
Constraints (2018) 23:87–122
https://doi.org/10.1007/s10601-017-9277-y

How efficient is a global constraint in practice?
A fair experimental framework

Sascha Van Cauwelaert1 ·Michele Lombardi2 ·
Pierre Schaus1

Published online: 13 October 2017
© Springer Science+Business Media, LLC 2017

Abstract Propagation is at the very core of t can provide signi: it can provide significant
performance boosts as long as the search space reduction is not outweighed by the cost for
running the propagators. A lot of research effort in the CP community is directed toward
improving this trade-off. While experimental evaluation is here of the greatest importance,
there exists no systematic and flexible methodology to measure the exact benefits provided
by a given (new) filtering procedure. This work proposes such a framework by relying on
replaying search trees to obtain more realistic assessments. Reducing propagation overhead
is done chiefly by 1) devising more efficient algorithms or by 2) using on-line control poli-
cies to limit the propagator activations, i.e., mechanisms to reduce the number of propagator
calls. In both cases, obtaining improvements is a long and demanding process with uncertain
outcome. We propose a method to assess the potential gain of both approaches before actu-
ally starting the endeavor, providing the community with a tool to best direct the research
efforts. In order to visualize benefits of actual global constraints and the potential of their
improvement, we suggest the use of performance profiles. Our approach is showcased for
well-known global constraints: ALLDIFFERENT, CUMULATIVE, BINPACKING and UNARY

(with transition times).

Keywords Constraint programming · Propagator · Global constraint · Evaluation ·
Analysis · AllDifferent · Cumulative · BinPacking · Unary resource · Performance profiles

� Sascha Van Cauwelaert
sascha.vancauwelaert@uclouvain.be

Michele Lombardi
michele.lombardi2@unibo.it

Pierre Schaus
pierre.schaus@uclouvain.be

1 Université Catholique de Louvain, Place Sainte Barbe, 2 bte L5.02.01, 1348 Louvain-la-Neuve,
Belgium

2 Università di Bologna, Viale del Risorgimento 2, Bologna, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10601-017-9277-y&domain=pdf
mailto:sascha.vancauwelaert@uclouvain.be
mailto:michele.lombardi2@unibo.it
mailto:pierre.schaus@uclouvain.be

88 Constraints (2018) 23:87–122

1 Introduction

Filtering (also known as Propagation) is a key ingredient of CP: it makes a constraint solver
capable of pruning large portions of the search space, possibly saving significant exploration
times. In practice, the strongest filtering algorithms are not always the winners on every
problem. As explained in [52]: maintaining a higher level of consistency takes more time; on
the other hand, if more values can be removed from the domains of the variables, the search
effort will be reduced and this will save time. Whether or not the time saved outweighs the
time spent depends on the problem, the algorithm, its implementation, the search heuristics,
and the propagation queue strategy used in the solver.

The CP community has invested a lot of effort to improve this trade-off by researching
the most efficient filtering algorithms. As an example, the SEQUENCE constraint was intro-
duced in 1994 [5], but no poly-time Global Arc Consistency (GAC) algorithm was available
until 2006 [28]. Then, the original GAC run time of O(n3) was not low enough to consis-
tently beat weaker (but cheaper) propagators. This motivated improvement efforts that are
still ongoing [7, 13, 14]. Other people proposed guarding techniques to reduce the number
of times a heavy GAC algorithm is triggered. In the case of guarding propagation, [20] pro-
poses a probabilistic model to estimate if ALLDIFFERENT (bound consistency) will be able
to reduce a domain. In [45], the authors determine cases where domain propagators can
simply be replaced by lighter bound propagators without increasing the search space.

The trade-off between computation time and pruning power is even more critical for
NP-hard constraints. For example, Energetic Reasoning (ER) was proposed as a (pow-
erful) filtering technique for CUMULATIVE in the nineties (see [4, 22]): however, the
approach has never been widely employed due to its large run time. Improving the origi-
nal O(n3) algorithm took in this case around 20 years [17], while an approach to reduce
the overhead by guarding the ER activation with a necessary condition was presented only
in 2011 [9].

Not surprisingly filtering is still an important research topic in the CP community. Unfor-
tunately rigorous tools and methodologies to analyze the performance of filtering algorithms
for global constraints are missing. This work introduces generic tools and a methodology
to probe the potential of filtering techniques and to assess the likely impact of specific
improvements (e.g., time complexity, better implementation). Such tools would allow the
researchers to focus their efforts in the most promising directions. For example, a researcher
may be interested in finding a more efficient way to enforce Generalized Arc Consistency
(GAC) for a specific constraint: with the current methodologies, knowing if this line of
research is worth investigating remains an open question until a new algorithm is actu-
ally devised and evaluated. With the approach we propose, instead, it becomes possible to
estimate and bound a-priori the potential effectiveness of a propagator improvement.

Tools to analyze the solving process of CP are not new. Some interesting visual tools have
already been introduced. For instance the Oz/Gecode explorer allows visualizing the search
tree [43] and interacting with it through a GUI. CP-Viz is a generic visualization platform
for CP [51] allowing an advanced post-mortem analysis of the solving process. In CP-Viz
the user can visualize each constraint and its filtering, which is very useful for teaching CP
or debugging models and constraints. The visual search tree profiling tool introduced in [48]
allows comparing search trees visually with convenient navigation techniques, letting the
user compare and understand the differences in terms of search space exploration between
different configurations and models.

Unfortunately those visualization tools do not allow a fine grained analysis of the time
benefits of adding a specific filtering to an existing model for a large set of instances. These

Constraints (2018) 23:87–122 89

tools do also not allow evaluating what would be the benefit of reducing the computation
time of a specific filtering procedure.

The notion of global constraint was formally defined a decade ago [12] through a com-
parison with its decomposition into simpler constraints. Several definitions are provided
depending on the considered perspective. Intuitive descriptions for each perspective are:

– A constraint is global if no such decomposition exists (expressiveness).
– A constraint is global if its filtering algorithm is strictly stronger than the decomposi-

tion, at least in some cases (quality of filtering).
– A constraint is global if its filtering algorithm has a strictly better time and/or space

complexity, compared to the filtering done by the decomposition (computational
efficiency).

Those definitions provide an elegant framework to theoretically compare a global constraint
with a decomposition, but do not explain how to assess the practical benefits provided by a
global constraint on a set of representative instances. One of the contributions of this work
is a practical and rigorous framework as an attempt to fill in this gap.

For preliminary analysis, standard profiling tools already allow discovering the fraction
of time spent in each propagator, making it possible to estimate roughly potential speedups.
This work (an extended version of [56]) goes one step further and tries to answer those
questions by proposing a methodology and visual analysis tools inspired by performance
profiles [19].

A typical approach to compare different filtering algorithms consists in measuring time
and number of backtracks with respect to a baseline approach, on a set of benchmark
instances that are solved to completeness. This allows assessing the propagator perfor-
mance, but provides little or no information on the consequences of its speed-up. It is also
common to use static search strategies (e.g., fixed variable heuristic, min value) to make the
evaluation fair and rigorous since a stronger filtering has a guarantee to explore a reduced
search tree. The rationale behind static strategies usage is that the search nodes order is
known a priori and is not influenced by the current solver state, eg., by current domains
filtered by the evaluated algorithms. A first drawback of this approach is the risk to bias
the analysis, since dynamic strategies are often preferred in practice. Second, instances that
can be solved to completeness (required to ensure that the same search space is visited) are
generally small, which may not be the case for real applications. Third, differences in the
complexity of filtering algorithms become more relevant as the instance size grows: there-
fore, being forced to focus on small instances may lead to misjudging the performance gap
between different propagators.

Contributions We propose to extend the traditional evaluation approach with two main
contributions:

1. A method to compare propagators in a principled fashion, by storing and replaying
search trees (see [56]), in order to enable fair comparisons with arbitrary search strate-
gies and instance sizes. Its main asset is that it enables to measure the exact impact of
a propagator on the solving of a given problem. Shishmarev et al. already noticed the
importance of replaying, in the context of search tree visualization [48, 50] and better
understanding of learning solvers behavior [49].

2. A simple model to evaluate the potential for improvement that a propagator has. This is
achieved by instrumenting the solver to collect information about the constraint whose
potential is to be evaluated.

90 Constraints (2018) 23:87–122

Paper outline This paper first motivates the need for our framework. It then introduces
our replay technique used to make a fair evaluation of filtering procedures, and describes
how to implement it. We then propose our simple approach to assess the impact of a prop-
agator improvement. For ease of access, our method has been made an integral part of the
OscaR solver [37], and Section 5 explains how the method can be used. We finally give a
case study about different propagators for several constraints using our evaluation approach:
ALLDIFFERENT, CUMULATIVE, BINPACKING and UNARY with transition times. As for the
impact of propagator improvements, we focused on CUMULATIVE and the Revisited Car-
dinality Reasoning for BINPACKING. Applying our method allowed obtaining valuable
insights: for example, we found that (somehow counter-intuitively) Energetic Reasoning
cannot provide improvements on a number of typical scheduling instances, even if the
run-time of the propagator is reduced to zero. Conversely, investigating different, comple-
mentary forms of filtering for CUMULATIVE has a much greater potential. We also observed
that changing the search strategy may have a significant impact on the effectiveness of some
propagators.

2 Motivation

This section provides the motivation that impelled us to propose our approach. We wish to
design methods that allow a thorough analysis of the behavior of propagators in CP and
to understand their potential. More precisely, we want to characterize exactly how much
search space reduction and time gain is provided by the additional use of a given propagator.
This is usually done by comparing the execution with and without the evaluated propagator.
Currently, the comparison is made using dynamic and static search strategies. Both methods
have their merits, but also substantial limitations:

– Dynamic strategies have a significant impact on which part of the search space is visited
first, sometimes providing tremendous solving speed-up as compared to static strate-
gies. They therefore intuitively make for more realistic evaluations since they are the
ones programmers use in practice. Nevertheless, they allow poor control and limited
insights in the behavior and potential of the propagator itself, since it is impossible to
quantify how much additional filtering and search decisions were influenced by each
other.

– On the other hand, static strategies allow measuring exactly the search space reduction
provided by a propagator. However, they are rarely used in practice because they gen-
erally provide poor solving time performance. At the same time, dynamic and static
search strategies perform differently, so an evaluation of a propagator with a static strat-
egy can hardly be generalized to the usage with a dynamic strategy. This makes the
comparison with static strategies somewhat artificial, since it is not representative of
practical usage.

We argue that the designers of global constraints are currently missing an additional
methodology that enables the same degree of control and ease of analysis of static strategies,
in an experimental setup that is almost as realistic as that of dynamic strategies. In our
opinion, as a key feature, such an approach should retain the ability of static strategies to
distinguish clearly the benefits that are provided by inference and those that come from the
search strategy. One of the main contributions of this work is a framework to perform global
constraints evaluation that owns these important characteristics.

Constraints (2018) 23:87–122 91

Section outline The motivation for our approach is presented as follows: we start by
introducing a formalism to describe the search process in a CP solver, and we identify the
conditions that enable one to measure precisely the impact of inference on the search per-
formance. We use the formalism to discuss the current evaluation methods and to point out
their limitations. Finally, we show how the approach we propose fills in the gap between
the traditional evaluation methods, and allows the designer of a global constraint to obtain
even more insights in the algorithm behavior and its potential.

2.1 Search formalization

We call a model M a set of filtering procedures1 that allow one to solve a given problem p

in a sound and complete manner using search. M ∪ φ1 . . . ∪ φn denotes the model M where
the set of filtering procedures {φ1, . . . , φn} are used additionally in the fix point algorithm.

As described in [54], in a Depth-First Search backtracking algorithm, a node p =
{b1, . . . , bj } in the search tree is identified by a set of branching constraints where bi ,
1 ≤ i ≤ j is the branching constraint posted at level i of the search tree. A node p

is extended by adding the k branches p ∪ {b1
j+1}, . . . , p ∪ {bk

j+1} for some branching

constraints bi
j+1, 1 ≤ i ≤ k.

The branches are often dynamically ordered using a heuristic, with the left-most branch
being the most promising. To ensure completeness, the constraints posted on all the branches
from a node must be exhaustive (for efficiency reasons, they are typically also mutually
exclusive). Usually, branching strategies consist in posting unary constraints (e.g., X ≤ a

and X > a) or binary constraints (e.g., X ≤ Y and X > Y). In this case, a variable ordering
heuristic is used to select the next variable to branch on and the ordering of the branches is
determined by a value ordering heuristic.

Definition 1 A branching procedure is a function that, given a search node p =
{b1, . . . , bj } at level j of the search tree, computes the branching constraints at the next
level: β(p) = 〈b1

j+1, . . . , b
k
j+1〉. The branching constraints are contracting [6], i.e., domains

can only be reduced. Moreover, we assume that after imposing a constraint, at least one
domain is reduced. Finally, the procedure has implicitly access to the current state of the
constraint store (not written explicitly for notation brevity).

Example 1 βff is the first-fail binary branching procedure. On the left branch, it assigns the
variable with the smallest domain cardinality to its smallest value, and it removes this value
from the variable domain on the right branch. Formally, it returns two branching constraints
c and ¬c, with c ≡ arg min

x∈X

(|D(x)|) = min(D(x)), where X is the set of current unbound

decision variables and |D(x)| is the cardinality of the domain of x.

Definition 2 A Constraint Branching Tree (CBT) t rooted at node p is a (possibly
empty) ordered finite sequence of pairs (〈b1, t1〉, . . . , 〈bi, t i〉, . . . , 〈bk, tk〉), where β(p) =
{b1, . . . , bk} are the branching constraints (returned by a branching procedure) and t i is a
CBT for the node p∪bi . Intuitively, it can be thought of as a tree with branches labeled with

1The terms constraint and propagator are also used interchangeably in this paper.

92 Constraints (2018) 23:87–122

Fig. 1 Example of a CBT

branching constraints, to be traversed with a Depth-First Search. The definition of branch-
ing procedure ensures the structure is finite. An empty CBT is written (). T is the set of all
CBTs. An example of a CBT is given in Fig. 1

2.2 Evaluation of global constraints

Formally, we consider the problem of evaluating a filtering function φ that maps a set of
domains D1, . . . Dn to a second set of domains D′

1, . . . D
′
n such that D′

i ⊆ Di .2 In practice,
φ may represent a propagator for enforcing GAC or a domain-specific consistency level
(e.g., Energetic Reasoning), or it can be some kind of meta-propagation scheme such as
Singleton Arc Consistency [10].

Like many other approaches, we measure the performance of the algorithm to compute φ

by comparing the time needed to solve a target CSP using a baseline model M ∪φM and an
extended model M ∪ φ. We call φM the baseline filtering function (e.g., a decomposition of
a global constraint) that is to be replaced in the extended model by the algorithm φ that we
want to evaluate. We also require the property that φM is subsumed by φ, i.e., φ performs at
least the same deductions as φM (for instance, in the case of an ALLDIFFERENT constraint,
φM can be a binary decomposition while φ would be the GAC filtering).

Notice that it often happens that we wish to evaluate the use of a stronger propagator
while keeping weaker algorithms in the propagation queue with a higher priority, as stronger
propagation can come at the cost of a higher time complexity. This also has to be done if we
want to compare φ with a baseline filtering function φM that φ does not subsume. In this
case, we compare the model M∪φM with M∪φM ∪φ, i.e., we construct the extended model
by adding φ to the baseline model instead of replacing φM by φ. To reduce the notation,
when φ is added to the baseline model instead of replacing φM , one can denote the baseline
model by M and the extended model by M ∪ φ.

To ensure the measured difference between the two models is only due to propagation
alone, two conditions must be respected:

C.1 The two runs must explore the same search space;
C.2 All search nodes (and therefore the solution nodes) that are visited by both runs are

visited in the same order.

2Some particular CP approaches, such as the ones using Decision Diagrams [8], perform inference on internal
data structures. But in the end, potential partial assignments are removed by propagation (e.g., by removing
an arc of a Decision Diagram) and the inference made on Decision Diagrams can always be projected to
variable domains.

Constraints (2018) 23:87–122 93

The first requirement is always met as long as M∪φM and M∪φ are semantically equivalent
(i.e., they have the same solutions) and the problem is solved to completeness (feasibility or
optimality). Without the second requirement, M∪φM or M∪φ could get an unfair advantage
if the search strategy quickly allows hitting a feasible solution (and stops, for feasibility
problems), or a high-quality solution (and gets a good bound, for optimality problems).
The next section discusses existing evaluation methods from the perspective of those two
requirements.

2.3 Current evaluation methods and their limitations

There exist two families of search strategies in CP: static and dynamic strategies. For
static strategies, also known as lexicographic-order search strategies, the order in which the
branching constraints are posted is (implicitly) known prior to the search process, mean-
ing that the pruning happening at a search node has no effect on this order. An example is
a branching procedure that always returns two constraints C and ¬C, such that C assigns,
according to a fixed variable order that is known a priori, the first unassigned variable to its
smallest domain value. On the other hand, dynamic strategies do take the search state into
account when creating the branching constraints. They are an essential asset of CP to get
good performances. An example of dynamic strategy is the branching procedure described
in Example 1.

While static and dynamic strategies are important, they both have strong limitations from
an evaluation perspective, as we argue hereafter.

Dynamic strategies can be used for evaluation while respecting condition C.1 under the
condition that instances are solved to completeness. This is already a strong limitation,
since it prevents evaluation on large-scale instances. Moreover, dynamic strategies cannot
guarantee that condition C.2 is satisfied in general. Let us illustrate with a first hypotheti-
cal example how this can lead to unfair conclusions (see Fig. 2). On the left tree, a model
M ∪ φM is used, and the branching procedure returns the branching constraints 〈C, ¬C〉 at
the root node. This leads the search toward a region where the only solution of the problem
(found in the green node) lies. Let us now consider the right tree: the same branching pro-
cedure is used but the model is extended to M ∪ φ, such that more domain pruning occurs
at the root node. It is possible, due to the dynamic nature of the search strategy, that the
branching constraints are swapped so that the constraint ¬C is imposed on the left branch.
The whole left subtree will have to be traversed before the correct search region can even be
considered. It would be unfair to impute this bad performance to φ solely, since the propaga-
tor was in fact able to prune (perhaps significantly) more, and could help in practice with a
slightly different context (e.g., with a different search strategy). When using dynamic strate-
gies, the unpredictable effects of combined search and propagation prevent measurement
of benefits/harm induced by the additional pruning.3 The effects of φ should be isolated to
really quantify the amount of pruning that a new propagator can perform.

Let us insist on this point with a real example. Example 2 illustrates how using dynamic
strategies to evaluate a global constraint can lead to unfair conclusions.

3Notice that a similar reasoning could be done for another example where the left and right tree are attributed
to M ∪ φ and M ∪ φM , respectively.

94 Constraints (2018) 23:87–122

Fig. 2 Comparison of searches by two different models M ∪ φM and M ∪ φ with the same dynamic search
strategy

Example 2 Consider the first BL instance [3] with 20 activities for the Resource Constrained
Project Scheduling Problem (RCPSP). The Time-Tabling propagator and Energetic Reason-
ing Checker [4] are used for the CUMULATIVE constraint in the baseline model M . If the
branching procedure βff of Example 1 is used, 100 nodes are required for finding the opti-
mal solution. However, if the Energetic Reasoning Propagator φ is used additionally (i.e.,
together with the Energetic Reasoning Checker and Time-Tabling propagator, and hence
additional pruning is possible in M ∪ φ), then 124 nodes are required. While the model
M ∪ φ has been able to prune more, more nodes were required to find the optimal solu-
tion. The blame for this counterintuitive behavior is on the interleaving of propagation and
branching, rather than on the Energetic Reasoning propagator itself. Indeed, in this case,
more propagation occured at a certain node, and the branching procedure generated a differ-
ent sequence of branching constraints such that a behavior similar to the one illustrated in
Fig. 2 happened. So, if the solution time is used as a metric for the evaluation, in such a case
a clear non-beneficial bias4 would apply against Energetic Reasoning. Notice an opposite
bias is also possible.

Static strategies allow ensuring that condition C.2 is fulfilled, by definition. Condition
C.1 is easily respected, by solving instances to completeness, possibly after having reduced
the search space by adding constraints at the root node. This explains why researchers some-
times use those strategies to evaluate a global constraint. However, a major issue with that
approach is that static search strategies are rarely used in practice, since they are often out-
performed by dynamic ones. So the obtained conclusions may be biased, as the propagator
will rarely be used in that context.

With Example 3, let us briefly showcase that static strategies do not line up with reality.

Example 3 We consider the same comparison made in Example 2. Let us use a lexico-
graphic branching strategy on the starts of the activities: on the left branch, the activity start
is assigned to its minimum value, on the right branch this value is removed from its domain.
Without Energetic Reasoning, one obtains 20081 nodes to prove optimality, while with the

4In principle, one might remove most of the bias by using statistics, i.e., by running experiments with many
instances and many search strategies. However, this is an expensive process and it is not always viable.

Constraints (2018) 23:87–122 95

additional propagation one only requires 8789 nodes. Since the strategy is static, we need
less nodes with more pruning, as expected. However, in Example 2, we made the opposite
conclusion with a dynamic strategy. More importantly, the results reported here are quite
different from those a user would get in practice: both approaches require much more nodes
and the ratio of the number of nodes required by M ∪φ by the number of nodes required by
M goes from 1.24 to ∼ 0.44.

Finally, Example 4 should convince the reader that when evaluating a filtering algorithm,
one may get opposite outcomes depending on wether a static or a dynamic search strategy
is used.

Example 4 Let us consider the 15th BL instance [3] with 25 activities for the RCPSP.
We wish to evaluate if adding Energetic Reasoning to solve the instance is beneficial. Let
us first use the static strategy of Example 3. The required number of nodes to solve the
instance without Energetic Reasoning is 193038 while only 24140 nodes are necessary if it
is used additionally. Moreover, it takes ∼ 16 and ∼ 13 s5 to solve the instance without and
with the additional propagator, respectively. One could therefore conclude that Energetic
Reasoning should be used. However, if we make the same comparison using the SetTimes
dynamic strategy from [32], the results differ: only 51754 (respectively 18064) nodes are
required without (respectively with) Energetic Reasoning. The ratio is therefore quite differ-
ent (24140/193038 � 0.125 as compared to 18064/51754 � 0.349), but more importantly,
the solution time is ∼ 1.5 s in the first case and ∼ 4 s in the latter case. We would therefore
consider in this case that Energetic should not be used to solve the instance. This illustrates
that there is a need to line up with dynamic strategies that are actually used in practice when
we perform the evaluation of a global constraint, since static branchings can lead to oppo-
site conclusions. Although illustrated on a single instance, this phenomenon is not rare on a
complete benchmark suite.

2.4 Aim of this work

In this paper, we suggest a framework to evaluate a global constraint φ while respecting
conditions C.1 and C.2 so that any difference in execution can only be attributed to addi-
tional propagation provided by φ. This point was already raised in [56] and then in [48, 50].
At the same time, we wish for the ability to use search strategies that are as close as possible
to those actually employed in practice, and we want to keep the possibility of using large
instances, so we wish to avoid to force completeness to ensure condition C.1.

In addition, to better understand the potential of improving propagators from a compu-
tation time point of view, we suggest the simple yet very informative concept of fictional
propagator. In brief, they allow estimating the impact on the solving time of a problem,
assuming that a propagation time improvement has been found (e.g., reduction of the time
complexity of a given propagator).

Notice that the approach we propose is not necessarily meant to replace existing ones. We
simply think that our framework can strengthen the conclusions of an evaluation. But one
could use our framework together with traditional evaluations: for instance, by comparing
the results we obtain with those of a traditional evaluation based on dynamic strategies, it is
possible to measure the effect of the interplay between the stronger inference and the search.

5With a 2.2 GHz Intel Core i7 processor.

96 Constraints (2018) 23:87–122

Fig. 3 CBT inclusion: ta ⊆ tb

In order to ensure conditions C.1 and C.2 are satisfied during our evaluation, the com-
pared models must traverse CBTs linked by a well-defined relation, that we call CBT
inclusion (Fig. 3 provides an illustration of CBT inclusion). It is formally defined with:

Definition 3 A CBT t1 = (〈b1
1, t

1
1 〉, . . . , 〈bi

1, t
i
1〉, . . . , 〈bn

1 , tn1 〉) is included in a CBT t2 =
(〈b1

2, t
1
2 〉, . . . , 〈bj

2 , t
j

2 〉, . . . , 〈bm
2 , tm2 〉), denoted as t1 ⊆ t2 iff:

– ∃(1 ≤ l1 < . . . < ln ≤ m) s.t. (bi
1 = b

li
2 ∧ t i1 ⊆ t

li
2) ∀ 1 ≤ i ≤ n

– or t1 = () (empty sequence)

In the next section, we propose an approach based on replaying CBTs that ensures the
CBT traversed by the extended model M ∪ φ (in a depth-first manner) is included in the
CBT traversed by the baseline model M ∪ φM .

3 Fair evaluation through the Replay technique

This section first describes our replay technique (introduced in [56]) from a high-level per-
spective. It then discusses its limitations and provides details on how to implement the
approach.

3.1 Replaying (high-level description)

The goal behind the replaying technique is to be able to evaluate only the effect of additional
propagation, while using a search heuristic that is as similar as possible to the ones used in
practice. To do so, we first generate a CBT, and replay it using the models to be evaluated.
Replaying is therefore a two-step procedure:

1. Generation of a CBT to be replayed.
2. CBT replay with one (or several) models to be evaluated.

CBT generation is done using a function generate(M, β) → T that returns a CBT
from a model M and a branching procedure β. It relies on the functions fixPoint(M) and

Constraints (2018) 23:87–122 97

isSolved(M), defined hereafter. These definitions are provided for sake of characterizing
the semantic of our approach, yet they do not necessarily correspond to the implementation.

Definition 4 If X is a set of variables, and M is a model that constrains elements of X,
the function fixPoint(M) → {⊥, ?} reduces domains of the variables in X. It returns ⊥ if a
domain is wiped out (i.e., a constraint cannot be satisfied, hence no solution can be found),
or ? if all domains are still non-empty (infeasibility cannot be proven).

Definition 5 The function isSolved(M) → {True,False} returns the status of the model M ,
solved or not. This corresponds to the fact that a solution to the modeled problem is found.
That is, for the set of constraints C imposed on X, we have:

∧
i Ci ∧ ∀x ∈ X : |D(x)| = 1,

i.e., all variables of the model have a valid assignment (all the constraints are satisfied by
the assignment).

The function generate(M, β) is then:

generate(M, β) → T =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(〈β(M)1,

generate(M ∪ β(M)1, β)〉, . . . ,
〈β(M)k,

generate(M ∪ β(M)k, β)〉, . . . ,
〈β(M)n,

generate(M ∪ β(M)n, β)〉) if fixPoint(M) �= ⊥
∧¬isSolved(M)

() otherwise

It can be computed with a classic CP Depth-First Search. Example 5 illustrates a CBT
generation, and Fig. 4a provides a visual example of a generated CBT that will be replayed
further in this paper.

Example 5 Consider the branching procedure βff of Example 1 and the model M = {x >

0 =⇒ y > 2}, where x ∈ {0, 1, 2, 3} and y ∈ {0, 1, 2, 3, 4}. generate(M, βff) = (〈x =
0, (. . .)〉, 〈x �= 0, (〈y = 3, (. . .)〉, 〈y �= 3, (. . .)〉)〉)

Fig. 4 A CBT generated by a model M and replayed by an extended model M ∪ φ

98 Constraints (2018) 23:87–122

CBT replay Let t = (〈b1, t1〉, . . . , 〈bi, t i〉, . . . , 〈bn, tn〉). Let us define the function
replay(t, M) whose purpose is intuitively to re-traverse a CBT t using a model M and to
return a new CBT tincl such that tincl ⊆ t :

replay(t, M) → T =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(〈b1, replay(t1,M ∪ b1)〉, . . . ,
〈bk, replay(tk, M ∪ bk)〉, . . . ,
〈bn, replay(tn, M ∪ bn)〉) if fixPoint(M) �= ⊥

∧¬isSolved(M)

() otherwise

The rationale behind this function is to make sure that exactly the same search space is vis-
ited. Moreover, we want to guarantee that the modifications made to the constraint store (i.e.,
adding or removing constraints to the store, and modifying the variable domains accord-
ingly) are done in the exact same order. From the definitions, we can see that, as long as β

is a deterministic function and φM is subsumed by φ, we have that (Property 1 and 2):

Property 1 ∀β : replay(generate(M, β),M) = generate(M, β)

Property 2 replay(t,M ∪ φ) ⊆ replay(t,M ∪ φM)

In other words, replaying with the original model leads to the original CBT, and extending
the model leads to a CBT that is included in the original one.

An illustration of a replay of the CBT of Fig. 4a is given in Fig. 4b. In this figure, the
extended model M ∪ φ is able to prove infeasibility at the red node, i.e., before the baseline
model M ∪ φM . The time required to visit the 3 gray nodes is therefore saved.

Propagator evaluation The evaluation of a propagator φ is simply done by computing in
sequence:

t ← generate(M ∪ φM, β) (1)

replay(t, M ∪ φM) (2)

replay(t, M ∪ φ) (3)

Then we compare the results of the two latter runs, which both use replay and hence incur
the same search overhead. It is important that the generate run is done with the baseline
problem M ∪ φM , because, thanks to the additional propagation performed by φ, the run
with M ∪φ may skip some parts of t . However, all of the runs will always explore the same
search space and visit the shared nodes in the same order.

This approach offers two significant advantages: 1) it allows tackling arbitrarily large
instances, since a limit (e.g., time or number of nodes) can be enforced on the first run and
the replays will still be guaranteed to explore the same search space. 2) It allows using any
search strategy, including dynamic ones, making the evaluation more realistic.

Interestingly, if a limit to the generation is imposed, M ∪ φ might actually find one
additional solution. This occurs if the generation is stopped at an internal node with a partial
assignment that is part of a solution, not found by M ∪φM since the generation was stopped
due to the imposed limit. In this case, M ∪ φ can remove more domain values inconsistent
with the partial assignment, and by doing so, it might reduce the domains up the point where
a total assignment is found, i.e., an additional solution is discovered.

Constraints (2018) 23:87–122 99

Finally, let us designate as metric(t, M) the metric quantity required to replay the CBT
t with the model M . In particular, we respectively write time(t, M) and backtracks(t, M),
the time and number of backtracks needed to traverse t .

3.2 Limitations

There are a few limitations to our approach that we must acknowledge. First, one can only
use monotonic [46, 53] propagators in the baseline model M . A monotonic propagator is a
propagator φ such that D1

i ⊆ D2
i =⇒ φ(D1

i) ⊆ φ(D2
i), for any variable i considered by

the propagator. Intuitively, this means that the more the domains are reduced, the more the
propagator can infer inconsistent values. This property is required because once the model
is extended with φ, more pruning might happen because of φ, implying reduced domains.
If some propagators of M are not monotonic, they might prune less than when the CBT was
generated. This has undesirable implications. For instance, one could reach a leaf solution
node while still having unbound solution variables.

Another limitation is that we only allow the evaluation of a propagator φ by comparing
a model M ∪ φM with an extended model M ∪ φ. This requirement is due to ensure that
replay(t, M ∪ φ) ⊆ replay(t, M ∪ φM). This means that if we have two propagators φ1 and
φ2 for a constraint that do not subsume each other, one cannot use the model M ∪ φ1 as
a baseline and replay with only M ∪ φ2. One would have to replay with M ∪ φ1 ∪ φ2, or
generate with M only (if it is sufficient to solve the problem in a sound manner) and replay
with M ∪ φ1 and with M ∪ φ2.6

Finally, one could argue that when using the replay, we are comparing the stronger model
M ∪ φ in a search tree that would never be visited in practice, since it has been generated
using the baseline model. We argue that in practice the replayed search tree is often similar
to what it would be using the real dynamic search. We conducted a few small experiments
to illustrate this. The results are given in Table 1. We first experimented with the Golomb
ruler (length 11). The CBT was generated with the branching procedure of Example 1 using
forward checking as the filtering technique for the ALLDIFFERENT constraints. The replay
uses GAC ALLDIFFERENT constraints. The number of nodes was decreased from 7386480
to 2929035 using the stronger filtering. Even though the search tree is drastically reduced
(more than divided by two), we measured that there are ∼ 99% of (local) matching deci-
sions, i.e., decisions imposed during the replay that are exactly the same as the ones that
would locally be returned by the real dynamic branching procedure if it was called at each
search node of the replayed tree. This demonstrates that although being a static strategy,
decisions of the replay are very similar to what would happen in practice with the dynamic
strategy. We then considered an instance of the Job Shop Scheduling problem (36 activities)
with a Conflict Ordering Search strategy [24], a state-of-the-art dynamic search strategy.
The baseline model M ∪φM only uses binary constraints for the DISJUNCTIVE constraints,
and the algorithms of [59] are used in M∪φ. In this case, the node ratio is ∼ 0.44 and the per-
centage of matching decisions is ∼ 84%, which is still very large. Finally, we experimented
with the Traveling Salesman Problem with the branching procedure of Example 1. M ∪ φM

6A last solution is to use as a baseline the model that makes use of the constructive disjunction of φ1 and φ2
[29, 36, 61], that only prunes when both algorithm prune. However, in the general case, the time overhead
for performing deductions only made by φ1 or φ2 cannot easily be deducted from the propagation time. This
penalizes the baseline from a time perspective when it is replayed.

100 Constraints (2018) 23:87–122

Table 1 Number of nodes of replays by M with and without φ, and percentages of locally matching
decisions with the dynamic strategy

Problem Golomb ruler Job Shop Traveling Salesman

Nodes with M ∪ φM 7386480 898 82194

Nodes with M ∪ φ 2929035 399 7177

% Same Decisions 99.86 84.42 21.77

uses a sum of ELEMENT constraints, while M ∪ φ uses the MINIMUMASSIGNMENT con-
straint [23] with exact reduced costs, as proposed in [21]. We considered the instance gr21
from the TSPLib [41]: the node ratio is ∼ 0.09, and ∼ 22% of the decisions are matching.
This is less than for the other two problems, but the search space reduction is more drastic.

Clearly, the comparison between M ∪ φM and M ∪ φ remains artificial to some degree,
because an actual dynamic strategy may behave differently for the run using M ∪ φ. Still,
the ability to ensure conditions C.1 and C.2 and therefore isolate the contributions of
φ, while using an arbitrary strategy, is a significant asset: one can exactly measure how
fruitful/detrimental a filtering algorithm is in a realistic practical context.

3.3 Implementation of the replay technique

To implement the replay technique, we first generate a flat linearized version of the CBT by
doing a preorder taversal using the baseline model M ∪ φM . This linearized CBT is simply
a sequence of triples of the form 〈b, c, d〉 meant to represent a node of the original CBT.
For a given triple 〈b, c, d〉:
– b is the branching constraint on the branch between the node it represents and its parent.
– c is the number of children of the node.
– d is the number of descendants of the node.

As we shall see, those triples are required to re-traverse the with a given extended with a
given extended model M ∪ φ.

Linearizing the CBT must be done so that when the sequence is traversed, the behavior
is the same as a CP Depth-First Search. The sequence must therefore represent the preorder
traversal of the CBT. As an example, the sequence for the CBT given in Fig. 4a is:

〈�, 2, 5〉, 〈b1
j , 3, 3〉, 〈b1

j+1, 0, 0〉, 〈b1
j+1, 0, 0〉, 〈b3

j+1, 0, 0〉, 〈b2
j , 0, 0〉

where � is the True clause.
Recording the sequence is done with Algorithm 1. This procedure defines in a recur-

sive manner a classic CP Depth-First Search. More specifically, each time a branching
constraint b is added to the model M , a triple 〈b, c, d〉 is added to a sequence S, where
c is the number of branching constraints generated by the branching procedure β. How-
ever, unless the search proves infeasibility or finds a solution, the number of descendants
d is only known after the recursive call. The triple is therefore updated at that moment.
The calls to RECORD STATE(M) and RESTORE STATE(M) allow backtracking the state
of the constraint store. We do not enter into details on how backtracking is performed, so
that trail-based (inherited from [2, 60]) and copy-based [44] solvers fit into our proposed
framework.

Constraints (2018) 23:87–122 101

Replay algorithm A sequence generated with a baseline model M ∪ φM can be replayed
using any extended model M ∪ φ with Algorithm 2. Notice that if the baseline model
M ∪ φM is replayed, this “linearized” process will behave exactly as the traditional search.
Conversely, if the baseline model is extended with φ, some additional pruning might occur,
implying that the store is either in a failed or in a solution state at an internal node n of the
CBT (i.e., we may have fixPoint(M) = ⊥ or isSolved(M), see Definition 4). This event
is illustrated in Fig. 4b, where the red node is failed due to additional pruning. When this
happens, the replay process is able to directly skip all the descendants of the current node.
This is illustrated by the light gray branching constraints in Fig. 4b. The replayed sequence
by M ∪ φ becomes:

102 Constraints (2018) 23:87–122

Sharing sequences An interesting property of this approach is that the sequence can be
serialized into files (as proposed in [16, 31]). We can therefore replay CBTs that do not fit
in RAM (if a sequence is too large to fit in one file, it can simply be divided into chunks
and put in several files). Additionally, those files can be shared among the community.
Provided a well-defined format exists, all solvers implementing Algorithm 2 will be able to
replay CBTs obtained using another solver. This opens the doors to common evaluation of
propagators in the community.

4 Assessing the potential of a propagator

We assume we are interested in reducing the time for computing the output of a filtering pro-
cedure φ, without changing the function definition, i.e., without changing its input-output
behavior. In particular, our goal is to assess the potential of two improvement directions: 1)
increasing the efficiency of the current implementation/algorithm and 2) guarding the acti-
vation of φ with a necessary condition. Notice that the content of this section is actually
orthogonal to the replay technique presented in Section 3. Yet, both can be combined, as
exemplified in Section 6.

In order to assess the potential of improving the efficiency of φ or controlling its
activation, we instrument the solver to collect detailed information about the propagator.
Specifically, we store the total time for running φ, making a distinction between activa-
tions that actually lead to some pruning and fruitless activations. The two time statistics are
respectively referred to as t+φ and t−φ . Making those measurements only requires to write
a procedure wφ that wraps φ and is used instead. Every time wφ is called during search,

Constraints (2018) 23:87–122 103

it registers the current domain size of the decision variables and calls φ. If the size of any
domain has changed, the CPU time required to execute φ is added to the t+φ counter. If not,

it is added to the other counter t−φ . The complexity of using wφ is θ(n) where n is the num-
ber of decision variables. Once again, this approach is lightweight and easy to implement
on most solvers.

It is now easy to get a rough, but valuable, estimate of the impact of specific measures
on the solution time. First, we can estimate the impact of reducing the run time of φ by a
factor μ ∈ [0, 1] by computing:

time(t, M ∪ wφ) − μ · (t+φ + t−φ) (4)

i.e., by subtracting a fraction of the total computation time of φ. Similarly, we can assess
the impact of guarding φ with a necessary condition that stops a fraction μ ∈ [0, 1] of the
fruitless propagator activations. This is done by computing:

time(t, M ∪ wφ) − μ · (t−φ) (5)

This simple, linear, approach allows us to compare fictional implementations of φ with real
ones. By doing so, we get a chance to explore which values of μ would be necessary for
beating the baseline, and we get a better understanding of the effort required to achieve such
goal. In particular, we can approximately evaluate the impact of having an hypothetical time
complexity for a fictional propagator. For instance, if the current implementation for φ is in
O(n3) (where n is the number of variables), then we can estimate roughly what would be
its cost for an O(n2) algorithm by choosing μ = (n − 1)/n in (4).

4.1 Representative propagator evaluation with performance profiles

While it is interesting to make a quantified evaluation of filtering procedures for a given
CBT, deeper and more general insights can be obtained by making use of benchmark suites.
In order to aggregate the information and derive general conclusions, we rely on perfor-
mance profiles [19]. A performance profile is a cumulative distribution function F(τ) of a
given performance metric τ . In our case, the τ value is the ratio between the solving met-
ric (typically, time or number of backtracks) of a target approach and that of the baseline
M ∪ φM .

Formally, let φ0, φ1, . . . be the set of all considered implementations (possibly fictional,
see Section 4.2) of φ, and let T be the set of all CBTs generated from the benchmark
instances. Then the performance profile of φi is given by:

FM∪φi
(τ) = 1

|T |
∣
∣
∣
∣

{

t ∈ T : metric(t, M ∪ φi)

metric(t, M ∪ φM)
≤ τ

}∣
∣
∣
∣ (6)

For the sake of clarity, let us provide an introductory visual example in Fig. 5. In this
plot,7 one can see that the profile FM∪φM

for the baseline model is a step function such that
FM∪φM

(τ < 1) = 0 and FM∪φM
(τ ≥ 1) = 1 (by definition, it will always be the case).

Moreover, one can read that FM∪φ(2) = 0.75. This means that the performance of M ∪ φ

is within a factor of 2 from the baseline in 75% of the benchmark problems. Assuming the
benchmark is representative enough, the value of F(τ) can be interpreted as a probability.

An important value of a given performance profile FM∪φi
(τ) is in τ = 1. For a given

φi , FM∪φi
(τ = 1) gives the percentage of instances that can be solved using M ∪ φi with

7The reader might be surprised by the x-axis of the plots, as there is a change of scale on the right-most side.
This helps to have a long-term view of the profiles while keeping the focus on the τ region of interest.

104 Constraints (2018) 23:87–122

0.20 0.40 0.60 0.80 1.0 1.2 1.4 1.6 1.8 2.0

τ (time)

0.0 10

10

20

30

40

50

60

70

80

90

%
 i
n

s
ta

n
c
e

0

100

Fig. 5 Example of a Performance Profile to compare a baseline model M ∪ φM with an extended model
M ∪ φ

a value for the target metric that is less than (or equal to) the one of the baseline model
M ∪ φM . For instance, in Fig. 5, 50% of the instances are solved by the extended model
M ∪ φ in a time smaller or equal to the one of the baseline. The space of τ is therefore
divided in two important regions, τ < 1 and τ ≥ 1. If FM∪φi

(τ) = 1 for some τ < 1, then
using the model M ∪ φi is always better than using the baseline, i.e., M ∪ φi provides a
speed-up for every instance. Unfortunately, this situation rarely happens in practice and it is
thus interesting to read more carefully the performance profile. For a given pair φi , φj it is
interesting to observe FM∪φi

(τ) − FM∪φj
(τ), which indicates the gain of φi over φj . That

is, FM∪φi
(τ)−FM∪φj

(τ) reflects how many more (or less) instances can be solved by using
M ∪ φi instead of M ∪ φj within a factor τ of the baseline metric value. Finally, the region
above FM∪φ(τ) for τ < 1 is very informative, as it exhibits the gain of a given φi compared
to the baseline M ∪ φM and to M ∪ φ. Finally, instances with similar performance give rise
to step-like changes in FM∪φ(τ), while a linearly growing FM∪φ(τ) is symptomatic of a
diversified performance across the benchmark suite.

4.2 Fictional propagators

In order to assess the potential for improvements, we considered the following classes of
fictional implementations:

– φcost
μ , i.e., an implementation for which the time is reduced by a factor μ.

– φcost
O(f (n)), i.e., an implementation for which the time complexity is O(f (n)). It is a

particular case of φcost
μ for which μ is well selected based on the actual complexity of

φ and on the value of the parameter n.
– φoracle

p , i.e., an implementation that guards φ with a necessary condition causing useless
activations with a probability p.

Constraints (2018) 23:87–122 105

We then use performance profiles as described in Section 4.1 to derive general conclu-
sions about the fictional propagators. For fictional implementations of φ, time(t, M ∪ φi) is
computed using (4) or (5).

Assuming the studied benchmark suite is representative enough, the joint use of perfor-
mance profiles and fictional propagators allows us to provide quantitative and representative
potential for improvements. The μ parameter in (4) or (5) plays an important role, as it
allows quantifying how much reduction should be targeted to obtain the corresponding per-
formance profile. In particular, the profile of φoracle

0 (perfect necessary condition) bounds
the gain that can be obtained by any necessary condition. The profile of φcost

O(1)(τ) (zero-cost

implementation8) bounds the performance of any possible implementation. Against com-
mon intuition, φcost

O(1) is not guaranteed to beat the baseline, since a weak filtering done by φ

may trigger other (possibly expensive) propagators during fix point iteration.

4.3 Characterization of time efficiency and potential

The following definitions allow quantifying the gain obtained thanks to the extension of the
baseline model M ∪ φM with φ.

Definition 6 The actual gain Gφ
M∪φM

of a filtering procedure φ compared to a baseline
model M ∪ φM is the probability that time(t, M ∪ φ) ≤ time(t, M ∪ φM) for any CBT
t ∈ T. It can be estimated with FM∪φ(1).

The actual gain quantity represents the proportion over all existing CBTs for which M ∪ φ

is faster to traverse than M ∪ φM . While it is of course impossible to compute this value,
we can estimate it with FM∪φ(1). The two next definitions provide the same quantity while
considering the best fictional propagators that can be obtained out of φ.

Definition 7 The upper bound gain Ḡφ
M∪φM

of a filtering procedure φ compared to a base-
line model M ∪ φM is the probability that time(t, M ∪ φcost

O(1)) ≤ time(t, M ∪ φM) for any
t ∈ T. It can be estimated with FM∪φcost

O(1)
(1).

Definition 8 The activation-control upper bound gain G̊φ
M∪φM

of a filtering procedure

φ compared to a baseline model M ∪ φM is the probability that time(t, M ∪ φoracle
0) ≤

time(t, M ∪ φM) for any t ∈ T. It can be estimated with FM∪φoracle
0

(1).

The quantity Gφ
M∪φM

provides the probability that φ will actually be beneficial to solve an
instance, if it is used to extend the model M ∪ φM . As long as it is non-zero, it means some
gain could be obtained. Of course, the higher the value, the more φ is actually useful in
practice in general. Quantities Ḡφ

M∪φM
and G̊φ

M∪φM
are of great interest when compared to

Gφ
M∪φM

, as they allow quantifying the gap between the current gain, and the one that could
be obtained by working on more efficient algorithms/implementations or finding necessary
conditions for the algorithm to prune. Clearly, if Ḡφ

M∪φM
− Gφ

M∪φM
� 0+, devising a more

efficient algorithm will not be very fruitful in terms of practical efficiency.

8Another way to think of φcost
O(1)(τ) is to consider additional inference made by φ to be integrated into the

baseline model.

106 Constraints (2018) 23:87–122

Potential of inference rules It is sometimes easier to find inference rules for a constraint
than to directly propose an efficient algorithm to apply those rules. Instead of directly invest-
ing energy in order to find an efficient algorithm, one could postpone this work until the
potential benefit of its discovery is known: an inefficient but easy algorithm to compute φ

might be written in order to apply the inference rules. The value Ḡφ
M∪φM

can then be used
to quantify how fruitful in practice it would be to actually construct an efficient algorithm
performing the inference rules. Again, if Ḡφ

M∪φM
is very small, investing some time to find

such an algorithm would not be beneficial in practice.

Global constraint maximal propagation In the same direction, another aspect that is
useful and of great interest is the gain of the maximum propagation that can be performed
by a global constraint with respect to a given consistency (e.g., GAC or GBC). In particu-
lar, studying constraints for which reaching a given consistency is NP-hard provides a lot of
insight. An inefficient propagator to get the given consistency is straightforward: it is suffi-
cient to embed a search process in the propagator. In the case of GAC, any instantiation of
the GAC-Schema [11] can be used. From that, we can compute Ḡφmax

M∪φM
, where φmax is the

inefficient procedure allowing to reach the level of consistency. Ḡφmax

M∪φM
gives the maximum

gain that could ever be reached using the given level of consistency. Again, this can be com-
pared with existing approaches in order to quantify how fruitful it would be to be able to
prune more. The gain might again be negligible, meaning that research time should be bet-
ter spent looking for new search strategies or models, rather than improving the consistency
level.

5 Implementation in the OscaR solver

This section explains how the proposed framework is used in the OscaR solver [37]. It also
gives some implementation details and design choices. The design of the replay framework
was guided by the motivation of making it orthogonal to the existing OscaR search and
without requiring any modification of existing default search heuristics (such as [24]). The
existing search of OscaR was kept unmodified and agnostic to the replay framework. A
search observer linearizes the search by capturing branching decisions into closures.

As an illustrative example, we use the well-known n-Queens problem. The OscaR model
is provided in Fig. 6. It has been extended to integrate the replay technique. The additional
instructions specific to the replay framework are highlighted in bold.

Initial model The model without replay is quite straightforward. The position variables
of the queens are defined in lines 3–8. The constraints imposing that the queens cannot
attack each other are declared in lines 10–12. They are however only added to the constraint
store in the startSubjectTo bloc (line 20) where the search is effectively started (under
some additional constraints that will eventually be removed from the model on search com-
pletion). In our case, this allows us to impose the allDifferent constraints before starting
the search. We finally define the search heuristic in line 15 (the heuristic is here βff , from
Example 1).

CBT generation The generation of the CBT is simply done by passing an additional
search-listener parameter to the standard search. This listener stores the required sequence
of triples used to replay (see Algorithm 1). The replaying searches will then re-use this exact

Constraints (2018) 23:87–122 107

Fig. 6 Model for the n-Queens problem. The additional required instructions to replay and track a constraint
are in bold. The rest of the model remains unchanged

same sequence. Notice that Depth First Limited Discrepancy Search [27] and Large Neigh-
borhood Search [39] could also be used to perform the generation, as they are based on a
regular OscaR search.

The listener interface defined in OscaR is given in Fig. 7. This interface allows defining
the expected behavior when a node is expanded in Algorithm 1, i.e., after the branching pro-
cedure has been called. The only method (onExpand) takes an Alternative as an argument,
which is basically a closure. This closure is to be applied when the branching is performed.
The alternative therefore encapsulates any branching constraint addition to the model (i.e.,
M ∪ bi). The implementation of the linearizer (given in Fig. 8) is then direct: an internal
buffer is filled with preorder elements, i.e., pairs with a branching constraint and a number
of children, each time a node is expanded. The number of descendants of each node is then
computed from this sequence after the generation is completed (without going into details,
the sequence of triples is computed in two passes because the search in OscaR is sligthly
different from Algorithm 1).

From a modeling point of view, to be able to generate the sequence during a search, the
only requirement is to set up a linearizer listener (line 17) and pass it as a parameter, as in
line 22. After this search is finished, the sequence is stored and we can replay it as many
times as we want, potentially with constraints having a stronger pruning added to the model.

Fig. 7 Depth-First Search Listener interface

108 Constraints (2018) 23:87–122

Fig. 8 Depth-First Search Linearizer. This class implements the interface of Fig. 7 to linearize the Depth-
First Search of OscaR

CBT replay In order to replay the model, we call the replaySubjectTo procedure (line 25
in Fig. 6) that implements Algorithm 2. This procedure must know what variables must
be assigned in order to detect solutions. OscaR indeed has no explicit store status when
the problem is solved. During a replay, we consider that a solution is found once all con-
straints are satisfied (i.e., no failure during the fix point and no domain wipe-out) and all
the variables passed to the replay primitive are assigned.

Once completed, the replay primitive returns the solution time, the number of found
solutions, the number of backtracks and the number of nodes. Those statistics can be used
to compare the performance of the baseline and that of the extended models.

Tracking a constraint It is optionally possible to track the activation of a propaga-
tor/constraint. This is useful to perform a study as described in Section 4. Basically, the
modeler must just use the track function that returns the constraint passed as a parameter,
augmented with code that implements the tracking behavior. This allows one to measure the
time for each propagation call of the constraint. In order to separate pruning propagation
time (t+φ) from non-pruning propagation time (t−φ), we must specify the variables for which
we want to make this distinction. This is the second argument of the track function. The
tracking behavior then verifies that some pruning happened for those variables by check-
ing the size of their domains before and after propagation. The complexity for tracking is
therefore O(n).

6 Experimentation

We applied our approach to several constraints and ran tests on AMD Opteron processors
(2.7 GHz) using the Java Runtime Environment 8 and the constraint solver OscaR [37].
For each solved instance, we limited the run-time of generate(M, β) to 600 s. Instances for
which generate(M, β) took less than 1 second were filtered out. The additional filtering put
on top of the baseline model was executed with a lower priority by the constraint scheduler.
The performance profiles were built with a public Web tool [57] made available9 to the
community.

6.1 AllDifferent

We analyzed the well-known ALLDIFFERENT constraint, since it is ubiquitous in Contraint
Satisfaction Problems. The ALLDIFFERENT forward checking algorithm [18, 58] (written

9Accessible at http://performance-profile.info.ucl.ac.be/.

http://performance-profile.info.ucl.ac.be/

Constraints (2018) 23:87–122 109

allDiff FWC) is used in the baseline model, and we considered the following additional
filtering methods:

– the bound consistent allDifferent, written allDiff BC [34].
– the counting-based allDifferent, written allDiff CB, and described in [35].
– the arc consistent allDifferent [40], written allDiff AC.

We used the 291 instances from the XCSP 2.1 benchmarks that contain allDifferent con-
straints, namely bqwh-18-141 glb, medium, bqwh-15-106 glb,
QG3, ortholatin, small, latinSquare, pigeons glb, compet02 and compet08.

To assess the benefits of allDiff BC, allDiff CB and allDiff AC, we replayed with all the
combinations of additional filtering procedures such that the replayed CBT is included into
the generated one. We also considered models without allDiff FWC when possible (allDiff CB
and allDiff AC subsume allDiff FWC). Finally, the priority of allDiff AC in the propagation
queue was the lowest, allDiff BC and allDiff CB had the same priority, and allDiff FWC had
the highest priority. The branching procedure used to generate the CBTs is βff , as defined
in Example 1.

Figure 9 provides the time performance profiles. Notice that we do not report the thirteen
propagator combinations but only the profiles of the most different approaches in order to
make the plots easier to read. From a time perspective, the approaches that are not shown
have a profile with a shape that is generally in-between the curve of FWCAndAC and that
of CBAndBCAndAC.

Our first observation is that even if FWCAndBC has an actual gain Gφ
M∪φM

� 0.3 (see
Section 4.3) compared to the baseline (see the orange line in τ = 1), it is clearly outper-
formed by the other approaches. CBAndBC (light green curve) and FWCAndCBAndBC (red
curve) require a bit more time to approximately catch up with the other models. More impor-
tantly, we can see that while FWCAndCB has not the highest gain for τ values close to 0, it
actually has the highest actual gain Gφ

M∪φM
� 0.93 (see the dark green line in τ = 1) and

0.20 0.40 0.60 0.80 1.0 1.2 1.4 1.6 1.8 2.0

τ (time)

0.0 30

10

20

30

40

50

60

70

80

90

%
 i
n

s
ta

n
c
e

0

100

FWC FWCAndBC FWCAndCB CBAndBC FWCAndCBAndBC

FWCAndAC CBAndBCAndAC

Fig. 9 Time performance profiles for combinations of AllDifferent propagators for XCSP instances

110 Constraints (2018) 23:87–122

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

τ (backtracks)

0.0 1.0

10

20

30

40

50

60

70

80

90

%
 i
n
s
ta

n
c
e

0

100

FWC FWCAndBC FWCAndCB CBAndBC FWCAndCBAndBC

FWCAndAC CBAndBCAndAC

Fig. 10 Backtrack performance profiles for combinations of AllDifferent propagators for XCSP instances

stays better for larger τ values. This is of great interest as the counting-based allDifferent
algorithm is actually very simple.

If we now look at the backtrack profiles of Fig. 10, we better understand why the
FWCAndBC model is outperformed by the others, its gain in backtracks being way smaller
than the other ones, especially for small τ values. As expected from the time profiles, the
gains of the other models all have the same shape. Still, we can notice that FWCAndCB is
one of the “worst” approaches in terms of backtrack gain, while it has the highest time gain,
as just mentioned.

As a brief conclusion, we learned that Bound Consistency is not a sufficiently strong
level of consistency for the ALLDIFFERENT constraint, from the point of view of both time
and number of backtracks. On the contrary, the counting-based allDifferent infers almost
as much as the Arc Consistency algorithm, allowing it to get similar time performances.
Still, these conclusions must be taken with some care, as the problems we consider are quite
structured.

6.2 Energetic Reasoning for the cumulative constraint

We analyzed the Energetic Reasoning propagator for the CUMULATIVE constraint [1, 3] on
RCPSPs. The baseline model M employs the Time-Tabling algorithm from [33] and the ER
Checker [4], which both run in O(n2) [4, 17]. We did not use the improvements proposed
in [17]. We use a dynamic search strategy, i.e., the classic SetTimes approach from [32]. We
consider two benchmarks: the BL instances [3] (20–25 activities) and the PSPLIB (j30 and
j90, with 30 and 90 activities) [30]. We focus on investigating, for the chosen benchmarks:
1) the potential benefit of having an ER algorithm running in O(n2) rather than in O(n3);
2) the potential benefit of a perfect necessary condition (see [55] and [9] for related works).

Figures 11/12 and 13/14 report profiles respectively for the BL and j90 instances. The
real ER propagator has an actual gain Gφ

M∪φM
� 0.5 when BL instances are considered,

Constraints (2018) 23:87–122 111

0.20 0.40 0.60 0.80 1.0 1.2 1.4 1.6 1.8

τ (time)

0.0 1.9

10

20

30

40

50

60

70

80

90

%
in

s
ta

n
c
e

0

100

M M + φ M + φ (μ = 1) M + φ (μ = 0.5) M + φ (μ = 0.9)

Fig. 11 Performance profiles for real and fictional (φcost
μ) ER propagators on the BL instances

but of only ∼ 0.05 for the j90 instances (see the orange curves in τ = 1 in Figs. 11/12
and 13/14). The larger problem size is a likely reason for the performance drop, so it is
interesting to analyze the fictional, reduced-cost implementations (Figs. 11 and 13). In the
BL benchmark a cost reduction translates to roughly proportional benefits. On j90, an O(n2)

ER would lead to dramatic performance improvement, but it would beat the baseline in only
40% of the cases (see the purple curve in Fig. 13 in τ = 1).

0.20 0.40 0.60 0.80 1.0 1.2 1.4 1.6 1.8

τ (time)

0.0 1.9

10

20

30

40

50

60

70

80

90

%
 i
n
s
ta

n
c
e

0

100

M M + φ M + φ (μ = 1) (oracle) M + φ (μ = 0.5) (oracle) M + φ (μ = 0.9) (oracle)

Fig. 12 Performance profiles for real and fictional (φoracle
p) ER propagators on the BL instances

112 Constraints (2018) 23:87–122

0.20 0.40 0.60 0.80 1.0 1.2 1.4 1.6 1.8 2.0

τ (time)

0.0 40

10

20

30

40

50

60

70

80

90

%
 i
n

s
ta

n
c
e

0

100

M M + φ M + φ (μ = 1) M + φ (μ = 0.5) M + φ (μ = 0.9)

M + φ (O(n.n.log(n))) M + φ (O(n.n))

Fig. 13 Performance profiles for real and fictional (φcost
μ and φcost

O(f (n))) ER propagators on the j90 instances

More interestingly, for the upper bound gain we have Ḡφ
M∪φM

� 0.65 (see the dark green
curve Fig. 13, in τ = 1), meaning there is about a 35% portion of instances where the
baseline would win no matter what the efficiency of ER is, i.e., where the additional pruning
of ER is sometimes detrimental rather than beneficial: despite an O(1) hypothetical ER,
the additional ER filtering causes a larger number of iterations to reach the fix point. On
such instances, ER cannot lead to benefits unless we find a way to activate it only when it

0.20 0.40 0.60 0.80 1.0 1.2 1.4 1.6 1.8 2.0

τ (time)

0.0 40

10

20

30

40

50

60

70

80

90

%
 i
n
s
ta

n
c
e

0

100

M M + φ M + φ (μ = 1) (oracle) M + φ (μ = 0.5) (oracle) M + φ (μ = 0.9) (oracle)

Fig. 14 Performance profiles for real and fictional (φoracle
p) ER propagators on the j90 instances

Constraints (2018) 23:87–122 113

0.20 0.40 0.60 0.80 1.0 1.2 1.4 1.6 1.8 2.0

τ (time)

0.0 8.8

10

20

30

40

50

60

70

80

90

%
 i
n
s
ta

n
c
e

0

100

M M + φ M + φ (μ = 1) M + φ (μ = 0.5) M + φ (μ = 0.9) M + φ O(n.n)

Fig. 15 Performance profiles for the SetTimes dynamic strategy

provides an actual advantage. As for using a necessary condition, a perfect approach would
enable the same gain as that of a O(n2) ER (see the dark green in Fig. 14, in τ = 1), but even
a small mistake probability would cancel most of the benefits (in the same plot, compare
the dark green curve with the red and light green curves).

Figures 15 and 16 compare profiles for different search strategies on the j30 instances
(SetTimes and βff , as defined in Example 1): the potential gain of reducing the cost (e.g.,

0.20 0.40 0.60 0.80 1.0 1.2 1.4 1.6 1.8 2.0

τ (time)

0.0 8.8

10

20

30

40

50

60

70

80

90

%
 i
n
s
ta

n
c
e

0

100

M M + φ M + φ (μ = 1) M + φ (μ = 0.5) M + φ (μ = 0.9) M + φ O(n.n)

Fig. 16 Performance profiles for the binary static strategies

114 Constraints (2018) 23:87–122

the dark green curves) is very different for the two strategies, even if the performance of the
real propagator (orange curves) is roughly identical.

From this experiment, one can realize that although ER is one of the strongest filter-
ing algorithms for the CUMULATIVE constraint, it does not provide much improvement for
PSPLIB instances, even if we were able to perform its computation more efficiently. This
illustrates that ER has two drawbacks when used in addition to Time-Tabling and the ER
checker on those instances: 1) a heavier computation time, 2) a rather weak additional fil-
tering in practice. Our simple method allows discovering that information before investing
time in the research of a more efficient algorithm.

In addition, one can see that the possible performance improvements between the
extended and the baseline models differ substantially depending on the kind of search strate-
gies (static or dynamic) that we use. This points out the importance of having an approach
for the rigorous comparison of propagators using practical search strategies.

6.3 Revisited cardinality reasoning for BinPacking

In our analysis of the RCRB propagator, we use as a benchmark the instances of the
Balanced Academic Curriculum Problem (BACP) from [38, 42]. The baseline model M

employs the BinPacking propagator from [47] and a GCC constraint (model A in [38]). The
branching procedure is again βff , as defined in Example 1.

Figure 17 is very informative about the cost of RCRB. We can see for the actual gain
that Gφ

M∪φM
� 0.2 (see the orange curve in τ = 1 in Fig. 17), i.e., ∼ 20% of the instances

are solved faster than the baseline model. However, reducing the propagator cost down to 0
provides only a small gain before τ = 1.1 (see the dark green curve in Fig. 17): similarly
to the ER case on j90, even a zero cost version of the propagator would not be able to beat
the baseline in ∼ 55% of the instances (see the dark green curve in τ = 1). For τ > 1.1,
reducing the propagator cost has a stronger effect, but a factor 0.9 reduction is required to

0.20 0.40 0.60 0.80 1.0 1.2 1.4 1.6 1.8 2.0

τ (time)

0.0 4.6

10

20

30

40

50

60

70

80

90

%
 i
n

s
ta

n
c
e

0

100

M M + φ M + φ (μ = 1) M + φ (μ = 0.5) M + φ (μ = 0.9)

Fig. 17 Performance profiles with fictionally cost-reduced RCRB propagators

Constraints (2018) 23:87–122 115

0.20 0.40 0.60 0.80 1.0 1.2 1.4 1.6 1.8 2.0

τ (time)

0.0 4.6

10

20

30

40

50

60

70

80

90

%
in

s
ta

n
c
e

0

100

M M + φ M + φ (μ = 1) (oracle) M + φ (μ = 0.5) (oracle) M + φ (μ = 0.9) (oracle)

Fig. 18 Performance profiles with fictionally reduced RCRB propagators (necessary condition)

solve a lot more of the instances (see the red curve in Fig. 17). Hence, reducing the cost
would improve the RCRB, but not that much compared to the baseline model as the benefits
come “too late” in terms of τ . A similar analysis can be done for Fig. 18 for the potential
gain of introducing a necessary condition.

6.4 Unary constraint with transition times

We here report results obtained with a recent approach of some of the authors [15]. This
work extends the classic unary/disjunctive resource propagation algorithms to include prop-
agation over sequence-dependent transition times between activities. In brief, the unary
resource with transition times imposes the following relation:

∀i, j : (endi + tti,j ≤ startj) ∨ (endj + ttj,i ≤ starti) (7)

where startj , endi and ttj,i are the start and the end of an activity i, and the minimum
transition time between activities i and j , respectively.

For each considered instance, the three following filterings for the unary constraint with
transition times were used:

1. Binary constraints10 (φb) given in (7). The baseline model M employs this constraint.
2. Binary constraints given in (7) with the Unary global constraint of [59] (φb+u).
3. The constraint of [15] (φuTT).

The search strategy used to generate the CBTs was Conflict Ordering Search [24].
Figures 19 and 20 respectively provide the profiles for time and number of backtracks for
all the 960 instances. Figure 21 provides a “long-term” view of Fig. 19.

10For efficiency reasons, dedicated propagators have been implemented instead of posting reified constraints.

116 Constraints (2018) 23:87–122

0.20 0.40 0.60 0.80 1.0 1.2 1.4 1.6 1.8 2.0

τ (time)

0.0 18

10

20

30

40

50

60

70

80

90

%
in

s
ta

n
c
e

0

100

φ binary φ binary + unary φ unary transition times

Fig. 19 Short-term time performance profiles for the Unary Resource with Transition Times

From Fig. 19, we can first conclude that φb+u (orange curve) is clearly worse than φuTT

(green curve) and φb (blue curve) from a time perspective. Moreover, Fig. 20 shows that
φb+u rarely offers more pruning than φb.

In comparison, we can see from Fig. 19 that for ∼ 25% of the instances, φuTT is about 5
times faster than φb (see FφuTT (0.2)), and that ∼ 65% of the instances are solved faster (see
FφuTT (1)). Moreover, it offers more pruning for ∼ 100% of the instances, meaning that the

actual gain in terms of number of backtracks GφuTT
M � 1 (see FφuTT (1), in Fig. 20).

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

τ (backtracks)

0.0 1.0

10

20

30

40

50

60

70

80

90

%
in

s
ta

n
c
e

0

100

φ binary φ binary + unary φ unary transition times

Fig. 20 Backtrack performance profiles for the Unary Resource with Transition Times

Constraints (2018) 23:87–122 117

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10

τ (time)

0.0 18

10

20

30

40

50

60

70

80

90

%
in

s
ta

n
c
e

0

100

φ binary φ binary + unary φ unary transition times

Fig. 21 Long-term time performance profiles for the Unary Resource with Transition Times

From Fig. 21, we can see that the constraint does not have too much overhead, as φuTT

is at worst 2 times slower than φb for ∼ 20% percent of the instances (FφuTT (2)−FφuTT (1)).
It is a bit slower for the remaining ∼ 10%, but almost all instances are solved in a time at
most 5 times slower than the baseline (since FφuTT (5) = 1).

The conclusion is clear: when transition times are involved, the unary resource algo-
rithms that do not consider them provide almost no additional filtering and therefore only
incur overhead. On the contrary, the unary resource with transition times [15] prunes much
more and is therefore often beneficial.

6.5 Bound Consistent Cumulative

As proposed in Section 4.3, we studied the gain that would be provided by a Bound Con-
sistent CUMULATIVE constraint, in order to estimate how far the current propagators are
from the maximal pruning. The baseline model M uses poly-time propagators that suffice
to achieve the strongest propagation we can get so far in the OscaR solver, namely Ener-
getic Reasoning [4], Not-First Not-Last [4], and Time-Table Disjunctive Reasoning [26].
The Bound Consistent Cumulative Propagator was constructed as an exponential algorithm
into which we basically embedded a search. A checker and a propagator were constructed
and they were used to replay the generated CBTs. We only used the BL instances [3] as they
remain quite small in terms of number of activities (20–25). We measured the backtracks
and none of the instances were filtered out in this case. Figure 22 gives the performance pro-
files and Fig. 23 gives a zoomed version near τ = 0. First, one can notice that there is still a
lot to gain (it might not be possible as Bound Consistency for the Cumulative constraint is
NP-hard), and this kind of measurements allows quantifying an upper bound on this gain. It
is especially impressive to look near 0. For instance, for almost 30% of the instances, there
is a potential gain factor of 100 (see the curves in τ = 0.01 in Fig. 23) in terms of num-
ber of backtracks, even if we are already using the strongest poly-time pruning we know
so far. This illustrates that, while working on efficient practical algorithms (e.g., [25]) is

118 Constraints (2018) 23:87–122

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

τ (backtracks)

0 2

10

20

30

40

50

60

70

80

90

%
in

s
ta

n
c
e

0

100

ER + NFNL + TTDR Bound Consistency Cumulative Constraint Checker

Bound Consistency Cumulative Constraint

Fig. 22 Backtrack performance profiles for the Bound Consistent Cumulative Constraint

important, finding complementary poly-time and efficient algorithms to the ones used so
far would clearly provide improvement. A last interesting point to notice is that the Bound-
Consistent propagator almost provides no improvement compared to the checker. Devising
new efficient checkers might actually suffice.

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

τ (backtracks)

0 0.01

10

20

30

40

50

60

70

80

90

%
in

s
ta

n
c
e

0

100

ER + NFNL + TTDR Bound Consistency Cumulative Constraint Checker

Bound Consistency Cumulative Constraint

Fig. 23 Backtrack performance profiles for the Bound Consistent Cumulative Constraint (zoomed in)

Constraints (2018) 23:87–122 119

7 Conclusion

Search heuristics can have a significant impact on the outcome of the evaluation of a global
constraint (or more generally a filtering procedure). We therefore proposed a rigorous and
yet simple framework that allows preventing any unfair advantages regarding the compared
approaches, by only measuring the effect of additional filtering. Being able to measure
exactly the time gain provided by a filtering algorithm permits to reduce the bias in empirical
evaluations. We explained how to actually implement this framework.

Evaluating the potential advantages of reducing the cost of a given filtering procedure
is of great importance to make our research efforts as fruitful as possible. As a first step in
this direction, we proposed a systematic methodology to simulate the performance of fic-
tional implementations of a propagator having reduced activation cost. This is done before
starting time-consuming research activities to actually reduce the cost. A nice feature of
deterministic replays is that measurements can be carried out in different replays, removing
imprecisions due to measurement overhead.

We suggested in this work a broader usage of performance profiles in the CP community.
We showcased in the results section that they allow deriving many informative conclusions.
We evaluated several propagators for the following constraints on quite large benchmarks:
ALLDIFFERENT, CUMULATIVE, BINPACKING and UNARY with transition times. In addi-
tion, a nice feature of our version of the performance profiles is that the whole community
could continuously add new data and update them on a central repository, as a common
effort to improve knowledge about the performance of propagators. This can be done as
long as the baseline model remains the same.

As for the estimation of the impact of reducing the cost of a propagator, we illustrated
the approach for Energetic Reasoning and Revisited Cardinality Reasoning for BinPacking
over popular sets of instances. We found that reducing the propagator cost, even to the
point of making it negligible, might actually be beneficial only on a small subset of a given
instance set. Furthermore, this outcome can differ substantially depending on the considered
benchmark and on the search strategy. We also briefly studied the shortfalls of not being able
to achieve bound consistency for the cumulative constraint. Interestingly, from a pruning
point a view, there is still a lot to gain.

Future work We might consider to generate more CBTs for a given instance, and gather
the results. This would allow the evaluation approach to be even more robust. For instance,
we could use several branching strategies or use Large Neighborhood Search in order to get
more data for a given, large-scale, instance (and not only data from the beginning of the
search tree). Another way to do so is to bound the search space to be replayed with a set
of no-goods. Replaying a CBT with a model is not always possible, because the constraints
used in the generator model must be subsumed by the one in the model, which is not always
the case. For example, Time-Tabling and Edge-finding for the cumulative constraint do not
subsume each other. Still we can generate a CBT into which all the replayed CBTs will be
included in. To do so, when we generate the CBTs, we could use a model that prunes only
when all the constraints used in replays are actually able to prune. Finally, regarding the
potential of necessary conditions, we could study the gain of activating a propagator only
when it prunes several variables or values.

120 Constraints (2018) 23:87–122

References

1. Aggoun, A., & Beldiceanu, N. (1993). Extending CHIP in order to solve complex scheduling and
placement problems. Mathematical and Computer Modelling, 17(7), 57–73.

2. Ait-Kaci, H., & Des Flambertins, F. (1999). Warren’s abstract machine—a tutorial reconstruction (pp.
114). Cambridge: MIT Press Cambridge.

3. Baptiste, P., & Le Pape, C. (2000). Constraint propagation and decomposition techniques for highly
disjunctive and highly cumulative project scheduling problems. Constraints, 5(1–2), 119–139.

4. Baptiste, P., Le Pape, C., & Nuijten, W. (2001). Constraint-based scheduling: applying constraint pro-
gramming to scheduling problems. In International Series in Operations Research & Management
Science (Vol. 39). Springer, Berlin.

5. Beldiceanu, N., & Contejean, E. (1994). Introducing global constraints in CHIP. Mathematical and
Computer Modelling, 20(12), 97–123.

6. Benhamou, F. (1996). Heterogeneous constraint solving. In International conference on algebraic and
logic programming (pp. 62–76). Springer, Berlin.

7. Bergman, D., Ciré, A.A., & van Hoeve, W.J. (2014). MDD propagation for sequence constraints. Journal
of Artificial Intelligence Research (JAIR), 50, 697–722.

8. Bergman, D., Cire, A.A., van Hoeve, W.J., & Hooker, J. (2016). Decision diagrams for optimization.
Springer International Publishing.

9. Berthold, T., Heinz, S., & Schulz, J. (2011). An approximative criterion for the potential of energetic
reasoning. In Theory and practice of algorithms in (computer) systems (pp. 229–239).

10. Bessière, C., & Debruyne, R. (2005). Optimal and suboptimal singleton arc consistency algorithms. In
International joint conference on artificial intelligence (pp. 54–59).

11. Bessiere, C., & Régin, J.C. (1997). Arc consistency for general constraint networks: preliminary results.
In International joint conference on artificial intelligence (pp. 398–404). Citeseer.

12. Bessiere, C., & Van Hentenryck, P. (2003). To be or not to be... a global constraint. In International
conference on principles and practice of constraint programming (pp. 789–794). Springer, Berlin.

13. Brand, S., Narodytska, N., Quimper, C., Stuckey, P.J., & Walsh, T. (2007). Encodings of the sequence
constraint. In International conference on principles and practice of constraint programming (pp. 210–
224).

14. Cheng, K.C.K., & Yap, R.H.C. (2010). An MDD-based generalized arc consistency algorithm for
positive and negative table constraints and some global constraints. Constraints, 15(2), 265–304.

15. Dejemeppe, C., Van Cauwelaert, S., & Schaus, P. (2015). The unary resource with transition times. In
International conference on principles and practice of constraint programming (pp. 89–104). Springer,
Berlin.

16. Deransart, P., Hermenegildo, M.V., & Maluszynski, J. (2000). Analysis and visualization tools for con-
straint programming: constraint debugging. In Lecture Notes in Computer Science (Vol. 1870). Springer,
Berlin.

17. Derrien, A., & Petit, T. (2014). A new characterization of relevant intervals for energetic reasoning. In
International conference on principles and practice of constraint programming (pp. 289–297). Springer,
Berlin.

18. Dincbas, M., Simonis, H., & Van Hentenryck, P. (1990). Solving large combinatorial problems in logic
programming. The Journal of Logic Programming, 8(1), 75–93.

19. Dolan, E.D., & Moré, J.J. (2002). Benchmarking optimization software with performance profiles.
Mathematical Programming, 91(2), 201–213.

20. Du Boisberranger, J., Gardy, D., Lorca, X., & Truchet, C. (2013). When is it worthwhile to propa-
gate a constraint? A probabilistic analysis of alldifferent. In Workshop on analytic algorithmics and
combinatorics (pp. 80–90). SIAM.

21. Ducomman, S., Cambazard, H., & Penz, B. (2016). Alternative filtering for the weighted circuit con-
straint: Comparing lower bounds for the tsp and solving tsptw. In AAAI conference on artificial
intelligence.

22. Erschler, J., & Lopez, P. (1990). Energy-based approach for task scheduling under time and resources
constraints. In International workshop on project management and scheduling (pp. 115–121).

23. Focacci, F., Lodi, A., Milano, M., & Vigo, D. (1999). Solving TSP through the integration of OR and
CP techniques. Electronic Notes in Discrete Mathematics, 1, 13–25.

24. Gay, S., Hartert, R., Lecoutre, C., & Schaus, P. (2015). Conflict ordering search for scheduling prob-
lems. In International conference on principles and practice of constraint programming (pp. 140–148).
Springer.

Constraints (2018) 23:87–122 121

25. Gay, S., Hartert, R., & Schaus, P. (2015). Simple and scalable time-table filtering for the cumulative
constraint. In International conference on principles and practice of constraint programming (pp. 149–
157). Springer, Berlin.

26. Gay, S., Hartert, R., & Schaus, P. (2015). Time-table disjunctive reasoning for the cumulative constraint.
In International conference on integration of artificial intelligence (AI) and operations research (OR)
techniques in constraint programming (pp. 157–172). Springer, Berlin.

27. Harvey, W.D., & Ginsberg, M.L. (1995). Limited discrepancy search. In International joint conference
on artificial intelligence (pp. 607–615).

28. van Hoeve, W.J., Pesant, G., Rousseau, L., & Sabharwal, A. (2006). Revisiting the sequence constraint.
In International conference on principles and practice of constraint programming (pp. 620–634).

29. Jefferson, C., Moore, N.C., Nightingale, P., & Petrie, K.E. (2010). Implementing logical connectives in
constraint programming. Artificial Intelligence, 174(16–17), 1407–1429.

30. Kolisch, R., Schwindt, C., & Sprecher, A. (1999). Benchmark instances for project scheduling problems.
In Project scheduling (pp. 197–212). Springer, Berlin.

31. Langevine, L., Deransart, P., & Ducassé, M. (2003). A generic trace schema for the portability of CP(FD)
debugging tools. In International workshop on constraint solving and constraint logic programming (pp.
171–195). Springer, Berlin.

32. Le Pape, C., Couronné, P., Vergamini, D., & Gosselin, V. (1994). Time-versus-capacity compromises in
project scheduling. In Workshop of the UK planning and scheduling. Citeseer.

33. Letort, A., Beldiceanu, N., & Carlsson, M. (2012). A scalable sweep algorithm for the cumulative con-
straint. In International conference on principles and practice of constraint programming (pp. 439–454).
Springer, Berlin.

34. López-Ortiz, A., Quimper, C.G., Tromp, J., & Van Beek, P. (2003). A fast and simple algorithm
for bounds consistency of the alldifferent constraint. In International joint conference on artificial
intelligence (Vol. 3, pp. 245–250).

35. McCreesh, C., & Prosser, P. (2015). A parallel, backjumping subgraph isomorphism algorithm using
supplemental graphs. In International conference on principles and practice of constraint programming
(pp. 295–312). Springer, Berlin.

36. Müller, T., & Würtz, J. (1995). Constructive disjunction in oz. In Workshop Logische Programmierung.
Citeseer.

37. OscaR Team: OscaR: Scala in OR (2012). Available from https://bitbucket.org/oscarlib/oscar.
38. Pelsser, F., Schaus, P., & Régin, J.C. (2013). Revisiting the cardinality reasoning for binpacking con-

straint. In International conference on principles and practice of constraint programming (pp. 578–586).
Springer, Berlin.

39. Pisinger, D., & Ropke, S. (2010). Large neighborhood search. In Handbook of metaheuristics (pp. 399–
419). Springer, Berlin.

40. Régin, J.C. (1994). A filtering algorithm for constraints of difference in CSPs. In AAAI conference on
artificial intelligence (Vol. 94, pp. 362–367).

41. Reinelt, G. (1991). Tsplib—a traveling salesman problem library. ORSA Journal on Computing, 3(4),
376–384.

42. Schaus, P. (2009). Solving balancing and bin-packing problems with constraint programming. Ph.D.
thesis, Université catholique de Louvain, Louvain-la-Neuve.

43. Schulte, C. (1997). Oz explorer: a visual constraint programming tool. In L. Naish (Ed.) Proceedings of
the fourteenth international conference on logic programming (pp. 286–300). Leuven: The MIT Press.

44. Schulte, C. (1999). Comparing trailing and copying for constraint programming. In International
conference on logic programming (Vol. 99, pp. 275–289).

45. Schulte, C., & Stuckey, P.J. (2005). When do bounds and domain propagation lead to the same search
space? ACM Transactions on Programming Languages and Systems, 27(3), 388–425.

46. Schulte, C., & Tack, G. (2009). Weakly monotonic propagators. In International conference on principles
and practice of constraint programming (pp. 723–730). Springer, Berlin.

47. Shaw, P. (2004). A constraint for bin packing. In International conference on principles and practice of
constraint programming (pp. 648–662). Springer, Berlin.

48. Shishmarev, M., Mears, C., Tack, G., & de la Banda, M.G. (2015). Visual search tree profiling. In
International conference on principles and practice of constraint programming. Springer, Berlin.

49. Shishmarev, M., Mears, C., Tack, G., & de la Banda, M.G. (2016). Learning from learning solvers. In
International conference on principles and practice of constraint programming (pp. 455–472). Springer,
Berlin.

50. Shishmarev, M., Mears, C., Tack, G., & de la Banda, M.G. (2016). Visual search tree profiling.
Constraints, 21(1), 77–94.

https://bitbucket.org/oscarlib/oscar

122 Constraints (2018) 23:87–122

51. Simonis, H., Davern, P., Feldman, J., Mehta, D., Quesada, L., & Carlsson, M. (2010). A generic
visualization platform for CP. In International conference on principles and practice of constraint
programming (pp. 460–474). Springer, Berlin.

52. Smith, B.M. (2005). Modelling for constraint programming. In Lecture notes for the first international
summer school on constraint programming.

53. Tack, G. (2009). Constraint propagation—models, techniques, implementation. Ph.D. thesis, Saarland
University, Germany.

54. Van Beek, P. (2006). Backtracking search algorithms. In Handbook of constraint programming (pp.
85–134).

55. Van Cauwelaert, S., Lombardi, M., & Pierre, S. (2014). Supervised learning to control energetic
reasoning: feasibility study. In Proceedings of the doctoral program of CP2014.

56. Van Cauwelaert, S., Lombardi, M., & Schaus, P. (2015). Understanding the potential of propagators.
In International conference on integration of artificial intelligence (AI) and operations research (OR)
techniques in constraint programming (pp. 427–436). Springer, Berlin.

57. Van Cauwelaert, S., Lombardi, M., & Schaus, P. (2016). A visual web tool to perform what-if analysis
of optimization approaches. Tech. rep., UCLouvain.

58. Van Hentenryck, P., & Dincbas, M. (1987). Forward checking in logic programming. In International
conference on logic programming (pp. 229–256).

59. Vilım, P. (2007). Global constraints in scheduling. Ph.D. thesis, Charles University in Prague, Faculty
of Mathematics and Physics, Department of Theoretical Computer Science and Mathematical Logic,
KTIML MFF, Universita Karlova, Praha 1.

60. Warren, D. (1983). An abstract Prolog instruction set (Vol. 309). Menlo Park: SRI International.
61. Würtz, J., & Müller, T. (1996). Constructive disjunction revisited. In Görz, G., & Hölldobler, S. (Eds.)

KI-96: Advances in artificial intelligence. KI 1996. Lecture Notes in Computer Science (Lecture Notes
in Artificial Intelligence), (Vol. 1137, pp. 377386). Berlin: Springer.

	How efficient is a global constraint in practice?
	Abstract
	Introduction
	Contributions
	Paper outline

	Motivation
	Section outline
	Search formalization
	Evaluation of global constraints
	Current evaluation methods and their limitations
	Dynamic strategies
	Static strategies

	Aim of this work

	Fair evaluation through the Replay technique
	Replaying (high-level description)
	CBT generation
	CBT replay
	Propagator evaluation

	Limitations
	Implementation of the replay technique
	Linearizing the CBT
	Replay algorithm
	Sharing sequences

	Assessing the potential of a propagator
	Representative propagator evaluation with performance profiles
	Fictional propagators
	Characterization of time efficiency and potential
	Potential of inference rules
	Global constraint maximal propagation

	Implementation in the OscaR solver
	Initial model
	CBT generation
	CBT replay
	Tracking a constraint

	Experimentation
	AllDifferent
	Energetic Reasoning for the cumulative constraint
	Revisited cardinality reasoning for BinPacking
	Unary constraint with transition times
	Bound Consistent Cumulative

	Conclusion
	Future work

	References

