
Constraints (2018) 23:403–450
https://doi.org/10.1007/s10601-018-9289-2

MiniBrass: Soft constraints for MiniZinc

Alexander Schiendorfer1 ·Alexander Knapp1 ·
Gerrit Anders1 ·Wolfgang Reif1

Published online: 5 July 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Over-constrained problems are ubiquitous in real-world decision and optimiza-
tion problems. Plenty of modeling formalisms for various problem domains involving soft
constraints have been proposed, such as weighted, fuzzy, or probabilistic constraints. All of
them were shown to be instances of algebraic structures. In terms of modeling languages,
however, the field of soft constraints lags behind the state of the art in classical constraint
optimization. We introduce MiniBrass, a versatile soft constraint modeling language build-
ing on the unifying algebraic framework of partially ordered valuation structures (PVS) that
is implemented as an extension of MiniZinc and MiniSearch. We first demonstrate the ade-
quacy of PVS to naturally augment partial orders with a combination operation as used in
soft constraints. Moreover, we provide the most general construction of a c-semiring from
an arbitrary PVS. Both arguments draw upon elements from category theory. MiniBrass
turns these theoretical considerations into practice: It offers a generic extensible PVS type
system, reusable implementations of specific soft constraint formalisms as PVS types, oper-
ators for complex PVS products, and morphisms to transform PVS. MiniBrass models are
compiled into MiniZinc to benefit from the wide range of solvers supporting FlatZinc. We
evaluated MiniBrass on 28 “softened” MiniZinc benchmark problems with six different
solvers. The results demonstrate the feasibility of our approach.

The theoretical foundation of this work draws upon previous papers presented at ICTAI [56] and in an
LNCS-Festschrift [57]. The research is partly sponsored by the German Research Foundation (DFG) in
the project “OC-Trust” (FOR 1085).

� Alexander Schiendorfer
schiendorfer@isse.de

Alexander Knapp
knapp@isse.de

Gerrit Anders
anders@isse.de

Wolfgang Reif
reif@isse.de

1 Institute for Software & Systems Engineering, University of Augsburg, Augsburg, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s10601-018-9289-2&domain=pdf
http://orcid.org/0000-0002-5283-5304
mailto: schiendorfer@isse.de
mailto: knapp@isse.de
mailto: anders@isse.de
mailto: reif@isse.de

404 Constraints (2018) 23:403–450

Keywords Soft constraints · Modeling languages · MiniZinc

1 Introduction: from algebraic soft constraints to practical solvers

Many (perhaps most) industrial combinatorial optimization problems in practice tend to
be over-constrained, according to [67]. A most common remedy is to iteratively refine
the initial constraint model by manually weakening or dropping constraints until a solu-
tion can be found. However, this approach does not work if the actual problem instance,
i.e., all input parameters, is only available at runtime. This is the case, for instance, when
a system is intended to act autonomously (e.g., smart homes or smart grids). Simply fail-
ing with unsatisfiable is not an option—instead, a compromise solution is necessary.
To accomplish this, a constraint model has to be written with the intention of graceful
degradation in the first place. Some constraints have to be softened if necessary or even
ignored.

A second driving force is the need to model users’ preferences to discriminate the set of
feasible solutions. In discrete optimization and decision theory, this role is assumed by the
objective (or, utility), a function mapping variable assignments to some numeric codomain
such as the rational numbers. The goal is to minimize or maximize the function’s value.
While many optimization problems feature a natural choice for a numeric objective (e.g.,
minimizing the makespan in scheduling, or minimizing the encompassing area in pack-
ing), adequately eliciting and modeling preferences in real-world settings is generally more
involved and spans its own area of research [37]. The essence is an ordering relation over
the available options, i.e., solutions.

Directly assessing this relation is impractical due to the exponential number of choices
in a combinatorial setting [37]. Instead, several more compact preference formalisms for
various use cases have been proposed. For example, preferences could be stated numeri-
cally as penalties incurred for violated soft constraints (as in weighted constraints [2]) or as
degrees ranging from 0% to 100% satisfaction (as in fuzzy constraints [52]). Alternatively,
one could state comparative constraint preferences [55], such as that constraint “two nurses
should be on night shift” is more important than constraint “nurse Jones should be off-duty”
if no solution satisfies both desirable constraints simultaneously (see Fig. 1 for an example),

Fig. 1 Left: A rostering problem involving three nurses ni with (comparative) constraint preferences. Not
all three constraints can be satisfied simultaneously, e.g., c1 forces that either n2 or n3 take the night shift
which conflicts with c2 or c3. There are solutions satisfying two out of three constraints. The graph depicts a
partial ordering U of the constraints with c1 being most important and c2 being incomparable to c3. Center:
An ordering over sets of violated constraints defined inductively by the two above rules (called the Smyth-
ordering). Right: The Hasse diagram of ≺ over the valuation space: No violation (∅) is best, and, e.g., {c2, c3}
is better than {c1, c2} since it violates the less important constraint c3 instead of c1

Constraints (2018) 23:403–450 405

or that the value “white wine” is more desirable than “red wine” for a variable “drink” if
another variable “meal” is assigned value “fish”, as in CP-nets [16]. For these comparative
formalisms, inventing a numeric objective function that represents the modeler’s ordering
relation is a cognitively demanding task in its own right. If users fail to easily assign numeric
values, this quantification should be distinct from the elicitation of preferences. Adequately
modeling preferences then amounts to an exercise in “objective engineering”.

Both motivations have been recognized for many years (see Section 2), leading to a
unified theory of soft constraints that subsumes over-constrained problems and prefer-
ences [43]. It offers a more general treatment of satisfaction (or violation) degrees as an
ordered set accompanied by a combination operation (to combine the valuations of several
soft constraints for an assignment) and dedicated top and bottom elements, i.e., an alge-
braic structure. Instead of working with well-known specific orderings, such as (N,≤),
calculations and orderings are studied from an abstract algebra perspective (see Fig. 1
right for an example). The leading frameworks are c(onstraint)-semirings [12] and (totally
ordered) valuation structures [58], i.e., ordered monoids. These abstractions serve to both
find general complexity-theoretic results and devise search and propagation algorithms
for a broad class of problems. Moreover, by means of product operators such as a direct
product (for Pareto orderings) and a lexicographic product, complex valuation structures
can be formed from elementary ones, allowing for modular specification and runtime com-
binations [29, 57]. Generalized variants of branch-and-bound, soft arc consistency [19],
and non-serial dynamic programming techniques [10] such as bucket elimination or cluster
tree elimination [22] use these structures. In addition, some global constraints (including
alldifferent and gcc) with dedicated propagators have been generalized to a soft
variant [67], usually by considering one (integer) cost variable that measures violation.

However, ready-to-use implementations for modern constraint platforms are rare—with
Toulbar2 [2], a solver designed for (integer) cost function networks as a specific valuation
structure, being the exception to the rule.1 Using cost function networks is justified since
many concrete formalisms can be reduced to them in polynomial time [58]—possibly at the
expense of totalizing a partial order. Still, to use Toulbar2, the problem has to be encoded
in a flat format, lacking the convenient high-level abstractions that constraint modeling lan-
guages such as Essence [28], OPL [66], or MiniZinc [44] provide. Consider, e.g., reusable
predicates and (partial) functions [63], option types [42], or safe indexation with decision
variables, to name a few.

For novice constraint modelers, crafting new soft constraint models is hard without lan-
guage tools and the algorithmic potential of solvers remains restricted to expert users. To
improve the situation for Toulbar2, a Python interface has recently been provided via the
Numberjack platform [34]. On the other hand, to express soft constraints in conventional
constraint models, constraint violations have to be reified in one or more variables to be,
e.g., minimized in an ad-hoc fashion. In any case, users either have to use cost function net-
works or encode soft constraints in existing languages without any support. For practical
purposes, previous efforts in designing abstract frameworks for a variety of soft constraint
formalisms are thus, unfortunately, nullified.

Therefore, this paper reduces the gap between abstract soft constraint frameworks and
practical solvers by exploiting and extending MiniZinc [44], a constraint modeling language
and MiniSearch [49], a script language for customized MiniZinc searches, and contributes:

1Evidenced by the fact that at the Third International CSP Competition (CPAI’08), Toulbar2 was the only
solver registered for the weighted CSP (WCSP) category—with none in the (last) ’09 edition.

406 Constraints (2018) 23:403–450

– MiniBrass,2 a modeling language for soft constraint problems based on algebraic struc-
tures that is compiled into MiniZinc/MiniSearch code to inherit its support for a broad
variety of solvers. Our language comes with an extensible type system including com-
mon types (weighted constraints [60], cost function networks, fuzzy constraints [52],
constraint preferences [55], probabilistic constraints [24]) in the literature.

– A formal foundation for the semantics of the types implemented in MiniBrass which
includes the systematic derivation of partially-ordered valuation structures from partial
orders using category-theoretical arguments. In the course of the derivation, we survey
the adequacy of abstract frameworks in the literature with respect to model expressive-
ness and algorithmic efficiency—with an emphasis on expressiveness. Our results show
how to extend any partially-ordered valuation structure to a c-semiring, if needed.

– The MiniBrass library providing reusable order predicates and combination functions,
implemented in MiniZinc with existing global constraints.

– An empirical evaluation using modified benchmark problems from the MiniZinc
benchmark library that are supplemented with explicit soft constraints in different for-
malisms. We compare the solving performance of classical constraint solvers working
on encoded soft constraint problems to that of a dedicated soft constraint solver (Toul-
bar2), the influence the used formalism has on solving time, and the efficiency of
generic soft constraint search heuristics.

After giving a broad overview of related work in Section 2, we survey common def-
initions of soft constraint problems using algebraic structures in Section 3 and conclude
that partially ordered valuation structures (PVS, [29]) are well-balanced in terms of gen-
erality and specificity. Therefore, we show how any partial order over solutions can be
canonically transformed into a PVS with the “lowest overhead”. This construction of the
free PVS employs the language of category theory and has been presented, in brevity, in
[39] without any rationale about the construction. Furthermore, we shed light on the rela-
tionship between PVS and c-semirings by exemplifying bucket elimination on the free
c-semiring. Section 4 describes the design of the MiniBrass language including its type sys-
tem, concepts, and toolchain. We provide use cases and examples of existing soft constraint
formalisms in MiniBrass, including structured types such as the free PVS or constraint
preferences, combinations of PVS, and morphisms.

Section 5 concludes by evaluating MiniBrass on a set of (slightly modified) benchmark
problems taken from the MiniZinc challenges [65] to show its feasibility. The central ques-
tions are whether an encoding-based approach using a set-based ordering is i) feasible and
ii) competitive to integer minimization and dedicated soft constraint solving.

2 Related work

Pioneering attempts to generalize hard constraints were discussed in partial constraint sat-
isfaction [27]: A metric measures the distance of an assignment to the solution space of
the original problem. Proposed distance choices included the number of required domain
items to “patch” the assignment or the number of violated constraints. The latter is bet-
ter known as Max-CSP. To distinguish constraints, various formalisms have been explored.

2MiniBrass pays tribute to the tradition of naming NICTA’s G12 software after elements in the 12th group of
the periodic table. Brass is an alloy containing zinc that is softer than zinc alone.

Constraints (2018) 23:403–450 407

In weighted constraint problems (WCSP), each constraint is assigned a fixed penalty that
is incurred if it is violated. As mentioned before, Toulbar2 is a dedicated WCSP solver
using search strategies (e.g., [3, 53]) and soft constraint propagation and filtering [19]. Also,
[6] offers WSimply, a specification language for weighted CSP with a transformation to
SMT.

Similar to WCSP, constraints can also be placed qualitatively: either in layers of
importance, such as in constraint hierarchies [15] or only comparatively, as done in the
aforementioned constraint preferences (see Fig. 1). [46] introduced the notion of meta-
constraints to explicitly talk about constraints in other constraints, such as “B has to hold
only if A is violated”. Solvers provide reified variants for several cost values, MiniBrass
relies on that technique. Although this seems as if we are restricted to relatively simple
arithmetic constraints, recent efforts have been made to systematically provide more reified
variants of global constraints [9].

Instead of placing weights on constraints themselves, fuzzy constraints [52] consider
the constraints’ relation of valid assignments as fuzzy sets with a membership function
declaring how strongly an assignment satisfies the constraint, ranging from 0 to 1. Another
proposal suggested to interpret soft constraints probabilistically, leading to probabilistic
constraints [24]: For every soft constraint, we have a probability pi that the constraint is
actually present. An assignment θ is judged by the probability of it being an “actual solu-
tion”. Assuming independence, we obtain this probability by multiplying 1 − pi for all
violated soft constraints (i.e., all violated constraints have to be absent if θ still counts as a
solution).

As mentioned in Section 1, valued constraints map an assignment to a totally ordered
monoid (i.e., a valuation structure) [58]. Similarly, the c-semiring soft constraint frame-
works labels each assignment with a value in a semiring. In addition to the multiplication
operator, it foresees an additive operation acting as the supremum of the induced partial
order (i.e., a ≤ b ⇔ a + b = b) for comparing solutions. Having a supremum opera-
tion available is particularly useful for variable elimination approaches, as we discuss in
Section 3.5. However, many relevant partial orders do not admit a least upper bound such
as, e.g., a Pareto-ordering of two orders or the Smyth-ordering presented in Fig. 1.

To compare frameworks, [33] presented an encoding of some types of constraint
hierarchies as c-semirings—except for a “worst case” semantics. Later, [57] provided a
mathematical explanation for the impossibility of directly encoding this missing constraint
hierarchies type by noting the presence of so-called “collapsing elements” (introduced by
[29]) that equalize distinct elements (i.e., a < b but c · a = c · b) and are prohibitive for
lexicographic products. However, this line of reasoning was purely theoretical and has not
yet been implemented and evaluated empirically.

As previously stated, we noted the lack of solvers for general semiring or valued con-
straints. Most papers offer closed ad-hoc implementations focusing on one particular type
such as [51] or [14] for fuzzy CSP. By contrast, [41] provides a formulation of c-semiring-
based soft constraint problems as “weighted semiring Max-SAT” that uses the semiring
values and ordering as “weights”. The encoded problems are solved with basic implemen-
tations of branch-and-bound and GSAT, outperforming the fuzzy solver CONFLEX (which
is not available anymore). However, these algorithms do not rely on the supremum operator
of a c-semiring and could be run as well with partial valuation structures (see Section 3.5).
In addition, the approach remained rather prototypical (random instances with up to 120
variables and 20 constraints), only supported strict domination search for partially ordered
search spaces (see Section 4.5), and did not offer a public API to their system—which brings
us to modeling languages.

408 Constraints (2018) 23:403–450

MiniBrass is built on top of the MiniZinc environment which itself is a subset of the
Zinc language. There are variations and extensions such as stochastic MiniZinc [48] for
problems involving uncertainties, MiningZinc for constraint-based data mining [31], and
MiniSearch [49] for customizable search. MiniZinc is a high-level modeling language that
is compiled to the flat file format FlatZinc that is understood by many constraint, MIP, or
SAT solvers. MiniSearch provides facilities to access a search tree at the solution level,
making queries such as “fetch the next solution; when found, constrain the next solution
to have to improve” (in terms of, e.g., some partial order)—effectively resulting in a form
of propagation-based branch-and-bound. For abstract soft constraint models, we found this
to be the right level of granularity—as opposed to a fine-tuned programmable search since
we can only rely on the existence of an ordering predicate and a way to combine individual
valuations. Moreover, with MiniSearch, a search strategy has to be defined just once and
can be used by any FlatZinc solver instead of implementing custom search for each solver.
MiniSearch does so by generating multiple FlatZinc files. In addition, there is native search
tree interaction for Gecode [59].

Probably closest to our approach, [5] proposed the higher-level language concept “w-
MiniZinc” which would extend MiniZinc to weighted CSP (but only weighted CSP).
However, their approach was never implemented. The same authors provide a similar con-
cept with WSimply [6] but, again, did not involve other (abstract) types of soft constraints
such as those defined by c-semirings and valuation structures and only stuck to weighted
constraints. MiniBrass, by contrast, is designed to be easily extended with new types (fuzzy,
probabilistic, constraint preferences, etc.) and puts a layer of abstraction on top of MiniZ-
inc, being its target language of compilation. Moreover, modular specifications such as
those offered by products in MiniBrass are not available in either w-MiniZinc or WSimply.
In addition, the syntactical features offered by w-MiniZinc are also available in Mini-
Brass (see Section 4.2.1)—along with more pre-defined types to choose from, the ability
to define new types and complex preference structures assembled from smaller preference
structures.

Other constraint modeling languages include Essence [28] or OPL [66]. While due to
the existence of OPL script, OPL would be suited for a soft constraint modeling language
as well, Essence does not offer search combinators or programmable search. We could only
work with repeated solver calls or numeric (integer) objectives— effectively recreating the
facilities that MiniSearch already offers, albeit having fewer compatible solvers. OPL, on
the other hand, is tied to the CP/MIP solver IBM ILOG CPLEX whereas MiniZinc supports
a broad variety of solvers—a property found useful in our evaluation in Section 5.

Clearly, other areas study preferences with different emphases, ranging from game the-
ory, databases [38], the social sciences [1], mechanism design [45] to multi-agent systems,
in general [62]. Often, a preference relation is represented by numeric utilities that can be
translated to weighted or fuzzy constraints. CP-nets [16] provide the most common qual-
itative preference language used in the above domains. Users specify total orders over
the domain of a variable depending on an assignment to other variables. For instance,
x1 = d1, . . . , xn = dn : y = w1 � · · · � y = wk indicates that if variables xi are assigned
to di , then variable y should preferably be assigned wi than wi+1. By applying these rules
transitively under a ceteris paribus assumption (all other things being equal), generally a
preorder over assignments is induced. In terms of solution ordering, it is well-known that
soft constraints and CP-nets are formally incomparable [43]. Compared to constraint pref-
erences, CP-nets require users to rank domain values whereas constraint preferences are
settled on a coarser level: solutions satisfying an important constraint A are better than
solutions satisfying a less important constraint B—ceteris paribus. The former is obviously

Constraints (2018) 23:403–450 409

better suited in problems involving rather small domains whereas the latter aims at ordering
a large number of solutions in equivalence classes of manageable size.

Regarding the specification and aggregation of preferences in multi-agent settings,
(computational) social choice provides formal foundations by means of axiomatizing desir-
able properties and postulating appropriate voting rules [17, 62]. Little attention has yet
been devoted to the combination of social choice with soft constraint problems consist-
ing of n preference structures [20] even though the prevalent heterogeneity calls for such
approaches. As of now, MiniBrass only supports Pareto-style and lexicographic combina-
tions but has voting-based aggregation as a future goal. By contrast, the overall objective
in distributed constraint optimization problems (DCOP) is usually a sum of local cost func-
tions which amounts to the special case of a weighted CSP [25] as opposed to more generic
frameworks.

3 Formal foundations: soft constraints and algebraic structures

We begin by reviewing our notation for conventional constraint satisfaction problems as
well as soft constraint problems and then discuss how the algebraic structures underlying
MiniBrass are obtained from partial orders. Although these sections are rather formal, the
presented constructions and orders are implemented in the MiniBrass library (see Section 4).

3.1 Soft constraint satisfaction and optimization on partial valuation structures

As usual, a constraint (satisfaction) problem CSP = (X,D, C) is described by a set of
decision variables X, their associated family of domains D = (Dx)x∈X containing possible
values, and a set of (hard) constraints C that restrict valid assignments. An assignment θ

over scope X is a mapping from X to D, written as θ ∈ [X → D], such that each variable x

maps to a value in Dx . A (hard) constraint c ∈ C is understood as a map c : [X → D] → B

where we write θ |= c to express that θ satisfies c (i.e., c(θ) = true) and θ 	|= c to express
that θ violates c. Each constraint has a scope sc(c) ⊆ X, i.e., the variables that actually
influence its truth value. An assignment θ is a solution if θ |= c holds for all c ∈ C. The
restriction of an assignment θ to a scope X′ ⊆ X is explicitly written as θ↓X′.

We obtain constraint optimization problems (COP) by adding an objective function
f : [X → D] → P where (P,≤P) is a partial order, that is, ≤P is a reflexive, antisym-
metric, and transitive relation over P . Elements of P are interpreted as solution degrees,
denoting quality. Without loss of generality, we interpret m <P n as solution degree m

being strictly worse than n and restrict our attention to maximization problems. Hence, a
solution degree m is optimal with respect to a constraint optimization problem COP if for
all solutions θ it holds either that f (θ) ≤P m or f (θ) ‖P m, expressing incomparabil-
ity w.r.t. ≤P . It is reachable if there is a solution θ such that f (θ) = m. Non-reachable
optimal solution degrees appear, e.g., as upper bounds. A solution θ∗ is optimal if f (θ∗) is
optimal.

A soft constraint satisfaction problem (SCSP) is defined as a COP where i) the objective
is decomposable into multiple objectives (i.e., soft constraints) defined on their respective
scopes and ii) the codomain of the objective admits additional algebraic and ordered struc-
ture for modeling purposes, such as valuation structures [58] or c-semirings [12]. Minimal
requirements are that solution degrees obtained from the soft constraints should be com-
bined using a binary operation, called multiplication, that there should be a neutral element
representing complete satisfaction, and that combination should be monotone with respect

410 Constraints (2018) 23:403–450

to multiplication to denote that additional violation can only harm the quality further. These
properties are captured by partially ordered valuation structures (PVS).

Definition 1 (PVS) A PVS (M, ·M, εM,≤M) is a partially ordered commutative monoid
where the multiplication ·M is monotone w.r.t. the partial ordering ≤M and εM ∈ M is
both the neutral element w.r.t. ·M and the top element w.r.t. ≤M . That is, (M,≤M) is a
partial order and the following axioms hold for all m, n, o ∈ M: (1) m ·M n = n ·M m;
(2) m ·M (n ·M o) = (m ·M n) · o; (3) m ·M εM = m; (4) m ≤M εM ; (5) m ≤M n ⇒
m ·M o ≤M n ·M o.

A PVS M is bounded if there also exists a minimal element ⊥ ∈ M to represent complete
dissatisfaction. A valuation structure [58] is a bounded PVS where ≤M is a total order-
ing. If M and N are PVS, so are M × N , the direct (Cartesian) product, and M � N , the
lexicographic product—as long as some conditions on M hold, as was shown in [29, 57].
Both products have pairs of elements of the underlying sets of M and N as their elements
and combination is applied component-wise. For two PVS M and N , we can construct the
ordering of the direct product as follows:

(m, n) ≤M×N (m′, n′) ⇔ m ≤M m′ ∧ n ≤N n′

which corresponds to a Pareto-ordering over the underlying orderings of M and N .
Similarly, the ordering of the lexicographic product is defined as

(m, n) ≤M�N (m′, n′) ⇔ (m <M m′) ∨ (m = m′ ∧ n ≤N n′)

It allows us to express hierarchical relationships between PVS (we discuss products in
MiniBrass further in Section 4.4).

Furthermore, to allow for structure-preserving mappings between PVS, we define a PVS-
homomorphism from a PVS (M, ·M, εM,≤M) to a PVS (N, ·N, εN ,≤N) to be given by a
mapping ϕ : M → N such that ϕ(εM) = εN , ϕ(m ·M n) = ϕ(m) ·N ϕ(n), and m ≤M

n ⇒ ϕ(m) ≤N ϕ(n) (order-preservation). For a c-semiring, we need an idempotent additive
operation ⊕ that is used to induce the ordering ≤ by letting m ≤ n ⇔ m ⊕ n = n. Due
to generality, we first restrict our attention to PVS-based soft constraints and extend our
discussions to c-semirings in Section 3.4. Thus, we define a soft constraint μ over a PVS M

as a map μ : [X → D] → M , we denote the set of soft constraints by S and write a SCSP as
(X, D, C, (M, ·M, εM,≤M), S) which can be seen as a COP (X, D, C, (M,≤M), f) where

f (θ) = �M {μ(θ) | μ ∈ S} (1)

using ·M to aggregate solution degrees of all soft constraints evaluated on an assignment.

Example 1 Consider again the rostering problem in Fig. 1 and let (X,D) be as depicted
and use U = ({c1, c2, c3},≤U) with ≤U = {(c2, c1), (c3, c1)}∗ as a partial order denot-
ing urgency of constraints. For C = {c1, c2, c3} as hard constraints, the solution space is
empty. Instead, we can convert each hard constraint ci into a soft constraint μi by choosing
a suitable PVS M . For instance, we could use the PVS (N,+, 0,≥) and interpret each val-
uation as a penalty incurred for a violated soft constraint. The sum of penalties ought to be
minimized. With weights w = [2, 1, 1], we define μi(θ) = wi if θ 	|= ci and μi(θ) = 0
otherwise. Letting C = ∅ and S = {μ1, μ2, μ3}, the solution θ = {n1 �→ night, n2 �→
night, n3 �→ off} is optimal with f (θ) = ∑

μi∈S μi(θ) = 1. The solution degree 0,
being top in M , is not reachable.

Constraints (2018) 23:403–450 411

3.2 Looking for free partial valuation structures

In Example 1, the choice of M = (N,+, 0,≥) seems rather obvious, given that the weight-
ing w = [2, 1, 1] is consistent with the intuition that c1 should be weighted higher than c2
and c3. However, interpreting w as a function w : S → N, we see that w clearly is only a
monotone (not isomorphic) function. It totalizes U by making the incomparable elements c2
and c3 equal. Alternatively, w = [3, 1, 1] would be consistent, as would be w = [3, 2, 1],
although our intuition tells us that making c2 more important than c3 certainly is a bad idea.
We could try another PVS, say M ′ = (2S,∪,∅,⊇) to denote solution degrees as sets of
violated soft constraints that are combined by union. Then, however, c1, c2, and c3 would
each contribute equally to a solution’s quality, contrary to our model marking c2 and c3 as
less urgent than c1. Certainly, we want any mapping ϕ into a PVS N to preserve the given
order: ϕ(p) ≤N ϕ(q) whenever p ≤U q; otherwise we invert ordering decisions.

Our point is, there is an infinite number of PVS that represent U to a certain degree—but
the essential question is what are the minimum requirements in terms of comparability any
PVS have to fulfill? Which PVS is, in this sense, the best, i.e., most general, one?

To find an answer, we consider the more general question of how to “convert” any partial
order P into a partial valuation structure. As first presented in [39] and proved in Section 3.3,
we can indeed lift any P to PVS〈P 〉—i.e., construct a suitable combination operation and
neutral element: We take as elements Mfin(P), the set of finite multisets composed from
elements in P . For instance, . Two multisets are combined
using multiset-union with being the neutral element. Finally, a compatible ordering (with

being top) is found inductively by applying the Smyth-ordering on sets (see Fig. 1) to
multisets (then written as �P):3

Definition 2 (Smyth-ordering over Multisets) The Smyth-ordering on Mfin(P) is the
binary relation �P ⊆ Mfin(P) ×Mfin(P), given by the reflexive-transitive closure of

Intuitively, when we compare two multisets according to �P , we have to match every
element q on the right side with a dominated element p = h(q) on the left side such that
p ≤P q and h is injective (see Lemma 1). There may be additional elements on the left.

For any elements p,p′ in a partial order P , we have Note the mono-
tonicity of the Smyth-ordering with respect to multiset union; if T �P U , then

, since this holds for both defining clauses of the ordering. Antisymmetry is

proved in Section 3.3. As an example, we have ,

if we read c2 → c1 as c1 <U c2. In conclusion, .
Since PVS〈P 〉 can be the codomain of any SCSP, soft constraints μi can arbitrarily

map to Mfin(P), e.g., . We derive a particularly interesting instance
instead (constraint preferences), if we convert a boolean soft constraint ci into μi(θ) which
maps to if θ satisfies ci and otherwise. In the context of constraint preferences, the
Smyth-ordering is called single-predecessor-dominance in Section 4 since—everything else

3This relation is, in its set version, used to express non-determinism of programs in denotational seman-
tics (set-valued to “collect different program results”), i.e., so-called power domains [4, Ch. 9].

412 Constraints (2018) 23:403–450

being equal—a single predecessor can be dominated by a more important constraint due to
the first clause of the ordering.

Figure 2 displays how we can encode a partial order P as either a weighted PVS or using
PVS〈P 〉 by, e.g., representing c1 as w(c1) = 1 or as , respectively. Notice that
a weighting w : P → N can be “emulated” from Mfin(P) by defining its “lifted” version

w�: Mfin(P) → N on the level of multisets: (arrow from
right to left in the diagram). The converse, however, does not work: Once, e.g., c2 and c3
are both mapped to 1, we cannot “extract” information back about the origin to design a
mapping η� that can map from N into Mfin(U) since η�(1) would have to simultaneously
be equal to . This tells us (not surprisingly) that c2 and c3 do not necessarily
have to be treated as equal elements, i.e., there exist other, more general, partial valuation
structures encoding Ud that keep them as distinct elements.

It was not a coincidence that we found a lifted mapping w� from PVS〈P 〉 to Weighted(P)

that is equal to applying w directly from P . Instead, PVS〈P 〉 has the universal mapping
property [39]: Any order-preserving function ϕ from P into the underlying partial order of
a PVS can be decomposed into the form ϕ� ◦η in a unique way. Thus, PVS〈P 〉 is also called
the “free PVS over P ”. Practically, this means that we can always safely convert P into
the free PVS before mapping to another PVS (e.g., if we need an integer objective for our
implementation, see Section 4.3) without losing any information. Conversely, Weighted(P)

is not free as we cannot return to PVS〈P 〉 once P is mapped to Weighted(P). Since free
objects are unique up to isomorphism [54, p. 147], PVS〈P 〉 can be seen as the most general
PVS over a partial order. We prove this fact in Lemma 2 in Section 3.3.

Our original question, “how to formulate an ordering over constraints as a PVS with
the least overhead”, thus boils down to the search for a free construction. Similar instances
are the free monoid or the free group over a set. We can capture this task formally using
the language of category theory (hinted in Fig. 2) which studies, inter alia, algebraic struc-
tures along with their structure-preserving mappings. This perspective further enables us

Fig. 2 Encoding preferences given by the partial order U as two different PVS: Weighted(U) and PVS〈U〉.
Highlighted paths show possible improvement steps during optimization. There can be no mapping η� since
distinct elements c2 and c3 are unified to 1 in Weighted(U) and would need to be represented by and

in PVS〈U〉, respectively

Constraints (2018) 23:403–450 413

to treat the transformation from a partial order into a PVS and that from a PVS into a c-
semiring uniformly. The subsequent sections hence draw on basic knowledge of category
theory when they offer the derivation of the free PVS and the free c-semiring, respectively.
In Appendix A, we introduce categorical concepts relevant to free constructions with the
well-known free monoid over a set. Readers familiar with basic category theory may safely
skip the appendix and readers familiar with term algebras may check the categorical presen-
tation. As category theory has not been used extensively in constraint programming (except
for [23]), we refer to excellent introductory material, e.g., [7, 8, 47].

As a very brief introduction to follow the proof obligations of the subsequent sections,
we note that a category C refers to a collection of so-called objects and morphisms that
generalize functions. For instance, the category Set has conventional sets as objects and
functions as morphisms, whereas the category Mon has monoids as objects and monoid-
homomorphisms as morphisms. A functor F between categories C and D is a mapping
that sends every C-object A to a D-object F(A) and every C-morphism ϕ : A → B to
a D-morphism F(ϕ) : F(A) → F(B). For example, for every set A there is an associ-
ated monoid (A∗, ::, ε) with words over A and concatenation. We can use this to define
a functor F : Set → Mon by F(A) = (A∗, ::, ε) and F(f : A → B) : A∗ → B∗
with F(f)([a1, . . . , an]) = [f (a1), . . . , f (an)], such that, in particular, F(f)(w1 :: w2) =
F(f)(w1) :: F(f)(w2). Conversely, there is the underlying functor |−| : Mon → Set
with |(A, ·, ε)| = A and |ϕ : (A1, ·1, ε1) → (A2, ·2, ε2)| = ϕ : A1 → A2 yielding the
underlying set of a monoid.

This operator |−| is a convention present in category-theoretical arguments. It allows to
distinguish structures and sets and must not be confused with set cardinality. We follow
this convention in the remainder of the paper and, e.g., will write a partial order as P =
(|P |,≤P).

Using the above notions, we can now formally state what a free object is:

Definition 3 (Free object) Given two categories A and B and a functor G : B → A, the
free object F(A) in B over an object A of A is characterized by a unit morphism ηA : A →
G(F(A)) in A such that for every A-morphism ϕ : A → G(B) with B an object of B,
there is a unique lifting B-morphism ϕ� : F(A) → B satisfying G(ϕ�)◦ηA = ϕ.

A free object F(A) is unique up to isomorphism and the composition of two free con-
structions yields another free construction [54, Ch. 3]. Incidentally, the monoid (A∗, ·, ε) is
the free monoid over a set A (see Appendix A). A free object does not have to exist. We
need to prove a particular free construction (e.g., free monoid or free PVS) by choosing the
appropriate categories, functors, and, of course, the free object itself.

3.3 The free partial valuation structure over a partial order

Motivated by the goal of finding the most general PVS to encode constraint preferences, the
search for the free PVS over a partial order P answers a more fundamental problem:

Which ordering decisions always have to hold if we extend any partial order with a
combination operation (multiplication) and neutral top element?

More formally, this is the case if we have several soft constraints μ1, . . . , μn that each grade
an assignment θ in the same partial order P and we take a product μ1(θ) · . . . ·μn(θ). Which
�-relations must certainly hold if we compare μ1(θ) · . . . ·μn(θ) with μ1(θ

′) · . . . ·μn(θ
′)?

How shall we even represent these products?

414 Constraints (2018) 23:403–450

A seemingly obvious choice would be to collect all soft constraints’ valuations as a set,
i.e., {p1, . . . , pn}. Each p ∈ P could then individually be represented by the unit morphism
η(p) = {p} and then combined using set union. Since ∅ should be top in a PVS, we aim
to order the sets by size and according to P . That means, we want X � ∅ for any set X

and η(p1) = {p1} � {p2} = η(p2) if p1 ≤P p2. Both cases are covered by the Smyth-
ordering over sets (cf. Section 3.2). However, that approach does not yield a proper PVS
if we consider that we can multiply elements {p1} with themselves: Assuming p1 ≤P p2,
also {p1} � {p2} holds. Combining with {p1} on both sides yields {p1} � {p1, p2}, by
monotonicity. But, by the definition of the Smyth-ordering, we also have {p1, p2} � {p1}
and thus antisymmetry is violated.

It turns out that the idempotency of set union is the culprit, in particular the fact that
η(p1) ∪ η(p1) = η(p1). This fact is not required by PVS axioms. Instead, commutativity
and associativity provide a hint about the underlying set of the free PVS: The free monoid
over a set A uses A∗, finite lists over A, embedded by η′(a) = [a] and combined with
concatenation :: since we only need associativity: η′(a) :: (η′(b) :: η′(c)) = (η′(a) ::
η′(b)) :: η′(c) = [a, b, c] (see Appendix A). For the free PVS, we additionally need to
equate η(a)∪ η(b) with η(b)∪ η(a), but again, not necessarily η(a)∪ η(a) with η(a). This
is precisely what we achieve with Mfin(P), finite multisets over P and . Taking
plain sets over P would additionally assume idempotency and is thus too specific.4

Figure 3 instantiates Definition 3 for the task of proving that PVS〈P 〉 is indeed the
free PVS over a partial order P . We start in the category PO of partial orders as objects
and monotone functions as morphisms and map to PVS, the category of partial valuation
structures as objects and PVS-homomorphisms as morphisms.

To switch between partial orders and partial valuation structures we need appropriate
functors. First, the (free) functor PVS〈P 〉:

In the other direction, the (forgetful) functor PO : PVS → PO is defined by

PO(M) = (|M|,≤M) ,

PO(ϕ : M → N) = ϕ .

Starting from a partial order P , commutativity and associativity motivate the underlying
set Mfin(P). We can also justify each rule of the Smyth-ordering over multisets by applying
Definition 3. First, as each p ∈ |P | is found in and ηP is a mono-

tone function, we have that . This ensures that P is preserved over
their embedded counterparts. The other rule stems from the fact that the
neutral element is the top of the ordering in a PVS—which is the most prevalent choice in
soft constraints [43]. This implies m ·M n ≤M m since n ≤M εM ⇒ m ·n ≤M m, by mono-

tonicity. Consequently, for the free PVS, needs to hold, as does , both
of which are represented by the above rule. Dually, we would have , had
we defined the neutral element to be bottom of the ordering.

Next, we have to confirm that is a partial valuation struc-
ture, to begin with. Associativity and commutativity of and neutrality of with respect
toMfin(P) are obvious, we have already discussed reflexivity and transitivity of�P as well as

4Interestingly enough, the fact that partial valuation structures need not be idempotent in general (e.g.,
weighted constraints) disallows a straightforward extension of local consistency to soft constraints [18].

Constraints (2018) 23:403–450 415

Fig. 3 Diagram of the free PVS over a partial order. For an arbitrary PVS M that we map into from a partial
order P using ϕ, we can lift this mapping to ϕ� : PVS〈P 〉 → M such that ϕ = PO(ϕ�) ◦ ηP . Consequently,
PVS〈P 〉 only identifies and orders elements as absolutely required by PVS axioms—it is most general

monotonicity of with respect to �P in Section 3.2. To show antisymmetry of �P , we prove
a result that also turns out to be useful later on when we implement the Smyth-ordering as a
MiniZinc predicate to be used in search. To do so, we introduce a bit of notation to “unfold”
a multiset T into a set representation . For-
mally, for a multiset with l1, . . . , ln > 0 and xi 	= xj if
i 	= j , let S(T) = ⋃

1≤i≤n{(j, xi) | 1 ≤ j ≤ li}.

Lemma 1 (Witness for �P) T �P U if, and only if, there is an injective map h : S(U) →
S(T) (called a witness function) with p ≤P q if h(j, q) = (k, p) for all (j, q) ∈ S(U).

Proof Let first T �P U hold. We restrict our attention w.l.o.g. to the case T 	= U as
otherwise the claim trivially holds. Then there is a sequence of multisets T1, . . . , Tn ∈
Mfin(P) with n > 1 such that T1 = T , Tn = U , and for each 1 ≤ i < n, either
or and with p ≤P q. As required in the claim, for each 1 ≤
i < n there is a witness hi : S(Ti+1) → S(Ti) as follows: If , then we choose

hi = idS(Ti). If and with p ≤P q, then we choose hi =
idS(T ′

i)
∪{(j, p) �→ (k, q)} where j = max{l | (l, p) ∈ S(T ′

i)}+1 and k = max{l | (l, q) ∈
S(T ′

i)} + 1. Then h1◦ . . . ◦hn−1 : S(U) → S(T) is a witness function.
For the converse, we prove that if h : S(U) → S(T) is a witness function, then T �P U

by induction on the cardinality of S(U). Let h : S(U) → S(T) be given. If |S(U)| = 0,

then . Now let |S(U)| > 0 and let (j, q) ∈ S(U) such that j is maximal.
Then h(j, q) = (k, p) with p ≤P q. Let T ′, U ′ ∈ Mfin(P) be defined by and

. To construct a witness function between T ′ and U ′ and apply the induction
hypothesis, we define g : S(T) → S(T ′) by g(l, r) = (l, r) if r 	= p or l < k, and
g(l, p) = (l − 1, p) if l > k. Essentially, g closes possible “gaps” in the image of h. Then
S(U ′) = S(U) \ {(j, q)} and h′ : S(U ′) → S(T ′) defined as h′ = g ◦ h is a witness
function between T ′ and U ′. By induction hypothesis, hence, T ′ �P U ′ and thus, by the

monotonicity of �P (see Section 3.2), .

The witness function can be interpreted as assigning an “inferior” to every element on the
right-hand side. To see the antisymmetry of the Smyth-ordering,5 assume for a contradiction
that there are T and U with both T �P U and U �P T , but T 	= U and choose one T with
minimal cardinality satisfying this property. Then T has to be non-empty. Let f : S(U) →

5Curiously enough, the Smyth-ordering on mere sets is not antisymmetric. It is just a preorder.

416 Constraints (2018) 23:403–450

S(T) and g : S(T) → S(U) be witnessing maps for T �P U and U �P T , respectively.
Choose an element (j, q) ∈ S(U) such that q is minimal w.r.t. ≤P in U . Then there is an
inferior (k, p) = f (j, q) in S(T) with p ≤P q. If p 	= q, as U �P T holds as well,
there would be yet another inferior g(k, p) = (j ′, q ′) ∈ S(U) such that q ′ ≤P p and thus
q ′ ≤P p <P q, contradicting the minimality of q in U ; thus f (j, q) = (k, q). Assume,
without loss of generality, that j and k are maximal. Remove the occurrence of p from T

and U , obtaining T ′ and U ′, respectively. Then T ′ �P U ′ and U ′ �P T ′ hold as well, since
the reduced-domain functions f ′ : S(T ′) → S(U ′) with f ′(l, p) = f (l, p) and, similarly,
g′ : S(U ′) → S(T ′), are witnessing maps. This contradicts the assumed minimality of T .
Thus, PVS〈P 〉 fulfills all axioms of a partial valuation structure and we are ready to show
that it is indeed free.

Lemma 2 (Free PVS) PVS〈P 〉 is the free PVS over the partial order P .

Proof Let P be a partial order (|P |,≤P) and ϕ : P → PO(M) be a PVS-homomorphism
into the underlying partial order of any PVS M . To show the existence of a lifted variant of
ϕ, we define ϕ� : PVS〈P 〉 → M as a PVS-morphism by

for all , where, if . This is well-defined, i.e.,

ϕ� is indeed a PVS-homomorphism, since

, and, if
T ≤PVS〈P 〉 U , then ϕ�(T) ≤M ϕ�(U): We consider the generating cases for one step of the
Smyth-ordering as it is straightforward to consider the extension to sequences T1, . . . , Tn as
done in the proof of the witness function. Assume T ≤PVS〈P 〉 U . Either and

with p ≤P q. Then ϕ�(T) = ϕ(p) ·M ϕ�(T ′) and ϕ�(U) = ϕ(q) ·M ϕ�(T ′).
And since ϕ(p) ≤M ϕ(q) due to ϕ being a PO-morphism, we have ϕ�(T) ≤M ϕ�(U), by
monotonicity of ·M . Or, it is the case that . Then (T ′ may be empty) and
thus ϕ�(T) = ϕ�(T ′) ·M ϕ�(U) ≤M ϕ�(U), by the PVS axiom m · n ≤M m. Consequently
ϕ� is a PVS-homomorphism.

Moreover, ϕ = PO(ϕ�) ◦ ηP with for all

; hence the diagram in Fig. 3 commutes.
Finally, ϕ� is unique with this property: Assume there would be another PVS-

homomorphism ψ : PVS〈P 〉 → M that satisfies PO(ψ)◦ηP = ϕ. Due to this requirement,

we have for every p ∈ |P |. Thus, for ψ , we have and

since ψ is a PVS-homomorphism and by the previous remark. Hence ϕ� = ψ , as claimed,
and PVS〈P 〉 is indeed the free partial valuation structure over a partial order.

This concludes our theoretical considerations of the free partial valuation structure. An
example of a SCSP employing the free PVS is depicted in Fig. 5 in Section 3.5. It actually
uses soft constraints that directly map to the free PVS (i.e., Mfin(P) rather than P). For
constraint preferences, we only distinguish between . Both the free PVS and a
specialized type for constraint preferences are available in MiniBrass (cf. Section 4.2.2).

Constraints (2018) 23:403–450 417

3.4 The free c-semiring over a partial valuation structure

As mentioned before, (partial) valuation structures are not the only abstract algebraic frame-
work for soft constraints in the literature. C-semirings constitute a particularly popular
choice. They are purely algebraic by requiring a second “additive” operation instead of a
partial ordering to form an (upper semi”)lattice. This idempotent, commutative, and asso-
ciative operation is then used to induce a partial ordering. Moreover, any c-semiring is
bounded above and below by two designated constants. We will proceed to show that every
c-semiring gives rise to a bounded PVS, and, conversely, every PVS can be extended to a
c-semiring by means of another free construction—although not every PVS is a c-semiring
since the additive operation in fact returns a supremum which need not exist in a PVS.

This section therefore extends previous work that examined the similarities between c-
semirings and (totally ordered bounded) valuation structures [13]. The authors identified a
valuation structure with every totally ordered c-semiring only. For branch-and-bound and
similar search algorithms, a partial ordering indeed suffices (see Section 4 or [35, 43]). The
main algorithmic advantage of having a second algebraic operation instead of the partial
ordering lies in the thereby guaranteed existence of a supremum. This least upper bound can
be used for non-serial dynamic programming, i.e., variable elimination. These algorithms
may, however, return an unreachable optimal solution degree (e.g., the supremum of all
reachable optima). From a practical perspective, this free construction of a c-semiring from
a PVS alleviates the need to model in c-semirings in the first place. If a fruitful algorithmic
technique for c-semirings (relying on the addition) is discovered, it can also be applied to
a PVS when raised to the free c-semiring. We sketch such an application in Section 3.5 but
first actually derive the free c-semiring over a PVS.

Formally, a c-semiring [12] A = (|A|,⊕A,⊗A, 0A, 1A) is given by an (underlying) set
|A|, two binary operations ⊕A,⊗A : |A|×|A| → |A|, and two constants 0A, 1A ∈ |A| such
that the following axioms are satisfied:

– ⊕A is associative and commutative and has 1A as annihilator and 0A as neutral element
– ⊗A is associative and commutative, has 0A as annihilator and 1A as neutral element
– ⊗A distributes over ⊕A

To preserve this structure, a c-semiring homomorphism ϕ : A → B from a c-semiring A

to a c-semiring B is given by a map ϕ : |A| → |B| such that for all a1, a2 ∈ |A|:
1. ϕ(a1 ⊕A a2) = ϕ(a1) ⊕B ϕ(a2), ϕ(a1 ⊗A a2) = ϕ(a1) ⊗B ϕ(a2)

2. ϕ(0A) = 0B , ϕ(1A) = 1B

Consequently, the category cSRng of c-semirings has the c-semirings as objects and the
c-semiring homomorphisms as morphisms. Note that in a c-semiring A the operation ⊕A is
idempotent:

a ⊕A a = (a ⊗A 1A) ⊕A (a ⊗A 1A) = a ⊗A (1A ⊕A 1A) = a ⊗A 1A = a .

Hence, ⊕A can be used to induce a partial ordering ≤A by interpreting it as the least upper
bound: a ≤A b ⇔ a ⊕A b = b. Clearly, ≤A is reflexive due to the idempotency, transitive
due to associativity, and antisymmetric due to commutativity of ⊕A. With this definition,
for all a, b, c ∈ |A| it holds that

1. 0A ≤A a ≤A 1A;
2. a ≤A a ⊕A b and b ≤A a ⊕A b;
3. if a ≤A c and b ≤A c, then a ⊕A b ≤A c.

418 Constraints (2018) 23:403–450

In particular, a⊕Ab is the supremum of a and b with respect to ≤A. Also ⊕A is monotone
w.r.t. ≤A in both arguments, i.e., a ≤A a′ and b ≤A b′ implies a ⊕A b ≤A a′ ⊕A b′.
Additionally, the combination operation ⊗A is monotone w.r.t. the induced ordering ≤A,
since if a ≤A a′ (i.e., a⊕Aa′ = a′) then (a⊗Ab)⊕A (a′⊗Ab) = (a⊕Aa′)⊗Ab = a′⊗Ab,
i.e., a ⊗A b ≤A a′ ⊗ b, from which it follows that a ≤A a′ and b ≤A b′ implies a ⊗A b ≤A

a′ ⊗ b′. Furthermore, for all a, b ∈ |A|, it holds that a ⊗A b ≤A a and a ⊗A b ≤A b, since
(a ⊗A b) ⊕A a = (a ⊗A b) ⊕A (a ⊗A 1A) = a ⊗A (b ⊕A 1A) = a ⊗A 1A = a.

As a consequence, we can easily convert any c-semiring into a PVS by defining the
functor PVS : cSRng → PVS:

PVS(A) = (|A|,⊗A, 1A,≤A) ,

PVS(ϕ : A → B) = ϕ .

Note that PVS(A) is a bounded PVS with ⊥PVS(A) = 0A. This leaves us with the first
part of a free construction between categories PVS and cSRng (cf. Definition 3). The oppo-
site direction, constructing a c-semiring starting from a PVS, is not as obvious since the
partial order of a PVS need not show suprema that are required to exist for the ⊕ operator
(they clearly exist in total orders, making the conversion from totally ordered c-semirings
to valuation structures more straightforward [13]). For instance, in Fig. 1, we saw that both

are upper bounds of but they are incomparable.
When allowing partiality, we can always find an “artificial” supremum by collecting

all (incomparable) valuations in a set and ordering these sets appropriately. Consider an
arbitrary PVS M = (|M|, ·M, εM,≤M). We write Ifin(M) to denote the set of finite sets
composed of incomparable elements from |M| (i.e., if X ∈ Ifin(M) then for any x 	= y ∈ X

we have x‖My) and Max≤M (X) to denote the maximal elements of X with respect to ≤M .
For instance, if |M| = {1, 2, III, IV} and 1 <M 2, III <M IV, the sets {2, IV} or {1, III}
are in Ifin(M) but {1, III, IV} is not and Max≤M (|M|) = {2, IV}. We define the binary
operations ∪̃M and ·̃M over Ifin(M) by

I ∪̃MJ = Max≤M (I ∪ J) ,

I ·̃MJ = Max≤M {m ·M n | m ∈ I, n ∈ J } .

Clearly, ∪̃M inherits commutativity from ∪, and is idempotent since Max≤M (I) = I for
any set I consisting of already incomparable elements. It is easy to check that it is also
associative. Further, {εM } is an annihilator for ∪̃M since εM is the greatest element of |M|
with respect to ≤M , and ∅ is its neutral element.

Similarly, ·̃M is obviously commutative since ·M is commutative. Dually to ∪̃M , it has
{εM } as neutral element (since εM is neutral in M) and ∅ as annihilator. For the associativity
of ·̃M , we have

I ·̃M(J ·̃MK)= Max≤M {mI ·M mJK |mI ∈ I, mJK ∈Max≤M {mJ ·M mK |mJ ∈J, mK ∈K}}
= Max≤M {mI ·M mJ ·M mK | mI ∈ I, mJ ∈ J, mK ∈ K}}
= Max≤M {mIJ ·M mK |mIJ ∈ Max≤M {mI ·M mJ | mI ∈I, mJ ∈J }, mK ∈ K}
= (I ·̃MJ)·̃MK ,

Constraints (2018) 23:403–450 419

since Max≤M {m ·M n | m ∈ I, n ∈ Max≤M (X)} = Max≤M {m ·M n | m ∈ I, n ∈ X} for all
finite sets X ⊆ |M|. Finally, ·̃M distributes over ∪̃M :

I ·̃M(J ∪̃MK) = Max≤M {mI ·M mJK | mI ∈ I, mJK ∈ Max≤M (J ∪ K)}
= Max≤M {mI ·M mJK | mI ∈ I, mJK ∈ J ∪ K}
= Max≤M ({mI ·M mJ | mI ∈ I, mJ ∈ J } ∪ {mI ·M mK | mI ∈ I, mK ∈ K})
= Max≤M (Max≤M { mI ·M mJ | mI ∈ I, mJ ∈ J } ∪

Max≤M { mI ·M mK | mI ∈ I, mK ∈ K})
= (I ·̃MJ)∪̃M(I ·̃MK) ,

since Max≤M (I ∪Max≤M (X)) = Max≤M (I ∪X) for all finite X ⊆ |M|. Thus, we conclude

Lemma 3 (Ifin(M), ∪̃M, ·̃M, ∅, {εM }) is a c-semiring.

This structure will serve to define the object part of a free functor from PVS to cSRng.
At this point, it is worth noting that a similar construction of c-semiring addition and

multiplication operations has been introduced by Rollón [50], although starting from a given
c-semiring instead of a PVS. She proves that when A is a c-semiring, its so-called frontier
algebra A = (I(A) \ {∅}, ⊕̃A, ⊗̃A, {0A}, {1A}) again is a c-semiring, where I(A) are
(possibly infinite) subsets of |A| containing only pairwise incomparable elements w.r.t. ≤A,
and,

I⊕̃AJ = Max≤A(I ∪ J) ,

I⊗̃AJ = Max≤A{i ⊗A j | i ∈ I, j ∈ J }
for all I, J ∈ I(A) \ {∅}. The underlying set of the frontier algebra thus contains sets of

arbitrary cardinality, not only finite sets as in our approach of the free construction. In fact,
such infinite sets would correspond to “junk elements” (cf. Appendix A), i.e., they would be
unnecessary to have in the carrier set of the free c-semiring since we only have the finitary
combination and supremum operation.

In [50], the condition that only non-empty sets have to be considered is missing. The
empty set has to be excluded, however, since otherwise ∅⊗̃A{0A} = ∅, although {0A} has
to be the annihilator for ⊗̃A, and ∅⊕̃A{0A} = {0A}, i.e., ∅ ≤A {0A} contradicting that
{0A} has to be the smallest element w.r.t. ≤A. By contrast, in our approach, we have to
consider ∅ as well in order to obtain a “fresh” bottom element of the free c-semiring over an
arbitrary PVS. If we only applied the construction of a free c-semiring to the sub-category
of bounded PVS, we also could exclude ∅ and would obtain {⊥M } as bottom element of the
free c-semiring over the bounded PVS M . However, the free PVS over a partial order—our
original mission—clearly is not bounded.

To verify that we can design the morphism part of a free functor, it is useful to convince
ourselves that the application of the maximum operator in a target structure subsumes the
maximum operator in a source structure.

Lemma 4 (Subsumption of maximum) Let ϕ : M → N be a PVS homomorphism. For
finite sets X ⊆ |M|, we have Max≤N (ϕ(Max≤M (X))) = Max≤N (ϕ(X)).

Proof First, Max≤N (ϕ(Max≤M (X))) ⊆ Max≤N (ϕ(X)), since Max≤M (X) ⊆ X holds
which in turn implies ϕ(Max≤M (X)) ⊆ ϕ(X).

420 Constraints (2018) 23:403–450

To conversely show Max≤N (ϕ(X)) ⊆ Max≤N (ϕ(Max≤M (X))), it suffices to show that
for each n ∈ ϕ(X) there is a (weakly dominating) n′ ∈ ϕ(Max≤M (X)) such that n ≤N n′:
If n ∈ ϕ(X) then n = ϕ(m) for some m ∈ X. Either m is maximal, in which case n is
obviously in ϕ(Max≤M (X)) as well. Otherwise, there is an m′ ∈ Max≤M (X) with m ≤M m′,
hence n = ϕ(m) ≤N ϕ(m′), and ϕ(m′) ∈ ϕ(Max≤M (X)).

Finally, we define the functor cSRng〈−〉 : PVS → cSRng as

cSRng〈M〉 = (Ifin(M), ∪̃M, ·̃M,∅, {εM }) ,

cSRng〈ϕ : M → N〉 = λ{m1, . . . , mk} ∈ Ifin(M) . Max≤N {ϕ(m1), . . . , ϕ(mk)} .

We need to check (using Lemma 4) that cSRng〈ϕ : M → N〉 is indeed a c-semiring
homomorphism from cSRng〈M〉 to cSRng〈N〉 for the functor to be well-defined:

cSRng〈ϕ〉(∅) = ∅ , cSRng〈ϕ〉({εM }) = {ϕ(εM)} = {εN } ,

cSRng〈ϕ〉(I1∪̃MI2) = cSRng〈ϕ〉(Max≤M (I1 ∪ I2))

= Max≤N (ϕ(Max≤M (I1 ∪ I2))) = Max≤N (ϕ(I1 ∪ I2)) = Max≤N (ϕ(I1) ∪ ϕ(I2))

= cSRng〈ϕ〉(I1)∪̃NcSRng〈ϕ〉(I2) ,

cSRng〈ϕ〉(I1 ·̃MI2) = cSRng〈ϕ〉(Max≤M {m1 ·M m2 | m1 ∈ I1, m2 ∈ I2}))
= Max≤N (ϕ(Max≤M {m1 ·M m2 | m1 ∈ I1, m2 ∈ I2}))
= Max≤N {ϕ(m1 ·M m2) | m1 ∈ I1, m2 ∈ I2}
= Max≤N {ϕ(m1) ·N ϕ(m2) | m1 ∈ I1, m2 ∈ I2}
= Max≤N {n1 ·N n2 | n1 ∈ ϕ(I1), n2 ∈ ϕ(I2)}
= cSRng〈ϕ〉(I1)·̃NcSRng〈ϕ〉(I2) .

With these functors from PVS to cSRng and vice versa defined, we are ready to apply
Definition 3 to the problem of finding the free c-semiring over a PVS, as depicted in
Fig. 4. As unit morphism, we define ηM : M → PVS(cSRng〈M〉) for every PVS M by
ηM(m) = {m}. Now let M be some PVS, A a c-semiring, and ϕ : M → PVS(A) be
a PVS-homomorphism. Again, we search a lifting ϕ� that “emulates” (and extends) the
PVS-homomorphism ϕ at the c-semiring level, i.e., makes the diagram in Fig. 4 commute
by asserting that PVS(ϕ�) ◦ ηM = ϕ. We define ϕ� : cSRng〈M〉 → A as a function
ϕ� : Ifin(M) → |A| and need to show that it is a c-semiring homomorphism:

ϕ�({m1, . . . , mn}) = ϕ(m1) ⊕A · · · ⊕A ϕ(mn)

for all {m1, . . . , mn} ∈ Ifin(M), where, if n = 0, ∅ is mapped to 0A; ϕ� is indeed a
c-semiring homomorphism, since for the constants, ϕ�(0cSRng〈M〉) = ϕ�(∅) = 0A and

Fig. 4 Diagram of the free c-semiring over a PVS. As with previous free constructions, cSRng〈M〉 only
identifies and orders elements as absolutely required by c-semiring axioms—it is again most general

Constraints (2018) 23:403–450 421

ϕ�(1cSRng〈M〉) = ϕ�({εM }) = ϕ(εM) = εPVS(A) = 1A. To show that ϕ� preserves the opera-
tions ·̃M and ∪̃M , we first note that for each finite set {m1, . . . , mn} ⊆ |M| (not necessarily
composed of incomparable elements) it holds that ϕ�(Max≤M {m1, . . . , mn}) = ϕ(m1) ⊕A

. . . ⊕A ϕ(mn): if some dominating mi ≤M mj exists, then ϕ(mi) ≤PVS(A) ϕ(mj) (since
ϕ is a PVS-homomorphism), hence, ϕ(mi) ⊕A ϕ(mj) = ϕ(mj). We can thus “remove”
each occurrence of the dominated mi in ϕ(m1) ⊕A . . . ⊕A ϕ(mn) since its dominator mj is
included in that term. Therefore,

ϕ�({m1, . . . , mk}∪̃M {mk+1, . . . , mn}) = ϕ�(Max≤M {m1, . . . , mn})
= ϕ(m1) ⊕A . . . ⊕A ϕ(mn)

= (ϕ(m1) ⊕A . . . ⊕A ϕ(mk)) ⊕A (ϕ(mk+1) ⊕A . . . ⊕A ϕ(mn))

= ϕ�({m1, . . . , mk}) ⊕A ϕ�({mk+1, . . . , mn}) .

Similarly, for two sets I, J ∈ Ifin(M)

ϕ�(I ·̃MJ) = ϕ�(Max≤M {m1 ·M m2 | m1 ∈ I, m2 ∈ J }))
= ⊕

A{ϕ(m1 ·M m2) | m1 ∈ I, m2 ∈ J } PVS hom.=
⊕

A{ϕ(m1) ·PVS(A) ϕ(m2) | m1 ∈ I, m2 ∈ J }
= ⊕

A{ϕ(m1) ⊗A ϕ(m2) | m1 ∈ I, m2 ∈ J } distr.=
⊕

A{ϕ(m1) | m1 ∈ I } ⊗A

⊕
A{ϕ(m2) | m2 ∈ J } = ϕ�(I) ⊗A ϕ�(J) .

Thus, ϕ� is a c-semiring homomorphism and additionally, PVS(ϕ�)(ηM(m)) = ϕ(m), i.e.,
the diagram in Fig. 4 commutes, and ϕ� is unique with this property (the proof is analogous
to that of Lemma 2). We may thus conclude:

Lemma 5 cSRng〈M〉 is the free c-semiring over the partial valuation structure M .

From the fact that the composition of two free constructions is a free construction
itself [54, Ch. 3], we further know:

Corollary 1 cSRng〈PVS〈P 〉〉 is the free c-semiring over the partial order P .

Therefore, we abbreviate cSRng〈PVS〈P 〉〉 as cSRng〈P 〉 and obtain a generic way to embed
any partial order P into a c-semiring in a canonical way. More explicitly, this c-semiring
has finite sets of incomparable (w.r.t. the Smyth-ordering) multisets composed of elements
from |P | as its elements. If, e.g., P = ({I, II, 1, 2}), then are in

Ifin(Mfin(P)) but is not since (cf. Fig. 5 for a similar ordering).
In the following section, we revisit this free c-semiring to illustrate the application of ⊕ and
the required distributivity with respect to possible solving algorithms.

3.5 Adequacy of algebraic structures for soft constraints

The original goal of algebraic abstractions of specific soft constraint formalisms was to pro-
vide a common theoretical ground for questions of computational complexity and, perhaps
more intensely studied, efficient solving algorithms. The latter include search strategies,
dynamic programming techniques, and constraint propagation.

422 Constraints (2018) 23:403–450

Fig. 5 The upper part illustrates the rating system (R), its free partial valuation structure PVS〈R〉 and the free
c-semiring cSRng〈R〉 = cSRng〈PVS〈R〉〉. Highlighted elements are introduced by axioms of the respective
algebraic structure. The center part presents a SCSP with variables {x, y, z}, domain {0, 1} and five (unary
or binary) soft constraints that map assignments to |R|. The lower part finds the optimal solution degrees of
SCSP by applying bucket elimination on cSRng〈R〉 with the elimination order 〈x, y, z〉. Note that valuations
of soft constraints μ are embedded into cSRng〈R〉 according to (2)

Constraints (2018) 23:403–450 423

In terms of model expressiveness, we seek a fairly general structure that captures a broad
variety of formalisms. In terms of algorithmic efficiency, however, we are inclined to sac-
rifice generality for additional structure that makes search and propagation more effective.
Most algorithmic efforts can roughly be divided into:

– Classical search algorithms such as branch-and-bound, limited discrepancy search,
or large neighborhood search [61] with accompanying search heuristics and efficient
bounding techniques such as russian doll search or mini bucket elimination [43].

– Soft local consistency and soft global constraints to enhance a search scheme [18, 19]
– Dynamic programming algorithms (variable elimination, bucket elimination, cluster

tree elimination) [10, 11, 21]

Originally, valued constraints and c-semiring-based soft constraints generalized weight-
ed constraints and fuzzy constraints, respectively. While c-semirings additionally allowed
for partiality to better represent incomparable decisions, valued constraints put a total order-
ing first instead of an operator for the supremum.6 Totality is beneficial for solving as it
reduces search to more well-known scalar optimization tasks with a unique optimal solution
degree and allow for more efficient pruning. Soft local consistency techniques with non-
idempotent combination operators further require so-called “fair” valuation structures that
admit a difference operator a � b—which is not mandatory for a PVS.

Similarly, the supremum ⊕ presupposed by a c-semiring is put to use in non-serial
dynamic programming such as bucket elimination whenever we perform a “projection”
operation. Projection means finding the best extension (with a greater variable scope) of a
given assignment. If we are dealing with PVS without a supremum (such as the free PVS),
these algorithms are not directly applicable. However, as a remedy, we can still use this
family of algorithms if we put in place the free c-semiring instead. Example 2 demonstrates
this procedure for bucket elimination. This algorithm proceeds by picking a variable elim-
ination order, leading to “buckets” for each variable x which collect all soft constraints μ

that have x as next (not yet eliminated) variable in their scope. Intermediate soft constraints
ν are generated by taking the union of all variables in a bucket, then calculating the interme-
diate results (i.e., the combination over all soft constraint valuations in the bucket) for each
assignment in the Cartesian product of the domains, and projecting out x (see [21]). One can
check that each elimination step is an application of the distributivity law (see Lemma 3). All
known limitations regarding time and space which prohibit widespread usage in practice, of
course, remain [43].

Example 2 Consider a decision that is made based on some abstract “rating system” R
(as can be seen in Fig. 5) that is inspired by, e.g., two executives that make an indepen-
dent choice, denoted by {1, 2} and {I, II }, respectively, where a higher number means a
better evaluation. Any “two”, however, is better than any “one”. There is an explicit top
element � representing maximal satisfaction. There is no unique least upper bound for
1 and I , though. We assume that soft constraints are specified by a map from variable
assignments to elements of |R|, as presented in the figure. To consider combinations of
individual soft constraint valuations, i.e., to have a proper SCSP, we use the free partial
valuation structure PVS〈R〉 to obtain a multiplication. We represent every element r other

than � as and let � map to the neutral element . Note how the resulting
partial order PO(PVS〈R〉) over Mfin(|R|) is not suprema-closed (center in Fig. 5). To still

6Obviously, in a total ordering, the supremum is just min/max.

424 Constraints (2018) 23:403–450

be able to apply bucket elimination, we embed PVS〈R〉 into its associated free c-semiring
cSRng〈PVS〈R〉〉 = cSRng〈R〉. Consequently, we embed any soft constraint μ mapping to
|R| into cSRng〈R〉 as follows:

For instance, . Finally, we invoke
bucket elimination to obtain the optimal solution degree (see [21] for a similar illustra-
tion). The algorithm terminates with that is clearly
not reachable by any individual assignment. However, each of the three components (i.e.,
multiset over |R|) corresponds to one assignment. By appropriate bookkeeping during the
elimination process, we find that θ1 = {x �→ 0, y �→ 0, z �→ 0}, θ2 = {x �→ 0, y �→ 1, z �→
0}, and θ3 = {x �→ 1, y �→ 1, z �→ 0} map to the respective optimal solution degrees
and are thus optimal solutions. The free c-semiring provides enough information for said
bookkeeping—another c-semiring returning a supremum of all solution degrees need not do
this, in general.

Note that in fact we get a set of all PVS-optima as the unique optimal solution degree in
the free c-semiring. Clearly, however, enforcing totality or a supremum for the only sake of
better algorithms might counteract a modeler’s intentions. Some (in reality incomparable)
solutions are dominated by others. If we do not rely on explicit soft constraint operations but
rather formulate it as a conventional constraint optimization problem that is solved by search
and propagation (as in branch-and-bound or large neighborhood search), the structure a PVS
offers suffices—which makes them the appropriate data structure for designing MiniBrass.

4 Implementation

Our considerations up to now have been mostly abstract and mathematical in terms of
proper constructions of PVS and their relationship to c-semirings. We now turn to the
design of MiniBrass7 as an extension of MiniZinc and how it includes existing formalisms
in the literature. Indeed, the argumentation in Section 3.5 motivates that PVS are the ade-
quate algebraic structure to encode soft constraint formalisms such that the theoretical
constructions substantiate the MiniBrass language. MiniZinc, on the other hand, offers a
well-balanced compromise between expressive power (high-level concepts such as func-
tions and predicates) and broad support by a variety of solvers including propagation
engines such as Gecode or JaCoP but also other paradigms such as MIP or SAT solvers. To
smoothen the transition between conventional constraint models and soft constraint models,
MiniBrass follows many MiniZinc conventions such as having a “solve” item, independence
of order of statements and the notation, in general.

MiniBrass is a file-based soft constraint modeling language that revolves around the
concept of partial valuation structures. A model (resp., instance) is divided into a (hard)
constraint model (see Listing 1) written in conventional MiniZinc, consisting of variable
definitions and classical constraints, and a preference model (see Listing 2) which contains
PVS type declarations along with instantiations, soft constraint definitions based on the

7https://github.com/isse-augsburg/minibrass

https://github.com/isse-augsburg/minibrass

Constraints (2018) 23:403–450 425

include "hello-world_o.mzn"; % output of minibrass
include "soft_constraints/minibrass.mzn"; % for generic branch and bound

% the basic, "classic" CSP
5 set of int: NURSES = 1..3;

int: day = 1; int: night = 2; int: off = 3;
set of int: SHIFTS = {day,night,off};
array[NURSES] of var SHIFTS: n;

10 solve
:: pvsSearchHeuristic % compiler writes this into hello-world_o.mzn
search miniBrass(); % calls to a generic PVS-based branch-and-bound

Listing 1 hello-world.mzn: The conventional constraint model contains all variable definitions and
hard constraints. It includes the compiled MiniBrass output (hello-world o.mzn) which contains gen-
erated variables, linking constraints, search procedures relevant to MiniSearch (miniBrass, defined in
minibrass.mzn), and the (optional) search annotation pvsSearchHeuristic

variables in the constraint model, and combinations (Pareto and lexicographic) of instances.
MiniBrass separates essential constraints of a problem from its objective because:

– Existing soft constraint formalisms in the literature (weighted, fuzzy, constraint prefer-
ences, . . .) are available for a preference model using the respective PVS types.

– Preferences can be elicited and specified using PVS type A (perhaps having a non-
trivial (multi)set-based order such as the free PVS) which is then transformed to another
PVS type B that is better supported by existing solvers (cost function networks/integer
objectives) using morphisms (see Section 4.3).

– By exploiting modularity, users can combine several preference structures (perhaps
stemming from different agents) at runtime (Pareto or lexicographic).

– Multiple preference models for the same hard constraint model can co-exist and be
selected at runtime depending on other context factors.

Conceptually, the main idea of how to encode a soft constraint problem as a conventional
constraint optimization problem has been outlined in [43] after being first described in [46]:
For a soft constraint problem SCSP = (X, D, C, M, S) with PVS M = (|M|, ·M, εM,≤M),
we define the classical constraint model (X,D, C) as usual and for every soft constraint
μi ∈ S, we have a constraint along the lines of “valuation[i] = mznExpri (X)”
where valuation is an array of variables of type |M| and mznExpri (X) stands for

PVS: fp = new FreePVS("fp") {
soft-constraint c1: ’embed(sum(i in NURSES)(bool2int(n[i] = night)) = 2, 1, 3)’;
soft-constraint c2: ’embed(n[2] in {day,off}, 2, 3)’;
soft-constraint c3: ’embed(n[3] = off, 3, 3)’;

5
orderingP : ’[| 2, 1 | 3, 1 |]’;
maxP: ’3’ ;
maxPerSc : ’1’;

};
10

output ’["n = \(n)\nValuations: topLevelObjective = \(topLevelObjective)\n"]’;

solve fp;

Listing 2 hello-world.mbr: A preference model of the problem in Fig. 1 with PVS type for a free PVS
and one PVS-instance that also serves as the “solve”-item analogous to MiniZinc. The MiniZinc function
embed converts boolean expressions to multisets, i.e., embed(bexpr, idx, len) yields the empty multiset

(represented by an array of length len containing only zeros) if bexpr holds and (represented by an
array of length len with a one at index idx and zeros otherwise) if bexpr does not hold. Note how an edge

(p2, p1) hereby indicates that p2 ≤P p1 and thus

426 Constraints (2018) 23:403–450

the MiniZinc expression of soft constraint μi , based on variables X. Additionally, there
is an |M|-variable overall holding the overall valuation which is constrained such that
“overall = valuation[1] ·M . . . ·M valuation[nScs]” where nScs refers to the
number of soft constraints. The partial ordering ≤M is used to generate constraints on future
solutions such as “overall <M overall′” to ask for the next solution overall′ to be
better than the current one overall. Branch-and-bound (see Section 4.5) is based on this
predicate.

Listings 1 and 2 exemplify these ideas using the introductory toy rostering problem cov-
ered in Fig. 1. The problem is specified with constraint preferences which are mapped to the
free PVS as discussed in Section 3.3. Each soft constraint μi maps to if violated and
otherwise (implemented using a function embed in Listing 2). The corresponding PVS-type
FreePVS (see Listing 3) implements multisets of elements from an underlying partial order
as solution degrees, multiset union as the combination operation, and the Smyth-ordering as
MiniZinc functions and predicates in the file free-pvs-type.mzn. Said partial order P

is passed by parameters maxP (denoting the highest index) and orderingP (the ordering
relation as list of edges) during instantiation.

Multisets are not natively supported by MiniZinc but need to be encoded for solvers. In
the free PVS, the set Mfin(P) is clearly infinite as we can reach any finite multiset over
P by applying combination (i.e., multiset union) often enough. Since solvers operate on
finitely many decision variables with finite domains, we never have to use the full range of
Mfin(P), though, and always operate on a finite subset of it. Put differently, the maximal
multiplicity of any element of P is necessarily restricted. To put a meaningful upper bound
on the multiplicities, we note that in a SCSP, the overall valuation is given by

∏
M {μi(θ) |

μi ∈ S}. If we can determine the maximal occurrence any P -element has in any individual
μi(θ), say k (maxPerSc in Listing 3), we simply use nScs · k as the maximal occurrence
for the overall valuation. Taking constraint preferences as instance, this value is in fact easy
to determine as any soft constraint can obviously only be violated once—we exploit this
further in Section 4.2.2. With these restrictions, a multiset composed of P -elements with
maximal multiplicity maxOccurrences is just encoded as an array[1..maxP] of
var 0..maxOccurrences. We discuss the model elements further in the following
sections.

The toolchain needed for MiniBrass adds an additional preceding step to the conven-
tional MiniZinc/MiniSearch workflow. Figure 6 illustrates the involved processes: First,
the MiniBrass preference model (e.g., Listing 2) is compiled into MiniZinc or MiniSearch
code using mbr2mzn. During this process, auxiliary variables taking soft constraint

type FreePVS = PVSType<mset[maxOccurrences] of 1..maxP> =
params {

array[int, 1..2] of 1..nScs: orderingP;
int: maxP;

5 int: maxPerSc;
int: maxOccurrences :: default(’mbr.nScs * mbr.maxPerSc’);

} in
instantiates with "soft_constraints/mbr_types/free-pvs-type.mzn" {

times -> multiset_union;
10 is_worse -> isSmythWorse;

top -> [0 | i in 1..mbr.maxP]; % empty multiset
};

Listing 3 The type definition used in the hello world example in Listing 2 is found in defs.mbr

Constraints (2018) 23:403–450 427

Fig. 6 Toolchain of MiniBrass and its integration with MiniZinc. Blue elements indicate artifacts that have
to be created for every new problem instance whereas orange ones refer to reusable (MiniBrass) library items
that do not need to be modified by end users

valuations and their aggregations, improvement and not-worsening constraints for branch-
and-bound, as well as variable orderings for search heuristics and complex order predicates
(in case of Pareto or lexicographic combinations) are generated. Finally, the classical con-
straint model (e.g., Listing 1) includes the compiled MiniBrass output and is solved by
MiniZinc (mzn2fzn) or MiniSearch (minisearch) and a FlatZinc solver.

4.1 PVS types and instantiations

Every PVS type definition has to specify the possible solution degrees, ordering predicate
and combination operation in MiniZinc. The solution degrees (semantically the underlying
set of the PVS) are referred to as the element typeE of a PVS type. This can be any MiniZinc
base type such as int, float, bool, or subtypes thereof as well as sets or arrays of
a base type. For instance, the aforementioned free PVS uses mset which is a MiniBrass
keyword abbreviating an array of integers representing a multiset. Weighted constraints or
cost function networks map to int or some integer range 0..k, and fuzzy constraints
employ the float range 0.0 .. 1.0.

The element type E corresponds to (a subset) of the carrier set |M| of a resulting PVS
instance M = (|M|, ·M, εM,≤M) and prescribes the signature of the ordering ≤M , i.e., ≤M

⊆ E × E. Canonically, every soft constraint μi maps to E and the combination operation
has to be a function ·M : E × E → E, as was shown in Listing 2. However, there are cases
where the essential model information is different from an E-element—compare Fig. 5 or
our previous toy example where soft constraints map to E but are wrapped by an embedding
function. This becomes more evident when we consider PVS that are based on “violated soft
constraints” such as, e.g., weighted constraints. Each soft constraint μc : [X → D] → |M|
(parametrized by some conventional constraint c and associated weight wc) then has the
form μc(θ) = 0 if θ |= c and wc otherwise: The essential information here is whether

428 Constraints (2018) 23:403–450

θ |= c. Wrapping every boolean expression (as done in Listing 2 with the embed function)
obviously leads to cluttered and less readable constraint and preference models. To avoid
this clutter on the syntactic level, PVS types can be augmented with a soft constraint type S

that defines the type of each soft constraint expression (here bool). We semantically define
a mapping gi : S → E that maps each S-expression of soft constraint μi to an E-element,
all of which are combined with ·M . However, there are cases when we do not want or need
to have nScs E-expressions but rather emulate the above combination using an embedding
Sn → E—especially if there are beneficial global constraints involved (see Listing 4). In
both cases, we end up with an overall valuation of type E that is ordered using ≤M during
search. As a consequence, we have the combination operation map several S-expressions to
one element in E (where S = E is of course valid) and have it mimic the ·M operation on
E.

Moreover, PVS types may declare parameters that need to be specified during the instan-
tiation of concrete PVS in a preference model. Examples thereof are the maximally allowed
weight k in weighted constraints or the preference graph in constraint preferences. The
MiniZinc implementation of the combination function and ordering predicate has to be sup-
plied in a separate MiniZinc file that will be included by the compiled MiniZinc output.
All presented types are included in the MiniBrass standard library but new definitions can
likewise be added with regard to extensibility.

To sum up, for a PVS type parametrized by soft constraint type S and element type E,
the ordering predicate, combination, and top element have to implement these interfaces:

predicate is_worse(var E: x, var E: y, par int: nScs , PVS type parameters);
function var E: times(array[int] of var S: v, par int: nScs , PVS type parameters);
par E: top;

The ordering of the PVS type parameters must match the order in the PVS type declaration.
In a similar way, some PVS types offer generic search heuristics that can be provided (see
the keyword pvsSearchHeuristic below). The interface is expected to be:

function ann: searchHeuristic(array[int] of var S: values, var E: overall,
par int: nScs , PVS type parameters);

It should generally be noted that is worse always corresponds to a predicate denoting
strict worsening (this is the most common type of predicate used in branch-and-bound). The
top element is beneficial for bounding search and having default soft constraints.

Besides the type declarations, there are a few “technical” MiniBrass keywords that are
sure to be found in the compiled MiniZinc output (e.g., prefs o.mzn in Fig. 6) and can
thus be accessed from the constraint model (e.g., model.mzn in Fig. 6):

– topLevelObjective: contains a var E-expression for an atomic top level
PVS (the instance specified in the solve item), with element type E; not appli-
cable if the top level PVS is complex (e.g., a lexicographic product). It appears in
the output in Listing 1 and could also be a MiniZinc objective: solve minimize
topLevelObjective (only if E is scalar).

– pvsSearchHeuristic: contains an annotation object for the top level PVS that
holds a particular variable order (of the generated variables) that depends on the
PVS-type(s) involved (see Section 4.2.1). For complex PVS, multiple heuristics are
concatenated sequentially.

Constraints (2018) 23:403–450 429

– postGetBetter: contains a MiniSearch procedure that is used to post a con-
straint requiring the next solution to be better than the current one. The generic
branch-and-bound procedure pvs BAB used in Listing 1 (which is defined in
pvs gen search.mzn and explained in Section 4.5) relies on postGetBetter
being written by the compiler.

– postNotGetWorse: dually, this MiniSearch procedure only requires the next solu-
tion not to be dominated (important to find all optima of an instance).

Once PVS types are declared, we can use them for the instantiation of concrete PVS
objects. A PVS object stores a specific set of parameters and includes the actual soft con-
straints mapping to E (or S) as MiniZinc expressions—thereby connecting the constraint
and preference model. In addition, the operators pareto and lex can be used to compose
complex preference structures from elementary ones.

4.2 Examples of soft constraint formalisms as PVS types

For illustration purposes, we survey the most common soft constraint formalisms (see
Section 2) presented as PVS types. Throughout the examples, we assume a simplis-
tic classical constraint model without any actual hard constraints except for the domain
restrictions:

set of int: DOM = 1..3;
var DOM: x; var DOM: y; var DOM: z;

4.2.1 Integer-valued: weighted CSP or cost function networks

The PVS types for weighted constraints and cost function networks are naturally very sim-
ilar. The latter are defined as integer-valued soft constraints that map any assignment to
some value in the range [0 . . . k] for some parameter k denoting maximal violation and top
being 0. Consequently, there is no distinct soft constraint type but just the element type
0..k.

type CostFunctionNetwork = PVSType<0..k> =
params {

int: k :: default(’1000’);
} in

5 instantiates with "soft_constraints/mbr_types/cfn_type.mzn" {
times -> k_bounded_sum;
is_worse -> is_worse_weighted;
top -> 0;

};

Combination means adding individual costs (bounded by k) and the ordering relation is the
integer greater-than ordering (consistently with literature, cost minimization is default):

% Inside soft_constraints/mbr_types/cfn_type.mzn
predicate is_worse_weighted(var int: x, var int: y, int: nScs, int: k) =

x > y;

5 function var int: k_bounded_sum(array[int] of var int: b, int: nScs, int: k) =
if sum(b) > k then k else sum(b) endif;

430 Constraints (2018) 23:403–450

Besides this core type definition, the MiniBrass library offers other utility functions: For
better access to native cost function implementations in Toulbar2, there is a global con-
straint (along with a default decomposition for other solvers) that is handled by Numberjack
and properly given to Toulbar2. For instance,

predicate cost_function_binary(var int: x, var int: y,
array[int] of int: costs, var int: costVariable)

ties a cost function’s valuation for variables x and y to a cost variable costVariable,
depending on a given cost vector that contains the value for every element in the Carte-
sian product of the domains of x and y. In a similar spirit, soft global constraints are
implemented in MiniBrass. Since the existing soft globals map to a numeric variable, they
naturally lead to cost function networks. For instance, a soft variant of alldifferent
counts the variables taking the same value as a measure of violation:

% a default decomposition for solvers that do not provide the soft global constraint
function var int: soft_all_different(array[int] of var int: x) :: promise_total =

let { set of int: seenValues = dom_array (x); }
in (sum(s in seenValues) (max(count(x, s) - 1, 0)));

5 % [...] Used in a MiniBrass preference model
include "soft_constraints/soft_alldifferent.mzn";
% [...]
array[STUDENT] of var PROJECT: x;

10 soft-constraint c1: ’soft_alldifferent(x)’;

There are native implementations for soft alldifferent (e.g., in JaCoP [40]) which
can make use of dedicated propagation instead of this provided decomposition—precisely
like in conventional global constraints managed by MiniZinc.

In contrast to cost function networks, weighted constraints are binary—a soft constraint
is violated or not, and if so, punished with a weight. This is reflected by using the soft
constraint type bool that is mapped to the element type 0..k.

type WeightedCsp = PVSType<bool, 0..k> =
params {

int: k :: default(’1000’);
array[1..nScs] of int: weights :: default(’1’);

5 } in
instantiates with "soft_constraints/mbr_types/weighted_type.mzn" {

times -> weighted_k_bounded_sum;
is_worse -> is_worse_weighted;
top -> 0;

10 }
offers {

heuristics -> getSearchHeuristicWeighted;
};

Weighted constraints provide the first example of a generic search heuristic annotation that
comes with the PVS type. The MiniZinc function getSearchHeuristicWeighted
(included in the file weighted type.mzn) provides a particular variable ordering: the
variables containing the highest-weighted possible violation first (called most important
first in [56]). That way, search can start by setting the generated satisfaction variables of all
soft constraints to true and let propagation take over to possibly find high-quality solutions
early:

Constraints (2018) 23:403–450 431

function ann: getSearchHeuristicWeighted(array[int] of var bool: scSatisfied,
var int: overall,
par int: nScs, % number of soft constraints
int: k, array[int] of int: weights) =

5 let {
set of int: sCs = 1..nScs;
% find the sorted permutation of soft constraint instances
array[sCs] of sCs: sortPerm = arg_sort(weights);
% invert, since arg_sort use <= and we need decreasing order

10 array[sCs] of sCs: mostImpFirst = [sortPerm[nScs-s+1] | s in sCs];
array[sCs] of var bool: mifSatisfied = [scSatisfied[mostImpFirst[s]] | s in sCs];

} in
int_search(mifSatisfied, input_order, indomain_max, complete);

Section 5.3 provides some insight in the effectiveness of the above search heuristic.
There is a double-usage of the PVS type WeightedCsp. As we set the weights’ default

value to 1, we get a Max-CSP instance if no weights are supplied. We can add weights (more
generally, parameter values tied to every soft constraint) by annotating a soft constraint
during instantiation:

PVS: wcsp = new WeightedCsp("wcsp") {
soft-constraint c1: ’x + 1 = y’ :: weights(’2’);
soft-constraint c2: ’z = y + 2’ :: weights(’1’);
soft-constraint c3: ’x + y <= 3’ :: weights(’1’);

5 k : ’20’;
};
solve wcsp;

4.2.2 Comparative: free PVS and constraint preferences

Next, we revisit purely comparative preference structures that operate directly on partial
orders (instead of resorting to numeric values) such as the free PVS seen in Listing 2.
As mentioned above, its element type is mset[maxOccurrences] of 1..maxP
which is syntactic sugar for an array[1..maxP] of var 0..maxOccurrences
that represents the overall solution degree. This type is the most general available in Mini-
Brass and encodes an arbitrary partial order such as the rating system R in Fig. 5 as a
PVS.

Each soft constraint maps to a multiset with bounded multiplicity, as indicated by the
parameters in Listing 3. While the combination (multiset union) is straightforward by
just summing the individual soft constraints’ element multiplicities, implementing a MiniZ-
inc predicate for the Smyth-ordering (cf. Section 3.2) is a bit more involved but showcases
MiniBrass’ abilities. In essence, to establish T ≺P U the key idea is to apply Lemma 1
and have the witness h : S(U) → S(T) be decided by the solver using local decision
variables of the predicate. Recall that S(U) refers to the “set of pairs” representation of a
multiset. Thus h is defined on pairs, has to be injective and satisfy the constraints p ≤P q

whenever h(j, q) = (k, p). Injectivity is best modeled by an alldifferent-constraint
but there is none for pairs. We can mitigate this by defining a one-dimensional witness
and apply the bijective Cantor pairing function π : N

2 → N defined by π(k1, k2) :=
1
2 (k1 + k2)(k1 + k2 + 1)+ k2. The resulting one-dimensional array can be constrained to be
all different, as usual.

432 Constraints (2018) 23:403–450

predicate isSmythWorse (array[int] of var int: T, array[int] of var int: U, % T < U
int: nScs, array[int, 1..2] of int: edges, % adjacency list
int: maxP, int: maxPerSc, int: maxOccurrences % parameters of free PVS type

) = let {
5 set of int: P = 1..maxP; % multisets draw from the set of elements P

par int: maxOcc = maxPerSc*maxOccurrences; % bounding multiplicities, see Sect. 4
set of int: OCCS = 0..maxOcc;
set of int: PosOCCS = OCCS diff {0};
set of int: P0 = {0} union P; % 0 representing no assignment for the witness

10
set of int: edgeIndices = index_set_1of2(edges);
% for each element in P, we pre-calculate the set of ‘‘smaller’’ items
% according to the adjacency list (edges)
array[P] of set of P: lessThanOrEquals =

15 [{q} union {p | p in P where exists(e in edgeIndices)
(edges[e,1] = p /\ edges[e,2] = q)} | q in P];

% We have to split the witness function h : S(U) \to S(T) into
% two arrays of decision variables.

20 array[OCCS,P] of var P0: witnessElem; % element part of h
array[OCCS,P] of var OCCS: witnessOcc; % occurrence part of h

% First, we make sure all (j,q) tuples for occurrences j greater than the
% actual number of q elements in U map to non-existence.

25 constraint forall(q in P, j in OCCS where j > U[q]) (
witnessElem[j,q] = 0 /\ witnessOcc[j,q] = 0

);

% Now, for all (j,q) tuples in S(U), they have to map
30 % to a (k,p) tuple in S(T) such that p <= q.

constraint forall(q in P, j in PosOCCS where j <= U[q]) (
% p must not be 0 and p must be leq than q (according to "edges")
witnessElem[j,q] != 0 /\ witnessElem[j,q] in lessThanOrEquals[q] /\
% k must be between 1 and the actual number of p-occurrences in T

35 witnessOcc[j,q] >= 1 /\ witnessOcc[j,q] <= T[witnessElem[j,q]]
);

% Lastly, we have to assert injectivity of our witness, using the Cantor pairing
% function to map S(U) to int and constrain the Cantorized witness to be alldifferent.

40 array[OCCS,P] of var 0 .. maxP + (maxOcc) * (maxOcc + maxP + 1) div 2:
cantoredWitness;

constraint forall(i in OCCS, p in P) (
cantoredWitness[i,p] = witnessOcc[i,p] + (witnessElem[i,p]+witnessOcc[i,p])

*(witnessElem[i,p] + witnessOcc[i,p] + 1) div 2);
45

constraint alldifferent_except_0([cantoredWitness[i,p] | i in OCCS, p in P]);
% A bit of symmetry breaking on the exchangeable occurrences
constraint value_precede_chain(OCCS, [witnessOcc[i,p] | i in OCCS, p in P]);

50 % Make sure we have inequality
constraint exists(i in P) (T[i] != U[i]); } in (true);

At this point, we want to emphasize that end-users (i.e., modelers) do not need to fully
understand the implementation of the Smyth-ordering in MiniZinc but only its (rather
intuitive) inductive definition to apply it in their models. The above definition is fully encap-
sulated by the freePVS-type. In MiniZinc, we have to note however that this predicate
relies on local free variables (e.g., witnessOcc) which prohibit its usage in a negative or
mixed context such as “it must not be the case that the next solution is Smyth-worse than
the current” (cf. non-domination search in Section 4.5). This is, in fact, due to the focus on
existential quantification in constraint solvers that would have to support universal quantifi-
cation in case of negated predicates with local free variables. However, currently only Zinc
and MiniZinc support local free variables, as required for the Smyth-ordering, at all [63].

By construction, freePVS is well-suited to transform any partial order such as, e.g.,
the rating system R into a PVS. However, for problems specified with constraint prefer-
ences (such as Listing 2), freePVS might seem too rich in generality. We only observe the

multisets i or for distinct soft constraints μi . Similar to weighted constraints, we could
thus make use of the soft constraint type bool that relieves us from the embed function in

Listing 2 (times uses if a soft constraint μi holds and i otherwise):

Constraints (2018) 23:403–450 433

PVS: freePrefs = new FreeConstraintPreferences("freePrefs") {
soft-constraint c1: ’x + 1 = y’ :: msetVal(’[1,0,0]’);
soft-constraint c2: ’z = y + 2’ :: msetVal(’[0,1,0]’);
soft-constraint c3: ’x + y <= 3’ :: msetVal(’[0,0,1]’);

5 [...]
};

Here, msetVal encodes a multiset as an array mapping from the underlying set of ele-

ments to their cardinality, e.g., msetVal(’[1,0,0]’) represents the multiset 1 or

msetVal(’[1,0,2]’) would be 1 3 3 . However, we can further improve the encod-
ing of the free PVS for constraint preferences by noting that no element i can occur more
than once in any reachable overall valuation. Each such m in Mfin(P) can then just be
represented by a set of integers—a type that is natively supported with appropriate global
constraints by MiniZinc and several constraint solvers. Hence, we define a dedicated PVS
type ConstraintPreferences with bool as soft constraint type and set of int
as element type that, in fact, only operates on a certain subset of the free PVS:

type ConstraintPreferences = PVSType<bool, set of 1..nScs> represents FreePVS =
params {

array[int, 1..2] of 1..nScs: crEdges ::
wrappedBy(’java’, ’isse.mbr.extensions.preprocessing.TransitiveClosure’);

5 bool: useSPD :: default(’true’);
} in
instantiates with "soft_constraints/mbr_types/cr_type.mzn" {

times -> link_invert_booleans;
is_worse -> is_worse_cr;

10 top -> {};
}
offers {

heuristics -> getSearchHeuristicCR;
};

More precisely, we use set of 1..nScs, and identify each soft constraint with a
number. By channeling the boolean expressions evaluating to false to a set for the combi-
nation, we obtain the set of all violated soft constraints (see Listing 4). The Smyth-ordering
on sets (cf. Section 3.2) is also implemented as a MiniZinc predicate (is worse cr) and
is activated by having the useSPD parameter set to true. Alternatively, one may use the so-
called transitive-predecessor-ordering (TPD) [39] that defines a more important constraint
to dominate a whole set of less important ones:

Clearly, T �P U ⇒ T �P
TPD U , i.e., TPD adds ordering relations to SPD. But perhaps more

usefully, the above predicate is easier to decide, i.e., no free local variables are involved—
hence, TPD is suited for mixed and negative contexts such as non-domination search.

include "link_set_to_booleans.mzn";
function var set of int: link_invert_booleans(array[int] of var bool: b,

par int: nScs, array[int, 1..2] of par int: crEdges, par bool: useSPD) =
let {

5 var set of index_set(b): violatedSet;
constraint link_set_to_booleans(violatedSet, [not b[i] | i in index_set(b)]);

} in violatedSet;

Listing 4 Using the MiniZinc global link set to booleans to connect reified soft constraints with an
overall solution degree denoting the set of violated soft constraints

434 Constraints (2018) 23:403–450

Of course, an instance of ConstraintPreferences also needs a directed acyclic
graph (the crEdges parameter represents an adjacency list) over soft constraints. For
convenience, we include here that the transitive closure is automatically calculated by
MiniBrass during compilation (turning the DAG into a partial ordering)—as an exam-
ple of a parameter wrapping method. Such methods could either be MiniZinc functions
for data transformation or Java methods. Ensuring correct user input (i.e., acyclicity or
other validations by means of MiniZinc assertions or Java exceptions) can be done here as
well.

The restriction to set of int also eases the implementation of the Smyth-ordering
as we do not have functions over pairs—as opposed to the multiset case. As a corollary
to Lemma 1, on two sets T and U , T �P U holds if and only if there exists an injective
witness function f : U → T such that f (p) ≤P p for all p ∈ U . Similar to the multiset
case, we enforce (and propagate) the injectivity of f with alldifferent and make sure
the witness property is fulfilled.

4.2.3 Real-valued: fuzzy CSP and probabilistic CSP

A third class of soft constraint formalism is best characterized by the element type being the
reals over [0.0, 1.0]. Starting with fuzzy constraints, each soft constraint maps to [0.0, 1.0]
with the combination being defined as the minimum operator—in this case, soft constraint
type and element type coincide.

type FuzzyConstraints = PVSType<0.0 .. 1.0> =
instantiates with "soft_constraints/mbr_types/fuzzy_type.mzn" {

times -> min;
is_worse -> is_worse_fuzzy;

5 top -> 1.0;
};

The resulting soft constraints of element type 0.0 .. 1.0 could directly be defined as
MiniZinc functions but we added some support as a global constraint which is included in
fuzzy type.mzn. For instance, consider a soft constraint μ1 defined over two boolean
variables mainCourse and wine: μ1 = {(0, 0) �→ 1.0, (0, 1) �→ 0.8, (1, 0) �→
0.3, (1, 1) �→ 0.7}. In MiniBrass, this can be written as follows:8

PVS: fz1 = new FuzzyConstraints("fz1") {
soft-constraint mu1: ’fbinary_fuzzy([1.0, 0.8, 0.3, 0.7], mainCourse, wine)’;
soft-constraint mu2: ’fbinary_fuzzy([1.0, 0.8, 0.8, 1.0], mainCourse, lunch)’;

};
5 solve fz1;

On the other hand, probabilistic constraints bear similarities to both weighted and fuzzy
constraints. We use bool as soft constraint type to denote violated constraints and 0.0
.. 1.0 for probabilities as element type. Formally, the objective is

∏
μi :θ 	|=μi

1 − pi . The
“constraint presence” probabilities pi are, analogously to weights, supplied as parameters.

8Note that the encoding employs a table constraint for floats which is not supported well by many solvers.
Therefore a workaround using integers is also provided in the MiniBrass library that can be seen as another
example for a PVS type representing a different one.

Constraints (2018) 23:403–450 435

type ProbabilisticConstraints = PVSType<bool, 0.0 .. 1.0> =
params {

array[1..nScs] of float: probs :: default(’1.0’);
} in

5 instantiates with "soft_constraints/mbr_types/probabilistic_type.mzn" {
times -> prod;
is_worse -> is_worse_prob;
top -> 1.0;

};
10 [...]

% usage example
soft-constraint c2: ’s1 + s2 >= 10’ :: probs(’0.7’);

Both fuzzy and probabilistic constraints aim at maximization of the solution degree such
that is worse prob(x,y) corresponds to x < y.

4.3 Morphisms to switch PVS

There are at least two reasons for users to specify their SCSP using one PVS type but solve
the problem using another: If the original PVS shows many incomparable optimal solutions,
we might want to totalize the ordering—if only for testing and debugging. But more fre-
quently, solvers do not support the data types required to represent a PVS type even though
they have to be used for performance reasons or due to the target software environment.
For instance, set-based types for constraint preferences or real-valued domains with suit-
able global constraints for fuzzy constraints are not universally implemented. A modeler
would only accept transforming the SCSP in a structure-preserving way: at least, existing
strict “is better than” decisions in the original ordering are not to be contradicted; at most,
incomparable solutions may become comparable—precisely what PVS-homomorphisms
offer.

We saw an example in Fig. 2 where we compared PVS〈P 〉 and Weighted(P), i.e., we
can calculate a weight for each constraint (by making use of the instance parameters such
as the supplied graph) and transform a constraint preferences problem into a weighted CSP
instance. In MiniBrass, we first define a morphism

% defined in the MiniBrass library "defs.mbr"
morph ConstraintPreferences -> WeightedCsp: ToWeighted =

params {
k = ’mbr.nScs * max(i in 1..mbr.nScs) (mbr.weights[i]) ’;

5 weights = calculate_cr_weights;
} in id;

using a function that is applied to each original soft constraint expression (here just the
identity id) and then transforming a specific PVS instance:

PVS: cr1 = new ConstraintPreferences("cr1") {
soft-constraint c1: ’x + 1 = y’;
soft-constraint c2: ’z = y + 2’;
soft-constraint c3: ’x + y <= 3’;

5
crEdges : ’[| mbr.c2, mbr.c1 | mbr.c3, mbr.c1 |]’;
useSPD: ’true’ ;

};
solve ToWeighted(cr1); % assigns weight 1 to c3 and c2 as 1, and 2 to c1

By devising similar morphisms for other PVS types, we can integrate the previously men-
tioned fact that many soft constraint formalisms can be (monotonically) encoded as cost
function networks in polynomial time [58], the type for which Toulbar2 offers efficient ded-
icated algorithms. For instance, a probabilistic PVS having a multiplicative maximization

436 Constraints (2018) 23:403–450

objective f (θ) = ∏
μi :θ 	|=μi

1 − pi can be transformed into an additive minimization prob-
lem by taking the negative logarithm of f : − log f (θ) = ∑

μi :θ 	|=μi
− log pi where we can

precalculate the − log pi terms as weights:

% a morphism converting a probabilistic CSP to weighted CSP using log
morph ProbabilisticConstraints -> WeightedCsp: ProbToWeighted =

params generatedBy(’isse.mbr.extensions.weighting.ProbWeighting’) {
k = ’mbr.nScs * max(i in 1..mbr.nScs) (mbr.weights[i])’;

5 weights = generated;
} in id;

The above-mentioned calculation here takes place in the Java class ProbWeighting,
indicated by the generated keyword. While this morphism definition is mathematically
sound, we have to round the terms to the nearest integer in the implementation.

4.4 Products of PVS

As mentioned in Section 3.1, we can form composite PVS from elementary ones by means
of products. The direct (Cartesian) product is denoted by pareto in MiniBrass and the
lexicographic product is denoted by lex in MiniBrass. We can combine these two operators
and morphisms to form complex PVS. Consider these exemplary use cases:

solve cfn1 pareto cfn2;
solve cfn1 lex cfn2;
solve ToWeighted(cfn1) pareto (cfn2 lex cfn3);

4.5 PVS-based search

With the tools at hand, we are able to define PVS types, instantiate them, and combine and
morph them to more complex structures. The overall goal is the PVS passed in the solve-
item. To find optimal solutions, MiniBrass relies on classical systematic constraint solving
and optimization using propagation and search, as outlined in the beginning of Section 4.
The necessary facilities are provided by MiniZinc/MiniSearch and the underlying solvers.
If the element type is numeric, the problem can be solved in MiniZinc by minimizing (or
maximizing) topLevelObjective. However, the full strength of abstract soft constraint
formalisms precisely is the presence of partial and product orders. MiniSearch provides
blueprints for various of the classical searches that can be customized that way.

The first search strategy corresponds to classical branch-and-bound (BAB) search in
propagation engines. For every found solution, a constraint is imposed that the next solution
has to be strictly better.

% Only declare minisearch function; implementation generated during MiniBrass compilation
function ann: postGetBetter();

function ann: pvs_BAB() = % ask for *strict* improvement
5 repeat(if next()

then print("Intermediate solution:") /\ print() /\ commit() /\ postGetBetter()
else break
endif);

10 % synonym for easier usage
function ann: miniBrass() = pvs_BAB();

While this procedure yields optimal solutions, it is not ideal for partially ordered objectives
since another optimum does not have to be better than the current solution. Instead, it must
not be dominated by any solution seen so far [35]. When solving for a PVS M , we have a set

Constraints (2018) 23:403–450 437

of lower bounds (the valuations of previous solutions) L = {l1, . . . , lm} ⊆ |M| and require
that it must not be that ∃l ∈ L : obj ≤M l where obj denotes the generated MiniZinc
variable(s) holding the overall objective. The next solution must be strictly better than any
one of the maxima of L or incomparable to all of them.

function ann: postNotGetWorse();

function ann: pvs_BAB_NonDom() = % ask not to be dominated by any previous solution
repeat(if next()

5 then print("Intermediate solution:") /\ print() /\ commit() /\ postNotGetWorse()
else break
endif);

There is a caveat to this solution. With the is worse predicates that PVS types offer,
we can generate a MiniSearch procedure “postNotGetWorse” during compilation as
well. However, we have to negate this predicate, i.e., change its boolean context. This
leads to problems if the predicate shows free local variables [63]. We have seen this in
Section 4.2.2 for the witness function necessary to decide the Smyth-ordering which is
not compatible with postNotGetWorse. For constraint preferences, we have to resort
to the TPD-ordering instead. Since we expect future non-trivial PVS types to rely on local
variables, we need modelers to be aware of this restriction.

Example 3 Consider the following simplified example to illustrate the difference:

% In the classical constraint model:
var 1..3: x;
solve :: int_search([x], input_order, indomain_max, complete)
search pvs_BAB_NonDom();

5
% In the preference model
PVS: cr1 = new ConstraintPreferences("cr1") {

soft-constraint c1: ’x in {2,3}’;
soft-constraint c2: ’x in {1,3}’;

10 soft-constraint c3: ’x in {1,2}’;

crEdges : ’[| mbr.c2, mbr.c1 | mbr.c3, mbr.c1 |]’;
useSPD: ’false’;

};
15

solve cr1;

We explore x in a decreasing order. Each assignment to x violates precisely one soft con-
straint. This results in the sequence 〈{3}, {2}, {1}〉 of solution degrees. {3} and {2} both
dominate {1} but are incomparable using TPD-ordering (and Smyth, too). The reachable
optima of this problem are clearly {{2}, {3}} but pvs BAB would stop after {2} since {3} is
not better. By contrast, pvs BAB NonDom returns both optimal solution degrees.

MiniSearch actually offers much more flexibility in crafting problem-specific searches
than just branch-and-bound. For instance, designing large-neighborhood-search for PVS-
based models can be done using their concepts of scopes, as described in [49].

% Adapted from lns_max an objective value
function ann: pvs_LNS(array[int] of var int: x,

int: iterations, float: d, int: exploreTime) =
repeat (i in 1..iterations) (

5 print("Starting iteration ... \(i)\n") /\
scope(post(neighbourhoodCts(x,d)) /\

time_limit(exploreTime, pvs_BAB()) /\ commit() /\
print("Intermediate solution\n") /\ print()) /\ postGetBetter()

);

438 Constraints (2018) 23:403–450

In a similar way, we can anticipate many variants of search algorithms with postGet-
Better or postNotGetWorse. By separating concerns between constraint and prefer-
ence model, the preference model in MiniBrass can be tested with various searches.

5 Evaluation

To evaluate MiniBrass we decided to model soft constraint problems using the PVS type
constraint preferences (see Section 4.2.2). We used MiniZinc benchmark problems9 as the
underlying constraint models. These are taken from several editions of the MiniZinc chal-
lenge [65]. Optimizing according to constraint preferences requires set-based variables and
compatibility with MiniSearch. By applying morphisms as described in Section 4.3, we
obtain weighted CSP versions that are compatible with a wider range of solvers.

Alternatively, we could have resorted to the existing cost function networks benchmark
library that also offers MiniZinc models for a tabularized encoding.10 However, conven-
tional constraint solvers have already been shown to be dominated on these problems by
Toulbar2. Moreover, these problems only address one particular PVS. Optimizing according
to the Smyth-ordering has not been addressed before. In particular, this ordering intro-
duces some partiality in the models which generally makes the task of finding optima more
demanding due to reduced pruning.

The problems were selected according to features that justify an encoding approach (i.e.,
efficient conventional propagation), feasibility of decompositions for many solvers, and
meaningful soft constraint addition. Certainly, there are cost function network problems
(e.g., in bioinformatics) that are out of reach for conventional solvers, as [34] demonstrated
for Toulbar2. However, we argue that there are many practical cases with relatively few soft
constraints and many conventional constraints. Among those, we investigate the following
problems:

Soft N-Queens is a toy SCSP that adds three artificial soft constraints with a preference
relation over them to a classical N -queens problem (such as, e.g., having a queen in the
center of the grid), not to be mistaken with the M-queens optimization problem.

Photo Placement asks to place people close to their friends—in its original version it was
already designed to handle preferences but we (morally questionably) allowed for some
friends to be more important to stand close to than others.

Talent Scheduling aims at scheduling movie scenes including various actors cost-
effectively. We augmented the conventional problem with preferences to avoid being
simultaneously on set with a rival actor and early/late times for specific scenes.

On-call Rostering requires to assign staff members to days in a rostering period, respect-
ing work constraints and unavailabilities. The original formulation already contained
preferences for not being on-call for more than two days in a row or not being on-call for
a weekend and a consecutive day. We modeled these existing preferences in MiniBrass
and added additional ones regarding preferred co-workers.

Multi-Skilled Project Scheduling (MSPSP) is a variant of resource-constrained project
scheduling and asks to assign a set of tasks to workers such that the required set of skills

9https://github.com/MiniZinc/minizinc-benchmarks
10https://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/BenchmarkS and https://github.com/MiniZinc/minizinc-
benchmarks/blob/master/proteindesign12/wcsp.mzn

https://github.com/MiniZinc/minizinc-benchmarks
https://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/BenchmarkS
https://github.com/MiniZinc/minizinc-benchmarks/blob/master/proteindesign12/wcsp.mzn
https://github.com/MiniZinc/minizinc-benchmarks/blob/master/proteindesign12/wcsp.mzn

Constraints (2018) 23:403–450 439

for a task is provided by its assigned worker. To add soft constraints, we again allowed
workers to state with whom they would like to work and which tasks they would like to
work on or which ones they would rather avoid.

More detailed information about the changed and added aspects can be found
online.11 Each problem is tested with three to six instances, totaling 28 bench-
mark instances. Since most of these problems already were formulated as con-
straint optimization problems to begin with, we had to deal with two objectives:
the original one and the soft constraint objective. First, we converted the prob-
lems to constraint satisfaction problems by imposing the original objective value to
lie within a 10%–15% boundary around the (previously determined) optimal value,
and eventually used the soft constraint objective. In MiniBrass, we write this as
solve search presolveMin(origObj, 0.15) /\ miniBrass();.

We solved the resulting models (including parameters that will be subject to the respec-
tive experiment questions) using branch-and-bound12 (cf. Section 4.5) with the classical
constraint solvers Gecode 5.0.0 [59], JaCoP 4.4.0 [40], Google OR-Tools 5.1.0 (CP
solver) [30], Choco 4.0.3 [36], and G12 1.6.0 [64], as well as with the only competitive
cost function network solver Toulbar2 0.9.8 [2], accessed via Numberjack 1.1.0 [32]. Each
presented experiment was run on a machine having 4 Intel Xeon CPU 3.20 GHz cores and
14.7 GB RAM on a 64 bit Ubuntu 15.04 with a timeout set to 10 min per instance. When-
ever we average relative values (such as a speedup for runtimes) that are normalized to one
solver/heuristic, we use the geometric mean as the only valid choice for such data [26].
Concerning statistical tests for runtime comparisons, we used the Wilcoxon signed-rank
test (alpha level α = 0.05) since the measured runtimes showed a heavy-tailed distribution
instead of a normal one.

Our primary goal is to demonstrate the feasibility of implementing soft constraint for-
malisms more generally than a numeric objective at low runtime overheads—a capability
that is not shared by any state-of-the-art soft constraint solver. Besides, even in the realm
of cost function networks and weighted constraints, it can pay off to use an encoding
approach with a conventional constraint solver as opposed to a dedicated soft constraint
solver. Furthermore, we examine the effects of our proposed search heuristics for weighted
constraints.

5.1 Comparing performance: encoded weighted CSP versus native Toulbar2

If we want to obtain a comparative view on the performance of MiniBrass models, we have
to use cost function networks. For one thing, they are the native formalism Toulbar2 sup-
ports, for another thing the task boils down to minimizing a numeric value in conventional
models which is directly supported by MiniZinc. On the one hand, Toulbar2 can be seen
as the only true state-of-the-art alternative to MiniBrass (given that WSimply [6] has no
MiniZinc or Numberjack interface, only runs on a 32 bit Linux distribution, and is no longer
maintained)—on the other hand it serves as a well-supported backend. Therefore, this eval-
uation cannot be truly seen in a competitive light as MiniBrass is a modeling language.
Here, the central question is:

11https://github.com/isse-augsburg/minibrass/tree/master/evaluation/problems
12We experimented with large neighborhood search as well but did not find it to be effective enough for the
selected evaluation problems.

https://github.com/isse-augsburg/minibrass/tree/master/evaluation/problems

440 Constraints (2018) 23:403–450

How fast and effectively (in terms of finding optima) can WCSP instances be solved by
encoding them as COPs versus using a dedicated solver?

Table 1 presents the results for this first question with times and objectives being averaged
over all instances for the respective problem, ranked by runtimes.13 Values in parentheses
denote averaged relative values with respect to the minimum (geometric mean of ratios for
time or arithmetic mean for excess penalty violation, resp.) for each instance—as opposed
to relative average values. Therefore, the relative overhead does not necessarily correlate
with the absolute values (e.g., Toulbar2 versus Gecode on Talent Scheduling). The number
of wins indicates how many instances a solver won (i.e., being fastest) within the respective
problem. If an instance was not solved at all within the specified time limit, the maximally
possible violation for it was assumed.

We observed a fairly even distribution of solvers performing well with OR-Tools being
among the top three on all problems, showing the most reliable contribution of all con-
ventional constraint solvers. In addition to the table, we noted that over all problems,
OR-Tools had the lowest average runtime (97.39 s) and the lowest average objective value
(6.18), whereas Gecode achieved the most wins (12). Interestingly, Toulbar2 managed to
achieve the best (or second best) average runtimes for three problems, excelling in On-call
Rostering. However, the memory-intensive decompositions required for MSPSP and Tal-
ent Scheduling had Toulbar2 fail during model creation without returning a solution. To
conclude, even though Toulbar2 is a strong choice when dealing with cost function net-
works, there are cases where only an encoding approach succeeded at all (MSPSP)—or
substantially faster (Talent Scheduling). With problems modeled in MiniBrass, both options
remain.

5.2 Comparing models: Smyth-optimization versus weighted-optimization

Upon learning that weighted instances can be solved efficiently by conventional constraint
solvers, we turn to optimization according to the Smyth-ordering. MiniBrass was explic-
itly designed for more general orderings than numeric objectives—in particular, Smyth as
the ordering of the free PVS. We want to quantify how expensive the partiality of an orig-
inal model is with respect to the totalization obtained by weighting constraints. To solve
these models, only Gecode and JaCoP are applicable, as they are both compatible with
MiniSearch and support set-based variables to the necessary extent. For these solvers, we
compare the running times and objective values14 for the original Smyth-based model and
the (morphed) weighted CSP. Gecode is provided in a native version directly accessed by
MiniSearch (see Section 2) and a FlatZinc-based version—with the latter being more recent
than the native one. JaCoP is only available using FlatZinc. Where applicable, i.e., if Toul-
bar2 solved the instances, we additionally provide its reference values (Toulbar2 is restricted
to the weighted version). Here, the central question is:

Is optimizing according to the Smyth-ordering much more expensive than solving a
weighted counterpart obtained by a morphism?

13The fact that Choco shows a higher average objective on Photo Placement albeit claiming to have proved
optimality results from a bug in the solver induced by the problem-specific search heuristics.
14Note that the “objective values” for the Smyth-model are provided only for comparative reasons.
Optimization was done purely according to the Smyth-ordering on the set of violated soft constraints.

Constraints (2018) 23:403–450 441

Table 1 Comparison of solvers’ performance on the weighted CSP representations

Solver Time (secs) # Wins Objective % Solved % Optimal

MSPSP (8 instances)

Gecode 0.32 (1.00) 8 2.50 (0.00) 100.00 100.00

G12 0.32 (1.01) 0 2.50 (0.00) 100.00 100.00

OR-Tools 0.33 (1.04) 0 2.50 (0.00) 100.00 100.00

JaCoP 0.52 (1.71) 0 2.50 (0.00) 100.00 100.00

Choco 0.70 (2.40) 0 2.50 (0.00) 100.00 100.00

Toulbar2 312.56 (654.69) 0 29.13 (26.63) 0.00 0.00

On-call Rostering (7 instances)

Toulbar2 40.73 (1.28) 3 1.57 (0.00) 100.00 100.00

OR-Tools 275.23 (2.66) 2 3.71 (2.14) 100.00 57.14

Gecode 275.23 (2.64) 1 4.57 (3.00) 100.00 57.14

G12 276.36 (2.84) 1 5.57 (4.00) 100.00 57.14

JaCoP 276.63 (3.27) 0 5.14 (3.57) 100.00 57.14

Choco 276.72 (3.82) 0 5.14 (3.57) 100.00 57.14

Photo Placement (3 instances)

Toulbar2 0.80 (1.11) 0 13.33 (0.00) 100.00 100.00

Choco 0.83 (1.18) 2 25.00 (11.67) 100.00 100.00

OR-Tools 1.49 (1.51) 1 13.33 (0.00) 100.00 100.00

JaCoP 3.18 (3.08) 0 13.33 (0.00) 100.00 100.00

Gecode 22.24 (5.11) 0 13.33 (0.00) 100.00 100.00

G12 27.40 (23.06) 0 13.33 (0.00) 100.00 100.00

Soft N-Queens (3 instances)

OR-Tools 0.03 (1.00) 3 0.33 (0.00) 100.00 100.00

Toulbar2 0.30 (9.96) 0 0.33 (0.00) 100.00 100.00

Choco 0.35 (12.51) 0 0.33 (0.00) 100.00 100.00

JaCoP 57.22 (56.00) 0 0.33 (0.00) 100.00 100.00

Gecode 210.02 (29.31) 0 1.67 (1.33) 100.00 66.67

G12 210.02 (32.26) 0 1.67 (1.33) 100.00 66.67

Talent Scheduling (7 instances)

OR-Tools 113.29 (1.01) 3 12.29 (0.00) 100.00 85.71

JaCoP 117.71 (1.61) 0 12.29 (0.00) 100.00 85.71

Choco 129.12 (2.55) 1 12.29 (0.00) 100.00 85.71

Toulbar2 158.27 (9.29) 0 28.43 (16.14) 28.57 28.57

Gecode 183.29 (2.22) 3 12.29 (0.00) 100.00 85.71

G12 194.91 (2.36) 0 12.29 (0.00) 100.00 85.71

Values in parentheses denote averaged relative values with respect to the minimum (ratio for time or excess
penalty violation)

Table 2 presents our results answering this question. Note that, for this evaluation, the
Smyth-based models have been solved with strict domination BaB since this is the only
way the totalized weighted version can operate. We expected the weighted problems to be
much easier to solve since there is possibly stronger pruning and propagation involved.

442 Constraints (2018) 23:403–450

Table 2 Comparing the solvers’ performance on a Smyth-based model and the weighted CSP
representations

Solver Time Smyth Time Weighted Time Toulbar2 Obj. Smyth Obj. Weighted

MSPSP (6 instances)

Gecode 12.74 0.34 – 5.50 2.67

Native Gecode 7.82 0.26 – 5.80 2.80

JaCoP 4.18 0.45 – 6.00 2.00

On-call Rostering (5 instances)

Gecode 220.46 133.32 14.52 7.20 3.20

Native Gecode 192.50 133.32 14.52 25.20 3.20

JaCoP 194.06 135.28 14.52 26.80 3.20

Photo Placement (3 instances)

Gecode 6.69 1.03 0.68 13.00 13.00

Native Gecode 9.96 22.22 0.80 13.33 13.33

JaCoP 15.73 3.18 0.80 13.33 13.33

Soft N-Queens (3 instances)

Gecode 3.45 210.02 0.30 2.00 1.67

Native Gecode 3.49 210.02 0.30 1.33 1.67

JaCoP 3.94 57.22 0.30 1.00 0.33

Talent Scheduling (6 instances)

Gecode 7.78 158.94 – 14.25 12.50

Native Gecode 13.50 141.09 – 14.67 12.33

JaCoP 15.63 120.42 – 14.17 12.33

Times and objectives are averaged over all instances for a given problem and can be compared. We only
considered solved instances in this evaluation. Bold-face highlighting indicates the faster model per solver.
Runtimes of Toulbar2 on the weighted instances are given “out of competition” (in italics) where applicable—
i.e., if the decomposition succeeded on all competing instances. Times are given in seconds

To our surprise we noticed that, whereas for most instances (87.8%), the weighted coun-
terpart was indeed easier to solve, there were instances where the constraint preferences
version took substantially less time—as in Talent Scheduling and Soft N-Queens. A pos-
sible explanation is that optimality can be easier proved using propagation of the witness
function of the Smyth-ordering. Put differently, there could be better solutions in terms of
weights but not Smyth, therefore search can be pruned earlier. We may also notice that, on
these instances, Toulbar2 can provide much better performance than the constraint solvers
on the weighted counterparts—when applicable. This is mostly due to the fact that Choco
and OR-Tools are left out (as opposed to Section 5.1) since they currently do not support
set variables. In terms of objective values, even though optimality is proven in most cases,
the Smyth and weighted versions yield different values which is not surprising as, again, a
“weight-better” solution need not be “Smyth-better”. Thus, there are generally lower values
to be expected using the weighted version. The attentive reader will notice that the average
objective for the Smyth-model is in fact lower than for the weighted model in Soft N-queens

Constraints (2018) 23:403–450 443

Table 3 Comparison of runtimes between searching for all optima instead of a strict domination
improvement

Problem Time non-dominated BaB Time strict BaB Absolute overhead Relative Overhead

MSPSP 7.31 8.89 −1.58 0.78

On-call Rostering* 329.44 199.21 130.23 1.70

Photo Placement* 55.09 7.51 47.58 5.32

Soft N-Queens 2.24 3.65 −1.41 0.56

Talent Scheduling* 33.44 12.24 21.21 1.81

Overall 102.00 57.20 44.80 1.47

We only considered solved instances in this evaluation. Bold-face highlighting indicates the faster search
type. Values are averaged over instances and solvers. Times are given in seconds. An asterisk (*) indicates
statistical significance as reported by a Wilcoxon signed-pair test at α = 0.05

optimum (as done in strict BaB). We investigate the differences in Table 3 (recall that TPD
has to be used for non-domination search, see Section 4.2.2). On the examined benchmark
problems, we observe a slowdown factor between one and five when non-domination leads
to longer runtimes. However, in some cases the difference between non-domination and
strict BaB was negligible (i.e., MSPSP and Soft N-Queens), even showing a small (not sta-
tistically significant) speedup for non-domination search—mostly due to the set of optima
actually being small where strict and non-domination BaB converge to similar search trees.

5.3 Comparing search heuristics: most important first versus default

Lastly, with abstract higher level preference models, we can use generic search heuristics
that align with the optimization goals—dependent on the PVS type in use. Here, our simple
strategy (shown in Section 4.2.1) is to try and assign true to the boolean variables reify-
ing15 the satisfaction of soft constraints in the order of decreasing weight (i.e., importance).
We refer to this heuristic as most important first (MIF). Some of the benchmark problems
already shipped with a problem-specific variable ordering heuristic. In such cases, activated
MIF prepends the reified satisfaction variables to the existing heuristic. We compare the

15Certainly, some global constraints cannot be reified directly yet, only support half-reification or need a
decomposition but we expect them to increasingly do so [9].

solved by the native Gecode solver. In fact, the solver timed out on one weighted instance
at the sub-optimal objective value 4 whereas the Smyth-based variant happened to yield a
Smyth-optimal solution that is also weight-optimal with objective value 2.

With strict BaB only, we only get one optimal solution—at best. The advantage of using
partial orders clearly is having multiple incomparable optima at modeling and not having
to totalize the ordering by weighing. However, searching for a whole set of optima (as done
in non-domination BaB) obviously leads to longer runtimes than stopping at the first found

444 Constraints (2018) 23:403–450

effects of MIF on various types of searches (strict, non-domination, weighted), problems,
and solvers. The central question is:

Can a generic heuristic (MIF) for soft constraint problems speed up the search for
optima?

Over all 168 runs across solvers, problem instances, and search types, the MIF heuris-
tic led to a faster runtime in 73 cases (43%) with the average runtime reduced by 6.22 s.
Yet, MIF is not uniformly beneficial but affects some solvers more than others. Similarly
some problems are more likely to be improved. Table 4 presents results in a more fine-
grained fashion, grouping the evaluated data by problems and solvers, respectively. We find
that MIF seems to negatively influence the performance compared to the built-in default
search strategies in particular for OR-Tools, JaCoP, and Toulbar2 but can lead to tremen-
dous improvements for Choco (cf. Fig. 7a)—which showed the only statistically significant
difference when grouped by solvers—due to instances of all problems being compared.

On the other hand, when grouping by problem, On-call Rostering and Talent Schedul-
ing benefited the most from MIF (cf. Fig. 7b), both showing a speedup on average (relative
differences)—although the difference was not significant for Talent Scheduling: over all
instances, MIF produced faster but also slower runtimes about the same number of times
while the average still favors MIF. Contrary to that, for On-call Rostering, the runtime
difference—albeit small on average—was statistically significant since MIF improved the
performance in about half of the instances—and in the others it did no harm. We suspect
that for the other problems, either the built-in heuristics were effective enough or MIF
led to thrashing behavior if the best solutions still violated many soft constraints. Then,
MIF initiates many “pointless” searches by setting all soft constraints to be satisfied and
propagation fails to prove infeasibility fast enough. For problems such as Photo Placement
or MSPSP, we admittedly better use the default search strategy. MIF clearly is no silver
bullet. However, since activating a search heuristic in MiniBrass only amounts to placing
pvsSearchHeuristic in front of the search procedure (cf. Listing 1), this still is an
easy first step in tweaking the performance. Interestingly, our experiments also reveal that

Table 4 Runtime difference between models with MIF activated and deactivated

Grouped by solvers

Choco* G12 Gecode Native Gecode JaCoP Toulbar2 OR-Tools

Instances 28 28 28 28 28 28 28
Runtime difference 73.14 17.57 18.42 18.53 16.15 36.63 19.05
Rel. runtime diff. 0.65 0.72 0.79 0.80 1.04 1.11 1.50
Ratio MIF wins 0.64 0.32 0.29 0.18 0.46 0.57 0.32

Grouped by problems

MSPSP* On-call Rostering* Photo Placement* Soft N-Queens* Talent Scheduling

Instances 56 49 21 21 49
Runtime difference 0.68 26.63 145.93 98.15 24.96
Rel. runtime diff. 1.04 0.87 8.64 0.16 0.66
Ratio MIF wins 0.36 0.51 0.05 0.52 0.43

Negative values indicate that MIF led to faster solving times. Winning ratios are given with respect to the
number of instances. Relative runtime differences normalize MIF to default (aggregated by the geometric
mean). Solved configurations include Smyth-based and weighted models. For the actual runtimes, see Fig. 7.
Times are given in seconds. An asterisk (*) indicates statistical significance as reported by a Wilcoxon signed-
pair test at α = 0.05

Constraints (2018) 23:403–450 445

Fig. 7 Average runtimes for instances solved with and without MIF activated for several models (Smyth or
weighted). Figures correspond to the data showing differences in Table 4

the effectiveness of the heuristic depends more strongly on the problem at hand than it does
on the particular solver.

6 Conclusion and future work

We presented and evaluated MiniBrass, a soft constraint modeling language building on
MiniZinc that closes the gap between algebraic soft constraint frameworks and state-of-
the-art solvers. We motivated why the concept of free constructions is an appropriate tool
to facilitate the transition from partial orders to PVS and from PVS to c-semirings with
the least overhead and provided proofs for these constructions. MiniBrass is capable of
expressing a broad variety of soft constraint formalisms in the literature that are subsumed
by partial valuation structures. Moreover, it allows designing complex preference structures
using product operators and morphisms separately from conventional constraints. Finally,
we evaluated MiniBrass on a set of “softened” benchmark problems and found that on these
problems an encoding-approach is competitive with dedicated soft constraint solving, opti-
mizing with the Smyth-ordering is only slightly more expensive than weighted problems,
and the most-important-first heuristic can lead to significant runtime savings.

In the future, we plan to extend MiniBrass to distributed settings where we use other
preference aggregation strategies than pareto or lex to combine several agents’ PVS
specifications. Moreover, we develop a graphical interface to MiniBrass to facilitate mod-
eling. We also plan to extend the number of available backends such as, e.g., WSimply,
to further broaden the applicability of the algebraic soft constraint modeling language
MiniBrass.

Appendix A: free objects in category theory: the free Monoid over a set

Mathematical categories are composed of objects (e.g,. algebraic structures) and morphisms
(e.g., structure-preserving mappings) between them. Each morphism f admits a domain A

and codomain B, both being objects, and is written as f : A → B. For all morphisms
f : A → B and g : B → C there has to be a composite arrow (g ◦ f) : A → C.
Morphism composition ◦ needs to be associative and for each object A, there has to be an
identity morphism idA : A → A acting as “neutral element” with respect to composition,

446 Constraints (2018) 23:403–450

i.e., idB ◦f = f ◦ idA = f . The most straightforward example is given by the category Set,
where objects are sets, morphisms are functions, composition is function composition, and
the identity morphisms are just the identity functions. A slightly more elaborate example
is given by PO, the category of partially-ordered sets, that has partial orders as objects
and partial order homomorphisms (i.e., monotone functions) as morphisms. Note that this
definition is proper since monotone functions are closed under function composition, i.e., if
ϕ : |P | → |Q| and ψ : |Q| → |R| are monotone functions, so is ψ ◦ ϕ.

For our purposes, the true strength of category theory unveils when we consider trans-
formations between different algebraic structures, e.g. between partial orders and PVS or
between PVS and c-semirings. Such a mapping F between two categories C and D is called
a functor. More precisely, F sends every C-object A to a D-object F(A) and every C-
morphism f : A → B to a D-morphism F(f) : F(A) → F(B) (respecting identity, i.e.,
F(idA) = idF(A)). We have already seen an example, |P | that returns the underlying set
of a partial order on objects and the underlying function of a monotone function (here, just
itself) on morphisms. To see a more interesting example of functors that will provide intu-
ition for Sections 3.3 and 3.4, consider the task of constructing a plain monoid (a set and
one associative binary operation · with neutral element ε) composed of elements taken from
a set A. Our presentation closely follows [7, p. 20].

Example 4 (A monoid over a set) Let A = {a1, a2, . . .} be any set, called generators. We
want to build a monoid Mon(A) = (X, ·, ε) composed of the elements in A. A is an object
in the category Set, Mon(A) is an object in the category Mon. Assume that a function iA :
A → X maps every a ∈ A to a different “new” element in our new underlying set X. For
simplicity, we represent every a ∈ A by itself. Next, we add a dedicated neutral element
ε and define ε · x = x · ε = x for every x ∈ X. Now, for every pair of generators a

and b, we add a fresh element (denote it as a · b which is distinct from any other element
a′ ∈ A) and do so recursively for products of products etc. We only have to make sure to
equate the elements that have to be equal by associativity, e.g., (a · b) · c = a · (b · c).
This can be easily achieved if we represent every element “without parentheses”, leading
to X being the set of words over A (i.e., A∗ with ε denoting the empty word) and · being
the concatenation (written as ::). Now a functor Mon : Set → Mon takes every set A to
(A∗, ::, ε) and every function (morphism in the category Set) f : A → B to a monoid
homomorphism Mon(f) : Mon(A) → Mon(B) which is defined as follows: Mon(f)(ε) =
ε, Mon(f)([a1, . . . , an]) = [f (a1), . . . , f (an)]. Elements of A are represented in A∗ by
iA(a) = [a]. Note that for any singleton list [a] ∈ A∗ iff a ∈ A.

With respect to Example 4, for constructing a monoid from a set, we could have also
tried another functor N(A) that maps A to (2A,∪,∅) and represent a ∈ A as jA(a) =
{a}. Clearly, N(A) also satisfies the monoid axioms of associativity and ∅ being neutral.
However, it is too specific: it assumes commutativity since jA(a) · jA(b) = {a} ∪ {b} =
{b}∪{a} = jA(b) ·jA(a). But we have already seen another monoid, Mon(A), where iA(a) ·
iA(b) = [ab] 	= [ba] = iA(b) · iA(a). Hence, commutativity is not required for a monoid.
Mapping A to N(A) would consequently unify elements that need not be equal. Once that
mapping is done, it should be impossible to map “back” to a more general structure where
the unified elements are distinct. Put differently, there do exist functions f from A to a
monoid M ′ that we cannot factorize as f � ◦ jA = f for some f �.

Indeed, this is the case. Assume for a particular set A = {a, b} that we have some function
f into |Mon(A)|, for instance f (a) = [aba] and f (b) = [bab]. Now assume that we mapped
A to N(A) via jA, having a and b now represented as {a} and {b}, respectively. Is there a

Constraints (2018) 23:403–450 447

Fig. 8 A diagram of the free monoid over a set from Example 4. Mon(A) and N(A) refer to (A∗, ::, ε)
and (2A,∪,∅), respectively and M just refers to any monoid. The embeddings jA(a) = {a} and iA(a) =
[a] are defined analogously for any set A. A dashed arrow indicates that, e.g., there is a unique monoid
homomorphism f � that makes the diagram commute, i.e., f = |f �| ◦ iA

way we can “still” reconstruct the function f , starting from N(A) and calling it f �? To
fulfill f = f � ◦ jA, we know that f �({a}) = [aba] and f �({b}) = [bab] must hold.
But what about f �({a, b})? To satisfy monoid homomorphism laws, f �({a, b}) must equal
f �({a}) :: f �({b}) = [ababab]. But since {a, b} = {b, a}, it must also hold that f �({a, b}) =
f �({b, a}) = f �({b}) :: f �({a}) = [bababa]. Thus, no such function f � can exist— N(A)

is too specific.
Exchanging the rôles of N(A) and Mon(A) does not lead to the same problem. For any

function f from a set A to the underlying set of any other monoid M , there indeed exists
precisely one monoid homomorphism f � that emulates f such that f = f � ◦ iA, i.e.,
∀a ∈ A : f (a) = f �(iA(a)) (see Fig. 8 or [7, p. 21] for a proof). This fact characterizes
that Mon(A) is called the free monoid over A, being the most general monoid a set can be
mapped to. Note that the existence of f � corresponds to a “no confusion” argument since
no elements are equated that should not be whereas the uniqueness of f � relates to a “no
junk” argument: If, for instance, we used Mon′(A) = ((A ∪ {w})∗, ::, ε) with w 	∈ A, then
we are free to chose the value of f #([w]) (a “junk element”) as it is not constrained by the
requirement f = f � ◦ iA—in contrast to all elements in A. Generalizing from this example,
category theory allows to state this relationship between algebraic structures formally (see
Definition 3 in Section 3.2).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Allen, T.E., Chen, M., Goldsmith, J., Mattei, N., Popova, A., Regenwetter, M., Rossi, F., Zwilling, C.
(2015). Beyond theory and data in preference modeling: bringing humans into the loop. In T. Walsh (Ed.)
Proceedings of the 4th international conference on algorithmic decision theory (ADT’15). Lecture notes
in computer science (Vol. 9346, pp. 3–18). Berlin: Springer.

2. Allouche, D., de Givry, S., Schiex, T. (2010). Toulbar2, an open-source exact cost function network
solver. Tech. rep., INRIA.

3. Allouche, D., de Givry, S., Katsirelos, G., Schiex, T., Zytnicki, M. (2015). Anytime hybrid best-first
search with tree decomposition for weighted CSP. In G. Pesant (Ed.) Proceedings of the 21st inter-
national conference on principles and practice of constraint programming (CP’15). Lecture notes in
computer science (Vol. 9255, pp. 12–29). Berlin: Springer.

448 Constraints (2018) 23:403–450

4. Amadio, R.M., & Curien, P.L. (1998). Domains and Lambda-Calculi. Cambridge Tracts in Theoretical
Computer Science 46. Cambridge: Cambridge University Press.

5. Ansótegui, C., Bofill, M., Palahı́, M., Suy, J., Villaret, M. (2011). W-minizinc: a proposal for mod-
eling weighted CSPs with MiniZinc. In Proceedings of the 1st international workshop on MiniZinc
(MZN’11).

6. Ansótegui, C., Bofill, M., Palahı́, M., Suy, J., Villaret, M. (2013). Solving weighted CSPs with meta-
constraints by reformulation into satisfiability modulo theories. Constraints, 18(2), 236–268.

7. Awodey, S. (2010). Category theory. Oxford: Oxford University Press.
8. Barr, M., & Wells, C. (1990). Category theory for computing science. Englewood Cliffs: Prentice Hall.
9. Beldiceanu, N., Carlsson, M., Flener, P., Pearson, J. (2013). On the reification of global constraints.

Constraints, 18(1), 1–6.
10. Bertele, U., & Brioschi, F. (1973). On non-serial dynamic programming. Journal of Combinatorial

Theory Series A, 14(2), 137–148.
11. Bistarelli, S. (2004). Semirings for soft constraint solving and programming. Lecture notes in computer

science Vol. 2962. Berlin: Springer.
12. Bistarelli, S., Montanari, U., Rossi, F. (1997). Semiring-based constraint satisfaction and optimization.

Journal of the ACM, 44(2), 201–236.
13. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H. (1999). Semiring-based CSPs

and valued CSPs: Frameworks, properties, and comparison. Constraints, 4(3), 199–240.
14. Bistarelli, S., Fung, S.K.L., Lee, J.H.M., Leung, H. (2003). A local search framework for semiring-based

constraint satisfaction problems. In Proceedings of the workshop on soft constraints (Soft’03).
15. Borning, A., Freeman-Benson, B., Wilson, M. (1992). Constraint hierarchies. LISP and Symbolic

Computation, 5, 223–270.
16. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D. (2004). CP-nets: a tool for representing

and reasoning with conditional ceteris paribus preference statements. Journal of Artificial Intelligence
Research, 21, 135–191.

17. Brandt, F., Conitzer, V., Endriss, U. (2013). Computational social choice. In G. Weiß (Ed.) Multiagent
systems, 2nd edn, chapter 6 (pp. 213–283). MIT Press.

18. Cooper, M.C., & Schiex, T. (2004). Arc consistency for soft constraints. Artificial Intelligence, 154(1),
199–227.

19. Cooper, M.C., de Givry, S., Sánchez, M., Schiex, T., Zytnicki, M., Werner, T. (2010). Soft arc
consistency revisited. Artificial Intelligence, 174(7), 449–478.

20. Dalla Pozza, G., Pini, M.S., Rossi, F., Venable, K.B. (2011). Multi-agent soft constraint aggregation via
sequential voting. In T. Walsh (Ed.) Proceedings of the 22nd international joint conference on artificial
intelligence (IJCAI’11). IJCAI/AAAI (pp. 172–177).

21. Dechter, R. (1999). Bucket elimination: a unifying framework for reasoning. Artificial Intelligence,
113(1), 41–85.

22. Dechter, R. (2003). Constraint processing. San Mateo: Morgan Kaufmann.
23. Diaconescu, R. (1994). Category-based semantics for equational and constraint logic programming.

Ph.D. thesis, Oxford University, Oxford.
24. Fargier, H., & Lang, J. (1993). Uncertainty in constraint satisfaction problems: a probabilistic approach.

In M. Clarke, R. Kruse, S. Moral (Eds.) Proceedings of the european conference symbolic and quantita-
tive approaches to reasoning and uncertainty . Lecture notes in computer science (Vol. 747, pp. 97–104).
Berlin: Springer.

25. Fioretto, F., Pontelli, E., Yeoh, W. (2016). Distributed constraint optimization problems and applications:
a survey. CoRR arXiv:1602.06347.

26. Fleming, P.J., & Wallace, J.J. (1986). How not to lie with statistics: the correct way to summarize
benchmark results. Communications of the ACM, 29(3), 218–221.

27. Freuder, E.C., & Wallace, R.J. (1992). Partial constraint satisfaction. Artificial Intelligence, 58(1–3), 21–
70.

28. Frisch, A.M., Harvey, W., Jefferson, C., Martı́nez-Hernández, B., Miguel, I. (2008). Essence: a constraint
language for specifying combinatorial problems. Constraints, 13(3), 268–306.

29. Gadducci, F., Hölzl, M., Monreale, G.V., Wirsing, M. (2013). Soft constraints for lexicographic orders. In
F. Castro, A. Gelbukh, M. González (Eds.) Proceedings of the 12th Mexican international conference on
artificial intelligence (MICAI’2013). Lecture notes in computer science (Vol. 8265, pp. 68–79). Berlin:
Springer.

30. Google optimization tools. https://developers.google.com/optimization. [Online, Accessed: 29 June
2017.

31. Guns, T., Dries, A., Nijssen, S., Tack, G., De Raedt, L. (2017). MiningZinc: a declarative framework for
constraint-based mining. Artificial Intelligence, 244, 6–29.

http://arxiv.org/abs/1602.06347
https://developers.google.com/optimization

Constraints (2018) 23:403–450 449

32. Hebrard, E., O’Mahony, E., O’Sullivan, B. (2010). Constraint programming and combinatorial opti-
misation in Numberjack. In A. Lodi, M. Milano, P. Toth (Eds.) Proceedings of the 7th international
conference on integration of AI and OR techniques in constraint programming for combinatorial opti-
mization problems (CPAIOR’10). Lecture notes in computer science (Vol. 6140, pp. 181–185). Berlin:
Springer.

33. Hosobe, H. (2009). Constraint hierarchies as semiring-based CSPs. In Proceedings of the 21st interna-
tional conference on tools with artificial intelligence (ICTAI’2009) (pp. 176–183).

34. Hurley, B., O’Sullivan, B., Allouche, D., Katsirelos, G., Schiex, T., Zytnicki, M., de Givry, S. (2016).
Multi-language evaluation of exact solvers in graphical model discrete optimization. Constraints, 21(3),
413–434.

35. Junker, U. (2009). Outer branching: how to optimize under partial orders? In V. Barichard, M. Ehrgott,
X. Gandibleux, V. T’Kindt (Eds.) Proceedings of the 7th international conference on multiobjective pro-
gramming and goal programming (MOPGP’06). Lecture notes in economics and mathematical systems
(Vol. 618, pp. 99–109). Berlin: Springer.

36. Jussien, N., Rochart, G., Lorca, X. (2008). Choco: an open-source Java constraint programming library.
In Proceedings of the workshop on open-source software for integer and constraint programming
(OSSICP’08) (pp. 1–10).

37. Kaci, S. (2011). Working with preferences: less is more. Berlin: Springer.
38. Kießling, W., & Köstler, G. (2002). Preference SQL: design, implementation, experiences. In Proceed-

ings of the 28th international conference on very large data bases (VLDB’02) (pp. 990–1001). San
Mateo: Morgan Kaufmann.

39. Knapp, A., Schiendorfer, A., Reif, W. (2014). Quality over quantity in soft constraints. In Proceedings
of the 26th international conference on tools with artificial intelligence (ICTAI’2014) (pp. 453–460).

40. Kuchcinski, K., & Szymanek, R. (2013). JaCoP—Java constraint programming solver. In Proceedings
of the workshop on CP solvers: modeling, applications, integration, and standardization.

41. Leenen, L., Anbulagan, A., Meyer, T., Ghose, A.K. (2007). Modeling and solving semiring constraint
satisfaction problems by transformation to weighted semiring Max-SAT. In M.A. Orgun, & J. Thorn-
ton (Eds.) Proceedings of the 20th Australian joint conference on artificial intelligence. Lecture Notes in
Computer Science (Vol. 4830, pp. 202–212). Berlin: Springer.

42. Mears, C., Schutt, A., Stuckey, P.J., Tack, G., Marriott, K., Wallace, M. (2014). Modelling with option
types in MiniZinc. In H. Simonis (Ed.) Proceedings of the 11th international conference on integration
of artificial intelligence and operations research techniques in constraint programming (CPAIOR’14),
Lecture notes in computer science (Vol. 8451, pp. 88–103). Berlin: Springer.

43. Meseguer, P., Rossi, F., Schiex, T. (2006). Soft constraints. In F. Rossi, P. van Beek, T. Walsh (Eds.)
Handbook of constraint programming, chap. 9. Amsterdam: Elsevier.

44. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G. (2007). MiniZinc: towards a
standard CP modelling language. In C. Bessière (Ed.) Proceedings of the 13th international conference
on principles and practice of constraint programming (CP’07). Lecture notes in computer science (Vol.
4741, pp. 529–543). Berlin: Springer.

45. Nisan, N., & Ronen, A. (1999). Algorithmic mechanism design. In J.S. Vitter, L.L. Larmore, F.T.
Leighton (Eds.) Proceedings of the 31st annual ACM symposium on theory of computing (STACS’99)
(pp. 129–140). ACM.

46. Petit, T., Régin, J.C., Bessière, C. (2000). Meta-constraints on violations for over constrained prob-
lems. In Proceedings of the 12th international conference on tools with artificial intelligence (ICTAI’00)
(pp. 358–365).

47. Pierce, B.C. (1991). Basic category theory for computer scientists. Cambridge: MIT Press.
48. Rendl, A., Tack, G., Stuckey, P.J. (2014). Stochastic MiniZinc. In B. O’Sullivan (Ed.) Proceedings of the

20th international conference on principles and practice of constraint programming (CP’14), Lecture
Notes in Computer Science (Vol. 8656, pp. 636–645). Berlin: Springer.

49. Rendl, A., Guns, T., Stuckey, P.J., Tack, G. (2015). MiniSearch: a solver-independent meta-search lan-
guage for MiniZinc. In G. Pesant (Ed.) Proceedings of the 21st international conference on constraint
programming (CP’15), Lecture Notes in Computer Science (Vol. 9255, pp. 376–392).

50. Rollón, E. (2008). Multi-objective optimization in graphical models. Ph.D. thesis, Universitat Politècnica
de Catalunya, Barcelona.

51. Rossi, F., & Pilan, I. (2003). Abstracting soft constraints: Some experimental results on fuzzy CSPs.
In K.R. Apt, F. Fages, F. Rossi, P. Szeredi, J. Váncza (Eds.) Selected papers joint ERCIM/CologNET
international workshop on constraint solving and constraint logic programming (CSCLP’03). Lecture
notes in computer science (Vol. 3010, pp. 107–123). Berlin: Springer.

450 Constraints (2018) 23:403–450

52. Ruttkay, Z. (1994). Fuzzy constraint satisfaction. In Proceedings of the 3rd IEEE international fuzzy
systems conference (pp. 1263–1268). IEEE.

53. Sánchez, M., Allouche, D., de Givry, S., Schiex, T. (2009). Russian doll search with tree decomposition.
In C. Boutilier (Ed.) Proceedings of the 21st international joint conference on artificial intelligence
(IJCAI’09) (pp. 603–608).

54. Sannella, D., & Tarlecki, A. (2012). Foundations of algebraic specification and formal software
development. EATCS monographs in theoretical computer science. Berlin: Springer.

55. Schiendorfer, A., Steghöfer, J.P., Knapp, A., Nafz, F., Reif, W. (2013). Constraint relationships for soft
constraints. In M. Bramer, & M. Petridis (Eds.) Proceedings of the 33rd SGAI international confer-
ence on innovative techniques and applications of artificial intelligence (AI’13) (pp. 241–255). Berlin:
Springer.

56. Schiendorfer, A., Steghöfer, J.P., Reif, W. (2014). Synthesis and abstraction of constraint models for
hierarchical resource allocation problems. In Proceedings of the 6th international conference on agents
and artificial intelligence (ICAART’14) (Vol. 2, pp. 15–27). SciTePress.

57. Schiendorfer, A., Knapp, A., Steghöfer, J.P., Anders, G., Siefert, F., Reif, W. (2015). Partial valuation
structures for qualitative soft constraints. In R.D. Nicola, & R. Hennicker (Eds.) Software, services
and systems—essays dedicated to Martin Wirsing on the occasion of his emeritation, Lecture Notes in
Computer Science (Vol. 8950, pp. 115–133). Berlin: Springer.

58. Schiex, T., Fargier, H., Verfaillie, G. (1995). Valued constraint satisfaction problems: hard and easy
problems. In Proceedings of the 14th international conference on artificial intelligence (IJCAI’95) (Vol.
1, pp. 631–639). San Mateo: Morgan Kaufmann.

59. Schulte, C., Lagerkvist, M.Z., Tack, G. (2006). Gecode: generic constraint development environment. In
INFORMS annual meeting.

60. Shapiro, L.G., & Haralick, R.M. (1981). Structural descriptions and inexact matching. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 3(5), 504–519.

61. Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing prob-
lems. In M.J. Maher, & J.F. Puget (Eds.) Proceedings of the 4th international conference on principles
and practice of constraint programming (CP’98). lecture notes in computer science (Vol. 1520, pp.
417–431). Berlin: Springer.

62. Shoham, Y., & Leyton-Brown, K. (2008). Multiagent systems: algorithmic, game-theoretic, and logical
foundations. Cambridge: Cambridge University Press.

63. Stuckey, P.J., & Tack, G. (2013). MiniZinc with functions. In C.P. Gomes, & M. Sellmann (Eds.) Pro-
ceedings of the 10th international conference on integration of artificial intelligence and operations
research techniques in constraint programming (CPAIOR’13). Lecture Notes in Computer Science (Vol.
7874, pp. 268–283). Berlin: Springer.

64. Stuckey, P.J., de la Banda, M.G., Maher, M., Marriott, K., Slaney, J., Somogyi, Z., Wallace, M., Walsh, T.
(2005). The G12 project: mapping solver independent models to efficient solutions. In P. van Beek (Ed.)
Proceedings of the 11th international conference on principles and practice of constraint programming
(CP’05), Lecture Notes in Computer Science (Vol. 3709, pp. 13–16). Berlin: Springer.

65. Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J. (2014). The MiniZinc challenge 2008–2013. AI
Magazine, 35(2), 55–60.

66. van Hentenryck, P. (1999). The OPL optimization programming language. Cambridge: MIT Press.
67. van Hoeve, W.J. (2011). Over-constrained problems. In M. Milano, & P. van Hentenryck (Eds.) Hybrid

optimization, optimization and its applications (Vol. 45, pp. 191–225). Berlin: Springer.

	MiniBrass: Soft constraints for MiniZinc
	Abstract
	Introduction: from algebraic soft constraints to practical solvers
	Related work
	Formal foundations: soft constraints and algebraic structures
	Soft constraint satisfaction and optimization on partial valuation structures
	Looking for free partial valuation structures
	The free partial valuation structure over a partial order
	The free c-semiring over a partial valuation structure
	Adequacy of algebraic structures for soft constraints

	Implementation
	PVS types and instantiations
	Examples of soft constraint formalisms as PVS types
	Integer-valued: weighted CSP or cost function networks
	Comparative: free PVS and constraint preferences
	Real-valued: fuzzy CSP and probabilistic CSP

	Morphisms to switch PVS
	Products of PVS
	PVS-based search

	Evaluation
	Comparing performance: encoded weighted CSP versus native Toulbar2
	Comparing models: Smyth-optimization versus weighted-optimization
	Comparing search heuristics: most important first versus default

	Conclusion and future work
	Appendix 1 A: free objects in category theory: the free Monoid over a set
	Publisher's Note
	References

