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Abstract By representing the constraints and objective function in factorized form, graphi-
cal models can concisely define various NP-hard optimization problems. They are therefore
extensively used in several areas of computer science and artificial intelligence. Graphical
models can be deterministic or stochastic, optimize a sum or product of local functions,
defining a joint cost or probability distribution. Simple transformations exist between these
two types of models, but also with MaxSAT or linear programming. In this paper, we report
on a large comparison of exact solvers which are all state-of-the-art for their own target lan-
guage. These solvers are all evaluated on deterministic and probabilistic graphical models
coming from the Probabilistic Inference Challenge 2011, the Computer Vision and Pattern
Recognition OpenGM2 benchmark, the Weighted Partial MaxSAT Evaluation 2013, the
MaxCSP 2008 Competition, the MiniZinc Challenge 2012 & 2013, and the CFLib (a library
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of Cost Function Networks). All 3026 instances are made publicly available in five different
formats and seven formulations. To our knowledge, this is the first evaluation that encom-
passes such a large set of related NP-complete optimization frameworks, despite their tight
connections. The results show that a small number of evaluated solvers are able to perform
well on multiple areas. By exploiting the variability and complementarity of solver perfor-
mances, we show that a simple portfolio approach can be very effective. This portfolio won
the last UAI Evaluation 2014 (MAP task).

Keywords Graphical model · Markov random field · Weighted constraint satisfaction
problem · Integer linear programming · MaxSAT

1 Introduction

Graphical Models can concisely represent highly dimensional multivariate functions using
a factorization into local functions. We consider discrete variables.

Constraint Networks and weighted variants such as Cost Function Networks (CFNs), aka
(Weighted) Constraint Satisfaction Problems ((W)CSPs), aim at finding an assignment of
all variables that minimizes a joint cost function defined as the sum of local functions (con-
straints being represented as functions with values in {0, ∞}). With Boolean variables, and
a language restricted to clausal form, the (partial weighted Max)-SAT problem has the same
target. Constraint Programming (CP), an extension of Constraint Networks including non-
deterministic programming language features, can also easily capture these optimization
problems by introducing cost variables [43].

In AI and statistics, probabilistic graphical models [29] use the same idea to concisely
represent probability distributions over random variables. These models include Bayesian
Networks and Markov Random Fields (MRFs). The problem of identifying a variable
assignment that has maximum probability is called the Maximum Probability Explanation
in Bayesian networks, or Maximum A-Posteriori (MAP) in MRF. This NP-hard problem
has an extremely large application scope, e.g., in image processing or bioinformatics. By a
simple (− log) transformation, these problems can be reduced to CFNs.

Graphical Models can also be easily encoded as 0/1 Linear Programming (01LP)
problems, a standard language for Operations Research (OR). We consider two encod-
ings, including one based on the so-called local polytope [20, 30, 47], which has several
interesting properties.

In this paper, we extract probabilistic and deterministic graphical models from various
areas, each using a specific language. This covers competitions in MaxSAT, constraint pro-
gramming, probabilistic inference and repositories in probabilistic image processing and
cost function networks. We encode them in these underlying languages and close relatives,
from AI (CFN, MaxSAT, MRF), CP, and OR (01LP). These benchmarks are traditionally
used in competitions relying on a single language with dedicated solvers. We compare exact
solvers which are all state-of-the-art for their own language on these encodings. We then
define a novel portfolio hybrid solver exploiting them.

2 Combinatorial optimization languages

In this section we briefly describe the combinatorial optimization languages that will be used.

[CFN] Cost Function Networks, or Weighted Constraint Networks, extend Constraint
Networks by using non-negative cost functions instead of constraints [38].
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Definition 1 A Cost Function Network (CFN) is a triple (X,W, k) where X = {1, . . . , n} is
a set of n discrete variables, W is a set of non-negative functions, and k, a (possibly infinite)
maximum cost. Each variable i ∈ X has a finite domain Di of values that can be assigned to
it. A function wS ∈ W , with scope S ⊆ X, is a function wS : DS �→ {α ∈ N∪ {k} : α ≤ k},
where DS denotes the Cartesian product of all Di for i ∈ S.

In CFNs, the cost of a complete assignment is the sum of all cost functions. A solution
has cost less than k. Therefore a cost of k denotes forbidden assignments, used in hard
constraints. A solution of minimum cost is sought.

[MRF] Markov Random Fields define a joint probability distribution. The terminology
of Graphical Models (GMs) originally designates probabilistic graphical models such as
Markov Random Fields (MRFs) and Bayesian Networks (BNs) [29]. In this paper, we
restrict ourselves to MRFs because they do not impose any restriction on the local functions
that can be used in the decomposition of the joint probability distribution (BNs use local
conditional probabilities with a normalization requirement).

Definition 2 A discrete Markov Random Field (MRF) is a pair (X,�) where X =
{1, . . . , n} is a set of n random variables, and � is a set of potential functions. Each vari-
able i ∈ X has a finite domain Di of values that can be assigned to it. A potential function
φS ∈ �, with scope S ⊆ X, is a function φS : DS �→ R ∪ {∞}.

The probability of a tuple t ∈ DX is defined as:

P(t) ∝
∏

φS∈�

exp(−φS(t[S])) = exp(−
∑

φS∈�

φS(t[S]))

where t[S] denotes the restriction of t to the set of variables S. The additive potentials
φS are called energies, in relation with statistical physics. Alternatively, multiplicative
exp(−φS(t[S]) potentials can be used.

In this paper, we consider the MAP query that aims at finding a complete assignment of
maximum probability (or equivalently, minimum energy).

[WPMS] Weighted Partial MaxSAT problems are CFNs restricted to Boolean domains
and a language of weighted clauses [36].

Definition 3 A Weighted Partial MaxSAT (WPMS) instance is defined as a set of pairs
〈C, w〉 and an upper bound k. Each C is a clause and w is a number in N∪{k}, the weight of
clause C. A clause is a disjunction of literals. A literal is a Boolean variable or its negation.

A clause with weight ≥ k is a hard clause, otherwise it is soft. The objective is to find an
assignment to the variables appearing in the clauses that minimizes the sum of the weights
of all falsified clauses, which should be of cost < k.

[01LP] A 0/1 Linear Program is defined by a linear objective function over a set of 0/1
variables to minimize under a conjunction of linear equalities and inequalities [25].

[CP] Constraint Programming problems are defined by a set of discrete variables and
a set of constraints. The aim is to minimize the value of a given objective variable while
satisfying all constraints [45].
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3 Translations between formalisms

In this section we present encodings between graphical models represented in each of the
AI/OR/CP languages we presented. We summarize in Table 1 for each input formalism the
different translations used to produce every instance in the corresponding output formalism.

[MRF] Markov Random Field. With additive potentials, MRFs are essentially equiva-
lent to CFNs except for the fact that they can use arbitrary real-valued potential functions
instead of integer non-negative costs.1 Additive MRFs can therefore be reduced to CFNs
using a fixed decimal point representation of energies which are then scaled to integers and
shifted to enforce non-negativity. This preserves optimal solutions.

Multiplicative MRFs can be transformed to additive MRFs using a simple (− log) trans-
form, and then to CFNs [17, 18]. Conversely, CFNs can be transformed to multiplicative
MRFs (as in the UAI MARKOV format) by exponentiating costs.2 Costs are all shifted by
the same amount so that the largest multiplicative potentials are equal to 1. Hard costs (≥ k)
are translated to a zero multiplicative potential (infinite energy) to preserve the ability to
prune domain values based on constraint reasoning.

[WPMS] Weighted Partial MaxSAT. As weighted partial MaxSAT is a CFN with
Boolean variables and a language of clauses, thus a WPMS instance is already a CFN. For
a CFN, we consider two encodings to WPMS based on CSP to SAT encodings: the direct
encoding [6], and the tuple encoding encoding introduced by Bacchus [7]. WPMS costs are
non-negative integers and the WCNF format allows to express an upper bound that will be
used to represent k, preserving the ability to prune.

Direct encoding: for each variable i with domain size |Di | > 2, we use one proposition
di,r for each value r ∈ Di . This proposition is true iff variable i is assigned the value r .
To ensure that exactly (At Least and At Most One) one value is used for each variable,
we encode At Most One (AMO) with hard clauses (¬di,r ∨ ¬di,s) for all i ∈ {1, . . . , n}
and all r < s, r, s ∈ Di , as well as At Least One (ALO) with one hard clause (

∨
r di,r )

for each i. Boolean variables are directly encoded as propositions and do not require
AMO/ALO clauses. Then, for each cost function wS ∈ W and each tuple t ∈ DS with
wS(t) > 0, we have a clause (

∨
i∈S ¬di,t[i]) with weight wS(t), where di,t[i] denotes the

proposition associated with assigning to variable i the value that it has in tuple t .
Tuple encoding: it encodes domains as in the direct encoding. We have a proposition

di,r for each variable/value pair representing i = r , along with AMO/ALO clauses that
enforce that each variable is assigned exactly one value (for non-Boolean variables).
Nullary and unary cost functions are also represented as soft clauses exactly as in the
direct encoding.

For each cost function wS, |S| > 1, and each tuple t ∈ DS with wS(t) < k we have a
proposition pS,t . For non-zero cost wS(t) > 0, we have the soft clause (¬pS,t ) with weight
wS(t). This represents the cost to pay if the tuple t is used. For every variable i ∈ S, we
have a hard clause (di,t[i] ∨ ¬pS,t ). These clauses enforce that if tuple t is used, its values
t[i] must be used. Then, for each variable i ∈ S and each value r ∈ Di , we have hard

1Rational costs are also used in [11].
2Script available at genoweb.toulouse.inra.fr/degivry/evalgm/scripts/wcsp2markov.py

genoweb.toulouse.inra.fr/ degivry/evalgm/scripts/wcsp2markov.py
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Table 1 Summary of translations between formalisms and possible issues

In/Out MRF CFN WPMS 01LP CP

(UAI) (WCSP) (WCNF) (LP) (MINIZINC)

MRF - − log(prob) Through CFN Through CFN Through CFN

CFN exp(−cost) - Direct/ Direct/ Extra costa

tuple encod. tuple encod. vars & table

constraints

WPMS Through Direct trans. Direct Through Extra costd

CFNb encod. only CFNc vars & reified

logical or

CP Through Decomposed Through CFN Through -

CFNf

CFN objective & global

constraintse

aCannot represent large costs (> 231) using a single domain. CFLib benchmarks were manually translated,
avoiding table constraints except for ProteinDesign and SPOT5
bCannot represent large clauses (> 23 literals in our case) using complete tables
cNo tuple encoding
dCannot represent large costs (> 231) using a single domain
eCannot represent large domains in extension (d > 1, 000) and non-decomposable objectives (requiring cost
functions with > 106 tuples)
fThis translation is far from being optimal, e.g., linear constraints will be first decomposed in ternary cost
functions

clauses (¬di,r ∨∨
t∈DS,t[i]=r,wS(t)<k pS,t ) that enforce that if a value r ∈ Di is used, one of

the allowed tuples t ∈ DS such that t[i] = r, wS(t) < k must be used.
On CSP, it is known that Unit Propagation (UP) on the tuple encoding enforces arc

consistency in the original CSP (the set of values that are deleted by enforcing AC have
their corresponding literals set to false by UP) [7].

We express the asymptotic complexities of the two encodings in terms of the total number
of tuples of cost 0 (t0), k (tk) or other (tr ) in the problem. For the direct encoding, this is
O(nd2 + tk + tr ), while for the tuple encoding this is O(nd2 + a(t0 + tr )), where n is the
number of variables, d is the maximum domain size, and a is the maximum cost function
arity. The hidden big-O constants are larger for the tuple encoding, which has an additional
linear factor a. In our experiments (see Table 2 in Section 4.1), we found that the tuple
encoding is typically much larger, more than can be accounted for by the hidden constants.
Hence it appears that our benchmark instances have many more tuples with zero cost than
with infinite (k) cost (t0 >> tk).

[01LP] 0/1 Linear Programming. The 01LP encodings of CFNs are similar to those for
WPMS, using 0/1 variables. The additional expressivity of linear constraints enables further
simplifications. These translations are used to generate 01LP in CPLEX “LP” format.

Direct encoding: AMO/ALO clauses are replaced by one linear constraint per non-
Boolean variable i ∈ X:

∑
r∈Di

di,r = 1. For each cost function wS , the soft clause
encoding of a tuple t with non-zero soft cost 0 < wS(t) < k is replaced by a linear con-
straint

∑
i∈S(1 − di,t[i]) + pS,t ≥ 1 that forces the value of pS,t to 1 if the tuple t is used.
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This pS,t variable appears in the objective function, with a coefficient wS(t). If t has cost
k or above, a constraint

∑
i∈S(1 − di,t[i]) ≥ 1 is used and no term appears in the objective

function.
Tuple encoding: the same encoding as above is used for domains and for zero and unit-

arity cost functions. For each cost function wS, |S| > 1, for each variable i ∈ S, each value
r ∈ Di , a constraint

∑
t∈DS,t[i]=r,wS(t)<k pS,t = di,r enforces that a value (i, r) is used iff

a tuple t s.t. t[i] = r and wS(t) < k is used. The same 0/1 variable pS,t appears in the
objective function with a wS(t) coefficient if 0 < wS(t) < k.

This encoding has been proposed by Koster in [30] to encode Partial Constraint Satisfac-
tion Problems. Since all di,r are 0/1 variables, the constraints enforce that the pS,t are also
integral. We therefore relax the integrality constraint on pS,t variables.

Assuming there are no costs in {0,∞}, for each cost function wS , each variable i, and
each value r ∈ Di , by summing the linear constraints

∑
i∈S(1 − di,t[i])+pS,t ≥ 1 from the

direct encoding over all tuples t ∈ DS such that t[i] = r , we found:

M|S| −
∑

j∈S\{i}

M

|Dj | (
∑

s∈Dj

dj,s) − Mdi,r +
∑

t∈DS,t[i]=r

pS,t ≥ M

M|S| −
∑

j∈S\{i}

M

|Dj | (1) − Mdi,r +
∑

t∈DS,t[i]=r

pS,t ≥ M

M|S| − M(|S| − 1)

d
− Mdi,r +

∑

t∈DS,t[i]=r

pS,t ≥ M

M(|S| − 1) − M(|S| − 1)

d
− Mdi,r +

∑

t∈DS,t[i]=r

pS,t ≥ 0

Thus,
∑

t∈DS,t[i]=r

pS,t ≥ M(di,r − (|S| − 1)(1 − 1

d
))

with d = maxj∈S\{i} |Dj | and M = |DS\{i}|, the Cartesian product of all domains of S

except Di . If |S| = 2, then M = d, and M(di,r − (|S| − 1)(1 − 1
d
)) is either negative

(di,r = 0) or equal to 1 (di,r = 1). Therefore, the direct encoding can be seen as a relaxation
of the tuple encoding.

The continuous relaxation of the tuple encoding is known in the MRF field as the local
polytope [20, 47, 50]. This polytope is interesting for several reasons. First, the dual of the
local polytope is exactly the Optimal Soft Arc Consistency (OSAC) LP for CFN described in
[11, 12]. This polytope underlies also convergent message-passing bounds [20, 50] used for
MRF optimization. Ignoring possible value pruning (by node consistency or substitutability
[19]), OSAC and therefore the local polytope bound too, are known to be stronger than any
other soft arc consistency [11]. Second, the dual variables of this polytope can be directly
interpreted as the amount of cost that is shifted by arc consistency so-called Equivalence
Preserving Transformations [13]. Therefore, existing soft arc consistencies that iteratively
change blocks of costs can be analyzed as fast incremental approximate Block Coordinate
Descent algorithms aiming at solving this dual LP [37]. This result establishes a strong link
between 01LP solvers using the local polytope encoding and CFN/MRF solvers using soft
arc consistencies or convergent message passing: in absence of pruning, the LP bound will
always be at least as strong as the soft arc consistency bounds.

The significance of this connection is further strengthened by a recent result showing
that the local polytope (or its dual) are “universal” in the sense that any LP can be translated
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in linear time in a graphical model whose local polytope has the same optimum as the
original LP [44]. Progress in solving this polytope (exactly or approximately by soft arc
consistencies or message passing) and in solving a general LP are therefore tightly linked.

[CP] Constraint Programming. In [43], a translation of CFNs into crisp CSPs has been
proposed. In this transformation, the decision variables of the CFN are preserved and every
cost function is reified into a constraint whose scope is augmented by one extra variable,
representing the assignment cost. This reification of costs into domain variables trans-
forms a CFN in a crisp CSP with more variables and increased arities. Typically, unary and
binary cost functions are converted into TABLE constraints of arity two and three respec-
tively. Another extra cost variable encodes the objective function, connected by a SUM

constraint to all other cost variables. All the cost variables are non-negative integers with
the same initial upper bound k as provided in the WCSP format. The same approach applies
to WPMSs, using reified Boolean expressions instead of TABLE constraints to encode
hard and soft clauses. The resulting CSP models are expressed in the MINIZINC [39] CP
language.3

The converse translation of CP models with a cost variable into a CFN (and then MRFs
and WPMSs) that does not use cost variables is a complex task.4 It requires identifying
local5 cost functions, starting from the objective variable, while removing intermediate
cost variables. We implemented a corresponding prototype in NUMBERJACK6 [22] reading
the low-level FLATZINC format [39]. Global constraints are decomposed into ternary cost
functions in extension (tables with costs in {0,∞}, see [1]), requiring small input domain
sizes.

4 Graphical model evaluation

We have collected a set of benchmarks and performed experiments using state-of-the-art
solvers coming from several research areas.

4.1 Collection of benchmarks

To gather an extensive set of benchmarks representing optimization problems from var-
ious areas, we collected problems from different sources including deterministic (CFN,
MaxCSP, WPMS), probabilistic (MRF, BN), as well as CP collections. Each collection
contains several categories of instances, each category corresponding to a specific class of
problems.

[MRF]: the Probabilistic Inference Challenge (PIC) 2011 benchmark set7 and the (5-
ary) genetic linkage analysis problem [18] from the Uncertainty in Artificial Intelligence

3A 1-hour time limit was used to translate MINIZINC2 to FLATZINC, readable by CP solvers.
4Directly lifting a CP model, with its cost variable, to a CFN would be of limited value since all AC in CFN
are known to enforce AC on cost functions representing hard constraints.
5We restrict the size of cost functions to be less than 106 tuples in our implementation.
6http://numberjack.ucc.ie/
7http://www.cs.huji.ac.il/project/PASCAL

http://numberjack.ucc.ie/
http://www.cs.huji.ac.il/project/PASCAL
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(UAI) 2008 Evaluation8 were taken in UAI MARKOV format with multiplicative poten-
tials. This PIC challenge on approximate inference in probabilistic graphical models is
dedicated to a variety of queries and we only considered the MAP/MPE query. We used
a subset of the instances available in PIC 2011, excluding Alchemy, CSP, Promedas, and
ProteinProtein.9 These problems have been translated to CFNs in WCSP format (then to
WPMS, 01LP, CP) using a (− log) transform followed by fixed decimal point represen-
tation with 2-digit precision after the decimal point (the precision is constrained by CP
solvers that typically accept only 32-bit integers).10

[CVPR]: the Computer Vision and Pattern Recognition (CVPR) OpenGM2 benchmark11

[27] contains binary and ternary MRF instances in HDF5 format with additive potentials.
We excluded Brain, Knott, and MatchingStereo/ted-gm instances because of their size
(> 1GB), and ModularityClustering because it came from outside the computer vision
community. ColorSeg, MatchingStereo, PhotoMontage have integer energies, directly
defining non-negative costs. For the others, we used 8-digit precision after the decimal
point.

[CFLib]: the CFLib12 is a collection of CFN and MaxSAT problems expressed in
WCSP format. We extracted problems that are directly available in the WCSP format
and further translated them into dedicated MINIZINC models manually. The extracted
benchmarks include combinatorial auctions [35], CELAR/GRAPH radio-link frequency
assignment problems [10], Mendelian error correction problems on complex pedi-
grees [46], computational protein design problems [3] (with 2-digit precision), SPOT5
satellite scheduling problems [8], and uncapacitated warehouse location problems
[33, 34].

[MaxCSP]: all binary CSP categories with table constraints and at least one inconsis-
tent instance (BlackHole, Langford, Quasi-group Completion Problem, Graph Coloring,
random Composed, random 3-SAT EHI, and random Geometric, excluding pure random
categories) from the CSP 2008 Competition13 were translated from XCSP2.1/XML for-
mat to CFNs (as MaxCSPs) where allowed (resp. forbidden) tuples have zero (resp. unit)
cost. We set k = 1, 000.

[WPMS]: weighted partial MaxSAT instances coming from the MaxSAT 2013 Evalua-
tion14, including crafted MIPLib, DIMACS Max Clique, and industrial WPMS instances,
have been directly encoded as CFNs, each clause being encoded as a cost function with
just one non-zero cost tuple. Translation to MRF (resp. CP) was restricted to instances
with small-arity clauses (resp. with 32-bit costs, excluding the WPMS/Upgradeability
category).

8http://graphmod.ics.uci.edu/uai08/Evaluation/Report/Benchmarks
9Alchemy and Promedas were solved by TOULBAR2 in less than 1 sec. each. CSP instances came from
CFLib. ProteinProtein is already present in CVPR under the name of Protein Prediction ProteinInteraction.
10The resulting WCSP instances were translated back to UAI instances (with digit2 extension) in order to
optimize the same objective function.
11http://hci.iwr.uni-heidelberg.de/opengm2
12http://costfunction.org/benchmark
13http://www.cril.univ-artois.fr/CPAI08 and http://www.cril.univ-artois.fr/∼lecoutre/benchmarks.html
14http://maxsat.ia.udl.cat:81/13/benchmarks/

http://graphmod.ics.uci.edu/uai08/Evaluation/Report/Benchmarks
http://hci.iwr.uni-heidelberg.de/opengm2
http://costfunction.org/benchmark
http://www.cril.univ-artois.fr/CPAI08
http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html
http://maxsat.ia.udl.cat:81/13/benchmarks/
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Table 2 Number of instances and their total compressed (gzipped) size per format for each benchmark
resource

Benchmark Nb. UAI WCSP LP LP WCNF WCNF MINIZINC

(direct) (tuple) (direct) (tuple)

MRF 319 187MB 475MB 2.4G 2.0GB 518MB 2.9GB 473MB

CVPR 1461 430MB 557MB 9.8GB 11GB 3.0GB 15GB N/A

CFN 281 43MB 122MB 300MB 3.5GB 389MB 5.7GB 69MB

MaxCSP 503 13MB 24MB 311MB 660MB 73MB 999MB 29MB

WPMS 427 N/Aa 387MB 433MB N/A 717MB N/A 631MB

CP 35 7.5MB 597MB 499MB 1.2GB 378MB 1.9GB 21KB

Total 3026 0.68G 2.2G 14G 18G 5G 27G 1.2G

aOnly WPMS/MaxClique and WPMS/MIPLib (except mod008) could be translated in UAI format for a total
of 8.8MB gzipped size

[CP]: we extracted a selection of CFN-decomposable CP problems from the MiniZ-
inc Challenges 2012 &2013.15 Only the smallest instances in FastFood, Golomb, and
OnCallRostering categories could be decomposed in WCSP format using less than 1GB
per instance (resp. 1, 3, and 3 instances per category).

Together, these benchmark resources contain problems offering a large variety in terms
of size, maximum arity or domain size and cost range. WPMS and CVPR categories have
the highest number of variables (close to 1 million variables for WPMS/TimeTabling, half
a million for CVPR/PhotoMontage and ColorSeg). The WPMS benchmark also has the
largest arities (a weighted clause on 580 variables appears in Haplotyping). For the other
benchmarks, maximum arity varies from 2 to 5. Graph connectivities are usually very small
for MRF&CVPR (often based on grid graphs where vertices represent pixels in images)
and WPMS benchmarks. MRF/ObjectDetection, CFN/ProteinDesign, MaxCSP/Langford,
and CVPR/Matching have complete graphs. MRF/ ProteinFolding has the largest domain
size (503 values). Most CVPR instances have very large cost ranges (8-digit precision),
whereas MaxCSP instances contain only 0/1 costs. The emphasis between optimization and
feasibility also varies a lot among the problems: almost all deterministic GM categories,
except MaxCSPs and CFN/CELAR, contain forbidden (k) tuples in their cost functions. On
the contrary, probabilistic GMs usually have no forbidden tuples (except for MRF/Linkage
and DBN).

Table 2 reports the number of instances per benchmark resource and its gzipped size for
the seven formulations. The UAI format appears to be the most compact to express local
functions as tables. It relies on a complete ordered table of costs which does not require
describing tuples whereas the other formats explicitly describe tuples associated to non-zero
costs. The price to pay for this conciseness is the inability of the UAI format to represent
large arity functions with a few non-zero costs (such as large weighted clauses). As seen
before, the tuple encoding is usually larger than the direct one, except for MRF/CVPR LPs
where the local polytope is a good choice since there are almost no zero costs. CP instances

15http://www.minizinc.org/challenge2012/results2012.html and http://www.minizinc.org/challenge2013/
results2013.html

http://www.minizinc.org/challenge2012/results2012.html
http://www.minizinc.org/challenge2013/results2013.html
http://www.minizinc.org/challenge2013/results2013.html
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benefit from global constraints in the MINIZINC language, which are decomposed in large
tables in the other formats.

4.2 Experimental settings

We compared state-of-the-art MRF solvers16 DAOOPT17 [42] (using its 1-hour settings),
winner of PIC 2011, and TOULBAR218 [18, 34] (including Virtual Arc Consistency (VAC)
as preprocessing [11], dominance rule pruning [19], and hybrid best-first search [2]), winner
of MaxCSP 2008 and UAI 2010 & 2014 Evaluations, against WPMS MAXHS19 solver [14,
15], winner of crafted WPMS MaxSAT 2013, the CP solver GECODE,20 winner of MiniZinc
Challenges 2012, and IBM-ILOG CPLEX 12.6.0.0 (using parameters EPAGAP, EPGAP, and
EPINT set to zero to avoid premature stop).

All computations were performed on a single core of AMD Opteron 6176 at 2.3 GHz
and 8 GB of RAM with a 1-hour CPU time limit.21

4.3 Experimental results

The number of instances solved in less than 1 hour, excluding translation times between
formats, is available in Table 3. Resource-based cactus plots are shown in Fig. 1.22 Beyond
the number of problems solved and the mean CPU time on solved instances reported in this
table, we refine our analysis in two ways. First, we summarize the evolution of lower and
upper bounds for each algorithm over all instances in Fig. 2.

Specifically, for each instance I we normalize all costs as follows: the initial lower bound
produced by TOULBAR2 (before VAC) is 0; the best – but potentially suboptimal – solu-
tion found by any algorithm is 1; the worst solution is 2. This normalization is invariant
to translation and scaling. Additionally, we normalize time from 0 to 1 for each pair of
algorithm A and instance I , so that each run finishes at time 1. This time normalization is
different for different instances and for different algorithms on the same instance. A point
〈x, y〉 on the lower bound line for algorithm A in Fig. 2 means that after normalized run-
time x, algorithm A has proved on average over all instances a normalized lower bound of
y and similarly for the upper bound. We show both the upper and lower bound curves for
all algorithms evaluated here, except GECODE which produces no meaningful lower bound
before it proves optimality. In order for the last point of each curve to be visible, we extend
all curves horizontally after 1.0. Additionally, on the right of Fig. 2, we show the same
curves but excluding instances that took less than 5 seconds to solve with a simple version
of TOULBAR2 that does not use either VAC preprocessing or hybrid best first search, for a
final set of 1208 instances. We remove those easy instances because the runtime tends to

16MPLP2 http://cs.nyu.edu/∼dsontag version 2 (using 2.10−7 gap thres.) was tested but the results are not
presented in Section 4.3 as it was dominated in most categories by TOULBAR2.
17https://github.com/lotten/daoopt open source version 1.1.2, not including the closed source and unavailable
convergent message-passing bound tightening used in the PIC challenge.
18http://www.inra.fr/mia/T/toulbar2 version 0.9.8, parameters -A -V -dee -hbfs.
19http://www.maxhs.org version 2.51, no parameter.
20http://www.gecode.org/ version 4.4.0, using free search.
21Using parameter -pe parallel smp 2 on a SUN Grid Engine to ensure half-load of the cores on the cluster.
22More detailed results are available at http://genoweb.toulouse.inra.fr/∼degivry/evalgm.

http://cs.nyu.edu/ ~dsontag
https://github.com/lotten/daoopt
http://www.inra.fr/mia/T/toulbar2
http://www.maxhs.org
http://www.gecode.org/
http://genoweb.toulouse.inra.fr/~degivry/evalgm
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Table 3 Number of problems solved in less than 1 hour (N/A if RAM usage or 32-bit limit prevented
encoding). In parentheses, mean CPU time in seconds on solved instances (’-’ if none). Bold is best. The first
column contains the category name followed by s: nb. of instances, d: max. dom. size, a: max. arity

Problem/s/d/a DAOOPT TOULBAR2 CPLEX CPLEXtuple MAXHS MAXHStuple GECODE

MRF/319/503/5 151 226 156 210 118 72 1

(UAI) (584.39) (93.80) (111.88) (82.18) (98.68) (1509.93)

DBN/108/2/2 60 81 65 69 38 2 0

(626.79) (192.42) (124.66) (155.12) (366.15) (1748.65) (-)

Grid/21/2/2 5 0 15 1 8 0 0

(1223.67) (-) (120.90) (3354.21) (557.01) (-) (-)

ImageAlignment/10/93/2 10 10 0 9 0 0 0

(754.96) (5.27) (-) (88.41) (-) (-) (-)

Linkage/22/7/5 17 14 16 22 20 20 0

(576.94) (364.73) (365.09) (21.99) (52.62) (124.04) (-)

ObjectDetection/37/21/2 0 0 0 0 0 0 0

(-) (-) (-) (-) (-) (-) (-)

ProteinFolding/21/503/2 0 21 10 9 2 0 0

(-) (20.24) (169.28) (176.17) (268.51) (-) (-)

Segmentation/100/21/2 59 100 50 100 50 50 1

(460.33) (0.29) (0.06) (3.35) (7.38) (22.54) (1509.93)

CVPR/1461/20/3 1274 1340 382 1332 483 1038 N/A

(HDF5) (481.02) (22.81) (179.96) (8.70) (355.71) (58.83)

ChineseChars/100/2/2 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) N/A

ColorSeg/21/12/2 0 15 0 5 0 0 N/A

(-) (1340.56) (-) (190.33) (-) (-)

GeomSurf/600/7/3 555 600 382 600 387 321 N/A

(509.01) (0.96) (179.96) (2.89) (183.53) (63.15)

InPainting/4/4/2 0 2 0 1 0 0 N/A

(-) (325.72) (-) (339.90) (-) (-)

Matching/4/20/2 4 4 0 3 0 0 N/A

(319.24) (3.20) (-) (765.25) (-) (-)

MatchingStereo/2/20/2 0 0 0 0 0 0 N/A

(-) (-) (-) (-) (-) (-)

ObjectSeg/5/8/2 0 4 0 5 0 0 N/A

(-) (2292.28) (-) 5 0 0

PhotoMontage/2/7/2 0 0 0 0 0 0 N/A

(-) (-) (-) (-) (-) (-)

ProteinInteraction/8/2/3 0 0 0 3 0 2 N/A

(-) (-) (-) (60.80) (-) (1019.63)

SceneDecomp/715/8/2 715 715 0 715 96 715 N/A

(460.20) (0.07) (-) (1.11) (1049.83) (54.20)

CFN/281/300/3 211 256 245 238 228 210 141

(WCSP) (768.93) (109.84) (33.85) (34.00) (14.91) (121.20) (224.77)
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Table 3 (continued)

Problem/s/d/a DAOOPT TOULBAR2 CPLEX CPLEXtuple MAXHS MAXHStuple GECODE

Auction/170/2/2 169 170 170 170 170 170 113

(663.04) (93.10) (0.03) (0.14) (0.03) (121.16) (231.55)

CELAR/16/44/2 4 14 0 3 0 0 0

(598.72) (279.00) (-) (560.44) (-) (-) (-)

Pedigree/10/28/3 4 10 5 9 10 6 0

(373.43) (10.58) (44.28) (57.27) (190.49) (99.28) (-)

ProteinDesign/10/198/2 4 9 0 7 0 4 0

(597.46) (13.40) (-) (298.88) (-) (477.72) (-)

SPOT5/20/4/3 (309.04) (40.44) 16 12 6 5 0

6 4 16 12 6 5 0

Warehouse/55/300/2 24 49 54 37 42 25 28

(1752.42) (163.23) (142.57) (6.46) (6.78) (92.83) (197.39)

MaxCSP/503/50/2 176 398 219 75 249 233 6

(XCSP) (603.56) (386.08) (152.73) (876.84) (76.21) (538.93) (115.39)

BlackHole/37/50/2 10 10 30 10 10 10 0

(222.19) (0.08) (141.91) (2.22) (0.30) (2.78) (-)

Coloring/22/6/2 17 17 17 16 14 14 4

(319.29) (11.39) (7.14) (72.33) (17.67) (50.80) (171.61)

Composed/80/10/2 26 80 80 37 80 73 0

(543.73) (0.13) (4.48) (1667.07) (79.81) (1383.72) (-)

EHI/200/7/2 0 179 0 0 1 0 0

(-) (773.86) (-) (-) (3078.96) (-) (-)

Geometric/100/20/2 92 95 65 0 89 84 0

(755.46) (134.57) (419.39) (-) (31.52) (138.98) (-)

Langford/4/29/2 2 2 2 1 2 2 2

(272.24) (0.12) (38.79) (0.03) (0.32) (2.19) (2.97)

QCP/60/9/2 29 15 25 11 53 50 0

(496.31) (143.49) (54.94) (263.83) (121.82) (242.80) (-)

WPMS/427/2/580 11 197 269 N/A 321 N/A 28

(WCNF) (536.35) (110.33) (109.76) (168.67) (243.39)

Haplotyping/100/2/580 N/A 1 18 N/A 44 N/A 0

(784.32) (679.90) (674.01) (-)

MIPLib/12/2/93 2 3 3 N/A 3 N/A 3

(365.31) (102.39) (49.85) (9.47) (28.61)

MaxClique/62/2/2 9 33 38 N/A 40 N/A 24

(574.36) (209.07) (229.33) (362.26) (280.38)

PackupWeighted/99/2/177 N/A 53 99 N/A 99 N/A 0

(167.82) (0.72) (7.14) (-)

PlanningWithPref/29/2/372 N/A 7 11 N/A 28 N/A 1

(515.22) (751.65) (65.82) (0.03)
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Table 3 (continued)

Problem/s/d/a DAOOPT TOULBAR2 CPLEX CPLEXtuple MAXHS MAXHStuple GECODE

TimeTabling/25/2/36 N/A 0 0 N/A 7 N/A 0
(-) (-) (1020.73) (-)

Upgradeability/100/2/77 N/A 100 100 N/A 100 N/A N/A
(12.43) (0.84) (2.73)

CP/35/163/4 9 16 2 7 18 14 26
(MINIZINC) (387.13) (354.57) (0.99) (584.10) (145.94) (400.03) (138.55)
AMaze/6/17/4 0 3 0 4 6 5 4

(-) (279.71) (-) (998.46) (12.00) (161.25) (176.91)
FastFood/6/5/2 1 1 1 1 1 1 6

(200.32) (0.00) (0.00) (0.00) (0.00) (0.00) (14.22)
Golomb/6/163/3 0 3 0 0 3 1 6

(-) (44.97) (-) (-) (117.34) (78.01) (111.17)
OnCallRostering/5/89/4 1 2 1 2 3 3 2

(253.25) (27.27) (1.98) (47.44) (162.22) (362.19) (75.13)
ParityLearning/7/20/4 7 7 0 0 5 4 7

(432.94) (663.51) (-) (-) (343.24) (907.40) (248.10)
VRP/5/100/4 0 0 0 0 0 0 1

(-) (-) (-) (-) (-) (-) (255.45)

Total 1832 2433 1273 1862 1417 1567 202
(534.34) (107.26) (123.70) (57.35) (191.45) (143.45) (219.37)

Nb. of 1st position 0 16 [1] 7 [3] 3 [5] 9 [2] 0 4 [4]

Nb. of best solution 2209 [2] 2562 [1] 1355 [5] 1300 [6] 1626 [4] 1706 [3] 229[7]

Nb. of single best sol. 57 [4] 88 [2] 43 [5] 95 [1] 80 [3] 1 [7] 13 [6]

Zscore (time) 135.37 [6] 57.84 [1] 102.97 [3] 104.89 [4] 90.73 [2] 122.88 [5] 136.58 [7]

Zscore (cost) 63.00 [3] 26.25 [1] 59.24 [2] 69.92 [4] 80.55 [5] 108.76 [7] 100.55 [6]

Borda-score 89.40 [5] 182.50 [1] 129.60 [2] 102.78 [4] 114.37 [3] 59.54 [7] 60.64 [6]

Borda-score (norm) 2.08 [5] 4.24 [1] 3.01 [2] 2.86 [3] 2.66 [4] 1.65 [7] 1.84 [6]

be dominated by whatever preprocessing technique each solver uses. This means that the
optimal solution is reported near the end of the search, although it is early in absolute terms.

Note that this plot highlights different aspects of the solvers’ behavior than the cactus
plots and should be interpreted in conjunction with those.

In the second part of our analysis, we compute global measures that try to compensate
for the very different cardinalities of the categories. For each instance, we compute two Z-
scores,23 one for the CPU time and another for the cost of the best solution found at the
deadline. In the extreme case where a solver is the only one able to solve an instance (resp.
is not able to solve it), we use a score of −4 (resp. 4). A mean Z-score is then computed for
each category and the sum of all mean Z-scores is reported in Table 3.

To take into account the CPU time and cost in a common measure, we also computed
Borda scores, following the MiniZinc Challenge’s approach. For each instance, and each
pair of solvers, a reward in [0, 1] is granted to each solver as follows: if a solver reports
a better cost than the other, it is granted a reward of 1 (and 0 for the other). For identical
costs, if t0 and t1 are the CPU time for two solvers denoted 0 and 1, the solver i will receive

23The Z-score of a value x in a set of values is x−μ
σ

where μ is the mean of the set and σ its standard deviation.
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Fig. 1 Cactus plots for MRF, CVPR, CFN, MaxCSP, WPMS, and CP benchmark resources

a reward of
t|i−1|
t0+t1

, favoring the fastest solver. A mean Borda score is computed for each
category and the sum of mean scores reported.

The tuple encoding and CP approaches are not applicable to WPMS and CVPR, respec-
tively. Quite fairly, these measures penalize these approaches for this limitation. To see if
this penalty was enough to explain the scores of these approaches, we also report the Borda
score normalized by the number of applicable categories (this optimistically assumes that
these approaches would work as well on these inaccessible benchmarks as on the rest of
the benchmarks). The only change is a swap of the order between CPLEX with the tuple
encoding and MAXHS with the direct encoding.

As expected, for each source of benchmarks, the best solver (in terms of number of solved
instances) is usually a solver that is dedicated to this type of problems (i.e., TOULBAR2
for CFN, MAXHS for WPMS, GECODE for CP). However, some solvers, such as MAXHS,
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Fig. 2 Normalized lower and upper bounds on all instances (left) and a set of 1208 hardest instances (right)

CPLEX, and TOULBAR2, performed well on several resources, respectively solving to opti-
mality 2,043, 2,313, and 2,433 instances among a total of 3,026 (using the best encoding on
each category for MAXHS and CPLEX). Using the number of solved instances per category,
breaking ties by best mean CPU time on solved instances, these three solvers won the first
position on 9, 10, and 16 categories respectively, among 43 categories. Looking at cactus
plots in Fig. 1, TOULBAR2 and CPLEX dominate on MRF&CVPR, followed by DAOOPT.
They also dominate on CFN, followed by MAXHS. TOULBAR2 performed well on MaxCSP.
MAXHS and GECODE dominate on their own category (resp. WPMS and CP).

In terms of extreme size and solving difficulty, the CVPR/ColorSeg/colseg-cow4
instance defines the largest search space (dn = 2829,440) completely solved by TOUL-
BAR2. MRF/ObjectDetection is the smallest totally unsolved category (dn ≤ 2264). We now
consider each benchmark resource, highlighting unexpected results.

[MRF]: on MRF/Linkage [28] (maximum number of variables n = 1289, maximum
domain size d = 7), CPLEXtuple, followed by MAXHS, got the best results, showing
their suitability for non-binary (max. arity a = 5) cost functions with forbidden tuples.
The tuple encoding is the only 01LP encoding usually considered in MRFs. Surprisingly,
CPLEX with the direct encoding was the best on the Grid category (n = 6400, d = 2),
benefiting from a large number of zero-half cuts. DAOOPT did not perform as well as
for the PIC 2011 Evaluation. One explanation is the missing problem reformulation fea-
ture used in the PIC challenge [42], a piece of code which is not available in source
or binary format. Another explanation is that DAOOPT spends more time finding good
upper bounds (using local search in preprocessing) than on the optimality proof (as
Fig. 2 seems to show). CP solvers performed poorly on MRFs due to the large costs,
resulting in huge domains for cost variables in the CFN-to-CP translation.

[CVPR]: on CVPR/Scene Decomposition, using a superpixel model [27] with fewer vari-
ables (n = 208, d = 8), TOULBAR2 solved all 715 instances in 0.07 second each on
average compared to 1.11 for CPLEXt . The good performance of TOULBAR2 on CVPR
instances is largely due to its virtual arc consistency initial problem reformulation [11].
On these problems, it offers a tight lower bound in much less time than LP on the tuple
encoding. This encoding was always better for CPLEX, consistent with the ubiquity of
the local polytope formulation as a linear relaxation for MRFs. The tuple encoding also
improved the performance of the MaxSAT solver (see MAXHSt results in Table 3) on two
categories (ProteinInteraction, SceneDecomp).

[CFN]: TOULBAR2 clearly dominates on CELAR (n = 458, d = 44), Pedigree (n =
10017, d = 28), and ProteinDesign (n = 18, d = 198), whereas CPLEX with direct
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encoding, followed by MAXHS, performed the best on Operations Research problems
Auction (n = 246, d = 2) and Warehouse (n = 1100, d = 300). The 01LP tuple
encoding still performed quite well when the problem size remains relatively small (n ×
d ≤ 20, 000), otherwise memory errors sometimes occurred, as on the largest Warehouse
instances (capa-b-c-m). GECODE performed relatively well on Auction and Warehouse,
solving three large instances (capmo-3-4-5 with n = 200, d = 100).

[MaxCSP]: MAXHS performed well on MaxCSP due to its ability to quickly solve all the
satisfiable (zero cost optimum) instances that remained in the Geometric (n = 50, d =
20) and QCP (n = 264, d = 9) categories, thanks to its embedded MINISAT solver.
The good results obtained by DAOOPT can similarly be explained by its initial stochastic
local search procedure [42], finding good initial upper bounds especially on satisfiable
or random instances like EHI (n = 315, d = 7) and Geometric. TOULBAR2 won the
first position on four MaxCSP categories, especially on EHI random category, thanks
to its new hybrid best-first search strategy [2] which simulates restarts with memory.
Surprisingly, the tuple encoding was always dominated by the direct encoding here.

[WPMS]: large clause arities make the tuple encoding or the use of exhaustive tables
in UAI format space intractable. While MAXHS dominates the scene, it is interesting to
notice the ability of CPLEX to outperform MAXHS on two categories (Upgradeability and
PackupWeighted). In PackupWeighted (n = 25554, d = 2), CPLEX can be up to one
order of magnitude faster than MAXHS. GECODE was the fastest solver to find and prove
optimality on 11 MaxClique (n = 3321, d = 2) instances, whereas MAXHS won this
category by solving 40 instances among 62.

[CP]: CP instances are difficult to translate into GMs with local functions and small
domains: 10 instances among 35 MINIZINC instances could not be translated for space
reasons. Moreover the translation is not appropriate for LP solvers (linear constraints
are decomposed), explaining the poor performance of CPLEX. Here, GECODE performed
the best in most of the cases. However, MAXHS, performed the best on two categories:
Amaze and OnCallRostering. Similarly, DAOOPT was faster than GECODE on the most
difficult ParityLearning instance (52 26 6.3). DAOOPT solved all the instances in pre-
processing thanks to its complete bucket/variable elimination [16], with a memory space
usage below 529MB (induced width less than 25), smaller than its limits (4GB and
i = 35-bound) [42].

With either the tuple or direct encoding, CPLEX was able to be the best in at least one
category per benchmark resource (except for CP) showing very good robustness. For proba-
bilistic models, the tuple encoding is the ideal choice since the emphasis is on optimization
(essentially no tuple with cost k). In this case, the tuple formulation offers a strong bound,
an essential source of pruning. In several cases however, thanks to its incremental soft arc
consistencies and strong virtual arc consistency preprocessing, TOULBAR2 outperformed
CPLEX on such problems. These results can be analyzed in the light of the known rela-
tions between LP and soft arc consistencies [11]: thanks to pruning by node consistency
and substitutability and to their efficiency and strong incrementality, soft arc consistencies
seem capable of outperforming LP by finding a better trade off than LP in the compromise
between tightness and computational cost on the local (universal) polytope.

In other benchmarks however, the direct encoding is always preferable. This could be
explained by the better conciseness of the encoding on benchmarks with many 0 costs,
as shown in Table 2, and to some extent by the lesser pruning of the optimization bound
in the presence of hard constraints. This encoding seems essentially ignored in the MRF
community.
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Overall, this shows that significant speedups can be achieved by exploiting encodings to
different optimization languages.

5 Exploitation: a portfolio approach

Solver portfolios [21, 23, 32] aim to exploit this diversity by replacing a single solver with
a set of complimentary solvers and a mechanism for selecting a subset to use on a particular
problem. By making decisions at an instance specific level, it is possible to make signif-
icant performance gains over any of the individual component solvers. Solver portfolios
have been highly successful in constraint programming [4, 24, 41], satisfiability [26, 51],
MaxSAT [5], and many more fields. For an extensive survey of the wide-range of literature
on the algorithm selection problem, we refer the reader to [32].

The majority of modern portfolio approaches employ some form of machine learning to
take the role of the selection model. To enable this involves a training phase whereby for
a reference set of instances, a domain-specific feature description, a candidate set of algo-
rithms, and a performance metric are defined. Feature descriptions for each instance and
performance data of each algorithm on each instance are recorded. The machine learning
model is built such that the performance metric is maximized on this training data. Sub-
sequently, to apply this trained model to a new test instance at runtime, first the feature
description must be computed and passed to the model to make a solver selection. The
chosen solver is then applied to the problem instance.

5.1 Graphical model instance features

To describe graphical model instances, we consider the following feature set: i) the input
file size, ii) the CPU time to read the instance, iii) an initial upper bound on the solution,
iv) the time to compute the initial upper bound, v) the number of variables, vi) the number
of cost functions. The ratio of vii) unary, viii) binary, and ix) ternary cost functions, i.e. the
fraction of the total number of cost functions of each arity. x) The ratio of cost functions
which have arity 4 or greater. Finally, a number of statistics such as the mean, standard
deviation, coefficient of variation, minimum, and maximum for xi) domain size, and xii)
cost function arity. By no means does this list constitute a comprehensive list of features
for graphical models, nevertheless in initial evaluations these proved effective and have the
benefit of being relatively cheap to compute.

Table 4 presents the Gini importances [9]24 of the above features according to a decision
tree classifier aiming to predict the fastest solver. The most important features are the ratio
of binary cost functions, the minimum domain size, and the value of the initial upper bound.

5.2 Machine learning offline evaluation results

Table 5 presents an offline evaluation of a simple portfolio approach based on 6 solvers from
Sec. 4.3. We consider a subset of the benchmarks and the solvers such that all the instances
could be translated to all the solvers, i.e., we exclude the WPMS and CP benchmarks, and
the GECODE solver.

24The normalized total reduction brought by the feature.
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Table 4 Gini importances of features

Feature Gini importance Feature Gini importance

Ratio of binary cost functions 0.14445 Arity coefficient of variation 0.07546

Minimum domain size 0.13928 Arity std. deviation 0.07149

Initial UB 0.10988 Arity mean 0.06555

Time to read 0.09211 Num. variables 0.04304

Time UB 0.08393 Num. cost functions 0.03875

File size 0.08305 Mean dom. size 0.01634

The portfolio is built using LLAMA [31], with 10-fold stratified cross validation. This
involves splitting the dataset into 10-equally sized folds with an equal distribution of the
best solver across folds. For brevity, we present results only for the best performing regres-
sion, classification, and clustering methods, plus the Random Forest classifier. The Virtual
Best Solver (VBS) corresponds to an oracle deciding the best solver for each instance.
The table lists the mean (std. dev.) CPU time on the solved instances, the number of
instances solved to optimality in less than 1 hour, the number of times each solver was the
fastest. In addition, the misclassification penalty shows the contribution of each solver to
the portfolio, i.e., the number of instances that were not solved by any other solver, and,
where another one solved the instance, the additional CPU time needed by the next best
solver. From these statistics alone, it is clear that each of the component solvers (except
MAXHStuple) play a valuable contribution to the portfolio both in terms of being able to
solve more instances, and reducing the overall CPU time needed. Additionally, each of the
portfolio methods are able to outperform the single best solver and close most of the gap to
the virtual best solver.

Table 5 Summary of portfolio approaches sorted by decreasing number of problems solved over the 2,564
instances

Solver Solved time (sec.) Num. Num. Misclass. pen.

Mean Std. dev. solved best solved total time

VBS(6) 93.0 385.1 2,321

M5P regression 91.5 376.1 2,298

J48 classification 84.7 368.1 2,294

Random Forest 74.6 327.6 2,279

k-means clustering 66.9 301.4 2,259

TOULBAR2 105.2 408.3 2,220 1,863 224 28,000.1

CPLEXtuple 55.4 316.6 1,852 27 3 10,345.3

DAOOPT 535.1 340.1 1,812 3 0 3,236.8

MAXHStuple 140.0 414.5 1,551 3 1 8.4

MAXHS 199.0 565.4 1,078 208 4 9,261.4

CPLEX 127.7 433.4 1,002 217 36 14,381.9
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Table 6 Offline evaluation of the UAI 2014 portfolio on 2,564 instances

Solver Solved time (sec.) Num. Num. Misclass. pen.

Mean Std. dev. solved best solved total time

VBS(5) 63.5 276.3 2,315

UAI’14 portfolio 71.8 312.4 2,276

INCOP+TOULBAR2 87.6 361.2 2,227 352 23 82,616.2

TOULBAR2 105.2 408.3 2,220 1,449 13 56,339.3

CPLEXtuple 55.4 316.6 1,852 27 6 9,584.7

MPLP2 66.2 424.6 1,537 198 0 1,183.3

CPLEX 127.7 433.4 1,002 289 46 13,276.0

5.3 The UAI 2014 portfolio

A specific portfolio was developed and submitted to the UAI 2014 Inference Competition
(MAP task). It was built from five constituent solvers: i) TOULBAR2, ii) a version of TOUL-
BAR2 taking a starting solution from an initial run of the INCOP [40] local search solver,
iii) the Message Passing Linear Programming MPLP2 solver [48, 49], iv) CPLEX using the
direct encoding, and v) CPLEX with the tuple encoding. These solvers were selected based
on their complementary performances in previous empirical evaluations. Table 6 presents
the results of an offline evaluation of this portfolio.25

The effectiveness of this multi-language portfolio was independently verified in the UAI
2014 Inference Competition, achieving two first places in the MAP task under both the 20
and 60 minute timeouts.26 Three of the portfolio’s component solvers were submitted to the
same competition as independent entries. The two 01LP encodings performed extremely
well on certain instances but extremely poorly on the remaining.27 Based on the competi-
tion’s overall evaluation metric, the cumulative sum of a solver’s rank on each instance, the
01LP encodings did not rank high overall but were the top-ranked solvers in a number of
cases. Likewise, the INCOP+TOULBAR2 solver was the highest ranked in some cases but
ranked in mid-field in many others.28 The UAI’14 portfolio solver was highly successful
in deciding when to run these solvers or not, achieving first place overall. This indepen-
dent empirical evaluation supports the findings demonstrated in this paper, that significant
speedups can be achieved by exploiting various encodings to related languages.

6 Conclusions

Our empirical results demonstrate the effectiveness of a number of solvers on vari-
ous graphical model formats, where no single solver consistently dominates the results.

25https://github.com/9thbit/uai-proteus used a Random Forest classifier and an older version of TOUL-
BAR2 version 0.9.7, with no parameter. Here we report the results using the same settings as in Sec. 4.3,
INCOP+TOULBAR2 corresponds to TOULBAR2 using an extra parameter -i for the initial INCOP starting
solution phase.
26See MAP/Proteus entry at http://www.hlt.utdallas.edu/∼vgogate/uai14-competition/leaders.html.
27See MAP/MIP-UAI and MAP/MIP-T-UAI entries.
28See MAP/IncTb entry.

https://github.com/9thbit/uai-proteus
http://www.hlt.utdallas.edu/~vgogate/uai14-competition/leaders.html
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Rather, the best solver depends on each problem category, bringing to light the respective
strengths, robustness and weaknesses of each solver family. They highlight the effi-
cacy of encoding a problem to a related language and exploiting complementary solving
technologies.

We demonstrate that it is possible to exploit these complementary strengths using a
portfolio approach, built on this knowledge won the UAI 2014 Evaluation. We hope that
our proposed collection of benchmarks, readily available in many formats, will enrich the
various competitions in CP, AI, and OR, leading to more robust solvers and new solving
strategies.
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6. Argelich, J., Cabiscol, A., Lynce, I., & Manyà, F. (2008). Encoding Max-CSP into partial Max-SAT. In
Proceedings of ISMVL (pp. 106–111).

7. Bacchus, F. (2007). GAC via unit propagation. In Proceedings of CP (pp. 133–147).
8. Bensana, E., Lemaı̂tre, M., & Verfaillie, G. (1999). Earth observation satellite management. Constraints,

4(3), 293–299.
9. Breiman, L., Friedman, J., Stone, C.J., & Olshen, R.A. (1984). Classification and regression trees: CRC

press.
10. Cabon, B., de Givry, S., Lobjois, L., Schiex, T., & Warners, J. (1999). Radio link frequency assignment.

Constraints, 4, 79–89.
11. Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., & Werner, T. (2010). Soft arc

consistency revisited. Artificial Intelligence, 174, 449–478.
12. Cooper, M., de Givry, S., & Schiex, T. (2007). Optimal soft arc consistency. In Proceedings of IJCAI

(pp. 68–73).
13. Cooper, M.C., & Schiex, T. (2004). Arc consistency for soft constraints. Artificial Intelligence, 154(1-2),

199–227.
14. Davies, J., & Bacchus, F. (2011). Solving MAXSAT by solving a sequence of simpler SAT instances. In

Proceedings of CP (pp. 225–239).
15. Davies, J., & Bacchus, F. (2013). Exploiting the power of MIP solvers in MaxSAT. In Proceedings of

SAT (pp. 166–181).
16. Dechter, R. (1999). Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,

113(1–2), 41–85.
17. Fargier, H., Lang, J., Martin-Clouaire, R., & Schiex, T. (1995). A constraint satisfaction framework

for decision under uncertainty. In Proceedings of the 11th International Conference on Uncertainty in
Artificial Intelligence. Montréal.
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