
Constraints (2018) 23:196–209
https://doi.org/10.1007/s10601-018-9283-8

Modeling uncertainties with chance constraints

Imen Zghidi1 · Brahim Hnich2 · Abdelwaheb Rebaı̈1

Published online: 3 April 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Chance constraints are a major modeling tool for problems under uncertainty. We
summarize the basic modeling ingredients of uncertain combinatorial problems and show
how the Stochastic Constraint Satisfaction Problems formalism is able to support high-level
declarative constructs that allow for ease of modeling of such problems in general. Then, we
outline the different propagation methods for chance constraints. Finally, we identify some
modeling subtleties that might arise when modeling with chance constraints.

Keywords Uncertainty · Chance constraints · Stochastic constraint satisfaction problems

1 Introduction

In most industrial contexts, decision makers cannot be certain of the future behavior of
factors that will affect the outcome resulting from various options under consideration.
Decision making under uncertainty is thus characterized by the necessity of making deci-
sions based on incomplete information and without knowing their full effects until a later
stage in the future. But, as values of more and more unknowns are unveiled, there may
be opportunities for corrective recourse actions. Such problems appear in various fields

This article belongs to the Topical Collection: 20th Anniversary Issue

� Imen Zghidi
zghidi.imen@gmail.com

Brahim Hnich
hnich.brahim@gmail.com

Abdelwaheb Rebaı̈
Abdelwaheb.Rebai@fsegs.rnu.tn

1 MODILS Research Lab, FSEGS, Sfax University, Sfax, Tunisia

2 CES, ENIS, Sfax University, Sfax, Tunisia

http://crossmark.crossref.org/dialog/?doi=10.1007/s10601-018-9283-8&domain=pdf
mailto:zghidi.imen@gmail.com
mailto:hnich.brahim@gmail.com
mailto:Abdelwaheb.Rebai@fsegs.rnu.tn

Constraints (2018) 23:196–209 197

of application and present many interesting challenges from both a modeling and solving
perspective.

The uncertainties in a problem have to be represented in a way that can properly be
exploited when making decisions.

There have been many attempts to incorporate uncertainty within the Constraint Satis-
faction Problem (CSP) formalism (e.g., [1, 5, 8, 9, 19]). But, in this paper, we focus on the
Stochastic Constraint Satisfaction approach inspired by stochastic programming [4, 11] and
chance-constrained programming [6].

Stochastic Constraint Satisfaction Problems (SCSPs) provide a powerful modeling
framework for problems in which one is required to make decisions under uncertainty. In
these stochastic problems, the uncertainty is modeled by using random variables to capture
uncontrollable factors such as the customer demands, the processing times of machines,
house prices, etc. These discrete random variables can take a set of possible different val-
ues, each with an associated probability. They are useful to model factors that fall outside
the control of the decision maker who only knows the probability distribution function of
these random variables. Such a distribution may be learned from statistical data or simply an
educated guess. There are controllable variables on which one can decide, named decision
variables which model the set of possible choices for the decisions. Finally, such problems
comprise chance constraints of the form: pr{C} ≥ β where C is a stochastic constraint
expressing the relationship between random and decision variables and pr{C} is the satis-
faction probability of this constraint that should be satisfied within a given threshold β since
requiring C to hold almost surely in the presence of random variables is almost impossible.

Chance constraints are a key concept within SCSPs. This paper is not a survey on solution
methods of SCSPs in general. Rather, the focus is on the role of chance constraints in the
modeling of uncertainties and the various approaches that extend constraint programming
to support and reason about them. A thorough review of the different solution methods of
SCSPs is found in [9].

The rest of the paper is organized as follows. In Section 2, we study the basic modeling
ingredients of uncertain problems and shown how the SCSP formalism is able to support the
declarative of such problems in general in Section 3. Next, we outline the various propaga-
tion methods in Section 4. In Section 5, we identify some modeling subtleties arising when
modeling uncertain problems with chance constraints and we conclude the paper in Section 6.

2 Modeling ingredients of uncertain problems

In this section, we present the modeling ingredients of uncertain problems.

2.1 Random variables

The uncertain elements in an uncertain problem can be modeled by using random variables
to capture uncontrollable factors such as the customer demands, the processing times of
machines, house prices, etc. These random variables can take a set of possible different val-
ues, each with an associated probability; they can be used to model factors that fall outside
the control of the decision maker who only knows the probability distribution function of
these random variables. Such a distribution may be learned from statistical data or simply
an educated guess. The random variables can either be discrete or continuous.

There are also controllable variables on which one can decide, named decision variables;
they allow to model the set of possible choices for the decisions to be made. It should be

198 Constraints (2018) 23:196–209

noted that we ”decide” what values the decision variables take while we can only ”observe”
the outcome of random variables.

2.2 Chance constraint types

In addition, such problems may comprise stochastic constraints of the form Cs(x, r) where
x is a subset of decision variables and r is a non-empty subset of random variables. A
stochastic constraint expresses the relationship between random and decision variables. An
assignment x̄ satisfies Cs iff for every observed values r̄ of r , Cs(x̄, r̄) holds.

Stochastic constraints impose that a feasible decision must hold in whatever way the
uncertainty may unfold. This might be a conservative approach and hinders finding feasible
solutions in practice. One way to remedy this, for a given assignment x̄, is to require that
Cs(x̄, r) hold most of the time, rather than every time. That is, one would insist on decisions
guaranteeing feasibility as much as possible. In such a case, we may tolerate the fact that
for certain observed values r̄ of r , Cs(x̄, r̄) does not hold but insist that the sum of the
probabilities of cases where Cs(x̄, r̄) holds should be above a given threshold β ∈ (0, 1].
This can be quantified in terms of the satisfaction probability of Cs(x̄, r) as:

pr{Cs(x̄, r)} =
∑

r̄∈support (r)|Cs(x̄,r̄)holds

pr{r̄}

Requiring this probability to be equal to 1 can be modeled using stochastic constraints.
But if, instead, we require that the satisfaction probability is above a given threshold β, we
have chance constraints which are expressed as:

pr{Cs(x, r)} ≥ β

Note that when Cs(x, r) is a single constraint, we have what we call a single chance con-
straint or simply a chance constraint. But, when Cs(x, r) is a conjunction of other stochastic
constraints, we have what is referred to as a joint chance constraint.

2.3 Decision stages

Furthermore, the timing of observations versus decisions is specific to every uncertain prob-
lem but we need to effectively model the evolution of such information, i.e., the sequences
of decisions and observations.

The question of which one comes first, the fixing of the decision or the making of an
observation that unveils the uncertainty, is crucial. Both cases can arise in practice and
are problem-specific, and in fact in many uncertain problems partial decisions and partial
observations are made in stages and are interleaved with one another.

Despite the fact that we are dealing with many future uncertain elements, the empha-
sis should be on enhancing the decision that must be made in the present. Furthermore,
decisions should be taken while considering not only the present knowledge but also by
incorporating the new knowledge due to future observations in subsequent stages. A deci-
sion cannot properly be made in the present without considering the opportunities for
correction at later stages. We refer to decisions made at later stages as recourse decisions.
While taking recourse decisions, we should respond to observations of random variables
that have become available since the initial decision.

It is assumed that the probability structure is unaffected by any of the decisions that
are taken. That is the distributions of the random variables are fixed and unaffected by the

Constraints (2018) 23:196–209 199

decisions taken. The random variables, however, are not required to be independent of each
other in the statistical sense.

Given a set V of decision variables and a set R of random variables, the process of
alternating between decisions and observations can be stated as follows:

Time

t0 V0 ⊆ V set of the values chosen for the variables in V0
t1 R1 ⊆ R observation of the random variables in R1
t2 V1 ⊆ V set of the recourse values chosen for the variables in V1
. . .

t2i−1 Ri ⊆ R observation of the random variables in Ri

t2i Vi ⊆ V set of the recourse values chosen for the variables in Vi

. . .

t2k−1 Rk ⊆ R observation of the random variables in Rk

t2k Vk ⊆ V set of the recourse values chosen for the variables in Vk

where the Vi’s form a partition of V , and the Ri’s form a partition of R.
At the beginning (at time t0), we make some initial decisions followed by k stages. Each

stage i is composed of some observations (at time t2i−1) followed by some recourse actions
(at time t2i) that respond to the previous observations made at earlier stages. The number
of stages k is known as the finite horizon of the uncertain problem. It is crucial to under-
stand the evolution of information within this process. When we take the initial decisions
V0, nothing about the random variables in our process has been observed yet. However,
when we make recourse decisions at stage i, we should make use of the observations of
all random variables made at earlier stages (R1, . . . , Ri). At this point in time, we have
observed R1, . . ., Ri and these become fixed data points whereas the corresponding distribu-
tion for (Ri+1, . . . , Rk) becomes the conditional probability distribution given observations
of R1, . . ., and Ri . Indeed, when making recourse decisions Vi , we have additional infor-
mation available to us in the form of observations of previous random variables that are not
longer random variables, but instead have fixed values.

Thus, if at the present (time t0) we wish to decide on some recourse decisions at a later
stage Vi , we need to compute a range of possible decisions, one for each possible outcome
of the random variables R1, . . ., and Ri . It is simply wrong to think of the values of the
recourse decisions as a single value for each variable in Vi , instead we need to compute in
advance exactly how we would respond to each outcome of the previous observations. The
recourse decisions in stage i must respond to information that becomes available between
the initial stage and stage i. Therefore, these recourse decisions have to be modeled as a
function of that information instead of as a unique set of decisions to Vi .

With such a structure we cannot properly make decisions at a given stage without taking
into account the recourse opportunities we might have at later stages. Recourse decisions
are non-anticipative because they react to the past, but they cannot be based on knowing the
future before it happens [4].

3 Stochastic constraint satisfaction problems

In this section, we present the SCSP formalism and detail its expressive power in modeling
uncertain problems and identify utilizations of chance constraints in modeling uncertainties
in different situations.

200 Constraints (2018) 23:196–209

3.1 Modeling support for uncertain problems

SCSPs [10, 21, 22] provide a powerful modeling framework for problems in which
one is required to make decisions under uncertainty. An m-stage SCSP is a 7-tuple
〈V, R,D, P,C, β, L〉, where V is a set of decision variables, R is a set of random variables,
and D is a function mapping each element of V (respectively, R) to a domain (respectively,
support) of potential values. In classical SCSPs both decision variable domains and random
variable supports are assumed to be finite. P is a function mapping each element of S to
a probability distribution for its associated support. C is a set of chance-constraints over a
non-empty subset of decision variables and a subset of random variables. β is a function
mapping each chance-constraint h ∈ C to βh which is a threshold value in the interval (0, 1].
L = [〈V1, R1〉, . . . , 〈Vi, Ri〉, . . . , 〈Vm,Rm〉] is a list of decision stages such that each Vi is
a subset of V , each Ri is a subset of R, the Vi’s form a partition of V , and the Ri’s form a
partition of R.

SCSPs are indeed expressive enough to allow the declarative modeling of the different
requirements that might exist within an uncertain problem:

Decision and random variables: The decision and random variables are first-class citizens
within the SCSP formalism. Decision variables represent the decisions one wishes to
take whereas random variables model factors that fall outside the control of the decision
maker who only knows the probability distribution function of these random variables.

Stochastic constraints: to express a stochastic constraint Cs(x, r) where x is a subset of
the decision variables and r is a non-empty subset of the random variables that should
hold regardless of how the uncertainty will unfold, one should state the following:

pr{Cs(x, r)} ≥ 1

Single chance constraints: to express a single chance constraint C(x, r) where x is a sub-
set of the decision variables and r is a non-empty subset of the random variables such that
the satisfaction probability is beyond a given threshold β, one should state the following:

pr{Cs(x, r)} ≥ β

Joint chance constraints: to express a joint chance constraint over C1
s (x1, r1), ...,

Cm
s (xm, rm) that should hold with a satisfaction probability beyond a given threshold β,

one should state the following:

pr{C1
s (x1, r1) ∧ . . . ∧ Cm(xm, rm)} ≥ β

Stages: the decision stages of SCSPs neatly model the problem-specific sequences of
decisions and observations allowing for a declarative description of such evolution of
information. It also allows for specifying which decisions are recourse decisions and at
what stage.

3.2 Policy trees

The only remaining part is how to represent a solution to a SCSP that incorporates the
process of alternating between decisions and observations while satisfying all chance con-
straints. To solve an m-stage SCSP, an assignment to the variables in V1 must be found such
that, given random values for R1, assignments can be found for V2 such that, given random
values for R2, . . ., assignments can be found for Vm so that, given random values for Rm,
the chance constraints are satisfied in the specified fraction of all possible scenarios. Under
the assumption that random variable supports are finite, the solution of an m-stage SCSP

Constraints (2018) 23:196–209 201

is, in general, represented by means of a policy tree [21]. The arcs in such a policy tree
represent values observed for random variables whereas nodes at each level represent the
(recourse) decisions associated with the different stages. Each level of the tree represents a
stage. The arc in a path from the root to a leaf node is a scenario that represents a specific
scenario of how the future might unfold. We call the policy tree of an m-stage SCSP that is
a solution a satisfying policy tree. In a satisfying policy tree, each chance constraint is sat-
isfied in a number of scenarios. The sum of the probabilities of those scenarios is above the
satisfaction probability threshold value of that chance constraint. Solving an m-stage SCSP
is a computationally challenging task and it is in PSPACE [22], in general.

An m-stage SCOP is an m-stage SCSP with an additional objective function f over
a non-empty subset of decision variables and a subset of random variables. An optimal
solution to a maximization SCOP is a satisfying policy tree with a maximum expected value
for f .

Example 1 As an example of a global chance constraint, let us consider an instance of the
global chance constraint sorted< over decision variables x ∈ {1}, y ∈ {3}, and z ∈ {5} as
well as random variables r1 ∈ {1(1

3), 2(1
3), 3(1

3)} and r2 ∈ {3(1
3), 4(1

3), 5(1
3)} such that:

pr{sorted<(x, r1, y, r2, z)} ≥ β

where β = 1
9

Assignment 〈x = 1, y = 3, z = 5〉 has a satisfying policy tree as shown in Fig. 1.

3.3 Different utilizations of chance constraints

We distinguish between different possible utilizations of the various types of chance
constraints depending on the uncertainty context and modeling needs:

Fig. 1 Policy tree for the assignment 〈x = 1, y = 3, z = 5〉 wrt to chance constraint sorted<(x, r1, y, r2, z)

for which the satisfaction probability is equal to 1
9

202 Constraints (2018) 23:196–209

– Finding feasible decisions prior to the observation of random parameters is very chal-
lenging. It is almost impossible to definitely exclude later constraint violation caused
by realizations of random variables. For this reason, such constraint violation can be
balanced afterwards by some recourse decisions taken in a second stage. For instance,
making a recourse decision by buying a resource is an option for companies as a
recourse to an excepted shortage. So in a sense, for some uncertain problems, one can
deal with constraint violation by making use of the recourse decisions as long as it can
be done and makes sense. Such a class of problems can then be effectively modeled as
m-stage SCSPs that only comprise stochastic constraints.

– In some situations, however, the option of a recourse simply does not exist or cannot
be easily modeled as such in any reasonable way. For example in an inventory prob-
lem with uncertain demands, one wishes to guarantee a certain level of service level
by meeting a certain percentage of customer demands. Such situations cannot be mod-
eled in a sensible way by using recourse actions. Instead, one would rather insist on
decisions that guarantee the satisfaction probability above a certain threshold, i.e., as
chance constraints. Such a class of problems can be effectively modeled as single-stage
SCSPs that only comprise chance constraints in which one wishes to make decisions in
an uncertain environment and wants to guarantee a certain level of stability despite the
uncertainties.

– Obviously, there are situations which require a m-stage SCSP with stochastic and
chance constraints such as the inventory models in [23].

4 Propagation of chance constraints

In constraint programming, the constraints are not restricted to a particular form but they
can be linear, nonlinear, global, logical, or even symbolic. Hence, the forms of chance con-
straints support such a diversity as well. This expressive power, however, comes at cost
since solving an m-stage SCSP is a computationally challenging task and it is in PSPACE in
general [22]. However, as we show next, even if we restrict the form of chance constraints,
they still remain difficult to reason about.

Consider the following linear chance constraint [18]:

pr{ξx1 + x2 ≥ 7} ≥ β

where decision variables x1, x2 ∈ �, β ∈ (0, 1], and ξ is uniformly distributed in [0, 1]
with cumulative distribution:

F(t) =
⎧
⎨

⎩

0 if t ∈ (−∞, 0)

t if t ∈ [0, 1]
1 otherwise

let us denote by S(β) be the set of feasible solutions, i.e.,

S(β) = {(x1, x2) ∈ �2|pr{ξx1 + x2 ≥ 7} ≥ β)}
As shown in [18], S(0.3) is a convex set whereas S(0.7) is not. The feasible region

defined by a chance constraint generally is not convex even if ξx1 + x2 ≥ 7 is convex
for every possible realization of ξ . This simple example demonstrates that convexity of the
feasible set of chance constraints is not guaranteed in general even when we have linear
functions. Indeed, the convexity of chance constraints does not only depend on the convexity

Constraints (2018) 23:196–209 203

properties of the constraint function h but also of the distribution of the random parameters
ζ . Only under very strict assumptions is the convexity guaranteed [18].

Constraint propagation techniques are inference methods that help reduce the original
CSP to another which is smaller in size by pruning inconsistent values inferred by enforcing
a local consistency property on the individual constraints. In what follows, we review the
different approaches of propagating chance constraints.

4.1 Reformulation-based approaches

Since reasoning with chance constraints is computationally a challenging task, a naive
approach for stochastic constraints is to get rid off the uncertainty by substituting each ran-
dom variable r with some estimate r̃ . The resulting is a deterministic constraint that ignores
all other possible choices for r . Such a reformulation might be attractive from a compu-
tational perspective but is not effective in dealing with uncertainty. By considering only
one choice for the random variable and ignoring the others, hedging of decisions becomes
impossible. Hedging decisions require considering various possible outcomes of the uncer-
tain elements in order to be able to protect the decision maker from more losses than she
can afford by using only one estimate value of the random variables. That is, we are no
more able come up with hedging decisions that balance the risks and reflect the realities by
considering only one estimate value for r no matter how well selected the estimate might be.

A better way to allow for hedging is to reason about a chance constraint by means of
scenarios. Each scenario is a particular representation of how the future might unfold with
a certain probability. Each scenario is a possible realization of the random variables whose
probability is the product of the respective probabilities of the random variables’ values. We
denote by �h the set of all possible scenarios of a chance constraint h : pr{C(x, r)} ≥ β.
The probability of scenarios ř ∈ �h is denoted by pr(ř). Note that the number of scenarios
is exponential in the number of random variables. When we have k random variables, each
with only 2 possible values, the number of scenarios is 2k .

An equivalent scenario-based reformulation of chance constraint h that rewrites h as a
conjunction of deterministic constraints is obtained as follows [20].

Step 1: Introduce for each scenario ř ∈ �h an auxiliary Boolean variable Bř .
Step 2: Introduce for each scenario ř ∈ �h the deterministic logical constraint:

C(x, ř) ↔ Bř

Step 3: Introduce the following sum constraint:
∑

ř∈�h

pr(ř) ≥ β

Such a scenario-based reformulation can provide an ”approximate” propagation method
for chance constraints in general. However, it may suffer from the following potential
drawbacks:

– The number of auxiliary Boolean variables and logical constraints is exponential in
the number of random variables which may lead to an inefficient propagation method.
To avoid the exponential complexity, one could sample a limited number of scenarios.
Sampling few scenarios, however, may lead to a bad approximation of the satisfaction
probability unless the scenarios are sampled from the joint probability distribution;

– Most constraint solvers implement constraint reification for only some non-global
constraints. Thus, when C(x, ř) is a global constraint itself, we are forced to use a

204 Constraints (2018) 23:196–209

decomposition instead which makes the logical constraints even weaker in terms of
pruning; and

– When sampling is used, [24] introduced the notion of (α, ϑ)-consistency inspired by
(α, ϑ)-solutions proposed in [17]. Such a notion formalizes the level of consistency
achieved when sampling is used.

4.2 Consistency-based approaches

The authors in [10] extend the notion of Generalized Arc Consistency (GAC) for chance
constraints. Since chance constraints arise more naturally in single-stage SCSPs, we state a
simplified definition of GAC for single-stage chance constraints. The definition that takes
into consideration multiple-stages is given in [10].

In [2], the authors studied the computational complexity of reasoning with global
constraints and identified a number of crucial questions. At the core of all generic arc
consistency algorithms is the question which is generally asked for all values one by one [2]:

Instance A constraint C, a domain D on var(C) (i.e., the variables in the scope of
constraint C), and a value v for variable x ∈ var(C)

Question Does value v for x have a support on C in D? I.e., does there exist an assignment
that satisfies C in which x = v

We establish stochastic support for a given value for a chance constraint as follows:

Definition 1 Let a chance constraint pr{Cs(x, r)} ≥ β be given. A value for v in the
domain of xi ∈ var(Cs) is GAC iff there exists an assignment x̄ in which xi = v and

∑

r̄∈support (r)|Cs(x̄,r̄)holds

pr(r̄) ≥ β

In other words, for single-stage chance constraints, a value v in the domain of xi ∈
var(Cs) is GAC iff there exits an assignment x̄ in which xi = v which is a satisfying policy
tree.

Definition 2 A chance constraint pr{Cs(x, r)} ≥ β is GAC iff every value in the domain
of every variable in var(Cs) is GAC.

In [10] the authors show that GAC on a chance constraint can be intractable even when
maintaining GAC on the corresponding deterministic version of that constraint is tractable.
In particular, the authors in [10] show that maintaining GAC on the global alldifferent
chance constraint is NP-hard while maintaining GAC on the deterministic alldifferent
constraint is polynomial [12].

There exist different approaches to build propagation algorithms for single-stage chance
constraints in the literature:

Generic: The authors in [10] propose novel approximate generic propagation algo-
rithms for any single-stage chance constraint by synthesizing filtering algorithms for
chance-constraints by reusing the propagator of the deterministic version of the chance
constraint. The generic filtering algorithm has been extended in two ways in order to
obtain two incremental variations: a lightweight version as well as a memory-intensive

Constraints (2018) 23:196–209 205

one. Experiments on three benchmark problems (two stochastic constraint satisfaction
problems and a stochastic constraint optimization one) have shown that the filtering
algorithms in [10] outperform the reformulation-based approach in [21] in terms of prun-
ing and runtime. Overall, the approach in [10] has the advantage of being generic and
is superior to the reformulation approach in [21] but still has a huge space and time
complexity.

Specialized Propagators: The works in [13–16] propose ad-hoc filtering strategies for
handling specific chance-constraints.

In [7], an approximate flow-based filtering algorithm – based on specific bounding
mechanisms computed by means of minimum-cost network flows– has been developed
for the intractable single-stage weighted alldifferent chance constraint. The approach in
[7] differs from [10] in that it does not explicitly represent the policy tree. It instead builds
it during search for the particular chance constraint considered. By exploring the combi-
natorial structure of the weighted alldifferent chance constraint, the authors managed to
generate sufficiently small sub-policy trees. Thus, achieving a more scalable propagator
wrt approach in [10] or [21] but with the drawback of being less effective in terms of
pruning.

Note that the above consistency definition for chance constraints assumes that all the
random variables in R have discrete finite support. If at least one random variable in R

has an infinite support (e.g. infinite discrete support and/or infinite continuous support),
then for any assignment x̄ the corresponding policy tree would compromise an infinite
number of arcs. Indeed, the sum that tests whether a value v is GAC or not would be
an infinite sum. Inspired by the concept of (α, ϑ)-solutions proposed in [17], the work
in [24] introduced the notion of (α, ϑ)-consistency for chance constraints of single-stage
SCSPs in which at least one random variable has an infinite support. In [24], the prob-
lem of enforcing (α, ϑ)-consistency is reformulated as a statistical inference problem about
an unknown parameter. Two methods based on sampling for enforcing (α, ϑ)-consistency
have been proposed: the first is based on confidence intervals whereas the second reformu-
lates the problem using composite hypothesis testing. These methods have been validated
empirically in [24]. However, none of these methods has been applied to a benchmark
SCSP.

5 Discussion

Chance constraints provide a powerful modeling framework for expressing various rela-
tionships between random and decision variables. However, there are some subtleties worth
noting when modeling with chance constraints that have not been addressed yet in the
literature.

5.1 Choice of proper satisfaction probability thresholds

For many applications, single-stage SCSPs that only comprise chance constraints may seem
appealing from a modeling perspective. However, there are some difficulties worth noting.
Firstly, given a chance constraint pr{Cs} ≥ β, an important question is what constitutes a
good value for the satisfaction probability β. It should get closer to the value 1 as the serious-
ness of violating the constraint increases but there is no guidance or method of quantitatively
assess the ”seriousness” of constraint violation.

206 Constraints (2018) 23:196–209

Secondly, the issue of the interaction of multiple chance constraints arises since we are
dealing with different satisfaction probabilities. Suppose we have two chance constraints h1
and h2:

h1 : pr{C1
s } ≥ β1 ∧ h2 : pr{C2

s } ≥ β2

We have two subtleties to pay attention to: (1) when a violation of either chance constraint
would mean the violation of h1 and h2?; and (2) shouldn’t we rather state the conjunction
of two separate chance constraint as a joint chance constraint instead, as follows?

h : pr{C1
s ∧ C2

s } ≥ β

However, when using such a formulation, what would be an appropriate value of β and how
to differentiate between the ”seriousness” of constraint violation for each chance constraint?

5.2 Decomposition of chance constraints

Another modeling subtlety arises when we wish to decompose a global chance constraint.
In most cases, a deterministic global constraint can be decomposed into a conjunction of
more primitive constraints that are semantically equivalent. For instance, the alldifferent
constraint can be decomposed into a clique of binary not-equals constraints. These two
formulations are semantically equivalent but wrt to propagation or complexity one might be
more effective than the other [3].

Let C be an n-ary deterministic global constraint that is semantically decomposable into:

C ⇔
m∧

i=1

Ci

Now, suppose that C is a chance constraint instead over a set of decision and discrete
random variables. Then, the global chance constraint can be stated as follows:

pr{C} ≥ β ⇔ pr{
m∧

i=1

Ci} ≥ β

But this reformulation just converted the single chance constraint into a joint chance
constraint!

Furthermore, when in the deterministic case, we have:

C ⇔
m∧

i=1

Ci

in general and when β < 1, pr{C} ≥ β is not semantically equivalent to

m∧

i=1

pr{Ci} ≥ β

Example 2 Consider the following instance of the alldifferent global chance constraint:

pr{alldifferent(x, y, r)} ≥ β = 1

2

where decision variable x ∈ {1}, decision variable y ∈ {2}, and discrete random variable
r ∈ {1(1

3), 2(1
3), 3(1

3)}.

Constraints (2018) 23:196–209 207

Fig. 2 Policy tree for the assignment 〈x = 1, y = 2〉 wrt to chance constraint pr{x �= r ∧ y �= r} which is
equal to 1

3

As illustrated in Fig. 2, the global chance constraint is unsatisfiable since:

pr{alldifferent(x, y, r)} = 1

3
<

1

2

whereas, as shown in Fig. 3, the decomposition is satisfiable since pr{x �= r} = pr{y �=
r} = 2

3 which is greater than 1
2 and x �= y is true. Note that this anomaly cannot be resolved

by sampling from the joint distribution of the random variables in general since in this
example we only have one random variable.

Fig. 3 (Left) Policy tree for the assignment x = 1 wrt to chance constraint pr{x �= r} which is equal to 2
3 .

(Right) Policy tree for the assignment y = 2 wrt to chance constraint pr{y �= r} which is equal to 2
3

208 Constraints (2018) 23:196–209

6 Conclusion

Chance constraints are a major modeling tool for combinatorial problems under uncertainty.
Within the constraint programming literature, there exits no survey paper that deals specif-
ically with chance constraints. In this paper, we summarize the basic modeling ingredients
of uncertain combinatorial problems and shown how the SCSP formalism is able to support
high-level declarative constructs that allow for ease of modeling of uncertain problems in
general. Finally, we described the various types of chance constraints (stochastic, single, and
joint) and their applicability in various modeling situations. Furthermore, we outlined the
different propagation methods of such constraints and discussed some modeling subtleties
that arise when modeling with chance constraints.

References

1. Balafoutis, T., & Stergiou, K. (2006). Algorithms for stochastic csps. In Principles and Practice of
Constraint Programming, CP 2006 (pp. 44–58): Proceedings.

2. Bessiere, C., Hebrard, E., Hnich, B., Walsh, T. (2007). The complexity of reasoning with global
constraints. Constraints, 12(2), 239–259.

3. Bessiėre, C., & Van Hentenryck, P. (2003). To be or not to be ... a global constraint. In Principles and
Practice of Constraint Programming - CP 2003, 9th International Conference, CP 2003 (pp. 789–794).
Kinsale: Proceedings.

4. Birge, J.R., & Louveaux, F. (1997). Introduction to Stochastic Programming. New York: Springer Verlag.
5. Brown, K.N., & Miguel, I. (2006). Uncertainty and change. In Rossi, F., van Beek, P., Walsh, T. (Eds.)

Handbook of Constraint Programming, chapter 21: Elsevier.
6. Charnes, A., & Cooper, W.W. (1959). Chance-constrainted programming. Management Science, 6(1),

73–79.
7. Cire, A.A., Coban, E., van Hoeve, W.-J. (2012). Flow-Based Combinatorial Chance Constraints,

(pp. 129–145). Berlin: Springer Berlin Heidelberg.
8. Fargier, H., Lang, J., Martin-Clouaire, R., Schiex, T. (1995). A constraint satisfaction framework

for decision under uncertainty. In Besnard, P., & Hanks, S. (Eds.) UAI ’95: Proceedings of the
Eleventh Annual Conference on Uncertainty in Artificial Intelligence (pp. 167–174). Montreal: Morgan
Kaufmann.

9. Hnich, B., Rossi, R., Tarim, S.A., Prestwich, S. (2011). A survey on CP-AI-OR hybrids for decision
making under uncertainty. In van Hentenryck, P., & Milano, M. (Eds.) Hybrid Optimization, volume 45
of Springer Optimization and Its Applications, chapter 7 (pp. 227–270). New York: Springer.

10. Hnich, B., Rossi, R., Armagan Tarim, S., Prestwich, S.D. (2012). Filtering algorithms for global chance
constraints. Artificial Intelligence, 189, 69–94.

11. Kall, P., & Wallace, S.W. (1994). Stochastic Programming. Hoboken: Wiley.
12. Regin, J.-C. (1994). A filtering algorithm for constraints of difference in csps. In Proceedings of the 12th

National Conference on Artifcial Intelligence, (Vol. 1 pp. 362–367). Seattle: AAAI Press.
13. Rossi, R., Tarim, S.A., Bollapragada, R. (2012). Constraint-based local search for computing non-

stationary replenishment cycle policy under stochastic lead-times. INFORMS Journal on Computing,
24(1), 66–80.

14. Rossi, R., Tarim, S.A., Hnich, B., Prestwich, S. (2008). A global chance-constraint for stochastic
inventory systems under service level constraints. Constraints, 13(4), 490–517.

15. Rossi, R., Tarim, S.A., Hnich, B., Prestwich, S.D. (2008). Cost-based domain filtering for stochastic
constraint programming. In Stuckey, P.J. (Ed.) Principles and Practice of Constraint Programming, CP
2008, Proceedings, volume 5202 of LNCS (pp. 235–250): Springer.

16. Rossi, R., Tarim, S.A., Hnich, B., Prestwich, S. (2010). Computing replenishment cycle policy under
non-stationary stochastic lead time. International Journal of Production Economics, 127(1), 180–189.

17. Rossi, R., Hnich, B., Armagan Tarim, S., Prestwich, S. (2015). Confidence-based reasoning in stochastic
constraint programming. Artificial Intelligence, 228, 129–152.

18. Sahinidis, N.V. (2004). Optimization under uncertainty: State-of-the-art and opportunities. Computers
and Chemical Engineering, 28, 971–983.

19. Tarim, S.A., Hnich, B., Prestwich, S.D., Rossi, R. (2008). Finding reliable solution: Event-driven
probabilistic constraint programming. Annals of Operations Research.

Constraints (2018) 23:196–209 209

20. Tarim, S.A., Hnich, B., Rossi, R., Prestwich, S. (2009). Cost-based filtering techniques for stochastic
inventory control under service level constraints. Constraints, 14(2), 137–176.

21. Tarim, S.A., Manandhar, S., Walsh, T. (2006). Stochastic constraint programming: A scenario-based
approach. Constraints, 11(1), 53–80.

22. Walsh, T. (2002). Stochastic constraint programming. In European Conference on Artificial Intelligence,
ECAI’2002 (pp. 111–115): Proceedings.

23. Zghidi, I. (2011). Computing optimal (s,s) policy parameters under service level constraints: A stochastic
constraint programming approach. Tunisia: Master’s thesis, Sfax University.

24. Zghidi, I. (2016). Towards Statistical Consistency for Stochastic Constraint Programming. Tunisia: PhD
thesis, University of Sfax.

	Modeling uncertainties with chance constraints
	Abstract
	Introduction
	Modeling ingredients of uncertain problems
	Random variables
	Chance constraint types
	Decision stages

	Stochastic constraint satisfaction problems
	Modeling support for uncertain problems
	Policy trees
	Different utilizations of chance constraints

	Propagation of chance constraints
	Reformulation-based approaches
	Consistency-based approaches
	Instance
	Question

	Discussion
	Choice of proper satisfaction probability thresholds
	Decomposition of chance constraints

	Conclusion
	References

