
Constraints (2018) 23:296–309
https://doi.org/10.1007/s10601-018-9285-6

Deep neural networks and mixed integer linear
optimization

Matteo Fischetti1 · Jason Jo2,3

Published online: 26 April 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Deep Neural Networks (DNNs) are very popular these days, and are the subject of
a very intense investigation. A DNN is made up of layers of internal units (or neurons), each
of which computes an affine combination of the output of the units in the previous layer,
applies a nonlinear operator, and outputs the corresponding value (also known as activation).
A commonly-used nonlinear operator is the so-called rectified linear unit (ReLU), whose
output is just the maximum between its input value and zero. In this (and other similar
cases like max pooling, where the max operation involves more than one input value), for
fixed parameters one can model the DNN as a 0-1 Mixed Integer Linear Program (0-1
MILP) where the continuous variables correspond to the output values of each unit, and a
binary variable is associated with each ReLU to model its yes/no nature. In this paper we
discuss the peculiarity of this kind of 0-1 MILP models, and describe an effective bound-
tightening technique intended to ease its solution. We also present possible applications of
the 0-1 MILP model arising in feature visualization and in the construction of adversarial
examples. Computational results are reported, aimed at investigating (on small DNNs) the
computational performance of a state-of-the-art MILP solver when applied to a known test
case, namely, hand-written digit recognition.

This article belongs to the Topical Collection: Integration of Constraint Programming, Artificial
Intelligence, and Operations Research
Guest Editor: Willem-Jan van Hoeve

� Matteo Fischetti
matteo.fischetti@unipd.it

Jason Jo
jason.jo.research@gmail.com

1 Department of Information Engineering (DEI), University of Padova, Padua, Italy

2 Montreal Institute for Learning Algorithms (MILA), Montreal, Québec, Canada

3 Institute for Data Valorization (IVADO), Montreal, Québec, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s10601-018-9285-6&domain=pdf
http://orcid.org/0000-0001-6601-0568
mailto: matteo.fischetti@unipd.it
mailto: jason.jo.research@gmail.com


Constraints (2018) 23:296–309 297

Keywords Deep neural networks · Mixed-integer programming · Deep learning ·
Mathematical optimization · Computational experiments

1 Introduction

Deep Neural Networks (DNNs) are among the most popular and effectiveMachine Learning
(ML) architectures and are the subject of a very intense investigation; see e.g. [8]. A DNN
is made up of layers of internal units (also known as neurons), each of which computes
an affine combination of the output of the units in the previous layer, applies a nonlinear
operator, and outputs the corresponding value (also known as activation). A commonly-
used nonlinear operator is the so-called rectified linear unit (ReLU) [11], whose output is
just the maximum between its input value and zero.

In this work we address a DNN with ReLU and/or max (or average) pooling activations.
We investigate a 0-1 Mixed-Integer Linear Programming (0-1 MILP) model of the DNN
when its parameters are fixed, and highlight some of its peculiarities. We also computation-
ally analyze a bound-tightening mechanism that has a relevant impact in reducing solution
times. Two applications of the 0-1 MILP model in the context of feature visualization [4]
and adversarial machine learning [14] are outlined, the latter being very well suited for our
approach as finding (almost) optimal solutions is an important research topic.

The present paper is organized as follows. In Section 2 we give a step-by-step deriva-
tion of a 0-1 MILP model that describes the computation performed by a given DNN with
ReLU activations (and fixed parameters) to compute the DNN output as a function of its
input. We also briefly outline some of the peculiarities of this model. As all DNN parame-
ters are assumed to be fixed, the model (as stated) cannot be used for training. Alternative
applications of the model (namely, feature visualization and construction of adversarial
examples) are discussed in Section 3. Section 4 addresses the computational performance of
a state-of-the art commercial MILP solver (IBM ILOG CPLEX 12.7) in solving the 0-
1 MILP instances arising when constructing optimal adversarial examples for a known test
case, namely, hand-written digit recognition. The results show that, for small DNNs, these
instances can typically be solved to proven optimality in a matter of seconds/minutes on a
standard notebook. Some conclusions and directions of future work are finally addressed in
Section 5.

An early version of the present paper was submitted to the CPAIOR 2018 conference
in November 2017. We recently became aware that a 0-1 MILP model similar to the one
studied in the present paper, has been independently proposed (almost at the same time)
in [2, 13, 15]. Therefore we cannot claim the model is new. However, to the best of our
knowledge the applications and discussions we report in the present paper are original and
hopefully of interest for both the Mathematical Optimization and the Machine Learning
communities.

2 A 0-1 MILP model

Let the DNN be made up of K + 1 (say) layers, numbered from 0 to K . Layer 0 is fictitious
and corresponds to the input of the DNN, while the last layer, K corresponds to its outputs.
Each layer k ∈ {0, 1, . . . , K} is made up of nk units (i.e., nodes in networks, or neurons),
numbered from 1 to nk . We denote by UNIT(j, k) the j -th unit of layer k.



298 Constraints (2018) 23:296–309

Let xk ∈ �nk be the output vector of layer k, i.e., xk
j is the output of UNIT(j, k) (j =

1, . . . , nk). As already mentioned, layer 0 corresponds to the DNN input, hence x0
j is the

j -th input value (out of n0) for the DNN. Analogously, xK
j is the j -th output value (out of

nK ) of the DNN viewed as a whole. For each layer k ≥ 1, UNIT(j, k) computes its output
vector xk through the formula

xk = σ(Wk−1xk−1 + bk−1),

where σ(·) is a nonlinear function (possibly depending on j and k), and Wk−1 (resp. bk−1)
is a given matrix of weights (resp., vector of biases).

As in many applications, we will assume that σ is a rectified linear unit, i.e., the equations
governing the DNN are

xk = ReLU(Wk−1xk−1 + bk−1), k = 1, . . . , K (1)

where, for a real vector y, ReLU(y) := max{0, y} (componentwise).
Note that the weight/bias matrices (W, b) can contain negative entries, while all the out-

put vectors xk are nonnegative, with the possible exception of the vector x0 that represents
the input of the DNN as a whole.

To get a valid 0-1 MILP model for a given DNN, one needs to study the basic scalar
equation

x = ReLU(wT y + b).

To this end, one can write the linear conditions

wT y + b = x − s, x ≥ 0, s ≥ 0 (2)

to decouple the positive and negative part of the ReLU input. Unfortunately, the solution
(x, s) of constraints (2) is not unique (as it should be because ReLU() is in fact a function),
because one can always take any scalar δ ≥ 0 and obtain a still-feasible solution (x + δ, s +
δ). Imposing δ = 0 is therefore the only critical issue to be addressed when modeling the
ReLU operator. (Note that minimizing the sum x + s is not a viable option here, as this
would alter the DNN nature and will tend to reduce the absolute value of the ReLU input).

To impose that at least one of the two terms x and s must be zero, one could add to (2) the
bilinear (complementary) condition x s ≤ 0, which is equivalent to x s = 0 as both terms in
the product are required to be nonnegative.

A second option (which is the one we applied in our study) is to introduce a binary
activation variable z and to impose the logical implications

z = 1 → x ≤ 0

z = 0 → s ≤ 0

z ∈ {0, 1}

⎫
⎪⎬

⎪⎭
(3)

The above “indicator constraints” are accepted as such by modern MILP solvers, and are
internally converted into proper linear inequalities of the type x ≤ M+(1−z) and s ≤ M−z

(assuming that finite nonnegative values M+ and M− can be computed such that −M− ≤
wT y + b ≤ M+) and/or are handed implicitly by the solution algorithm.



Constraints (2018) 23:296–309 299

Using a binary activation variable zk
j for each UNIT(j, k) then leads to the following 0-1

MILP formulation of the DNN:

min
K∑

k=0

nk∑

j=1

ck
j x

k
j +

K∑

k=1

nk∑

j=1

γ k
j zk

j (4)

nk−1∑

i=1

wk−1
ij xk−1

i + bk−1
j = xk

j − sk
j

xk
j , sk

j ≥ 0

zk
j ∈ {0, 1}

zk
j = 1 → xk

j ≤ 0

zk
j = 0 → sk

j ≤ 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

k = 1, . . . , K, j = 1, . . . , nk (5)

lb0j ≤ x0
j ≤ ub0j , j = 1, . . . , n0 (6)

lbk
j ≤ xk

j ≤ ubk
j

lb
k

j ≤ sk
j ≤ ub

k

j

⎫
⎬

⎭
k = 1, . . . , K, j = 1, . . . , nk. (7)

In the above formulation, all weights wk−1
ij and biases bk

j are given (constant) parameters;

the same holds for the objective function costs ck
j and γ k

j , that can be defined according
to the specific problem at hand. Some relevant cases will be addressed in the next section.
Conditions (5) define the ReLU output for each unit, while (6–7) impose known lower and
upper bounds on the x and s variables: for k = 0, these bounds apply to the DNN input

values x0
j and depend on their physical meaning, while for k ≥ 1 one has lbk

j = lb
k

j = 0

and ubk
j , ub

k

j ∈ �+ ∪ {+∞}.
Besides ReLU activations, some modern DNNs such as Convolutional Neural Networks

(CNNs) [3, 10] involve multi-input units that perform the following average/max pooling
operations:

x = AvgPool(y1, . . . , yt ) = 1

t

t∑

i=1

yi (8)

x = MaxPool(y1, . . . , yt ) = max{y1, . . . , yt }. (9)

The first operation (8) is just linear and can trivially be incorporated in our MILP model,
while (9) can be expressed by introducing a set of binary variables z1, · · · , zt (that represent
argmax) along with the following constraints:

t∑

i=1

zi = 1 (10)

x ≥ yi,

zi = 1 → x ≤ yi

zi ∈ {0, 1}

⎫
⎪⎬

⎪⎭
i = 1, · · · , t (11)

It should be noticed that indicator constraints such as those appearing in (3) or (11),
as well their bilinear equivalent like xk

j sk
j ≤ 0, tend to produce very hard mixed-integer

instances that challenge the current state-of-the-art solvers. As a matter of fact, the eval-
uation of the practical feasibility of model (4–7) was one of the main motivations of our
work.



300 Constraints (2018) 23:296–309

Discussion Here are some comments about the 0-1 MILP model above.

1. If one fixes the input x0 of the DNN (i.e., if one sets lb0j = ub0j for all j = 1, . . . , n0),
then all the other x variables in the model are fixed to a unique possible value—the one
that the DNN itself would compute by just applying (1) by increasing layers. As to the
binary z variables, they are also defined uniquely, with the only possible “degenerate”
exception of the binary variable zk

j corresponding to a ReLU unit that receives a zero
input, hence its actual value is immaterial.

2. Because of the above, the 0-1 MILP model (4–7) cannot be infeasible, and actually any
(possibly random) input vector x0 satisfying the bounds conditions (6) can easily be
extended (in a unique way) to produce a feasible solution. (Note that the same does not
hold if one randomly fixes the activation binary variables zk

j .) This is in contrast with
other 0-1 MILP models with indicator (or big-M) constraints, for which even finding a
feasible solution is a hard task. In this view, powerful refinement heuristics such as local
branching [6], polishing [12], or proximity search [7] can be used to improve a given
(possibly random) solution. This is important in practice as it suggests a hybrid solution
scheme (not investigated in the present paper) in which initial heuristic solutions are
found through fast methods such as gradient descent, and then refined using MILP
technology.

3. It is known [1] that, for 0-1 MILP models like (4–7), the definition of tight upper
bounds for the continuous variables appearing in the indicator constraints plays a cru-
cial role for the practical resolution of the model itself. Modern MILP solvers are able
to automatically define reasonable such upper bounds, propagating the lower/upper
bounds on the input layer 0 to the other ones. However, these upper bounds can be
rather inaccurate. We found that a much better option, very much in the spirit of [1], is
instead as follows: We scan the units by increasing layers k = 1, . . . , K . For the current
UNIT(j, k), we remove from the model all the constraints (and variables) related to all
the other units in the same layer or in the subsequent ones, and solve twice the resulting
model: one to maximize xk

j and the other to maximize sk
j . The resulting optimal val-

ues (or their optimistic estimate returned by the MILP solver after a short time limit)
can then be used to define a tight bound on the two variables xk

j and sk
j , respectively.

Due to the acyclic nature of the DNN, the tightened bounds computed in one itera-
tion can be used in all the subsequent ones, i.e., the method always solves a 0-1 MILP
with very tight upper bounds on the continuous variables. Note that, for a given DNN
with fixed weights/biases, the tightened bounds do not depend on the input variables
x0
j but only on their a priori lower/upper bounds lb0j /ub0j . As a result, the final tight-
ened bounds can be saved in a file and reused for any future optimization of the same
DNN. Note that the upper bound computation for each layer can be distributed (without
communication) on a cluster of parallel computers, thus reducing preprocessing time.

3 Applications

Model (4–7) is (un)fortunately not suited for training. In training, indeed, one has a num-
ber of training examples, each associated with a different input x0. So, in this setting, x0

can be considered to be given, while the variables to optimize are the weights wk
j and biases

bk
j . It then follows that, for any internal layer k ≥ 2, the x’s still play the role of variables

(as they depend on the weights/biases of the previous layer), so the terms wk−1
ij xk−1

i are in
fact bilinear.



Constraints (2018) 23:296–309 301

On the other hand, previous experiences of using MILP technology for training (such as
the one reported in [5]) seem to indicate that, due to overfitting, insisting on finding proven
optimal solutions is not at all a clever policy for training.

Instead, our model is more suited for applications where the weights are fixed, and one
wants to compute the best-possible input example according to some linear objective func-
tion, as in the relevant cases discussed below. In those cases, indeed, overfitting the given
DNN is actually a desired property.

3.1 Experimental setup

We considered a very standard classification problem: hand-written digit recognition of an
input 28 x 28 figure. Each of the 784 pixels of the figure is normalized to become a gray-
level in [0, 1], where 1 means white and 0 black. As in [13], the MNIST [3] dataset was
used to train a simple DNN with 3 hidden layers with (8, 8, 8) ReLUs, plus a last layer
made up of 10 units to classify digits “0” to “9”, reaching (after 50 epochs) an accuracy of
93.04% on the test set.

3.2 Feature visualization

Following [4] we used our 0-1 MILP model to find input examples that maximize the acti-
vation xk

j of each unit UNIT(j, k). For our simple DNN, each of the resulting models could
be solved within 1 second (and very often much faster) when using, on the fly, the bound
strengthening procedure described in the previous section (the solver was more than one
order of magnitude slower without this feature). Some max-activating input examples are
depicted in Fig. 1, and show that no nice visual pattern can be recognized (at least, for our
DNN).

It should be noticed that, before our work, the computation of the max activations was
performed in the literature by using a greedy ascent method that can be trapped by local
optimal solutions. According to our experience with a preliminary implementation of a
gradient-based method, many times one is even unable to find any meaningful solution with

Fig. 1 Input examples maximizing the activation of some hidden units; no visual pattern can be identified
in these provably optimal solutions



302 Constraints (2018) 23:296–309

activation strictly larger than zero. In our view, the capability of finding provable optimal
solutions (and, in any case, very good solutions)is definitely a strength of our approach.

3.3 Building adversarial examples

In our view, this is the most intriguing application of the MILP technology, due to its ability
to compute (almost) optimal solutions that are intended to point out some hidden weak-
nesses of the DNN of interest. The problem here is to slightly modify a given DNN input so
that to produce a wrong output. The construction of these optimized “adversarial examples”
is the core of adversarial machine learning [14].

In our setting, we are given an input figure x̃0 that is classified correctly by our DNN as a
certain digit d̃ (say), and we want to produce a similar figure x0 that is wrongly classified as
d 	= d̃. We assume to play the role of a malicious attacker who has a complete access to the
DNN (i.e., he/she knows its structure and parameters) and is allowed to arbitrarily change
every single pixel of the input figure. We therefore do not impose any a priory perturbation
pattern like blurring as it is done, e.g., in [15].

To show the flexibility of the MILP approach, in our experiments we also impose the
actual (wrong) digit d that we want to obtain, by setting d = (d̃ + 5) mod 10. E.g., we
require that a “0” must be classified as “5”, and a “6” as a “1”; see Fig. 2 for an illustration.
To this end we impose, in the final layer, that the activation of the required (wrong) digit is
at least 20% larger than any other activations. Due to the MILP flexibility, this just requires
adding to (4–7) the linear conditions

xK
d+1 ≥ 1.2 xK

j+1, j ∈ {0, . . . , 9} \ {d}. (12)

In order to reduce the L1-norm distance between x0 and x̃0, we minimize the ad-hoc
objective function

∑n0
j=1 dj , where the additional continuous variables dj must satisfy the

following linear inequalities to be added to model (4–7):

− dj ≤ x0
j − x̃0

j ≤ dj , dj ≥ 0, for j = 1, . . . , n0. (13)

Figure 2 illustrates the power of the approach, in that the model is able to locate 2-3 critical
pixels whose change tricks the DNN.

A key advantage of our method over previous approaches is that one can easily impose
constraints like the one requiring that the final activation of the wrong label is at least 20%
larger than any other activation. Similar constraints can be imposed to the input figure x0,
requiring e.g. a maximum number of changed pixels in the input figure, or a maximum
deviation of each pixel with respect to the x̃0; see Fig. 3 for an illustration. This control is
an important novelty with respect to other adversarial example generation methods, and it
can hopefully allow for a more qualitative probing of what exactly a DNN has learned. In
addition, as Fig. 4 clearly shows, the optimized solutions are very different form the random
noise used by the standard methods typically used in this kind of experiments.

4 Computational performance

This section is aimed at investigating the practical performance of a state-of-the-art MILP
solver (IBM ILOG CPLEX 12.7 in our case) to construct adversarial examples for not-
too-small DNNs. We used the same experimental MNIST setup as in the previous section,
and addressed DNNs with the following structure:



Constraints (2018) 23:296–309 303

Fig. 2 Adversarial examples
computed through our 0-1 MILP
model; the reported label is the
one having maximum activation
according to the DNN (that we
imposed to be the true label plus
5, modulo 10). Note that the
change of just few well-chosen
pixels often suffices to fool the
DNN and to produce a wrong
classification



304 Constraints (2018) 23:296–309

Fig. 3 Adversarial examples
computed through our 0-1 MILP
model as in Fig. 2, but imposing
that the no pixel can be changed
by more than 0.2 (through the
additional conditions dj ≤ 0.2
for all j )



Constraints (2018) 23:296–309 305

Fig. 4 Pixel changes (absolute value) that suffice to trick the DNN: the four top subfigures correspond to the
model where pixels can change arbitrarily, while those on the bottom refer to the case where each pixel cannot
change by more than 0.2 (hence more pixels need be changed). To improve readability, the black/white map
has been reverted and scaled, i.e., white corresponds to unchanged pixels (dj = 0) while black corresponds
to the maximum allowed change (dj = 1 for the four top figures, dj = 0.2 for the four bottom ones)



306 Constraints (2018) 23:296–309

– DNN1: 8+8+8 internal units in 3 hidden layers, as in [13];
– DNN2: 8+8+8+8+8+8 internal units in 6 hidden layers;
– DNN3: 20+10+8+8 internal units in 4 hidden layers;
– DNN4: 20+10+8+8+8 internal units in 5 hidden layers;
– DNN5: 20+20+10+10+10 internal units in 5 hidden layers.

All DNNs involve an additional input layer (i.e., layer 0) with 784 entries for the pixels of
the 28x28 input figure, and an additional output layer (i.e., layer K) with 10 units to classify
the ten digits.

All DNNs were trained for 50 epochs using Stochastic Gradient Descent (SGD) and
produced a test-set (top-1) accuracy of 93-96%. The best weights/biases were used to build
our basic model (4–7), that was then modified for the adversarial case by adding the distance
variables dj ’s and the associated constraints (12–13). All dj variables have an infinite upper
bound, meaning that we do not impose any limit to the change of the input pixels; see Fig. 2
for an illustration of the typical adversarial examples computed through this model.

Before running the final experiments, the preprocessing phase described in Section 2
(item 3) was applied (for each DNN) to tighten the variable bounds. The tightened bounds
for all the xk

j and sk
j variables were saved in a file and used in the runs reported in the present

section under the label “improved model”.
Table 1 reports some statistics of our runs (average values over 100 runs for each DNN

and each model). Each run addressed the modification of a different MNIST training point,
i.e., for each DNN and for each model we considered 100 different instances of the adver-
sarial problem. Computational times refer to the use of the state-of-the-art MILP solver
IBM ILOG CPLEX 12.7 [9] on a standard 4-core notebook equipped with an Intel i7
@ 2.3GHz processor and 16 GB RAM—the GPU being not used by the MILP solver. A
time limit of 300 seconds was imposed for each run (preprocessing time was not taken into
account in these experiments).

In the table, column “%solved” reports the percentage of the instances that have been
solved to proven optimality within the time limit, while columns “nodes” and “time (s)”
give, respectively, the average number of branching nodes and of computing time (in wall-
clock seconds) over all instances; time-limit instances count as 300 seconds. Finally, column
“%gap” gives the percentage gap between the best upper bound and the best lower bound
computed for the instance at hand (instances solved to proven optimality having a gap of
zero).

Table 1 Comparison of the basic and improved models with a time limit of 300 seconds, clearly showing
the importance of bound tightening in the improved model

Basic model Improved model

%solved %gap Nodes Time (s) %solved %gap Nodes Time (s)

DNN1 100 0.0 1,903 1.0 100 0.0 552 0.6

DNN2 97 0.2 77,878 48.2 100 0.0 11,851 7.5

DNN3 64 11.6 228,632 158.5 100 0.0 20,309 12.1

DNN4 24 38.1 282,694 263.0 98 0.7 68,563 43.9

DNN5 7 71.8 193,725 290.9 67 11.4 76,714 171.1

In this experiment, the preprocessing time needed to optimally compute the tightened bounds is not taken
into account



Constraints (2018) 23:296–309 307

According to the table, the basic model gets into trouble for our three largest DNNs, as it
was not able to solve to proven optimality a large percentage of the instances and returned a
significant gap in the end. On the other hand, the improved model consistently outperforms
the basic one, and starts having difficulties only with our most-difficult network (DNN5).
The difference in terms of computing time and number of branching nodes is also striking.

In the previous experiment we concentrated on the computing time spent for the solution
of a specific instance of the adversarial problem, without taking into account the prepro-
cessing phase needed to optimally compute the tightened bounds. As a matter of fact, this
preprocessing phase took negligible computing time for the three smallest DNNs, while
for DNN4 (resp. DNN5) it took 1,112 (resp. 4,913) seconds in total, the most time consum-
ing iteration requiring 151 (resp. 726) seconds. As the preprocessing is applied only once
for each DNN, computing times of this order of magnitude can be considered acceptable
in some applications. If this is not the case, as already mentioned, one could compute the
bounds of each layer in parallel, and/or impose a short time limit of few seconds for each
bound computation. Needless to say, the latter option (although mathematically correct) can
reduce the tightness of some of the computed bounds, hence one is interested in evaluating
the impact of the weaker bounds in the solution times of the single adversarial problems. To
this end, in Table 2 we compare the performance of the improved model with exact bounds
(as in Table 1) and with the weaker bounds obtained by imposing a very tight time limit
of 1 sec. for each bound computation. (Almost identical results, both in terms of prepro-
cessing time and of the effect on the improved model, have been obtained by aborting the
MILP solver right after the root node.) The outcome of this experiment is quite encourag-
ing, in that it shows that a fast preprocessing phase suffices in computing good bounds that
significantly help the solution of the adversarial instances.

Table 3 analyzes the performance of the basic and improved models when one does not
insist in finding a provable optimal solution, but content herself with a solution which is
guaranteed to be within 1% from optimality. To be specific, in this experiment each run was
interrupted as soon as the gap between the value of the best-known solution and of the best-
known lower bound falls below 1%, meaning that the best-known solution is guaranteed to
be, at most, 1% worse than the optimal one. As in Table 2, for the improved models we
used (in the preprocessing phase) the weaker bounds computed with a time limit of 1 sec.
for each bound computation. To limit the overall computing time for this experiment, a time
limit of 3,600 seconds was imposed for each run, and the number of times this limit was
reached (out of 100) is reported in the table in column #timlim. The table also reports the
average number of nodes (nodes) and the average percentage gap (%gap), out of 100 runs;

Table 2 Performance of the improved model with a time limit of 300 seconds, with exact vs weaker bounds
(the latter being computed with a time limit of 1 sec. for each bound computation)

Improved model

Exact bounds Weaker bounds

t.pre. %sol. %gap Nodes Time (s) t.pre. %sol. %gap Nodes Time (s)

DNN4 1,112.1 98 0.7 68,563 43.9 69.4 98 0.4 80,180 45.5

DNN5 4,913.1 67 11.4 76,714 171.1 72.6 57 16.9 84,328 185.0

The overall preprocessing time (t.pre.) is greatly reduced in case of weaker bounds, without deteriorating too
much the performance of the model. The difference w.r.t. the basic model in Table 1 is still striking



308 Constraints (2018) 23:296–309

Table 3 Performance of the basic and improved model (the latter with the 1-sec. weaker bounds as in
Table 2) to get solutions with guaranteed error of 1% or less; each run had a time limit of 3,600 seconds; the
number of time limits, out of 100, is reported in column #timlim

Basic model Improved model (weaker bounds)

#timlim Time (s) Nodes %gap #timlim Time (s) Nodes %gap

DNN1 0 1.0 1,920 0.5 0 0.6 531 0.3

DNN2 0 47.0 76,286 0.9 0 7.5 12,110 0.8

DNN3 8 632.8 568,579 2.2 0 11.3 19,663 0.9

DNN4 36 1806.8 1,253,415 10.2 0 50.0 89,380 1.0

DNN5 81 3224.0 1,587,892 43.5 11 851.0 163,135 3.8

averages also take time-limit instances into account. Note that the average gap is sometimes
larger than 1%, due to the time limit imposed. The results show that the improved model—
even with weaker bounds—greatly outperforms the basic model in this setting as well, thus
confirming the results of Table 1. For all the considered DDNs but the largest one (DNN5),
the MILP solver applied to the improved model was able to compute the required almost-
optimal solutions (less than 1% from optimality) in a matter of seconds. As to DNN5, the
improved model hit the time limit only 11 out of 100 times (while the basic model reached
it 81 times); for the remaining 89 cases, the improved model required 511 seconds, on
average, to reach 1% optimality.

5 Conclusions and future work

We have addressed a 0-1 Mixed-Integer Linear model for Deep Neural Networks with
ReLUs and max/average pooling. This is a very first step in the direction of using discrete
optimization as a core tool in the study of neural networks.

We have discussed the specificities of the proposed model, and we have described an
effective bound-tightening technique to significantly reduce solution times. Although the
model is not suited for training (as it becomes bilinear in this setting), it can be useful to
construct optimized input examples for a given (already trained) neural network. In this
spirit, we have reported its application to two relevant problems in Machine Learning such
as feature visualization and adversarial machine learning. In particular, the latter qualifies
as as a natural setting for mixed-integer optimization, in that one calls for (almost) optimal
solutions that fool the neural network by “overfitting” it.

For small DNNs, our model can be solved to proven optimality in a matter of seconds
on a standard notebook. However, for larger and more realistic DNNs the computing time
can become too large. For example, even in the MNIST setting, DNNs of size (30, 20, 10,
10, 10, 8, 8, 8) or (50, 50, 50, 20, 8, 8) lead to computing times of one hour or more. In
those hard cases, one should resort to heuristics possibly based on a restricted version of the
model itself, in the vein of [6, 7, 12].

Future work should therefore address the reduction of the computational effort involved
in the exact solution of the model, as well as new heuristic methods for building adversar-
ial examples for large DNNs (possibly involving convolutional layers). Finding new deep
learning applications of our mixed-integer model is also an interesting topic for future
research.



Constraints (2018) 23:296–309 309

Acknowledgements The research of the first author was partially funded by the Vienna Science and
Technology Fund (WWTF) through project ICT15-014, any by MiUR, Italy, through project PRIN2015
“Nonlinear and Combinatorial Aspects of Complex Networks”. The research of the second author was funded
by the Institute for Data Valorization (IVADO), Montreal. We thank Yoshua Bengio and Andrea Lodi for
helpful discussions.

References

1. Belotti, P., Bonami, P., Fischetti, M., Lodi, A., Monaci, M., Nogales-Gomez, A., Salvagnin, D. (2016).
On handling indicator constraints in mixed integer programming. Computational Optimization and
Applications, 65, 545–566.

2. Cheng, C.-H., Nührenberg, G., Ruess, H. (2017). Maximum resilience of artificial neural networks. In
D’Souza, D., & Narayan Kumar, K. (Eds.) Automated technology for verification and analysis (pp. 251–
268). Cham: Springer International Publishing.

3. Le Cun, Y.L., Bottou, L., Bengio, Y., Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of IEEE, 86(11), 2278–2324.

4. Erhan, D., Bengio, Y., Courville, A., Vincent, P. (2009). Visualizing higher-layer features of a deep
network.

5. Fischetti, M. (2016). Fast training of support vector machines with Gaussian kernel. Discrete Optimiza-
tion, 22(Part A), 183–194. SI:ISCO 2014.

6. Fischetti, M., & Lodi, A. (2003). Local branching. Mathematical Programming, 98(1-3), 23–47.
7. Fischetti, M., & Monaci, M. (2014). Proximity search for 0-1 mixed-integer convex programming.

Journal of Heuristics, 20(6), 709–731.
8. Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. MIT Press. http://www.

deeplearningbook.org.
9. ILOG IBM. Cplex 12.7 user’s manual (2017).

10. Krizhevsky, A., Sutskever, I., Hinton, G.E. (2017). Imagenet classification with deep convolutional
neural networks. Communication of ACM, 60(6), 84–90.

11. Nair, V., & Hinton, G.E. (2010). Rectified linear units improve restricted Boltzmann machines. In
Fürnkranz, J., & Joachims, T. (Eds.) Proceedings of the 27th International Conference on Machine
Learning (ICML-10) (pp. 807–814): Omnipress.

12. Rothberg, E. (2007). An evolutionary algorithm for polishing mixed integer programming solutions.
INFORMS Journal on Computing, 19(4), 534–541.

13. Serra, T., Tjandraatmadja, C., Ramalingam, S. (2017). Bounding and counting linear regions of deep
neural networks. CoRR arXiv:1711.02114.

14. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J., Fergus, R. (2013).
Intriguing properties of neural networks. CoRR arXiv:1312.6199.

15. Tjeng, V., & Tedrake, R. (2017). Verifying neural networks with mixed integer programming. CoRR
arXiv:1711.07356.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arXiv.org/abs/1711.02114
http://arXiv.org/abs/1312.6199
http://arXiv.org/abs/1711.07356

	Deep neural networks and mixed integer linear optimization
	Abstract
	Introduction
	A 0-1 MILP model
	Discussion

	Applications
	Experimental setup
	Feature visualization
	Building adversarial examples

	Computational performance
	Conclusions and future work
	Acknowledgements
	References


