 ∈ D(x3) such that

• (v1, v
′
3) ∈ Rel(C13) (2) and

• (v2, v
′
3) ∈ Rel(C23) (3)

Note that v′
3 and v′′

3 must be different and (v1, v
′′
3 ) /∈ Rel(C13) (4) and (v2, v

′
3) /∈

Rel(C23) (5) (otherwise we contradict our hypothesis).
In this way, (1), (2), (3), (4) and (5) form a purely broken-triangle on xk which can be

supported by no other variable. Indeed, by Definition 9, any variable x� must be differ-
ent from {xi, xj , xk}. Thus, this contradicts our assumption. Finally, A can be consistenly
extended to x3.

The following theorem is a logical consequence of Corollary 5 and Theorem 4.

Theorem 5 The class of binary CSP instances which satisfy (n−3)-fBTP defines the biggest
tractable class resolved by variable elimination.

As with m-wBTP, checking whether it is possible to compute, in polynomial time, a
variable ordering for which a binary CSP instance satisfies m-fBTP still remains an open
question.

3A class � of CSP instances is said to be conservative with respect to a filtering consistency φ if it is closed
under φ, that is, if the instance obtained after the application of φ still belongs to �.

368 Constraints (2018) 23:355–382



5.2 Solving of m-fBTP instances by algorithms of the state-of-the-art

BTP and m-fBTP share many interesting properties. For example, the two tractable classes
are conservative and solved by arc consistency. Hence, as BTP is solved in polynomial time
by MAC, we will prove that MAC and RFL solve m-fBTP instances in polynomial time as
well. Recall that both MAC and RFL guarantee arc consistency at each node of the search
tree. The difference between them is that MAC is developing a binary search tree and RFL is
developing a search tree with at most d branches at each node of the search tree. In addition,
MAC does not necessarily choose the same variable at each level of the search tree (see [26]
for more details on backtrack algorithms).

Theorem 6 If a binary CSP instance I satisfies m-fBTP for an unknown variable ordering,
thenMAC and RFL solve I in polynomial time whatever the order of variables instanciation.

Proof (Similar to the proof of Theorem 7.6. in [11]) Given a binary CSP instance I which
satisfies m-fBTP, we deduce by Lemma 3 that any sub-instance of I , obtained after assign-
ing a value v to a variable x, is also m-fBTP. By applying AC, the instance I either has a
solution or has at least an empty domain. If there is an empty domain, then I is unsatisfi-
able. Otherwise (if there is no empty domain), MAC or RFL will find at least one value in
the domain (which is non-empty) of the next variable which will be compatible with all the
values in the current assignment. In the worst case, MAC or RFL will check the compatibil-
ity of the d values (in the domain of the next variable) with the current assignment in each
level of the search tree. This operation will take O(nd). Thus, MAC and RFL will have a
complexity O(ned3) with O(ed2) for enforcing arc consistency after assigning a value to
the current variable.

5.3 What about variable ordering?

To check whether a given binary CSP instance I satisfies BTP, Cooper et al. in [11] propose
to construct a new CSP instance OI which will be satisfiable when there exists a variable
ordreing for I .OI has the same set of variables as I but with different domains. Indeed, each
variable has n values representing its possible positions in the ordering. For each broken-
triangle (v′

k, vi , vj , v
′′
k ) in I with vi ∈ D(xi), vj ∈ D(xj ) and v′

k, v
′′
k ∈ D(xk), there is a

constraint c in OI over xi , xj and xk which requires that xk < max(xi, xj ). The instance
OI is max-closed [27] and so is tractable (see proof of Theorem 3.2. in [11] for more
details).

For m-fBTP, we will proceed in a somewhat similar way. If there is a purely broken-
triangle on a given variable xk with respect to xi and xj , we add a new constraint c to OI

over xi , xj and xk which requires that xk < max(xi, xj ). And when there is a flexible
broken-triangle on xk with respect to xi and xj and which is supported by a variable x�,
we have to add a less restrictive constraint which requires that If xk > max(xi, xj ) then
x� < max(xi, xj ). This constraint will guarantee that x� is before xk when xk is after xi and
xj in the variable ordering, as mentioned in Definition 11. In other words, if two variables
xi and xj form a flexible broken-triangle on xk and xk > max(xi, xj ), the support variable
x� must be before xi or xj , otherwise xk does not satisfy 1-fBTP in the sub-instance of I on
variables xi ≤ xk .

Similarly, if the flexible broken-triangle on xk with respect to xi and xj and which is
supported by a set of support variables {x�1 , x�2 , . . . , x�m} ⊆ X \ {xi, xj , xk}, we have the

369Constraints (2018) 23:355–382



following constraint which requires that If xk > max(xi, xj ) then x�1 < max(xi, xj )

and x�2 < max(xi, xj ) and ... and x�m < max(xi, xj ).
Unfortunately, in this case, we do not know whether the instance OI is tractable because

their constraints are no longer max-closed. So, the question of the variable ordering for
which a binary CSP instance satisfies m-fBTP still remains open.

Before concluding this section, we have to point out that, even if all the broken-triangles
of a given binary CSP instance I are flexible, then I does not necessarily satisfy m-fBTP.
Figure 6 shows the case of a binary CSP instance which does not satisfy 1-fBTP although
all broken-triangles, listed below, are flexible.

• (v′
i , v�, vk, v

′′
i ), (v′

i , v�, v
′
j , v

′′
i ) and (v′

i , v
′′
j , vk, v

′′
i ) on xi , supported by xj , xk and x�,

respectively.
• (v′

j , v�, vk, v
′′
j ), (v′

j , v�, v
′
i , v

′′
j ) and (v′

j , v
′′
i , vk, v

′′
j ) on xj , supported by xi , xk and x�,

respectively.
• (v′

k, vi , vj , v
′′
k ), (v′

k, vi, v�, v
′′
k ) and (v′

k, v
′′
� , vj , v

′′
k ) on xk , supported by x�, xj and xi ,

respectively.
• (v′

�, vi , vj , v
′′
� ), (v′

�, vi , v
′
k, v

′′
� ) and (v′

�, v
′′
k , vj , v

′′
� ) on x�, supported by xk , xj and xi ,

respectively.

These flexible broken-triangles impose the following constraints on the variable ordering:

• If xi > max(xk, x�) then xj < max(xk, x�)

• If xi > max(x�, xj ) then xk < max(x�, xj )

• If xi > max(xk, xj ) then x� < max(xk, xj )

• If xj > max(xk, x�) then xi < max(xk, x�)

• If xj > max(x�, xi) then xk < max(x�, xi)

• If xj > max(xk, xi) then x� < max(xk, xi)

• If xk > max(xi, xj ) then x� < max(xi, xj )

• If xk > max(x�, xi) then xj < max(x�, xi)

• If xk > max(x�, xj ) then xi < max(x�, xj )

• If x� > max(xi, xj ) then xk < max(xi, xj )

• If x� > max(x�, xi) then xj < max(xk, xi)

• If x� > max(x�, xj ) then xi < max(xk, xj )

Fig. 6 A binary CSP instance
which does not satisfy 1-fBTP
whereas all broken-triangles are
flexible

370 Constraints (2018) 23:355–382



Thus, it is impossible to find a variable ordering for which the instance satisfies 1-fBTP.

6 m-fBTP vs some tractable classes based on BTP

BTP defines an important tractable class which has deserved to be studied and extended in
many previous works (as mentioned in the introduction). Thus, it is natural to compare m-
fBTP to some of these extensions such as DBTP [15], ∀∃-BTP [13], BTPAC [14], k-BTP
[17] and WBTP [18]. For each class, we will show if it is a equality relation, inclusion or
intersection.

6.1 DBTP

The Dual Broken-Triangle Property is an extension of BTP to non-binary CSPs by using
the dual encoding [28]. Even for binary case, DBTP is different from BTP and authorizes
the presence of some broken-triangles which are forbidden by BTP.

Definition 12 (DBTP [15, 29]) A binary CSP instance I satisfies DBTP with respect to a
constraint ordering ≺ if and only if the dual of I satisfies BTP with respect to ≺.

Graphically, DBTP can be modelized as well as BTP, it suffices to replace each value in
the micro-structure by a pair of compatible values in the micro-structure of the dual4 [30].
For the simplicity of graphical representation, we will use vivj to denote the compatible
pair of values (vi, vj ) in the figure of the micro-structure of the dual.

Theorem 7 m-fBTP and DBTP are incomparable.

Proof The binary CSP instance I of Fig. 7 satisfies 1-fBTP with respect to the variable
ordering x� < xk < xi < xj despite the presence of the following flexible broken-triangles:

• (vi, vj , v
′
k, v

′
i ) on xi , supported by x�

• (v′
j , v

′
i , v

′
k, vj ) on xj , supported by x�

• (v′′
k , v′

j , v
′
i , v

′
k) on xk , supported by x�

• (vi, v�, v
′
j , v

′
i ) on xi , supported by xk

• (v′
j , v�, vi, vj ) on xj , supported by xk

This imposes the following constraints on the variable ordering:

• If xi > max(xk, xj ) then x� < max(xk, xj )

• If xj > max(xk, xi) then x� < max(xk, xi)

• If xk > max(xi, xj ) then x� < max(xi, xj )

• If xi > max(x�, xj ) then xk < max(x�, xj )

4Given a binary CSP instance I = (X,C), the Micro-structure based on Dual of I is the undirected graph
(V ,E) such that:

• V = {(Ci , ti ) : Ci ∈ C, ti ∈ Rel(Ci)},
• E = { {(Ci , ti ), (Cj , tj )} | i �= j, ti [Scp(Ci) ∩ Scp(Cj )] = tj [Scp(Ci) ∩ Scp(Cj )]}
where tk[Y ] denotes the restriction of tk to the variables in Y .

371Constraints (2018) 23:355–382



• If xj > max(x�, xi) then xk < max(x�, xi)

At the same time, the micro-structure of the dual of I does not satisfy BTP on each of
the following three constraints:

• ((vj , v
′
k), (vi, vj ), (vi, v

′′
k ), (v′

j , v
′′
k )) on Cjk ,

• ((v′
i , v

′
j ), (v

′
j , v

′′
k ), (vi, v

′′
k ), (vi, vj )) on Cij and

• ((vi, v
′′
k ), (vi, vj ), (vj , v

′
k), (v

′
i , v

′
k)) on Cik .

So I does not satisfy DBTP.
On the other side, the binary CSP instance I of Fig. 8 does not satisfy 1-fBTP whatever

the variable ordering because of the following broken-triangles:

• (vi, v
′′
k , v′

j , v
′
i ) on xi ,

• (vj , vi, v
′′
k , v′

j ) on xj and
• (v′

k, v
′
i , v

′
j , v

′′
k ) on xk .

And there is no fourth variable that can support one of these broken-triangles. Futher-
more, the micro-structure of the dual of I satisfies BTP with respect to the constraint
ordering Cij < Cik < Cjk . So I satisfies DBTP.

Finally, we deduce that DBTP and 1-fBTP are incomparable. � Obviously, the instance
of Figs. 7 and 8 can be generalized to any m > 1 while maintaining the same logic.

6.2 ∀∃-BTP
∀∃-BTP is a tractable class, introduced by Cooper in [13], and allows the existence of some
broken-triangles.

Definition 13 (∀∃-BTP) A binary CSP instance I satisfies the property ∀∃-BTP with respect
to a variable ordering < if, and only if, for each pair of variables xi , xk such that i < k,
∀vi ∈ D(xi), ∃vk ∈ D(xk) such that (vi, vk) ∈ Rel(Cik) and ∀xj with j < k and j �= i, and

Fig. 7 a The micro-structure and b the micro-structure of the dual of a binary CSP instance I which satisfies
1-fBTP with respect to the order x� < xk < xi < xj but does not DBTP whatever the constraint ordering

372 Constraints (2018) 23:355–382



Fig. 8 a The micro-structure and b the micro-structure of the dual of a binary CSP instance which satisfies
DBTP with respect to the order Cij < Cik < Cjk but does not 1-fBTP whatever the variable ordering

∀vj ∈ D(xj ) and ∀v′
k ∈ D(xk), (vi, vj , vk, v

′
k) is not a broken-triangle on xk with respect

to xi and xj .

Theorem 8 defines the relationship between m-fBTP and ∀∃-BTP.

Theorem 8 m-fBTP and ∀∃-BTP are incomparable.

Proof Figure 9 shows a binary CSP instance which satisfies ∀∃-BTP but does not satisfy 1-
fBTP because there is no fourth variable which can support the following broken-triangles:

• (v′
i , vk, vj , v

′′
i ) on xi ,

• (v′′
j , vi , vk, v

′
j ) on xj and

• (v′
k, vi , vj , v

′′
k ) on xk .

For the binary CSP instance of Fig. 8a, we can observe that it satisfies 1-fBTP but does not
satisfy ∀∃-BTP.

6.3 BTPAC

The concept of hidden tractable class, obtained by applying some polynomial transforma-
tion, has been introduced in [14] to extend the power of already existing tractable classes. In
this way, and for the case of BTP, the presence of several broken-triangles can be allowed,
especially when a broken-triangle contains at least one inconsistent value. Here, we com-
pare m-fBTP to the smallest hidden tractable class based on BTP, namely BTPAC which is
obtained by filtering by arc consistency.

Definition 14 (BTPAC [14]) A binary CSP instance I satisfies BTPAC if it satisfies BTP
after enforcing arc consistency.

We now establish the link between m-fBTP and BTPAC .

373Constraints (2018) 23:355–382



Fig. 9 A binary CSP instance
which satisfies ∀∃-BTP whatever
the variable ordering but does not
satisfy 1-fBTP

Theorem 9 m-fBTP and BTPAC are incomparable.

Proof Despite the presence of the following broken-triangles:

• (v′
i , v

′′
k , vj , vi) on xi ,

• (vj , vi, v
′
k, v

′
j ) on xj and

• (v′
k, vi , vj , v

′′
k ) on xk .

Figure 10a shows an example of a binary CSP instance which satisfies BTPAC (All broken-
triangles will be removed after enforcing arc consistency) but does not 1-fBTP (because
there is no support variable for all the broken-triangles).

• (vi, vj , v
′′
k , v′

i ) on xi which cannot be supported by x� because v� is compatible with
both vj and v′′

k .• (vj , vi, v
′
k, v

′
j ) on xj which cannot be supported by x� because v� is compatible with

both vi and v′
k .• (v′

k, vi , vj , v
′′
k ) on xk which cannot be supported by x� because v� is compatible with

both vi and vj .

Thus this instance does not satisfy 1-fBTP (and obviously m-fBTP).
Figure 10b illustrates the case of a binary CSP instance which does not satisfy BTPAC

since each value in this instance is arc-consistent. On the other hand, this binary CSP
instance satisfies 1-fBTP with respect to the variable ordering x� < xi < xj < xk despite
the presence of four broken-triangles (only one is flexible):

• (v′
�, vj , vi, v�) on x�,

• (v′
i , vk, v�, vi) on xi ,

• (vj , v
′
�, vk, v

′
j ) on xj and

374 Constraints (2018) 23:355–382



Fig. 10 a A binary CSP instance which satisfies BTPAC but does not 1-fBTP. b A binary CSP instance
which satisfies 1-fBTP but does not BTPAC

• (v′
k, vi , vj , v

′′
k ) on xk which is supported by x�

which imposes the following constraints on the variable ordering:

• x� < max(xi, xj ),
• xi < max(x�, xk),
• xj < max(x�, xk),
• If xk > max(xi, xj ) then x� < max(xi, xj ).

Finally, BTPAC and 1-fBTP are incomparable.

6.4 k-BTP

k-BTP [17] is an extension of BTP which authorizes some specific broken-triangles.
Formally, it is defined as follows.

Definition 15 (k-BTP) A binary CSP instance I satisfies the k-BTP property for a given k

(2 ≤ k < n) relative to a variable order < if, for all subsets of variables xi1 , xi2 , . . . , xik+1

such that xi1 < xi2 < · · · < xik+1 , there is at least one pair of variables (xij , xij ′ ) with
1 ≤ j < j ′ ≤ k such that there is no broken-triangle on xk+1 relative to xij and xij ′ .

The binary CSP instances which satisfy k-BTP do not define a tractable class if they are
not strong strong k-consistent5 [31].

Theorem 10 [17] Given a binary CSP instance I such that there exists a constant k with
2 ≤ k < n for which I satisfies both strong k-consistency and k-BTP with respect to the
variable ordering <. Then I is consistent and a solution can be found in polynomial time.

5A binary CSP instance I satisfies i-consistency if any consistent assignment to (i − 1) variables can
be extended to a consistent assignment on any ith variable. A binary CSP instance I satisfies strong
k-consistency if it satisfies i-consistency for all i such that 1 < i ≤ k.

375Constraints (2018) 23:355–382



Theorem 11 m-fBTP and k-BTP are incomparable.

Proof Contrary to k-BTP which needs the strong k-consistency to be tractable, m-fBTP
defines by itself a tractable class (it does not require any level of consistency). So if we
consider a binary CSP instance I which satisfies m-fBTP but is not strong k-consistent, then
even if I satisfies the property k-BTP, it will not be in the tractable class defined by k-BTP
because it is not strong k-consistent.

Figure 11 illustrates the case of a binary CSP instance which does not satisfy k-BTP
whatever the variable ordering because of the presence of the following flexible broken-
triangles:

• (vi, v
′
j , v

′
k, v

′′′
i ) on xi which is supported by x�,

• (vi, v
′
�, v

′
k, v

′′′
i ) on xi which is supported by xj ,

• (vj , v
′′
i , v′′

k , v′′′
j ) on xj which is supported by x�,

• (vj , v
′′
i , v′′

� , v′′′
j ) on xj which is supported by xk ,

• (vk, v�, v
′′
j , v′′′

k ) on xk which is supported by xi and
• (v�, v

′′
j , v′

i , v
′′′
� ) on x� which is supported by x�.

Each one of these flexible broken-triangles imposes the following constraints on the variable
ordering:

• If xi > max(xk, xj ) then x� < max(xk, xj ),
• If xi > max(xk, x�) then xj < max(xk, x�),
• If xj > max(xi, xk) then x� < max(xi, xk),
• If xj > max(xi, x�) then xk < max(xi, x�),
• If xk > max(xj , x�) then xi < max(xj , x�) and
• If x� > max(xi, xj ) then xk < max(xi, xj ).

Thus, there is no possible variable ordering for which this binary CSP instance satisfies 1-
fBTP. In contrast, this binary CSP instance satisfies the property 3-BTP. Obviously, for each
tuple (vp, vq) in this binary CSP instance with p, q ∈ {i, j, k, �} and p �= q, we can add

Fig. 11 A Binary CSP instance
which satisfies the property
3-BTP with respect to every
possible variable ordering but
does not satisfy 1-fBTP, whatever
the variable ordering

376 Constraints (2018) 23:355–382



two values, one to xg and the second to xh withg �= h and g, h ∈ {i, j, k, �} \ {p, q} such
that the qudruplet (vp, vq, vg, vh) constitutes a partial solution. In this way, this binary CSP
instance satisfies both 3-BTP and strong 3-consistency.

6.5 WBTP

We finish this section with the recent tractable class called WBTP [18].

Definition 16 (WBTP) A binary CSP instance equipped with an order < on its variables
satisfies WBTP (Weak Broken-Triangle Property) if for each triple of variables xi < xj <

xk and for all vi ∈ D(xi), vj ∈ D(xj ) such that (vi, vj ) ∈ Rel(Cij ), there is a variable
x� < xk such that when v� ∈ D(x�) is compatible with vi and vj , then ∀vk ∈ D(xk), if

• (v�, vk) ∈ Rel(C�k)

then

• (vi, vk) ∈ Rel(Cik) and
• (vj , vk) ∈ Rel(Cjk)

Theorem 12 1-fBTP � WBTP.

Proof Obviously because both WBTP and 1-fBTP use a unique support variable and their
condition depends only from vi and vj .

The converse of Theorem 12 is false by means of Fig. 12. In fact, the binary CSP instance
satisfiesWBTP (anyone of x�β and x�γ supports all the broken-triangles) but does not satisfy
1-fBTP (more details will be given in the proof of Theorem 13).

Theorem 13 2-fBTP and WBTP are incomparable.

Proof Figure 12 shows a binary CSP instance which satisfies WBTP with respect to the
variable ordering x�β < x�γ < xi < xj < xk but does not satisfy 2-fBTP. More precisely,
there are three purely broken-triangles:

• (vi, v
′′
j , v′′

k , v′′′
i ) on xi which cannot be supported by neither x�β nor x�γ (nor x�β and

x�γ together) because v′′
�β

and v′′
�γ

are compatible with both v′′
j and v′′

k .

• (vj , v
′′
i , v′

k, v
′′′
j ) on xj which cannot be supported by neither x�β nor x�γ (nor x�β and

x�γ together) because v′′′
�β

and v′′′
�γ

are compatible with both v′′
i and v′

k .

• (vk, v
′
i , v

′
j , v

′′′
k ) on xk which cannot be supported by neither x�β nor x�γ (nor x�β and

x�γ together) because v′
�β

and v′
�γ

are compatible with both v′
i and v′

j .

Figure 13 illustrates the case of a binary CSP instance which does not satisfy WBTP but
satisfies 2-fBTP with respect to the variable ordering x�β < x�γ < xi < xj < xk despite
the presence of the following broken-triangles:

• (vi, vj , v
′′
k , v′

i ) on xi which is supported by x�β and x�γ together.
• (vj , vi, v

′
k, v

′
j ) on xj which is supported by x�β and x�γ together.

• (v′
k, vi , vj , v

′′
k ) on xk which is supported by x�β and x�γ together.

377Constraints (2018) 23:355–382



Fig. 12 A binary CSP instance which is WBTP but is not 2-fBTP

• (v′
k, v

′′
�γ

, vj , v
′′
k ) on xk which is supported by xi .

• (v′
�γ

, v′
�β

, vj , v
′′
�γ

) on x�γ which cannot be supported by neither xi nor xk (nor xi and
xk together).

• (v′
�β

, vi , v
′′
�γ

, v′′
�β

) on x�β which cannot be supported by neither xj nor xk (nor xj and
xk together).

Fig. 13 A binary CSP instance which is 2-fBTP but is not WBTP

378 Constraints (2018) 23:355–382



They will impose the following constraints on the variable ordering:

• If xi > max(xj , xk) then x�β < max(xj , xk) and x�γ < max(xj , xk).
• If xj > max(xi, xk) then x�β < max(xi, xk) and x�γ < max(xi, xk).
• If xk > max(xi, xj ) then x�β < max(xi, xj ) and x�γ < max(xi, xj ).
• If xk > max(xj , x�β ) then xi < max(xj , x�β ).
• x�β < max(xi, x�γ ).
• x�γ < max(xj , x�β ).

By considering the variable ordering x�β < x�γ < xi < xj < xk , this binary CSP instance
satisfies 2-fBTP.

In the same way, we can show the following result:

Theorem 14 for m > 1, m-fBTP and WBTP are incomparable.

Figure 14 summarizes some relationship between tractable classes based on BTP. An
arrow from c1 to c2 (resp. a dashed line between c1 and c2) means that c1 � c2 (resp. c1 and
c2 are incomparable). Obviously, a two-way arrow indicates equality.

Fig. 14 Relationship between tractable properties based on BTP

379Constraints (2018) 23:355–382



Some of these relationships have been proved in this paper and some others in [14, 32].
For several hidden tractable classes, more details about filtering by consistency can be found
in [33, 34].

7 Experimental trials

To test the existence of the property 1-fBTP, we we carried out an experimental study on all
the binary benchmark instances of the 2008 international CSP solver competition6, namely
the 3,795 binary CSP instances. Our algorithm is written in C++ within our own CSP
library. The experiments were performed on 8 Dell PowerEdgeM820 blade servers with two
processors (Intel Xeon E5-2609 v2 2.5 GHz and 32 GB of memory) under Linux Ubuntu
14.04.

Before applying our algorithm, we point out that we made each instance arc-consistent.
As described in Section 5.3, we associate a non-binary CSP instance O to each benchmark.
After that, we check, for each variable xk , if there exists a broken-triangle on each pair of
values v′

k, v
′′
k ∈ D(xk). Once a broken-triangle on v′

k, v
′′
k is found, we search over the other

n − 3 variables to see if there exists a variable x� which supports this broken-triangle. If we
find one, we add a constraint which requires If xk > max(xi, xj ) then x� < max(xi, xj ).
Otherwise, the broken-triangle on xk , we add a new constraint c to O over xi , xj and xk

which requires that xk < max(xi, xj ). Finally, we use MAC to check the satisfiability of the
orginal instance. The previous result is tantamount to saying whether the original instance
satisfies 1-fBTP.

We obtained results for 3,260 instances. Among them, 280 instances satisfies 1-fBTP,
including 46 consistent instances. All these instances also satisfy BTP after enforcing arc-
consistency and solving by MAC and RFL without backtrack (more details are given in
[14]).

8 Conclusion

BTP relies on absence of broken-triangle to define an important tractable class and to allow
reducing search space size through value merging or variable elimination. Recently, many
new weaker versions of BTP, which authorize the presence of some broken-triangle like k-
BTP, WBTP and m-wBTP, have been studied but none of them define tractable class and
permit variable elimination and value merging simultaneously. Moreover, much of these
versions, except WBTP, require a high level of consistency.

In this paper, we have proposed a new light version of BTP, called m-fBTP for flexible
broken-triangle property. m-fBTP is based on support variable concept and permits to cover
some imperfections of previous versions. More precisely, it allows value merging, represents
a maximal variable-elimination condition and also defines a hybrid tractable class solved
by arc consistency. m-fBTP is incomparable with the patterns described in [35] and which
characterize tractable classes for CSPs defined by partially-ordered forbidden patterns and
solved by arc consistency.

6http://www.cril.univ-artois.fr/CPAI08

380 Constraints (2018) 23:355–382

http://www.cril.univ-artois.fr/CPAI08


It would be interesting to generalize this family of definitions to non-binary CSPs. More
generally, we have to study a new extension of BTP that is based on only three variables
and which preserves its interesting characteristics.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Montanari, U. (1974). Networks of constraints: fundamental properties and applications to picture
processing. Artificial Intelligence, 7, 95–132.

2. Mackworth, A.K. (1977). Consistency in networks of relations. Artificial Intelligence, 8, 99–118.
3. Freuder, E.C. (1991). Eliminating interchangeable values in constraint satisfaction problems. In Pro-

ceedings of the 9th national conference on artificial intelligence, (Vol. 1 pp. 227–233).
4. Likitvivatanavong, C., & Yap, R.H.C. (2013). Many-to-many interchangeable sets of values in csps. In

Proceedings of SAC (pp. 86–91).
5. Cooper, M.C., El Mouelhi, A., Terrioux, C., Zanuttini, B. (2014). On Broken Triangles. In Principles and

practice of constraint programming - 20th international conference, CP 2014. Proceedings (pp. 9–24).
6. Cooper, M.C., Duchein, A., El Mouelhi, A., Escamocher, G., Terrioux, C., Zanuttini, B. (2016). Bro-

ken triangles: from value merging to a tractable class of general-arity constraint satisfaction problems.
Artificial Intelligence, 234, 196–218.

7. Cohen, D.A., Cooper, M.C., Escamocher, G., Zivny, S. (2013). Variable elimination in binary CSP via
forbidden patterns. In IJCAI 2013, Proceedings of the 23rd international joint conference on artificial
intelligence (pp. 517–523).

8. Cohen, D.A., Cooper, M.C., Escamocher, G., Zivny, S. (2015). Variable and value elimination in binary
constraint satisfaction via forbidden patterns. Journal of Computer and System Sciences, 81(7), 1127–
1143.

9. Dechter, A., & Dechter, R. (1987). Removing redundancies in constraint networks. In Proceedings of
the 6th national conference on artificial intelligence (pp. 105–109).

10. Cooper, M.C., Jeavons, P., Salamon, A. (2008). Hybrid tractable CSPs which generalize tree structure.
In Proceedings of ECAI (pp. 530–534).

11. Cooper, M.C., Jeavons, P., Salamon, A. (2010). Generalizing constraint satisfaction on trees: hybrid
tractability and variable elimination. Artificial Intelligence, 174, 570–584.

12. Naanaa, W. (2013). Unifying and extending hybrid tractable classes of csps. Journal of Experimental &
Theoretical Artificial Intelligence, 25(4), 407–424.

13. Cooper, M.C. (2014). Beyond consistency and substitutability. In Principles and practice of constraint
programming - 20th international conference, CP 2014. Proceedings (pp. 256–271).

14. El Mouelhi, A., Jégou, P., Terrioux, C. (2014). Hidden tractable classes: from theory to practice. In 26th
IEEE international conference on tools with artificial intelligence, ICTAI, 2014 (pp. 437–445).

15. El Mouelhi, A., Jégou, P., Terrioux, C. (2015). A hybrid tractable class for non-binary CSPs. Constraints,
20(4), 383–413.

16. Jégou, P., & Terrioux, C. (2015). The extendable-triple property: A new CSP tractable class beyond BTP.
In Proceedings of AAAI (pp. 3746–3754).

17. Cooper, M.C., Jégou, P., Terrioux, C. (2015). A microstructure-based family of tractable classes for
CSPs. In Principles and practice of constraint programming - 21st international conference, CP, 2015,
Proceedings (pp. 74–88).

18. Naanaa, W. (2016). Extending the broken triangle property tractable class of binary csps. In Proceedings
of the 9th hellenic conference on artificial intelligence, SETN, 2016 (pp. 3:1–3:6).

19. Cooper, M.C., El Mouelhi, A., Terrioux, C. (2016). Extending broken triangles and enhanced value-
merging. In Principles and practice of constraint programming - 22nd international conference, CP
2016, Proceedings (pp. 173–188).

20. Sabin, D., & Freuder, E.C. (1994). Contradicting Conventional Wisdom in Constraint Satisfaction. In
Proceedings of ECAI (pp. 125–129).

21. Nadel, B. (1988). Tree search and arc consistency in constraint-satisfaction algorithms. In Search in
artificial intelligence (pp. 287–342). Berlin: Springer.

22. El Mouelhi, A. (2017). A btp-based family of variable elimination rules for binary csps. In To appear
inproceedings of the thirty-first AAAI conference on artificial intelligence.

381Constraints (2018) 23:355–382



23. Dechter, R., & Pearl, J. (1987). The Cycle-cutset method for improving search performance in AI
Applications. In Proceedings of the third IEEE on artificial intelligence applications (pp. 224–230).

24. Rossi, F., Petrie, C.J., Dhar, V. (1990). On the equivalence of constraint satisfaction problems. In ECAI
(pp. 550–556).

25. Jégou, P. (1993). Decomposition of domains based on the micro-structure of finite constraint satisfaction
problems. In Proceedings of the 11th national conference on artificial intelligence, 1993 (pp. 731–736).

26. El Mouelhi, A., Jégou, P., Terrioux, C., Zanuttini, B. (2013). Some new tractable classes of csps and
their relations with backtracking algorithms. In 10th international conference integration of AI and OR
techniques in constraint programming for combinatorial optimization problems, CPAIOR 2013, May
18-22, 2013. Proceedings (pp. 61–76).

27. Jeavons, P., & Cooper, M. (1995). Tractable constraints on ordered domains. Artificial Intelligence,
79(2), 327–339.

28. Dechter, R., & Pearl, J. (1989). Tree-Clustering For constraint networks. Artificial Intelligence, 38, 353–
366.

29. El Mouelhi, A., Jégou, P., Terrioux, C. (2013). A hybrid tractable class for non-binary CSPs. In 2013
IEEE 25th international conference on tools with artificial intelligence, November 4-6, 2013 (pp. 947–
954).

30. El Mouelhi, A., Jégou, P., Terrioux, C. (2013). Microstructures for csps with constraints of arbitrary
arity. In Proceedings of the Tenth symposium on abstraction, reformulation, and approximation, SARA
2013, 11-12 July 2013.

31. Freuder, E.C. (1982). A sufficient condition for Backtrack-Free search. JACM, 29(1), 24–32.
32. El Mouelhi, A. (2014). Classes polynomiales pour CSP : De la théorie à la pratique. Ph.D. thesis, Aix-

Marseille Université.
33. Jégou, P. (1993). On the consistency of general constraint-satisfaction problems. In Proceedings of the

11th national conference on artificial intelligence. July 11-15, 1993 (pp. 114–119).
34. Debruyne, R., & Bessière, C. (2001). Domain filtering consistencies. Journal of Artificial Intelligence

Research, 14, 205–230.
35. Cooper, M.C., & Zivny, S. (2016). The power of arc consistency for CSPs defined by partially-ordered

forbidden patterns. In Proceedings of the 31st annual ACM/IEEE symposium on logic in computer
science, LICS ’16, 2016 (pp. 652–661).

382 Constraints (2018) 23:355–382


	On a new extension of BTP for binary CSPs
	Abstract
	Introduction
	Formal background
	Flexible broken-triangles
	1-fBTP
	m-fBTP

	A maximal variable-elimination condition
	m-fBTP: tractability and solving
	Tractability of m-fBTP instances
	Solving of m-fBTP instances by algorithms of the state-of-the-art
	What about variable ordering?

	m-fBTP vs some tractable classes based on BTP
	DBTP
	-BTP
	BTPAC
	k-BTP
	WBTP

	Experimental trials
	Conclusion
	Publisher's Note
	References


