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Abstract There are many complex combinatorial problems which involve searching for an
undirected graph satisfying given constraints. Such problems are often highly challenging
because of the large number of isomorphic representations of their solutions. This paper
introduces effective and compact, complete symmetry breaking constraints for small graph
search. Enumerating with these symmetry breaks generates all and only non-isomorphic
solutions. For small search problems, with up to 10 vertices, we compute instance inde-
pendent symmetry breaking constraints. For small search problems with a larger number of
vertices we demonstrate the computation of instance dependent constraints which are com-
plete. We illustrate the application of complete symmetry breaking constraints to extend
two known sequences from the OEIS related to graph enumeration. We also demonstrate
the application of a generalization of our approach to fully-interchangeable matrix search
problems.

Keywords Graph search problems · Symmetry breaking · SAT solving

1 Introduction

Graph search problems are about the search for a graph which satisfies a given set of
constraints, or to determine that no such graph exists. Often graph search problems are
about the search for the set of all graphs, modulo graph isomorphism, that satisfy the given
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constraints. Graph search problems are typically invariant under graph isomorphism.
Namely, if G is a solution, then any graph obtained by permuting the vertices of G is also
a solution. When seeking solutions, the size of the search space is significantly reduced if
symmetries are eliminated. The search space can be explored more efficiently when avoid-
ing paths that lead to symmetric solutions and avoiding also those that lead to symmetric
non-solutions.

One common approach to eliminate symmetries is to introduce symmetry breaking con-
straints [11, 29, 33, 34] which rule out isomorphic solutions thus reducing the size of the
search space while preserving the set of solutions. Ideally, a symmetry breaking constraint
is satisfied by a single member of each equivalence class of solutions, thus drastically
restricting the search space. However, computing such symmetry breaking constraints is,
most likely, intractable in general [11]. In practice, symmetry breaking constraints typically
rule out some, but not all of the symmetries in the search and, as noted in the survey by
Walsh [35], often a few simple constraints rule out most of the symmetries.

Shlyakhter [33] notes that the core difficulty is to identify a symmetry-breaking predicate
which is both effective (rules out a large portion of the search space) and compact (so that
checking the additional constraints does not slow down the search). In [10], Codish et al.
introduce a symmetry breaking constraint for graph search problems. Their constraint is
compact, with size polynomial in the number of graph vertices, and shown to be effective
but it does not eliminate all of the symmetries in the search.

There is a large body of research that concerns identifying symmetries in a given graph.
In this setting, finding symmetries is about detecting graph automorphisms. A typical appli-
cation is in the context of SAT solving as described for example in [2, 4, 16–18]. In this
paper the setting is different as the graph is not given but rather is the subject of the search
problem.

In this paper we adopt the following terminology. Symmetry breaking constraints that
break all of the symmetries, or more precisely, that are satisfied by exactly one solution in
each symmetry class, are called complete. Symmetry breaking constraints which are sound
i.e, satisfied by at least one solution in each symmetry class, but not complete are called par-
tial. If a symmetry breaking constraint is satisfied exactly by the canonical representatives
of the symmetry classes, it is called canonizing. Note that canonizing symmetry breaking
constraints are also complete.

Computing all solutions to a graph search problem with partial symmetry breaking con-
straints is a two step process. First one generates the set S of solutions to the constraints, and
then one applies a graph isomorphism tool, such as nauty [22] to reduce S modulo iso-
morphism. Often, the number of solutions in the first step is very large and then this method
may fail to generate the initial set of solutions.

This paper presents a methodology to compute small sets of static canonizing sym-
metry breaking constraints for “small” graph search problems. Consider for example the
search for a graph with n = 10 vertices. The search space consists of 245 graphs, whereas,
there are only 12 005 168 such graphs modulo isomorphism (see sequence A000088 of the
OEIS [28]). In theory, to break all symmetries one could construct a symmetry breaking con-
straint that considers all 10! = 3,628,800 permutations of the vertices. We will show how
to construct a compact canonizing symmetry breaking constraint for graph search problems
on 10 vertices using only 7853 permutations.

Our approach can be applied, in the terminology of [3], both in an “instance inde-
pendent” fashion and “instance dependent”. When “instance independent”, it generates
canonizing symmetry breaking constraints for any graph search problem and in this setting
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it applies to break all symmetries in graph search problems on up to 10 vertices. When
“instance dependent”, it generates canonizing symmetry breaking constraints which apply
to break symmetries in larger graphs which are solutions of a given graph search prob-
lem. These symmetry breaking constraints are typically smaller and easier to compute than
the corresponding “instance independent” constraints. We illustrate the application of com-
plete symmetry breaking constraints, both instance independent and instance dependent, to
extend two known sequences from the OEIS related to graph enumeration.

We also observe that the derived symmetry constraints are “solver independent”. They
can be applied in conjunction with any constraint solver to restrict the search to canonical
solutions of a given search problem.

The rest of this paper is structured as follows. Section 2 provides a motivating exam-
ple. Section 3 presents preliminary definitions and notation. Section 4 describes how we
compute complete and canonizing symmetry breaking constraints. First, in Section 4.2, for
instance independent graph search problems. Then, in Section 4.5, for a given graph search
problem. Section 5 demonstrates a generalization of our approach to matrix search prob-
lems and illustrates its impact when solving the Equi-distant Frequency Permutation Array
problem (EFPA). Section 7 concludes.

2 A motivating example

A classic example of a graph search problem relates to the search for Ramsey graphs [30].
The graph R(s, t; n) is a simple graph with n vertices, no clique of size s, and no indepen-
dent set of size t . Figure 1 illustrates a R(3, 3; 5) graph. The graph contains no 3-clique and
no 3-independent set. A Ramsey (s, t)-graph is a R(s, t; n) graph for some n. The set of all
R(s, t; n) graphs, modulo graph isomorphism, is denoted R(s, t; n). Ramsey Theory tells
us that there are only a finite number of Ramsey (s, t)-graphs for each s and t , but finding
all such graphs, or even determining the largest n for which they exist, is a famously dif-
ficult problem. It is unknown, for example, if there exists a R(5, 5; 43) graph and the set
R(4, 5; 24) has yet to be been fully determined, although 350,904 non-isomorphic graphs
are known to belong toR(4, 5; 24).

Fig. 1 A R(3, 3; 5) Ramsey
graph: edges denoted by solid
lines and non-edges by dashed
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Solving the graph search problem to find all R(3, 4; 8) graphs without any symme-
try breaking constraint results in a set of 17,640 graphs. Applying nauty [22] to these
solutions identifies precisely 3 solutions modulo graph isomorphism. Introducing a partial
symmetry breaking constraint as described in [9] in the search to enumerate all R(3, 4; 8)
graphs computes only 11 graphs in a fraction of the time required to compute the full set of
solutions. These too can then be reduced applying nauty to obtain the 3 solutions. Appli-
cation of a complete symmetry breaking constraint as proposed in this paper results in the
exact set of 3 non-isomorphic solutions.

3 Preliminaries

Throughout this paper we consider finite and simple graphs (undirected with no self loops).
The set of simple graphs on n nodes is denoted Gn. We assume that the vertex set of a graph,
G = (V ,E), is V = {1, . . . , n} and represent G by its n×n adjacency matrix A defined by

Ai,j =
{
1 if (i, j) ∈ E

0 otherwise

An n-vertices graph search problem is a predicate ϕ on an n × n matrix A of Boolean
variables Ai,j ; and a solution to a graph search problem ϕ is a satisfying assignment (to the
variables in A) of the conjunction ϕ(A) ∧ adjn(A) where adjn(A) states that A is an n × n

adjacency matrix:

adjn(A) =
∧

1≤i≤n

(¬Ai,i)

︸ ︷︷ ︸
(a)

∧
∧

1≤i<j≤n

(Ai,j ↔ Aj,i)

︸ ︷︷ ︸
(b)

(1)

In Constraint (1), the left part (a) states that there are no self loops and the right part
(b) states that the edges are undirected. The set of solutions of a graph search problem is
denoted sol(ϕ) and when we wish to make the variables explicit we write sol(ϕ(A)). The
set sol(ϕ) is typically viewed as a set of graphs. Note that sol(true) = Gn. The following
presents two examples of graph search problems which we will refer to in rest of the paper.

Example 1 The Ramsey graph R(s, t; n) is a simple graph with n vertices, no clique of
size s, and no independent set of size t . The set of all R(s, t; n) graphs, modulo graph iso-
morphism, is denotedR(s, t; n). The search for a Ramsey graph is a graph search problem
where we take the following ϕR(s,t;n) as the predicate ϕ. Here we denote by ℘s[n] (respec-
tively ℘t [n]) the set of subsets of size s (respectively t) of

{
1, . . . , n

}
. The left conjunct (a)

states that there is no clique of size s in the graph, and the right conjunct (b) that there is no
independent set of size t .

ϕ(s,t;n)(A) =
∧

I∈℘s [n]

∨{
¬Ai,j

∣∣∣∣ i, j ∈ I,

i < j

}

︸ ︷︷ ︸
(a)

∧
∧

I∈℘t [n]

∨{
Ai,j

∣∣∣∣ i, j ∈ I,

i < j

}

︸ ︷︷ ︸
(b)

(2)

Example 2 A graph is claw-free if it does not contain the complete bipartite graph
K1,3 (sometimes called a “claw”) as a subgraph. The claw free graph search problem is
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formalized by taking the following ϕcf (n) as the predicate ϕ. Each clause in the conjunction
expresses for i, j, k, � that there is no subgraph K1,3 between {i} and {j, k, �}.

ϕcf (n)(A) =
∧{ ¬Ai,j ∨ ¬Ai,k ∨ ¬Ai,�

∨Aj,k ∨ Ak,� ∨ ∨Aj,�

∣∣∣∣ 1 ≤ i ≤ n, i �= j, i �= k,

i �= �, 1 ≤ j < k < � ≤ n

}
(3)

The set of permutations π : {1, . . . , n} → {1, . . . , n} is denoted Sn. For G = (V ,E) ∈
Gn and π ∈ Sn, we define π(G) = {V, {(π(u), π(v))|(u, v) ∈ E)}. Permutations act on
adjacency matrices in the natural way: If A is the adjacency matrix of a graph G, then
π(A) is the adjacency matrix of π(G) obtained by simultaneously permuting with π the
rows and columns of A. We adopt the tuple notation [π(1), . . . , π(n)] for a permutation
π : {1, . . . , n} → {1, . . . , n}.

Two graphsG1,G2 ∈ Gn are isomorphic, denotedG1 ≈ G2, if there exists a permutation
π ∈ Sn such that G1 = π(G2). Sometimes we write G1 ≈π G2 to emphasize that π is the
permutation such that G1 = π(G2). For sets of graphs H1, H2, we say that H1 ≈ H2 if for
every G1 ∈ H1 (likewise in H2) there exists G2 ∈ H2 (likewise in H1) such that G1 ≈ G2.

We consider an ordering on graphs, defined viewing their adjacency matrices as strings.
Because adjacency matrices are symmetric with zeroes on the diagonal, it suffices to focus
on the upper triangle parts of the matrices [8].

Definition 1 (ordering graphs) Let G1, G2 ∈ Gn and let s1, s2 be the strings obtained
by concatenating the rows of the upper triangular parts of their corresponding adjacency
matrices A1, A2 respectively. Then, G1 
 G2 if and only if s1 
lex s2. We also write
A1 
 A2.

One way to define the canonical representation of a graph is to take the smallest graph
in the 
 order in each equivalence class of isomorphic graphs [31]. In this paper we follow
this definition for canonicity.

Definition 2 (canonicity) Let G ∈ Gn be a graph, Π ⊆ Sn, and denote the predicate
minΠ(G) = ∧{

G 
 π(G)
∣∣ π ∈ Π

}
. We say that G is canonical if minSn(G). We say

that Π is canonizing if ∀G∈Gn .minΠ(G) ↔ minSn(G).

Observe that in Definitions 1 and 2, the order is defined on given graphs. Often, we con-
sider the same relation, but between adjacency matrices that contain propositional variables
(representing unknown graphs, as in the case for graph search problems). Then, the expres-
sions A1 
 A2 and minΠ(A) are viewed as a Boolean constraints on the variables in the
corresponding matrices.

Example 3 It turns out that Π = { [2, 1, 3, 4], [1, 3, 2, 4], [1, 2, 4, 3] } is canonizing for
G4. Namely, with only three permutations we express the information present in all 4! = 24
elements of S4. So for instance, the graph G depicted in Fig. 2a is canonical because it is
smaller than its three permutations with respect to Π detailed as Fig. 2b, c, and d. We come
back to elaborate on why Π is canonizing in Example 4.

Definition 3 (symmetry break) Let ϕ(A) be a n-vertices graph search problem and σ(A)

a propositional formula on the variables in A. We say that σ is a symmetry break for
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a b c d

Fig. 2 A graph and its isomorphic representations according to: π1 = [2, 1, 3, 4], π2 = [1, 3, 2, 4], and
π3 = [1, 2, 4, 3]

ϕ if sol(ϕ(A)) ≈ sol(ϕ(A) ∧ σ(A)). If the graphs of sol(ϕ(A) ∧ σ(A)) are mutually
non-isomorphic then we say that σ is complete. Otherwise we say that σ is partial. If the
graphs of sol(ϕ(A) ∧ σ(A)) are canonical then we say that σ is canonizing.

Lemma 1 Let Π be a canonizing set of permutations for graphs of size n. Then minΠ is a
canonizing symmetry break for any graph search problem on n vertices.

Proof Let A be a solution to a graph search problem on n vertices and let Π be a canonizing
set for graphs with n vertices. In order to prove that minΠ is a canonizing symmetry break it
is sufficient to show that only the canonical member in iso(A) = {π(A)|∀π ∈ Sn} satisfies
minΠ . Π is a canonizing set thus by definition ∀G ∈ Gn : minΠ(G) ↔ minSn(G). Since
only the canonical graph in iso(A) satisfies minSn it follows that it is the only one which
satisfies minΠ .

Corollary 1 minSn(A) is a canonizing symmetry break for any graph search problem on n

vertices.

Example 4 Consider the canonizing set Π from Example 3 and the following 4 × 4
adjacency matrix A:

A =

⎡
⎢⎢⎣
0 a b c

a 0 d e

b d 0 f

c e f 0

⎤
⎥⎥⎦ Π =

⎧⎨
⎩

[2, 1, 3, 4],
[1, 3, 2, 4],
[1, 2, 4, 3]

⎫⎬
⎭

Then, by Definition 2 and Lemma 1,

minΠ(A) = (abcdef 
lex adebcf ) ∧ (abcdef 
lex bacdfe) ∧ (abcdef 
lex acbdef )

and this simplifies using properties of lexicographic orderings to:

minΠ(A) = (bc 
lex de) ∧ (ae 
lex bf ) ∧ (bd 
lex ce)

To verify that Π is indeed canonizing one should consider each of the permutations in
π ∈ S4 \ Π and prove that minΠ(A) ⇒ A 
 π(A) where A is the variable matrix detailed
above. For example, when π = [2, 1, 4, 3], A 
 π(A) means abcdef 
lex aedcbf which
simplifies to bc 
lex ed and we need to show that (bc 
lex de) ∧ (ae 
lex bf ) ∧ (bd 
lex

ce) ⇒ bc 
lex ed. This is not difficult to check.

Clearly, for any set of permutations Π ⊂ Sn the predicate minΠ is a partial symmetry
break for graph search problems. In [9], Codish et al. introduce the following symmetry
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break for graph search problems where Ai denotes the ith row of the adjacency matrix A

and 
{i,j} denotes the lexicographic comparison on strings after removing their ith and j th

elements.

Definition 4 (lexicographic symmetry break, [9]) Let A be an n × n adjacency matrix.
Then,

sb∗
�(A) =

∧
1≤i<j≤n

A[i] 
{i,j} A[j ]

It is not difficult to observe that sb∗
� is equivalent to the predicate minΠ where varΠ is

the set of permutations that swap a single pair (i, j) with 1 ≤ i < j ≤ n.

The experimental setting In this paper all computations are performed using the Glu-
cose 4.0 SAT solver [5]. Encodings to CNF are obtained using the finite-domain constraint
compiler BEE [26]. BEE facilitates applications to find a single (first) solution, or to find
all solutions for a constraint, modulo a specified set of variables. When solving for all solu-
tions, BEE iterates with the SAT solver, adding so called blocking clauses each time another
solution is found. This technique, originally due to McMillan [25], is simplistic but suffices
for our purposes. All computations were performed on a cluster with a total of 228 Intel
E8400 cores clocked at 2 GHz each, able to run a total of 456 parallel threads. Each of the
cores in the cluster has computational power comparable to a core on a standard desktop
computer. Each SAT instance is run on a single thread.

4 Canonizing symmetry breaks

The observation made in Example 3: that a canonizing set for graphs with n vertices can be
much smaller than n!, motivates us to seek “small” canonizing sets that might be applied to
introduce canonizing symmetry breaking constraints for graph search problems. First, we
describe the application of this approach to compute relatively small instance independent
canonizing sets, which induce general purpose symmetry breaks that can be used for any
graph search problem. We compute these sets for graphs with n ≤ 10 vertices. We illustrate
their application when breaking all symmetries in the search for Ramsey and claw-free
graphs.

Second, we apply our methods to compute instance dependent canonizing sets which
are computed for a given graph search problem. Namely, these sets promise that only non-
isomorphic solutions will be generated when enumerating all solutions for the given graph
search problem that satisfy its corresponding canonizing symmetry breaks. However, these
sets are not necessarily canonizing for other graph search problem. We show that such can-
onizing sets can be computed for larger graphs (compare to instance independent canonizing
sets) and their usage is illustrated to enumerate all non-isomorphic highly irregular graphs
up to 20 vertices.

4.1 Computing canonizing sets

To compute a canonizing set of permutations for graph search problem ϕ on n vertices we
start with some initial set of permutations Π (for simplicity, assume that Π = ∅). Then,
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incrementally apply the step specified in lines 2–3 of Algorithm 1, as long as the stated
condition holds.

Lemma 2 Algorithm 1 terminates and returns a canonizing set Π for the graph search
problem ϕ.

Proof Each step in the algorithm adds a permutation (at Line 3) and the number of permu-
tations is bound. When the algorithm terminates with Π then for G ∈ sol(ϕ), if minΠ(G)

holds then there is no π ∈ Sn such that π(G) ≺ G. So, G 
 π(G) for all π ∈ Sn and
therefore minSn(G) holds.

Drawing on the discussion in [6, 11, 20] we do not expect to find a polynomial time
algorithm to compute a canonical (or any other complete) symmetry breaking constraint for
graph search problems based on Definition 2. Thus it is also unlikely to find an efficient
implementation of Algorithm 1. Our implementation of Algorithm 1 is based on a SAT
encoding. We repeatedly apply a SAT solver to find a counter example permutation which
shows that Π is not a canonizing set yet and add it to Π , until an UNSAT result is obtained.
In the implementation of the algorithm, care is taken to use a single invocation of the SAT
solver so that the iterated calls to the solver are incremental. The constraint model used
is depicted as Fig. 3 where A,B denote n × n matrices of propositional variables and π

denotes a length n vector of integer variables. Constraint 4 specifies that the parameter π is
a permutation on

{
1, . . . , n

}
. Each element of the vector is a value 1 ≤ πi ≤ n and the ele-

ments are all different. Constraint 5 specifies that the parameters A,B represent isomorphic
graphs via the parameter π . Constraint 6 specifies the condition of the while loop (line 2)
of Algorithm 1: A is restricted to be a solution to the given graph search problem ϕ, A and
B are constrained B = π(A) to be isomorphic adjacency matrices (see Constraint (1)) via
the permutation π . The constraint minΠ(A) is imposed and also A � B. If algn1(Π, ϕ) is
satisfiable, then the permutation π is determined by the satisfying assignment and added to
Π as specified in (line 3) of Algorithm 1.

Fig. 3 Constraints for Algorithm 1 where A and B are n × n Boolean matrices and π = 〈π1, . . . , πn〉 is a
vector of integer variables (with domain {1, . . . , n})
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We say that a canonizing set Π of permutations is redundant if for some π ∈ Π the set
Π \ {π} is also canonizing. Algorithm 1 may compute a redundant set. For example, if a
permutation added at some point becomes redundant in view of permutations added later.
Algorithm 2 iterates on the elements of a canonizing set to remove redundant permutations.

Lemma 3 IfΠ is a canonizing set for the graph search problem ϕ, then so isReduce(Π, ϕ)

computed by Algorithm 2.

Proof Let Πi be the set obtained after considering the ith permutation in Line 2 of Algo-
rithm 2. The initial set Π0 is the input to the algorithm. We prove that minΠi

↔ minΠi+1

and conclude that minΠ ↔ minReduce(Π). If no permutation was removed in step i then
Πi+1 = Πi and trivially minΠi

↔ minΠi+1 . Otherwise Πi+1 = Πi \ {π} for a permuta-
tion π which satisfies ∀G ∈ sol(ϕ): minΠi+1(G) ⇒ G 
 π(G). Thus π is implied by the
permutations in Πi and can be removed. Therefore minΠi+1(G) ↔ minΠi

(G).

Our implementation of Algorithm 2 is based on a SAT encoding. The key is in the
encoding for the test in Line 3. Here, for the given Π and π ∈ Π , we encode the constraint

alg2
n(Π, ϕ) = adjn(A)︸ ︷︷ ︸

(a)

∧ ϕ(A) ∧ minΠ\{π}(A) ∧ π(A) � A︸ ︷︷ ︸
(b)

(7)

where the left part (a) specifies that A is the n × n adjacency matrix of some graph (see
Constraint (1)), and the right part (b) is the negation of the condition in Line 3. If this
constraint is unsatisfiable then π is redundant and removed from Π .

4.2 Instance independent symmetry breaks

Observe that if ϕ = true then sol(ϕ) = Gn. Applying Algorithm 1 to compute
Compute-Canonizing-Set(Π, true) generates canonizing symmetry breaks which
apply for any graph search problem on n vertices (i.e instance independent). This is true for
any set of permutations Π but for simplicity assume Π = ∅.

Table 1 describes the computation of irredundant instance independent canonizing
permutation sets for n ≤ 10 by application of Algorithms 1 and 2. The correspond-
ing permutation sets can be obtained from http://www.cs.bgu.ac.il/∼mcodish/Papers/Tools/
canonizingSets. The first 3 columns indicate the number of graph vertices, n, the number
of permutations on n, and the number of non-isomorphic graphs on n vertices as specified
by sequence A000088 of the OEIS [28]. The forth and fifth columns indicate the size of

http://www.cs.bgu.ac.il/~mcodish/Papers/Tools/canonizingSets
http://www.cs.bgu.ac.il/~mcodish/Papers/Tools/canonizingSets
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Table 1 Computing irredundant canonizing sets of permutations for n ≤ 10

Algorithm 1 Algorithm 2

n n! can. graphs time (sec.) can. set time (sec.) red. set

3 6 4 0.02 3 0.01 2

4 24 11 0.02 7 0.01 3

5 120 34 0.05 27 0.05 7

6 720 156 0.35 79 1.27 13

7 5 040 1 044 1.92 223 11.27 37

8 40 320 12 346 27.61 713 317.76 135

9 362 880 274 668 1 108.13 4 125 7 623.20 842

10 3 628 800 12 005 168 9.82 hr. 20 730 84 hr. 7 853

the canonical set of permutations computed using Algorithm 1 and the time to perform this
computation. Columns six and seven are the size of the reduced canonical set of permu-
tations after application of Algorithm 2 and the corresponding computation time. Column
seven is set in boldface. These numbers present the relatively small size of the computed
canonizing sets in comparison to the value of n!. Using the symmetry breaks derived from
these sets we have generated the sets of all non-isomorphic graphs with up to 10 vertices
and verified that their numbers correspond to those in column three. These are computed
by solving the conjunction of Constraint (1) with the corresponding symmetry breaking
predicate minΠ the computation of which is described in Table 1.

The numbers in Table 1 also indicate the limitation of complete symmetry breaks which
apply to all graphs. We do not expect to succeed to compute a canonizing set of permutations
for n = 11 and even if we did succeed, we expect that the number of constraints that would
then need be added in applications would be too large to be effective.

4.3 Computing Ramsey graphs with canonizing symmetry breaks

Recall Example 1 where we introduce the graph search problem for Ramsey graphs. Table 2
describes the computation of all R(4, 4; n) graphs for n ≤ 10 using a SAT solver. The
table compares two configurations: one using the partial symmetry breaking predicate sb∗

�

defined in [9] and the other using a canonizing symmetry break minΠ where Π is the can-
onizing set of permutations, the computation of which is described in Table 1. For each
configuration we detail the size of the SAT encoding (clauses and variables), the time in
seconds (except where indicated in hours) to find all solutions using a SAT solver, and
the number of solutions found. Observe that the encodings using the canonizing symme-
try breaks are much larger. However the sat solving time is much smaller. For n = 10 the
configuration with sb∗

� requires more than 33 hours where as the configuration using minΠ

completes in under 7 hours. Finally note that the computation with minΠ computes the pre-
cise number of solutions modulo graph isomorphism as detailed for example in [24]. These
are the numbers in the rightmost column set in boldface. The solutions computed using sb∗

�

contain many isomorphic solutions which need to be subsequently removed using nauty
or a similar tool. One might argue that the real cost in applying the complete symmetry
breaks should include their computation. To this end we note that these are general symme-
try breaking predicates applicable to any graph search problem, and they are precomputed
once.
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Table 2 Computing |R(4, 4; n)| with canonizing symmetry breaking and sb∗
�

Partial sym. break sb∗
� Canonizing sym. break

n clauses vars sat (sec.) sols clauses vars sat (sec.) sols

4 22 10 0.01 9 17 5 0.00 9

5 80 24 0.01 33 235 55 0.01 24

6 195 48 0.02 178 315 72 0.01 84

7 390 85 0.12 1 478 1 395 286 0.05 362

8 690 138 4.91 16 919 10 885 2 177 1.69 2 079

9 1 122 210 745.72 227 648 89 877 17 961 144.4 14 701

10 1 715 304 33.65 hr. 2 891 024 1 406 100 281 181 6.56 hr. 103 706

4.4 Computing claw-free graphs with canonizing symmetry breaks

Recall Example 2 where we introduce the graph search problem for claw-free graphs. The
number of claw-free graphs for n ≤ 9 vertices is detailed as sequence A086991 on the
OEIS [28]. Table 3 describes the search for claw free graphs as a graph search problem. Then
we use a SAT solver to compute the set of all claw free graphs on n vertices. We illustrate
that using canonizing symmetry breaks, and the results detailed in Table 1, we can compute
the set of all claw free graphs modulo graph isomorphism for n ≤ 10 thus computing a new
value for sequence A086991. We comment that after this value for n = 10 was added to
the OEIS, Falk Hüffner added further values for 10 < n ≤ 15. The column descriptions are
the same as those for Table 2. For each configuration we detail the size of the SAT encoding
(clauses and variables), the time in seconds to find all solutions using a SAT solver, and the
number of solutions found. For this example the computation with a complete symmetry
break is more costly, but it does return the precise set of canonical graphs. The sequence in
the right column are set in boldface. For n ≤ 9, these are the numbers of claw-free graphs
as detailed in sequence A086991 of the OEIS [28]. It is no coincidence that the number of
variables indicated in the columns of Tables 2 and 3 are almost identical. These pertain to the
variables in the adjacency graph and those introduced to express the instance independent
symmetry breaks.

Table 3 Computing claw-free graphs with canonizing symmetry breaking and sb∗
�

Partial sym. break sb∗
� Canonizing sym. break

n clauses vars sat (sec.) sols clauses vars sat (sec.) sols

4 24 10 0.01 10 19 9 0.01 10

5 90 24 0.01 32 245 55 0.01 26

6 225 48 0.01 143 345 72 0.01 85

7 460 85 0.04 819 1 465 286 0.03 302

8 830 138 0.86 5 559 11 025 2 177 1.08 1 285

9 1 374 210 28.72 42 570 90 129 17 961 75.23 6 170

10 2 135 304 2 352.37 368 998 1 406 520 281 181 8797.23 34 294
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4.5 Instance dependent canonizing symmetry breaks

A canonizing set for a specific graph search problem ϕ is typically much smaller than
a general canonizing set as the constraints in ϕ restrict the solution structure and hence
also the symmetries within the solution space. We call such a set instance dependent. In
practice we can often compute instance dependent canonizing sets for larger graphs with
n > 10 vertices. For a given graph search problem ϕ, let us denote by Πϕ the canonizing set
of permutations obtained from Compute-Canonizing-Set(∅, ϕ) of Algorithm 1.
Solutions of ϕ obtained with the induced symmetry break predicate minΠϕ are guaranteed
to be pairwise non-isomorphic.

In this section we demonstrate the application of instance dependent canonizing sets.
Here we consider a search problem for which we seek a graph that has a particular given
degree sequence.

A degree sequence is a monotonic non-increasing sequence of the vertex degrees of a
graph. Degree sequences are a natural way to break a graph search problem into independent
cases (one for each possible degree sequence). Thus the search for a solution or all solutions
can be done in parallel.

Since a degree sequence induces a partition on the vertex set, in order to compute an
instance dependent canonizing symmetry break with respect to a degree sequence, a con-
straint stating that B has the same degree sequence as A needs to be added to (6′). The
following specifies that an adjacency matrix complies to a given degree sequence. Here each
conjunct is a cardinality constraint on a row of A.

ϕ
〈d1,...,dn〉
degSeq (A) =

∧
1≤i≤n

⎛
⎝ n∑

j=1

Ai,j = di

⎞
⎠ (8)

4.6 Computing highly irregular graphs per degree sequence

A connected graph is called highly irregular if each of its vertices is adjacent only to vertices
with distinct degrees [1]. The number of highly irregular graphs with n ≤ 15 vertices is
detailed as sequence A217246 in the OEIS [28]. By application of instance dependent
canonizing symmetry breaks we extend this sequence with 5 new values. The following
constraint specifies that the graph represented by adjacency matrix A with degree sequence
〈d1, . . . , dn〉 is highly irregular.

ϕ
〈d1,...,dn〉
hi (A) =

∧
1≤i,j<k≤n s.t dj =dk

(¬Ai,j ∨ ¬Ai,k) ∧ ϕ
〈d1,...,dn〉
degSeq (A) ∧ ϕn

con(A) (9)

Here, the formula ϕn
con(A) specifies that the graph represented by adjacency matrix A is

connected. The following constraint introduces propositional variables pk
i,j to express that

vertices i and j are connected by a path that consists of intermediate vertices from the set
{1, . . . , k}.

ϕn
con(A) =

∧
1≤i,j≤n

(
p0

i,j ↔ Ai,j

)
∧

∧
1≤i,j,k≤n

pk
i,j ↔

(
pk−1

i,j ∨
(
pk−1

i,k ∧ pk−1
k,j

))
∧

∧
∧

1≤i,j≤n

(
pn

i,j

)
(10)

Our strategy is to compute all highly irregular graphs with n vertices in three steps: (1)
We compute the set of degree sequences for all highly irregular graphs with n vertices; (2)
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For each degree sequence we compute an instance dependent canonizing symmetry break;
(3) We apply per degree sequence, the instance dependent canonizing symmetry break to
compute the corresponding set of graphs with the corresponding degree sequence.

To perform the first step we apply a result from [21] which states that any degree
sequence of a highly irregular graph is of the form 〈mnm, . . . , ini , . . . , 1n1〉 where:

1. ni ≥ nm for 1 ≤ i ≤ m; and
2.

∑m
i=1(ni ∗ i) and nm are positive even numbers.

It is straightforward to enumerate all degree sequences for graphs with up to 20 vertices that
satisfy this property. We then apply a SAT solver to determine which of these sequences
is the degree sequence of some highly irregular graph. Step (2) is performed using a SAT
solver, per degree sequence, by application of the above described adaptation of Algorithm 1
to compute an irredundant instance dependent canonizing set with respect to ϕ

〈d1,...,dn〉
hi (A).

In step (3) we enumerate all non-isomorphic highly irregular graphs per degree sequence
with respect to the corresponding canonizing symmetry breaking constraints. We compute
the graphs with a simple backtrack based (exhaustive search) program written in Java in
which the variables of the adjacency matrix are assigned one by one until a solution is found.

Table 4 presents our results. The columns are divided into three pairs corresponding to
the three steps described above: the first pair – computing degree sequences, the second
pair – computing (instance dependent) canonizing permutation sets, and the third pair –
computing solutions (using the derived canonizing symmetry breaks). Each pair presents
the computation size and information on the solutions. For the first pair, the number of
degree sequences. For the second pair, the average number of permutations in the canonizing
permutation sets. In the third pair, the number of connected highly irregular graphs with n

vertices (set in boldface). The values for n ≤ 15 vertices correspond to those detailed as
sequence A217246 in the OEIS [28]. The values for n > 15 are new.

When computing solutions, as detailed in the rightmost pair of columns of Table 4, com-
putation is performed in parallel, using a separate thread of the cluster for each degree
sequence found in the first step. So for example, when n = 20, there are 151 parallel threads
running with a total time of 7190.23 hours. This implies an average of about 47 hours. Note
that we succeed to compute canonizing symmetry breaks for more than 20 nodes. We have
not included the results in Table 4 as the subsequent graph enumeration problems involve a
humongous number of graphs.

5 A generalization to matrix models

Graph search problems, as considered in this paper, are a special case of matrix search prob-
lems expressed in terms of a matrix of finite domain decision variables [13, 14, 35, 36].
Often, in such problems, both rows and columns can be permuted, possibly by different per-
mutations, while preserving solutions. Matrix search problems with this property are called
“fully-interchangeable” [36]. A graph search problem can be seen as a fully-interchangeable
matrix search problem where the variables are Boolean, the matrix is symmetric and has
false values on its diagonal, and symmetries involve permuting rows and columns, but only
by the same permutation for both.

Similar to Definition 1, it is common to define a lex-order on matrix models. For matrices
M1 and M2 (of the same dimension) with s1 and s2 the strings obtained by concatenating
their rows, M1 
 M2 if and only if s1 
lex s2. Similar to Definition 2, the LEXLEADER
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Table 4 Computing highly irregular graphs per degree sequence (time in seconds unless otherwise indicated)

deg.seqs can. sets solutions

n time deg.seqs time perms (avg.) time sols (total)

11 1.11 2 3.28 6.5 0.29 21

12 4.47 7 15.16 7.57 0.87 110

13 5.73 7 28.65 9.71 1.42 474

14 17.85 16 93.69 10.56 5.62 2 545

15 27.15 17 183.49 13.11 28.39 18 696

16 59.69 33 487.85 13.57 234.97 136 749

17 111.97 38 683.14 13.94 3 312.04 1 447 003

18 237.53 68 1 797.16 14.89 14.17 hr. 18 772 435

19 468.99 92 3 281.07 16.07 263.90 hr. 303 050 079

20 881.53 151 8 450.91 16.73 7190.23 hr. 6 239 596 472

method [11] can be applied to a fully-interchangeable matrix search problem to guarantee
canonical solutions which are minimal in the lex ordering of matrices. For an n × m matrix
search problem this involves potentially considering all n!×m! pairs of permutations (per n

rows and perm columns). This is not practical as it means introducing n!×m! lex constraints
on strings of size n × m.

To this end, the DOUBLELEX constraint was introduced in [13] to lexicographically order
(linearly) both rows and columns. The DOUBLELEX constraint can be viewed as derived
by a subset of the constraints imposed in the LEXLEADER method [35]. For a matrix with
n rows and m columns this boils down to a total of only (n − 1) + (m − 1) permutations.
The DOUBLELEX constraint has been shown to be very effective at eliminating much of the
symmetry in a range of fully-interchangeable matrix search problem. Still, it does not break
all of the symmetries broken by LEXLEADER.

To demonstrate the application of our methods to matrix models, we compare the DOU-
BLELEX symmetry break with canonical symmetry breaking for the application to EFPA
(Equi-distant Frequency Permutation Array). An instance of the EFPA problem takes the
form (q, λ, d, v). The goal is to find a set of v words of length qλ such that each word
contains λ copies of the symbols 1 to q, and each pair of words is Hamming distance d

apart. The problem is naturally expressed as a v × qλ (fully-interchangeable) matrix search
problem.

Table 1 in the survey by Walsh [35] illustrates the power of the DOUBLELEX symmetry
break. The table details the number of solutions found with DOUBLELEX constraint for
several instances of the EFPA problem in contrast to the total number of non-symmetric
solutions. It demonstrates that DOUBLELEX leaves very few redundant solutions.

We have adapted Algorithms 1 and 2 so that they apply to search for pairs of permutations
which induce constraints to break all symmetries in fully-interchangeable matrix search
problems. With these constraints we obtain only the canonical solutions. We have applied
such constraints to the instances of the EFPA problem considered in [35]. For matrix search
problems we initialize Algorithm 1 takingΠ to include the permutation pairs corresponding
to the DOUBLELEX symmetry break.

Table 5 summarizes our results obtained, as all results in this paper, using the finite-
domain constraint compiler BEE [26] with the underlying Glucose 4.0 SAT solver [5]. On
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Table 5 Number of solutions for EFPA with DOUBLELEX and canonizing symmetry breaks

DOUBLELEX sym. break canonizing sym. break

(q, λ, d, v) perms sat (sec.) sols perms (	) sat (sec.) sols

(3, 3, 2, 3) 10 0.01 6 8 (−2) 0.01 6

(4, 3, 3, 3) 13 0.06 16 16 (3) 0.06 8

(4, 4, 2, 3) 17 0.05 12 15 (−2) 0.03 12

(3, 4, 6, 4) 14 19.12 11 215 328 (314) 14.10 1 427

(4, 3, 5, 4) 14 145.22 61 258 1537 (1523) 414.56 8 600

(4, 4, 5, 4) 18 280.33 72 251 1793 (1775) 748.77 9 696

(5, 3, 3, 4) 17 0.29 20 27 (10) 0.22 5

(3, 3, 4, 5) 12 0.36 71 36 (24) 0.45 18

(3, 4, 6, 5) 15 611.88 77 535 988 (973) 195.17 4 978

(4, 3, 4, 5) 15 11.34 2 694 245 (230) 9.51 441

(4, 4, 2, 5) 19 0.10 12 15 (−4) 0.11 12

(4, 4, 4, 5) 19 22.42 4 604 385 (366) 25.41 717

(4, 6, 4, 5) 27 46.88 5 048 441 (414) 75.81 819

(5, 3, 4, 5) 18 157.94 20 831 898 (880) 262.02 3 067

(6, 3, 4, 5) 21 1230.19 111 082 2348 (2327) 3537.54 15 192

the left side the table details statistics for solutions with DOUBLELEX: the number of per-
mutation pairs introduced by DOUBLELEX, the solving time (in seconds) and the number
of solutions found. The right side of the table details the same for the canonizing symmetry
breaks. Here, the detailed number of permutation pairs are those for the canonizing sym-
metry breaks, as discovered using the versions of Algorithms 1 and 2 adapted for use with
matrix models. Here we also make explicit the number of additional permutations 	, in
addition to those introduced by DOUBLELEX, required to provide a canonizing symmetry
break. In several rows of the table, corresponding to instances where DOUBLELEX is in fact
complete, this value is negative. In these cases no permutations were added by Algorithm 1
and several were removed by Algorithm 2 when deriving the corresponding canonizing
symmetry break. It is interesting to note that, often times, for canonical symmetry breaks,
only a few permutations need be added on top of these already introduced by DOUBLELEX.
In [19], the authors provide a first experimental study on how much symmetry is left after
applying the DOUBLELEX constraint. Table 5 (in the column labeled 	) illustrates the cost
of breaking the symmetries left after applying the DOUBLELEX constraint. The numbers in
the rightmost columns (set in boldface) correspond to the number of distinct non-symmetric
solutions. The corresponding sets of permutation pairs for the instances in Table 5 can be
obtained from http://www.cs.bgu.ac.il/∼mcodish/Papers/Tools/canonizingSets.

We note that the numbers presented in the right side of Table 5 do not represent a win
in time when compared to the results presented in [35]. However, it is of interest to observe
that the DOUBLELEX symmetry break can be expressed in terms of a set of permutations
which can then be considered as a starting point to derive a complete symmetry break.

To this end, we also note that other canonical orderings for matrix models have been
considered as alternatives to the row-wise LEXLEADER order. For example, the Snake
ordering [15] and the Gray ordering [27]. Based on these orderings, partial symmetry breaks

http://www.cs.bgu.ac.il/~mcodish/Papers/Tools/canonizingSets
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such as SNAKELEX were introduced and shown to be better choices for some types of prob-
lems compared to DOUBLELEX. We comment that it is not difficult to adapt Algorithms 1
and 2 to derive canonizing sets of permutations with respect to these alternative orderings.
We leave this as a topic for future work.

6 Related work

Isomorphism free generation of combinatorial objects and particularly graphs, is a well
studied topic [7, 12, 23, 31, 32]. Methods that generate the canonical representatives of
each equivalence class are sometimes classified as “orderly” generation methods. This is
a dynamic approach. Typically graphs are constructed by adding edges in iteration until a
solution is found and backtracking when failing. In each such iteration the graph is checked
to determine whether it can still be further extended: (a) to a solution of the graph search
problem, and (b) to a canonical graph. Both of these tests consider only the fixed part of the
partial graph. These techniques do not restrict the set of permutations to be canonical but
rather consider all permutations relevant to the partially instantiated structure. Still, initially,
there are very few permutations that need to be considered for (b) as the partial graph is still
small. However, as the partial graph becomes more instantiated this test becomes harder
and consumes more time. This approach is also the one applied in [36] for matrix search
problems. In contrast our method is static. We aim to compute, before applying search, a
small set of permutations that apply to break the symmetries in solutions. Our approach
does not rely on which parts of the graph have already been determined during search.

7 Conclusion

We have illustrated the applicability of canonizing symmetry breaking constraints for small
graph and matrix search problems. Although any row/column permutation is potentially
a symmetry, we compute compact canonizing symmetry breaks, much smaller than those
which consider all permutations. Our strategy is two phase. First, symmetry breaking con-
straints are computed. Second, these constraints are added to the model and then any solver
can be applied to find (all) solutions which satisfy the model.

For graph search problems, we have presented methods that generate both instance
independent and instance dependent symmetry breaking constraints. While instance depen-
dent symmetry breaks have limited applicability since they grow enormously for graphs
with more than 10 vertices, instance independent symmetry breaks have been successfully
applied to compute new values in highly irregular graphs OEIS sequence for graphs with up
to 20 vertices. For matrix search problems our focus is on instance dependent constraints.

Although, our approach is applicable only to graphs with small numbers of vertices, there
are many open small graph search problems. For example the set of all Ramsey R(4, 5; 24)
graphs has not been determined yet. We are currently trying to extend our techniques to
apply to compute symmetry breaks for this problem which involves only 24 vertices.

We note that our approach can also apply to improve dynamic symmetry breaking tech-
niques. Given a partially instantiated graph, to determine if it is extendable to a canonical
graph, one need not consider all of the permutations related to the already instantiated part.
This is because some of those permutations are redundant.

Finally, we note the distinction made in [19] between complete symmetry breaking and
complete pruning for a set of symmetry breaking constraints. Symmetry breaks remove all
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symmetric solutions but not all symmetric branches of the search tree. An interesting future
direction is to find a SAT encoding that enforces generalized arc consistency (GAC) on the
set of symmetry breaking constraints. Perhaps an encoding that achieves this is not too big
given the other constraints.

Acknowledgments We thank the anonymous reviewers of this paper for their constructive suggestions. In
particular the addition of Section 5 is in view of the comments of the reviewers.
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