
Constraints (2017) 22:530–547
DOI 10.1007/s10601-017-9271-4

Cumulative scheduling with variable task profiles
and concave piecewise linear processing rate functions

Margaux Nattaf1 ·Christian Artigues1 ·Pierre Lopez1

Published online: 23 May 2017
© Springer Science+Business Media New York 2017

Abstract We consider a cumulative scheduling problem where a task duration and resource
consumption are not fixed. The consumption profile of the task, which can vary contin-
uously over time, is a decision variable of the problem to be determined and a task is
completed as soon as the integration over its time window of a non-decreasing and continu-
ous processing rate function of the consumption profile has reached a predefined amount of
energy. The goal is to find a feasible schedule, which is an NP-hard problem. For the case
where functions are concave and piecewise linear, we present two propagation algorithms.
The first one is the adaptation to concave functions of the variant of the energetic reasoning
previously established for linear functions. Furthermore, a full characterization of the rel-
evant intervals for time-window adjustments is provided. The second algorithm combines
a flow-based checker with time-bound adjustments derived from the time-table disjunctive
reasoning for the cumulative constraint. Complementarity of the algorithms is assessed via
their integration in a hybrid branch-and-bound and computational experiments on small-size
instances.

Keywords Continuous scheduling · Continuous resources · Concave piecewise linear
functions · Energy constraints · Energetic reasoning

This article belongs to the Topical Collection: Integration of Artificial Intelligence and Operations
Research Techniques in Constraint Programming
Guest Editors: Michele Lombardi and Domenico Salvagnin

� Margaux Nattaf
nattaf@laas.fr

Christian Artigues
artigues@laas.fr

Pierre Lopez
lopez@laas.fr

1 LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s10601-017-9271-4&domain=pdf
mailto:nattaf@laas.fr
mailto:artigues@laas.fr
mailto:lopez@laas.fr

Constraints (2017) 22:530–547 531

This paper deals with a scheduling problem involving a set of tasks and a continuously-
divisible renewable resource of limited capacity shared by the tasks. We consider the case
where tasks resource requirement is not fixed but is part of the problem and has to be
determined. Thus, the duration of a task is not fixed either but is determined by the resource
requirement function as the task is finished once it has received a necessary amount of
energy. Furthermore, we consider that the total energy received by a task is not equal to
the total amount of the resource used by it. Instead we have processing rate (or efficiency)
functions, which translates the required resource amounts into energy.

We perform an analysis of the structural properties of the problem for concave piecewise
linear processing rate functions. To our knowledge, this variant of the cumulative constraint
has never been considered in the literature. We show first that the resource demand profile
of a task can be restricted to a piecewise constant function with break points at the starts
and ends of tasks. From these theoretical properties, we are able to compute the minimal
resource consumption of a task inside an interval in O(1) and we prove that the set of the
relevant intervals of polynomial size that was shown sufficient for energetic reasoning with
linear functions is also sufficient in our case. Furthermore, a full characterization of relevant
intervals for time-window adjustments is provided, completing the work for linear func-
tion. We also define a new propagation algorithm together with a satisfiability test, which
relies on the time-table disjunctive reasoning for the cumulative constraint [6] for the first
one and on a flow-based linear program for the latter one. Finally, complementarity of the
algorithms is assessed via their integration in a hybrid branch-and-bound and computational
experiments on small-size instances.

1 Problem statement, properties and context

In this section, we formally define the Continuous Energy-Constrained Scheduling Problem
(CECSP). Then, we present a foundry application in details and finally, we exhibit some
properties of the CECSP, which we will use throughout the paper.

1.1 Problem definition

In the CECSP, a set of tasks A = {1, . . . , n} has to be scheduled using a continuous, cumu-
lative and renewable resource of capacity B. The resource amount that a task requires during
its processing time is not fixed but instead the resource usage of a task i ∈ A is a function
of time, bi(t), that must be determined in a continuous time setting (t ∈ R

+). Once the task
is started and until its finishing time, its resource usage is constrained to lie between a max-
imum and a minimum requirement, bmax

i and bmin
i �= 0, respectively.1 In addition, when a

task uses a part of the resource, it receives a certain amount of energy and we say that a task
is finished when it has received an energy Wi . This energy is computed using a continuous,
non-decreasing, concave and piecewise linear power processing rate function [3]:

fi : [bmin
i , bmax

i] −→ R

bi(t) −→ fi(bi(t))

Furthermore, each task has a release date ri and a deadline di , and has to be fully executed
in [ri , di].

1Although all results presented in this paper can be adapted when bmin
i = 0, for ease of notation, we assume

bmin
i �= 0.

532 Constraints (2017) 22:530–547

The CECSP consists of finding, for each task, a start time sti ∈ [esti , lsti], an end time
eti ∈ [eeti , leti], and its resource usage bi(t) ∈ R

+, ∀t ∈ R
+ such that:

ri ≤ sti < eti ≤ di ∀i ∈ A (1)

bmin
i ≤ bi(t) ≤ bmax

i ∀i ∈ A, ∀t ∈ [sti , eti] (2)∫ eti

sti

fi(bi(t))dt = Wi ∀i ∈ A (3)

∑
i∈A

bi(t) ≤ B ∀t (4)

Example 1 In the example of Fig. 1, the energy received by task 2 is equal to (2 × 3 + 1) +
(2×4+1)+ (2×4+1) = 25; the amount of resource consumed is equal to 3+4+4 = 11.

Throughout this paper, we will use the following expression for function fi (see Fig. 2):

fi(bi(t)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ai1 · bi(t) + ci1 if bi(t) ∈ [bmin
i , xi

1[
ai2 · bi(t) + ci2 if bi(t) ∈ [xi

1, x
i
2[

...

aiPi
· bi(t) + ciPi

if bi(t) ∈ [xi
Pi−1, b

max
i]

with Pi being the number of pieces of fi and xi
p, p ∈ {1, . . . , Pi − 1} its breakpoints.

1.2 Context

The CECSP comes from an industrial problem. This problem, presented in [1], arises
in a pipe-manufacturing plant and more precisely, the foundry where metal is melted in
induction furnaces. In this department, melting and heating use a huge amount of energy
especially electricity. The expenses of the plant for electricity represent more than half of
the annual energy costs. The cost of electricity depends on the total energy consumed and

Fig. 1 An example of instance and corresponding solution of CECSP

Constraints (2017) 22:530–547 533

Fig. 2 Illustration of the notations for function fi with Pi = 5

on penalties for power overrun in reference to a subscribed maximal power. The goal is to
minimize the energy bill.

The foundry has several production lines (furnaces) and each metal operation has to be
assigned to a furnace and scheduled within a time window. Furthermore, an operation has
a variable duration that depends on the power given to the furnace. Thus, the electrical
power of the furnaces, which can be adjusted at any time to avoid exceeding a maximum
limit, can be seen as a continuous function of time to be determined. However, the function
must lie within a limit (due to physical and operational considerations); thus, a minimum
and a maximum power level must be satisfied for the melting operation. A melting job is
composed of three sequential parts: loading, heating and unloading. The duration of loading
and unloading are known but heating duration has to be determined. The heating operation
can be stopped once the necessary energy has been received.

To solve this problem, the authors suppose that jobs have a piecewise constant consump-
tion profile and define a two-step method. In the first step, scheduling of jobs on the furnaces
is performed, using a constraint programming model, with fixed job durations. The task
sequence and assignment are then used as data in the second step and a MILP model is used
to determine their consumption profile and duration. The algorithm then returns to the first
step with new jobs durations and it stops when the objective function is no more improved.

Unfortunately, the initially considered energy model was not sufficient to achieve a good
energy consumption. Therefore, a new problem, which can be used to determine task start-
ing and finishing times as well as their consumption profile was introduced in [1], the
Energy Scheduling Problem (EnSP). Due to the complexity of the problem, the proposed
model considers a time discretization, which can lead to suboptimal or infeasible solutions
by over-constraining the problem. Furthermore, efficiency functions were not considered.
In a continuous time setting but still without considering the efficiency functions, constraint
propagation algorithms based on the energetic reasoning concept were proposed in [2] for
the CECSP, which is the continuous version of the EnSP.

Despite the fact that processing rate functions were not considered in these papers, actual
processing rate functions in scheduling problems that involve energy-consuming tasks are
intrinsically continuous and non-linear. As a typical example, the non-linear function given
in Fig. 3 gives the shape of the processing rate function of a fuel cell [7]. An extension of
the work of [2] to linear processing rate functions as well as several solution methods was
proposed in [12, 13]. A preliminary version of the work presented in this paper can be found
in [14].

534 Constraints (2017) 22:530–547

Fig. 3 Approximation from below of a processing rate function by a linear one (left) and by a concave
piecewise linear one (right)

1.3 Properties and remarks

In [12], the authors use linear functions to approximate real-world ones. Despite the fact that
there exist many real-world processing functions, which are concave [8, 11], approximating
a function by a concave piecewise linear one is always at least as good as an approximation
by a linear function (see Example 2 below). Furthermore, the authors of [12] prove the NP-
hardness of their problem using a reduction from the cumulative problem. This proof is still
valid in our case and then the CECSP with concave functions is NP-hard.

Example 2 Consider the neither concave nor convex function described in Fig. 3. We
approximate the function from below (to obtain a relaxation) with a linear function (left side
of the figure) or with a concave piecewise linear one (right side of the figure).

Clearly, the approximation is tighter with the concave piecewise linear function. Note
also that this result is also valid for approximation from above or at the median point.

In order to define an efficient solution method for our problem, we prove that if there
exists a solution for the CECSP, then a solution where all resource usage functions, bi(t),
are piecewise constant exists. This is the statement of the following theorem:

Theorem 1 Let I be a feasible instance of CECSP, with non-decreasing, concave piecewise
linear functions fi . A solution such that, for all i ∈ A, bi(t) is piecewise constant, exists.
Furthermore, ∀i ∈ A the breakpoints of bi(t) can be restricted to the start and end times of
the tasks.

Let us assume a solution S with non-piecewise constant bi(t) exists. Then, S can be
transform into a new solution S′ with piecewise constant b′

i (t), ∀i ∈ A.
Before proving Theorem 1, we prove that, if ∃[t1, t2] where bi(t) is not constant, then

bi(t) can be set to its mean value over [t1, t2]. Doing so, i will consume the same resource
quantity in [t1, t2] and will received more energy.

Lemma 1 Let biq =
∫ t2
t1

bi (t)dt

t2−t1
. Then, we have:
∫ t2

t1

biqdt =
∫ t2

t1

bi(t)dt (5)

∫ t2

t1

fi(biq)dt ≥
∫ t2

t1

fi(bi(t))dt (6)

Constraints (2017) 22:530–547 535

Proof Equation (5) is trivially verified by replacing biq by its value. To prove that (6) is
satisfied, we can use the following theorem, due to Jensen [9].

Theorem 2 (Jensen) Let α(t) and g(t) be two integrable functions on [t1, t2] such that
α(t) ≥ 0, ∀t ∈ [t1, t2]. We have:

φ

(∫ t2
t1

α(t)g(t)dt∫ t2
t1

α(t)dt

)
≥

∫ t2
t1

α(t)φ(g(t))dt∫ t2
t1

α(t)dt
(7)

where φ is a continuous concave function in [mint∈[t1,t2] g(t)][maxt∈[t1,t2] g(t)].

Replacing φ(t) by fi(t), g(t) by bi(t) and α(t) by the constant function equal to 1 gives
the desired result.

Example 3 Consider a task i and the concave piecewise linear efficiency function described
in Example 1, f3(b).

Consider an interval [t1, t2 = t1 + 6] and functions (Fig. 4):

bi(t) =
{

3 if t ∈ [t1, t1 + 3[
1 if t ∈ [t1 + 3, t2] which yields fi(bi(t)) =

{
6 if t ∈ [t1, t1 + 3[
3 if t ∈ [t1 + 3, t2]

Thus,
∫ t2
t1

bi(t)dt = 12 and
∫ t2
t1

fi(bi(t))dt = 27. Applying Lemma 1 we can replace

bi(t) by biq = 12/6 = 2 between t1 and t2, which yields fi(biq) = 5,
∫ t2
t1

biqdt = 12 and∫ t2
t1

fi(biq)dt = 30 ≥ 27.

Proof (Theorem 1) Let S be a feasible solution of I and let (tq){q=1..Q} be the increasing
series of distinct start and end time values (Q ≤ 2n). S′ can be defined as follows:

– b′
i (t) =

⎧⎪⎨
⎪⎩

bi0 if t ∈ [t0, t1]
...

bi(Q−1) if t ∈ [tQ−1, tQ]
with biq =

∫ tq+1
tq

bi (t)dt

tq+1−tq

– st ′i = sti
– et ′i = min(τ | ∫ τ

sti
fi(b

′
i (t))dt = Wi) and then b′

i (t) = 0, ∀t > et ′i
S′ clearly verifies the energy constraints (3) since it is defined in this way. S′ also satisfies

the time window constraints (1) since sti ≤ st ′i and eti ≥ et ′i (Fig. 5).

Fig. 4 Illustration of Lemma 1

536 Constraints (2017) 22:530–547

Fig. 5 Construction of S′ from S

In addition, as S is a feasible solution, we have ∀q ∈ {1, . . . ,Q} and ∀t ∈ [tq , tq+1]:
∑
i∈A

bi(t) ≤ B ⇒
∑
i∈A

∫ tq+1

tq

bi(t)dt ≤ B(tq+1 − tq)

⇒
∑
i∈A

b′
i (t) ≤

∑
i∈A

biq =
∑
i∈A

∫ tq+1
tq

bi(t)dt

tq+1 − tq
≤ B

and S′ also verifies the resource capacity constraints (4).
Finally, we can show that S′ satisfies the resource requirement constraints (2) in a similar

way.

An interesting remark can be made about Theorem 1. Actually, in order to find a solution
to CECSP, we only have to find, for each task, its start time sti , its end time eti and the
quantity of resource allocated to i between two consecutive start/end times biq .

2 Time-table based reasoning

In this section, we first describe an algorithm which allows us to detect some infeasibil-
ities and then, another algorithm performing time-bound adjustments is presented. Both
are based on the well-known Time-Table reasoning [10] but the first one combines it
with a flow-based algorithm, whereas the second one is an adaptation of the Time-Table
Disjunctive reasoning for the cumulative constraints [6].

The Time-Table reasoning is based on the following observation: if the earliest end time
eeti of a task i is higher than its latest start time lsti then i must be in process during interval
[lsti , eeti]; this interval is called the compulsory part of i. For the CECSP, as the resource
usage of i is not fixed, we can only deduce that the task will consume at least bmin

i units of
resource (see Fig. 6).

Aggregating all compulsory parts, we can compute in O(n2) the minimum profile of the
resource, denoted by T T (t),∀t and use it to detect infeasibility and to perform time-bound
adjustments.

2.1 Time-table flow based reasoning

The first algorithm described in this paper embeds the concept of compulsory part into
a flow-based linear program. This linear program allows us to detect some infeasibility.
Indeed, if the program has no solution, then the considered CECSP instance is infeasible.

Constraints (2017) 22:530–547 537

Fig. 6 Compulsory part of a task i

To describe this program, let (tq)q∈Q be the increasing series of distinct variable domain
bounds, i.e. tq gather all distinct latest/earliest start/end times of all tasks. Clearly, |Q| ≤
4 · n. Then, ∀[tq , tq+1], let βiq (resp. wiq) represent the quantity of consumed resource
(resp. received energy) in this interval. Thus, the following linear program can be used as a
checker: ∑

i∈A

βiq ≤ B(tq+1 − tq) ∀q ∈ Q (8)

βiq ≥ bmin
i (tq+1 − tq) ∀i ∈ A ; ∀q ∈ Q | smax

i ≤ tq ≤ emin
i (9)

βiq ≤ bmax
i (tq+1 − tq) ∀i ∈ A ; ∀q ∈ Q (10)

βiq = 0 ∀i ∈ A ; ∀q ∈ Q | tq �∈ [ri , di] (11)

wiq ≤ aipβiq + cip(tq+1 − tq) ∀i ∈ A ; ∀q ∈ Q ; ∀p ∈ {1, . . . , Pi} (12)

wiq ≤ Mβiq ∀i ∈ A ; ∀q ∈ Q (13)∑
q∈Q

wiq = Wi ∀i ∈ A (14)

βiq ≥ 0, wiq ≥ 0 ∀i ∈ A ; ∀q ∈ Q (15)

where M is some large enough constant.
The compulsory part constraints are expressed by constraints (9). Constraints (8) model

the resource capacity limitations. Constraints (10) impose that the maximum resource
requirements are satisfied. Constraints (11) set the resource consumption of task i in
[tq , tq+1] to be equal to 0, if [tq , tq+1] �⊆ [ri , di]. Constraints (12) together with con-
straints (13) ensure a correct resource conversion. Indeed, as fi is concave and piecewise
linear, the first constraints ensure that wiq can take the value fi(

βiq

tq+1−tq
)·(tq+1−tq) whereas

the second ones set wiq to zero if βiq = 0. Finally, constraints (14) state that the tasks
received the required energy.

Note that this test ensures the same level of consistency than the Time-Table Overload
Check [16]. Indeed, it does the Overload Check at the same time as the Time-Table. This is
the same consistency check that performs Time-Table Edge-Finding [15].

We now describe the adaptation of the Time-Table Disjunctive reasoning for the cumu-
lative constraint [6] to our problem. This reasoning will be used to perform time-bound
adjustments on the start and end time variables.

2.2 Time-table disjunctive reasoning

The idea of the Time-Table Disjunctive reasoning is to take advantage of the minimum
resource profile to detect disjunctive pairs of tasks, i.e. tasks that cannot be processed in
parallel, dynamically.

538 Constraints (2017) 22:530–547

Fig. 7 Minimum overlapping interval

Indeed, the disjunctive reasoning only considers pairs of tasks that exceed the capacity
of the resource if they are scheduled in parallel, i.e. bmin

i + bmin
j > B. However, tasks in

A \ {i, j} may not leave B units of resource available during the overlap of i and j .
Furthermore, if task i has no compulsory part then an additional filtering can be done

when starting a task j at estj would make it overlap i in every schedule. This is due to the
fact that j cannot contain a time interval that i must overlap.

Therefore, the authors in [6] defined the smallest interval overlapping i in every solution,
called the minimum overlapping interval and denoted by moii . For the CECSP, this interval
is exactly [esti , lsti] \ [esti , eeti[, i.e the smallest interval containing [eeti , lsti] (cf. Fig. 7).
Note that, if a task has a compulsory part, then moii = ∅.

Let etmax
i = ri + Wi/fi(b

min
i). Then, using the minimum resource profile to compute

the available resource and to search for disjunctive pairs of tasks, the time-table disjunctive
reasoning can be stated as follows:

Proposition 1 Let i �= j be two tasks having no compulsory consumption and such that
bmin
i + bmin

j + mint∈moii T T (t) > B. If moii ⊆ [estj , etmax
j] we must have eeti ≤ stj and

so estj can be adjusted to eeti .

Example 4 Consider the example of Fig. 8 adapted from [6]. Due to the minimum profile,
i and j cannot overlap and, since j cannot be scheduled before i (moii ⊆ [estj , etmax

j]), j

has to be scheduled after and then we can set estj to eeti .

A symmetrical reasoning allows to make adjustment of letj . Furthermore, Proposition 1
can easily be extended to the case where tasks i and j has no compulsory consumption
following the method presented in [6] for the cumulative constraint.

Fig. 8 Example of time-table disjunctive adjustments

Constraints (2017) 22:530–547 539

3 Energetic reasoning

In this section, we present the extension of the well-known energetic reasoning to the
CECSP with concave and piecewise linear processing rate functions. This work extends the
work of [13] for linear processing rate functions. The full characterization of relevant inter-
vals for the time-bound adjustments is also provided, extending the result for the cumulative
constraint [4]. This characterization was not presented in [13].

First, we present the central idea of the reasoning and we use it to provide a satisfiability
test as well as time-bound adjustments. The second part of this section will be dedicated to
the characterization of relevant intervals.

3.1 Satisfiability test and time-bound adjustments

The idea of the energetic reasoning is to test whether the available resource within an inter-
val [t1, t2] is sufficient to provide the minimum resource quantity needed by each task i in
this interval, denoted by β(i, t1, t2). If not, then the corresponding instance of the CECSP is
infeasible.

Theorem 3 [5] Let I be an instance of CECSP. If there exists (t1, t2) such that B(t2 − t1)−∑
i∈A β(i, t1, t2) < 0 then I is infeasible.

In order to compute the minimum resource consumption of task i in [t1, t2], we first have
to compute the minimum energy requirement of i in this interval, denoted by w(i, t1, t2).
This minimum requirement is obtained by scheduling as much energy as possible outside
the interval [t1, t2] while satisfying constraints (1)–(4). This always corresponds to a case
where the activity is:

– left-shifted: the task starts at esti and is scheduled at its maximum requirement between
esti and t1,

– right-shifted: the task ends at leti and is scheduled at its maximum requirement between
t2 and leti ,

– or both: when scheduling at minimum requirement inside [t1, t2] implies to have a non-
zero requirement both in [esti , t1] and in [t2, leti].

We denote by ωLS(i, t1, t2) (resp. ωRS(i, t1, t2)) the minimum energy requirement of
task i if it is shifted as early as possible in [t1, t2] (resp. as late as possible). Since both
cases are symmetric, we only describe the first one. Thus, ωLS(i, t1, t2) is equal to:

Expression Condition Figure

0 t1 ≥ eeti ∨ t2 ≤ esti –

Wi t1 ≤ esti ∧ leti ≤ t2 –

Wi − fi(b
max
i)(t1 − esti) esti ≤ t1 ≤ eeti ∧ leti ≤ t2 Fig. 9a

min

(
Wi − fi (b

max
i)(t1 − esti),

max

{
Wi − fi (b

max
i)(t1 − esti + leti − t2)),

fi (b
min
i)(t2 − t1)

}
)

esti ≤ t1 < t2 ≤ leti Fig. 9b

max

{
Wi − fi(b

max
i)(leti − t2)),

fi(b
min
i)(t2 − esti)

}
t1 ≤ esti ∧ t2 < leti Fig. 9c

The three last cases are illustrated in Fig. 9.

540 Constraints (2017) 22:530–547

Fig. 9 Computation of ωLS(i, t1, t2)

Thus, the minimum energy requirement in [t1, t2] is:

w(i, t1, t2) = min (ωLS(i, t1, t2), ωRS(i, t1, t2)) (16)

The minimum energy requirement is then used to compute the minimum resource
requirement. First, let I = [esti , leti] ∩ [t1, t2], then β(i, t1, t2) can be computed by solving
the following program:

minimize
∫

I

bi(t)dt (17)

subject to
∫

I

fi(bi(t))dt ≥ w(i, t1, t2) (18)

bi(t) ≥ bmin
i (19)

Indeed, the goal is to find the minimum resource quantity (17) i has to consume in I to
receive an energy w(i, t1, t2) (18). In addition, we have to make sure that the minimum
requirement constraints are satisfied by the solution of the program (19).

Then, Lemma 1 can be used to simplify the program. Actually, the lemma applied to the
problem involving only task i implies a solution with constant bi(t), say bi(t) = b̃i exists
and then the program can be rewritten as follows:

minimize b̃i |I |
subject to fi(b̃i)|I | ≥ w(i, t1, t2)

b̃i ≥ bmin
i

Thus, we have two cases to consider: either the task can be scheduled at bmin
i during the

whole interval I or not. In the first case, we can remove the second constraint and we obtain:

b̃i = min(b ∈ [0, bmax
i] | fi(b) ≥ w(i, t1, t2)/|I |)

⇒ b̃i = f −1
i (w(i, t1, t2)/|I |)

Constraints (2017) 22:530–547 541

Since fi is concave and piecewise linear, f −1
i can easily be computed2 and b̃i |I | =

f −1
i (w(i, t1, t2)/|I |) · |I | = β(i, t1, t2) is equal to:

f −1
i

(
w(i, t1, t2)

|I |
)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w(i,t1,t2)−ci0|I |
ai0|I | if w(i,t1,t2)

|I | ∈ [fi(b
min
i), fi(γ

i
1)]

w(i,t1,t2)−ci1|I |
ai1|I | if w(i,t1,t2)

|I | ∈ [fi(γ
i
1), fi(γ

i
2)]

...
w(i,t1,t2)−ciPi

|I |
aiPi

|I | if w(i,t1,t2)

|I | ∈ [fi(γ
i
Pi

), fi(b
max
i)]

The second case corresponds to the case where executing the task at bmin
i during the whole

interval I give too much energy to the task, i.e. w(i, t1, t2) < |I | · fi(b
min
i). In this case,

β(i, t1, t2) is equal to bmin
i · w(i, t1, t2)/fi(b

min
i).

Finally, the expression of the minimum resource consumption is:

β(i, t1, t2) = max

{
bmin
i

w(i, t1, t2)

fi(b
min
i)

, max
p∈{1,...,Pi }

(
1

aip

(w(i, t1, t2) − |I |cip)

)}
(20)

Example 5 Consider the instance described in Example 1. In particular, we compute
w(i, t1, t2) and β(i, t1, t2) for task 3 and interval [0, 4] and [0, 6].

For interval [0, 6], we have w(3, 0, 6) = W3 = 21.5 since [est3, let3] ⊆ [t1, t2]. Then,
the computation of β(3, 0, 6) falls into the case where w(3, 0, 6) ≥ f3(b

min
i [3]) · · · |I | =

18. Thus, w(3, 0, 6)/|I | = 21.5/6 � 3.583 belonging to interval [f3(1), f3(2)[= [2, 5[, we
have (see Fig. 10a):

β(3, 0, 6) = w(3, 0, 6) − 1 · 6

2 · 6
· 6 = 21.5 − 6

12
· 6 = 31

4
For interval [0, 4], we have w(3, 0, 4) = W3 − 2 · f3(b

max
i [3]) = 8.5. Here, the compu-

tation of β(3, 0, 4) falls into the case where w(3, 0, 4) < f3(b
min
i [3]) · · · |I | = 12. Thus,

we have (see Fig. 10b):

β(3, 0, 4) = bmin
i [3] · w(3, 0, 4)

f3(b
min
i [3]) = 1 · 8.5

3
= 17

6

We now describe how this quantity is used to perform time-bound adjustments. These
adjustments are similar to the ones for linear functions described in [12], so we just briefly
present them.

We start by defining some notation. We denote by βLS(i, t1, t2) (respectively
βRS(i, t1, t2)) the minimal resource consumption corresponding to ωLS(i, t1, t2) (resp.
ωRS(i, t1, t2)).

We have:

βLS(i, t1, t2) = max

{
bmin
i

ωLS(i, t1, t2)

fi(b
min
i)

, max
p∈{1,...,Pi }

(
1

aip

(ωLS(i, t1, t2) − |I |cip)

)}

and a similar expression for βRS(i, t1, t2).

2Indeed, suppose that fi is constant in some pieces the first one being p ∈ {1, . . . , Pi}, which would cause
problem to compute f −1

i . In that case, fi must be constant on all pieces {p, . . . , Pi} due to concavity. It
follows that bmax

i can be reduced to the start of piece p.

542 Constraints (2017) 22:530–547

Fig. 10 Example of computation of β(i, t1, t2)

Lemma 2 If t1 > ri and there exists [t1, t2] such that:∑
j ∈ A

j �= i

β(j, t1, t2) + βRS(i, t1, t2)) > B(t2 − t1)

then,

lsti ≤ t1 − 1

bmax
i

(
∑

j ∈ A

j �= i

β(j, t1, t2) + βRS(i, t1, t2) − B(t2 − t1)))

and, if bmin
i �= 0,

leti ≤ t1 + 1

bmin
i

(B(t2 − t1) −
∑

j ∈ A

j �= i

β(j, t1, t2))

Indeed, the only configuration for which task i starts after t1 and leading to the
minimum resource consumption inside [t1, t2] is if the task is right-shifted. Therefore,∑

j ∈ A; j �= i
β(j, t1, t2) + βRS(i, t1, t2) is the total minimum resource consumption in

[t1, t2] when task i starts after t1. Hence, if this quantity is greater than the quantity of avail-
able resource in [t1, t2], i has to start before t1. Otherwise

∑
j ∈ A; j �= i

β(j, t1, t2) +∫ t2
t1

bi(t) ≥ ∑
j ∈ A; j �= i

β(j, t1, t2) + βRS(i, t1, t2) ≥ B(t2 − t1).

Furthermore,
∑

j∈A; j �=i β(t1, t2, j)+βRS(i, t1, t2)−B(t2 − t1) is the minimum amount
of resource that has to be allocated to i before t1. Hence, we can divide this number by bmax

i

to obtain a valid upper bound of the start time of i. Similar arguments lead to the adjustment
on leti . An example of such adjustments can be found in [12].

3.2 Relevant intervals for the energetic reasoning

In [12], the authors present a full characterization of the relevant intervals for the satisfia-
bility test in the case where processing rate functions are linear. These intervals are exactly
the ones that are relevant for the case of concave piecewise linear functions. Furthermore, as

Constraints (2017) 22:530–547 543

these intervals are included in the set of relevant intervals for the time-bound adjustments,
we only present the second results.

Recall that an adjustment can be performed on task i if B(t2 − t1)−∑
i �=j β(j, t1, t2)]−

βRS(i, t1, t2) < 0. Thus, we are looking for all intervals [t1, t2] such that the function B(t2 −
t1) − ∑

i �=j β(j, t1, t2) − βRS(i, t1, t2) is negative.

Theorem 4 [4] B(t2 − t1)−∑
i �=j β(j, t1, t2)−βRS(i, t1, t2) is locally minimum in interval

[t1, t2] only if one of the four following conditions is satisfied:

∃(k, �),
δ+β(k, t1, t2)

δt1
<

δ−β(k, t1, t2)

δt1
∧ δ+β(�, t1, t2)

δt2
<

δ−β(�, t1, t2)

δt2
(21)

∃k,
δ+β(k, t1, t2)

δt1
<

δ−β(k, t1, t2)

δt1
∧ δ+βRS(i, t1, t2)

δt2
<

δ−βRS(i, t1, t2)

δt2
(22)

∃�,
δ+βRS(i, t1, t2)

δt1
<

δ−βRS(i, t1, t2)

δt1
∧ δ+�(i, t1, t2)

δt2
<

δ−β(�, t1, t2)

δt2
(23)

δ+βRS(i, t1, t2)

δt1
<

δ−βRS(i, t1, t2)

δt1
∧ δ+βRS(i, t1, t2)

δt2
<

δ−βRS(i, t1, t2)

δt2
(24)

with δ+f
δt2

(resp. δ−f
δt2

) the right (resp. left) derivative of f w.r.t. t2.

This theorem is then used to characterize, for a task i and a fixed t1, the value of function
t2 → β(i, t1, t2) or t2 → βRS(i, t1, t2) for which its left derivative is greater than its right,
and reciprocally for fixed t2. Then, the two results are combined to obtain the list of relevant
intervals [t1, t2].

Since there are many cases to consider, we only present how we obtain relevant t2 for
the case where Wi > fi(b

min
i)(leti − esti). The other cases to consider are bmin

i = bmax
i

(see [4]) and Wi ≤ fi(b
min
i)(leti − esti).

First, let H (resp. I ′) be the intersection point of line fi(b
min
i)(t2 − t1) = Wi − (leti −

t2)fi(b
max
i) and fi(b

min
i)(t2 − t1) = Wi − (t1 −esti)fi(b

max
i) (resp. Wi − (t1 −esti + leti −

t2)fi(b
max
i) = fi(b

min
i)(t2 − t1) and t2 = di).

Also, let U(t1) (resp. D(t1)) be the point t2 such that fi(b
min
i)(t2 − t1) = Wi − (t1 −

esti)fi(b
max
i) (resp. fi(b

min
i)(t2 − t1) = Wi − (leti − t2)fi(b

max
i)

Lemma 3 Let i be a task s.t. Wi > fi(b
min
i)(leti − esti). Then, for any fixed t1, at most

two intervals [t1, t2] satisfying the second condition of (21) exist and at most two intervals
[t1, t2] satisfying the second condition of (22) exist. These intervals are described in Table 1.

With Ht1 (resp. I
′
t1
) being the projection on the x-axis of point H (resp. I ′).

Proof We only present how to obtain relevant t2 for the second line of Table 1. The other
cases can be obtained in a similar way. In order to prove the lemma, we analyze the variation
of t2 → β(i, t1, t2). Figure 11 represents these variations.

Where exprip = 1
aip

(
Wi − fi(b

max
i)(leti − t2 + t1 − esti) − cip(t2 − t1)

)
The intervals

for which the left derivative is smaller than the right are [t1, leti] and [t1,D(t1)]. Indeed,
since fi is a concave piecewise linear function, we have aip > aip+1 and cip < cip+1, and

we have
δ−exprip

δt2
<

δ+exprip+1
δt2

544 Constraints (2017) 22:530–547

Table 1 Relevant t2 for case Wi > fi(b
min
i)(leti − esti)

Function Relevant intervals Condition

β(i, t1, t2) [t1, leti] if t1 ≤ esti

[t1, leti] and [t1,D(t1)] else if t1 ≤ I ′
t1

[t1, U(t1)] and [t1,D(t1)] else if t1 < lsti ∨ t1 < Ht1

[t1, leti + esti − t1] else if eeti < lsti ∧ t1 ≥ Ht1

[t1, U(t1)] else if lsti ≤ eeti ∧ t1 ≥ lsti

none else if t1 ≥ eeti

βRS(i, t1, t2) [t1, leti] if t1 ≤ esti ∧ leti > t1 ≥ lsti

[t1, leti] and [t1,D(t1)] if t1 > esti ∧ t1 < lsti

none otherwise

4 Computational results

In this section, we start by presenting how we have conducted our experiments on the
algorithms stated in this paper. Then, we describe the results of these experiments.

Our propagation algorithms and satisfiability tests were embedded in a hybrid branch-
and-bound combining branching scheme and mixed-integer linear programming (MILP).
This procedure is an adaptation of the one in [12] for linear functions.

Hybrid branch-and-bound At first, a branch-and-bound algorithm is used to reduce the
size of possible start and end intervals (until their size is less than a given ε > 0) and, then,
an event-based MILP is used in order to find exact task start and end times and to determine
the quantity of resource allocated to i between two consecutive events.

The branching procedure is as follows. At the beginning, a task can start (resp. end) at
any time sti ∈ [esti , lsti] (resp eti ∈ [eeti , leti]). The idea is, at each node, to reduce the
size of one of these intervals by creating two nodes splitting the interval into two parts of
equal size.

At each node, we apply one or both of the satisfiability tests described above and, if the
test does not fail, we perform the corresponding time-window adjustments. We continue
this procedure using a depth-first strategy until all intervals are smaller than an ε. When it
happens, the remaining solution space is searched via the event-based MILP.

Fig. 11 Relevant intervals for case esti < t1 ≤ I ′
t1

Constraints (2017) 22:530–547 545

The MILP used in our algorithm is based on the on/off event-based formulation for the
CECSP with linear processing rate functions [12]. In this formulation, an event corresponds
either to a task start or a task end time. These events are represented by a set of continuous
variables te and E = {1, . . . , 2n} represents the index set of these events. We use a binary
variable zie to assign the different event dates to the start and end times of the tasks. Indeed,
zie is equal to 1 if and only if task i is in process during interval [te, te+1]. Finally, two
continuous variables bie and wie are also defined. These variables stand for the quantity of
resource used by task i and for the energy received by i between events te and te+1. Since
the event-based MILP used for our case is almost the same than the one used for linear
functions, we are not describing the model here. The main difference lies in the constraints
converting resource into energy. These constraints were as follows in the previous model:

Wie ≤ aiBie + ci(te+1 − te) ∀i ∈ A ; ∀e ∈ E

and are replaced by the following ones in the new model:

Wie ≤ aipBie + cip(te+1 − te) ∀i ∈ A ; ∀p ∈ Pi; ∀e ∈ E

Experiments The experiments are conducted on an Intel Core i7-4770 processor with 4
cores and 8 gigabytes of RAM under the 64-bit Ubuntu 12.04 operating system. The hybrid
branch-and-bound algorithm is coded in C++ and uses CPLEX 12.6 with 2 threads at each
leaf.

The heuristic tested for choosing the variable on which the algorithm will branch is the
following one: we choose the variable corresponding to the smallest size interval among all
[esti , lsti] and [eeti , leti]. The parameter ε used in the experiments is equal to 5 since this
parameter value provides the best results for the case of linear efficiency functions [12].

To generate instances with concave piecewise linear processing rate functions, we use
instances of [12] with identical functions. First, the instances were solved using the time-
indexed mixed integer linear program described in [12]. In this formulation, the planning
horizon is discretized in T time periods of size 1 and a variable bit is used to represent the
resource consumption of task i in period t .

The efficiency functions fi are generated by randomly selecting a number of pieces Pi .
The interval [bmin

i , bmax
i] is then divided into Pi parts. For each piece p, a random coeffi-

cient aip such that aip < aip−1 is generated and cip is computed to ensure the continuity of
the function. Finally, Wi is set to Wi = ∑T

t=1 fi(bit). We repeat this process until we obtain
80 instances with 10 tasks and 140 instances with 20 tasks.

Table 2 presents the results of the hybrid branch-and-bound with a time limit of 7200
seconds. The first row describes the results of the hybrid branch-and-bound with the time-
table flow based reasoning (TTFlow), the second row with the energetic reasoning (ER),
the third row with the time-table disjunctive reasoning (TTDR) and the last row with both
ER and TTFlow tests. For each row, the first column presents the time needed to solve the
instances, the second column shows the time spent in the tree, the third column the percent-
age of solved instances, the fourth column the number of solved MILPs (if the instance is
solved), the fifth column the number of explored nodes (if the instance is solved), and the
last column describes the percentage of “out of memory”.

We can see that the time-table flow and the time-table disjunctive reasoning provide
the best results. For the 10-task instances, the time-table flow solves the instances faster
but the time spent in the tree is higher than for the time-table disjunctive reasoning while

546 Constraints (2017) 22:530–547

Table 2 Results of the hybrid branch-and-bound with ε = 5

#tasks Reasoning Total time(s) Tree time(s) %solved #MILP #nodes %OOM

10 TTFlow 124.4 28.3 96.6 1 14.9 3.4

ER 1176 8.26 84.7 3346.6 6732.4 1.7

TTDR 244.3 4.80 96.6 1 14.9 3.4

ER + TTFlow 542.1 25.4 86.4 1 16.8 3.4

20 TTFlow 83.8 27.3 99.2 1.01 37.5 0.8

ER 4961.9 9.71 31.1 1.03 36.9 3.8

TTDR 79.1 22.6 99.2 1 37.0 0.8

ER + TTFlow 834.4 38.5 70.1 1.01 100.8 8.4

the number of nodes and MILP solved is equivalent for both algorithms. For the 20-task
instances, both algorithms achieved similar performances both in terms of solving time and
solved instances.

The energetic reasoning has the worst performances and the combination of the time-
table flow and the energetic reasoning improves significantly the performances of the
solution method in comparison with the use of the energetic reasoning alone. However, the
time-table flow and time-table disjunctive reasoning is better than these two algorithms.

Another remark we can do concerns the huge difference in terms of number of MILPs
and nodes between the resolution of the 10-task and 20-task instances with the energetic
reasoning. This can be explained by the small number of solved instances for the 20-task
instances. Indeed, the number of nodes/MILPs in the table is associated only with solved
instances.

In addition, we can see that most of the time is spent in the MILP resolution. Therefore,
improving the formulation is one of the main perspectives of this work.

5 Conclusions

This paper presents the extension of the energetic reasoning and the time-table disjunctive
reasoning to the CECSP with concave and piecewise linear processing rate functions. A
full characterization of the relevant intervals on which the time-bound adjustments of the
energetic reasoning has to be applied is provided. Both methods are then embedded in a
hybrid branch-and-bound and tested on small-size instances.

The interest of considering concave piecewise processing rate functions is shown through
examples and experiments. Furthermore, all the new results described in this paper are still
valid for linear functions.

For the perspectives, time has to be spent on the instance generation and on the resolution
of larger instances. One way of doing this will be by improving the MILP. Also, the method
can be improved by the use of dedicated branching heuristics. Finally, the consideration of
objective functions is an important perspective of this work.

Acknowledgments The authors thank José Verschae for enlightening discussions. This study was partially
supported by project “Energy-Efficient and Robust approaches for the Scheduling of Production, Services
and Urban Transport”, ECOS/CONICYT, N◦ C13E04.

Constraints (2017) 22:530–547 547

References

1. Artigues, C., Lopez, P., & Haı̈t, A. (2013). The energy scheduling problem: industrial case study and
constraint propagation techniques. International Journal of Production Economics, 143(1), 13–23.

2. Artigues, C., & Lopez, P. (2015). Energetic reasoning for energy-constrained scheduling with a
continuous resource. Journal of Scheduling, 18(3), 225–241.

3. Błażewicz, J., Machowiak, M., Wȩglarz, J., Kovalyov, M., & Trystram, D. (2004). Scheduling malleable
tasks on parallel processors to minimize the makespan. Annals of Operations Research, 129(1–4), 65–80.

4. Derrien, A., & Petit, T. (2014). A new characterization of relevant intervals for energetic reasoning. In
International conference on principles and practice of constraint programming, CP 2014 vol. 8656 of
lecture notes in computer science (289–297). Springer International Publishing.

5. Erschler, J., & Lopez, P. (1990). Energy-based approach for task scheduling under time and resources
constraints. In 2nd International workshop on project management and scheduling (pp 115–121).
Compiègne.

6. Gay, S., Hartert, R., & Schaus, P. (2015). Time-table disjunctive reasoning for the cumulative constraint.
In International conference on AI and OR techniques in constraint programming for combinatorial opti-
mization problems, CPAIOR 2015, vol. 9075 of lecture notes in computer science (pp. 157–172). Springer
International Publishing.

7. Ngueveu, S.U., Artigues, C., & Lopez, P. (2016). Scheduling under a non-reversible energy source:
an application of piecewise linear bounding of non-linear demand/cost functions. Discrete Applied
Mathematics, 208, 98–113.

8. Hung, M.N., Le Van, C., & Michel, P. (2005). Non-convex aggregative technology and optimal economic
growth. Cahiers de la Maison des Sciences Économiques 2005.95 - ISSN : 1624-0340.

9. Jensen, J.L.W.V. (1906). Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta
Mathematica, 30(1), 175–193.

10. Lahrichi, A. (1982). Ordonnancements. La notion de parties obligatoires et son application aux
problèmes cumulatifs. RAIRO - Operations Research, 16(3), 241–262.

11. Lewis, J. Algebra symposium: optimizing fuel consumption. http://homepages.math.uic.edu/∼jlewis/
math165/asavgcost.pdf.

12. Nattaf, M., Artigues, C., Lopez, P., & Rivreau, D. (2015). Energetic reasoning and mixed-integer linear
programming for scheduling with a continuous resource and linear efficiency functions. OR Spectrum,
1–34.

13. Nattaf, M., Artigues, C., & Lopez, P. (2015). A hybrid exact method for a scheduling problem with a
continuous resource and energy constraints. Constraints, 20(3), 304–324.

14. Nattaf, M., Artigues, C., & Lopez, P. (2015). Flow and energy based satisfiability tests for the contin-
uous energy-constrained scheduling problem with concave piecewise linear functions. In CP Doctoral
Program 2015 (pp. 70–81). Cork.

15. Vilı́m, P. (2011). Timetable edge finding filtering algorithm for discrete cumulative resources. In Inte-
gration of AI and OR techniques in constraint programming for combinatorial optimization problems.
CPAIOR 2011 vol 6697 of lecture notes in computer science. Berlin: Springer.

16. Wolf, A., & Schrader, G. (2006). O(nn) overload checking for the cumulative constraint and its appli-
cation. In Umeda, M., Wolf, A., Bartenstein, O., Geske, U., Seipel, D., & Takata, O. (Eds.) Declarative
programming for knowledge management. INAP 2005 lecture notes in computer science, Vol. 4369.
Berlin: Springer.

http://homepages.math.uic.edu/~jlewis/math165/asavgcost.pdf
http://homepages.math.uic.edu/~jlewis/math165/asavgcost.pdf

	Cumulative scheduling with variable task profiles and concave piecewise linear processing rate functions
	Abstract
	Problem statement, properties and context
	Problem definition
	Context
	Properties and remarks

	Time-table based reasoning
	Time-table flow based reasoning
	Time-table disjunctive reasoning

	Energetic reasoning
	Satisfiability test and time-bound adjustments
	Relevant intervals for the energetic reasoning

	Computational results
	Hybrid branch-and-bound
	Experiments

	Conclusions
	Acknowledgments
	References

