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Abstract The use of decision diagrams has recently emerged as a viable general solution
approach for solving discrete optimization problems. The decision diagram data structure
is used to explicitly represent, either exactly or approximately, the set of feasible solu-
tions to a given problem. Techniques based on decision diagrams have been successfully
used on a diverse set of applications, ranging from scheduling to combinatorial optimiza-
tion, and have often outperformed commercial state-of-the-art constraint programming
and integer programming technology. Lacking, however, is a thorough theoretical inves-
tigation into the quality of approximate decision diagrams, as well as the development
of structured techniques for tightening relaxation bounds provided by approximate deci-
sion diagrams, analogously to how cutting-planes are used in integer programming. This
paper provides an analysis of the strength of approximate decision diagrams, as well as
the description of several bound-tightening procedures for problems with linear objective
functions.
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1 Introduction

A decision diagram (DD) is a graphical structure that provides an explicit representation of
solutions to a discrete optimization problem. Recently, a number of optimization techniques
based on DDs have substantially improved the state of the art in a variety of problems in
constraint programming and operations research. Successes of this approach include solving
and substantially tightening the best known bounds for maximum cut benchmark problems
[6, 11], improving propagation for constraint-based scheduling techniques and closing pre-
viously open TSPLIB instances [15], stronger filtering methods for global constraints [4],
the development of generic heuristics for binary programs that scale for large problem sizes
[7], scalable parallelization techniques [8], improved Lagrangian relaxation methods [9],
and many others [5, 7, 10, 18, 20–22]. The combined set of computational tools and theo-
retical insights provided by DDs is denoted here by decision diagram-based optimization
(DDO).

At the heart of DDO is the concept of limited-size approximate DDs. Approximate DDs
have been introduced as a way to cope with the (typical) exponential-size DDs that exactly
represent the set of solutions to a problem. Two types of approximations are commonly
used: Relaxed DDs, which provide relaxation bounds by over-approximating the solution
set [10, 19]; and restricted DDs, which provide heuristic solutions by under-approximating
the solution set [7]. Both give objective function bounds and are combined to develop com-
plete branch-and-bound solution methods [6, 11]. Furthermore, relaxed DDs are also used
in constraint programming as a constraint store to enhance the communication between
global constraints [1], and have shown to speedup search by orders of magnitude on schedul-
ing problems [4, 15]. Despite the recent success, a theoretical investigation into worst-case
bounds on the quality of relaxed and restricted DDs and a thorough approach to bound
tightening is missing.

In this paper we present three contributions as a first step towards obtaining theoretical
insights on the properties of DD-based methods. First, we demonstrate an upper bound of

O(2
2
3 n) on the size of the exact DD for any binary constraint satisfaction problem. Second,

for any pre-specified diagram size, we prove the existence of relaxed BDDs with a certain
degree of quality. In this context, the quality of a DD is defined as the ratio of the num-
ber of feasible solutions to a discrete problem over the number of solutions encoded in a
relaxed BDD. We also show a similar result with respect to restricted BDD. Finally, as a
third contribution, we show the existence of approximate BDDs (both relaxed and restricted)
of limited width having a given objective function bound for any discrete optimization
problem.

In addition to the theoretical perspectives, we also provide three algorithmic contribu-
tions in the form of tools that improve the bounds of relaxed DDs. This is similar to the
concept of cutting planes that are crucial to integer programming (IP) solvers, in which
linear programming (LP) relaxations bounds are iteratively improved through valid inequal-
ities, such as Gomory-Chvatál cuts. Similarly, we modify relaxed DDs iteratively to remove
solutions that are infeasible with respect to some constraint that must hold for all solutions
to the discrete optimization problems.

In particular, the first technique described is a longest-path trimming algorithm. The
algorithm is shown to be complete and also is proven to increase the width of the DD by at
most one in each iteration. Next, the paper describes how one relaxed DD can be used to
tighten another relaxed DD, and worst-case bounds on how large the resulting relaxed DD
is proven. This algorithm is then used to derive a novel complete IP solution method which
is polynomial in n for a fixed number of constraints.



Constraints (2016) 21:533–556 535

Finally, a value extraction algorithm, which removes solutions of a certain value, is dis-
cussed. One can, for example, use an LP to obtain a tighter relaxation bound than that
provided by the relaxed DD, but then use the bound with the relaxed DD to initialize the
value extraction procedure, and hence further tighten the relaxation bounds.

The present paper focuses on the case of linear objective functions. Non-linear objective
functions, for example quadratic functions, can also be handled by approximate DDs [6],
but the investigation of bound-tightening procedures for such problems is left for future
research.

The remainder of the paper is organized as follows. Section 2 provides notation and an
introduction to DDs. Section 4 proves a new upper bound on the size of DDs for arbitrary
discrete optimization problems 3. Section 4 describes (and proves the correctness and useful
properties of) an algorithm that can be used to complement a DD, with results that will be
used throughout the remainder of the paper. Section 5 discusses the proofs relating to the
existence of approximate DDs with particular bounds and quality, and the proof of the worst-
case width reduced BDDs. Finally, Section 6 discusses the bound tightening procedures and
a conclusion is provided in Section 7.

2 Fundamentals of decision diagrams for optimization

For the purposes of this work we express general discrete problems as constraint satisfaction
problems (CSPs). A CSPP = 〈X, D, C〉 is defined as a set of n variables X = {x1, . . . , xn}
each associated with a finite domain D(xj ) ⊆ D, together with a set of constraints C
establishing relations among the variables. In particular, a constraintCi ∈ C with arity k and
scope 〈xi1, . . . , xik〉 can be alternatively viewed as a Boolean function Ci : D(xi1) × · · · ×
D(xik) → {0, 1}, which evaluates to 1 when it is satisfied, and 0 otherwise. The remainder
of the paper assumes all variables domains are binaries, i.e. D = B.

A solution x′ ∈ B
n assigns values to each variable in X and it is said to be feasible if

C(x′) = 1 for all C ∈ C, and infeasible otherwise. The set of feasible solutions to a CSP is
denoted by Sol(P). Solving a CSP typically corresponds to finding one feasible solution to
the problem, or in some cases enumerating all of Sol(P).

A constraint optimization problem (COP) associates a CSP P with an objective function
f : Bn → R. The goal for a COP (P, f ) is to find an optimal solution in P that maximizes
f , i.e. a solution x′ such that x′ ∈ Sol(P) and f (x′) ≥ f (x′′) for any x′′ ∈ Sol(P). In the
remainder of the paper we assume that the objective function f is linear, f (x) = ∑n

i=1 cixi ,
and that each objective function coefficient ci is integral. Note that since all variables are
binaries, every additively separable objective function can be equivalently expressed as a
linear function.

2.1 Decision diagrams

Decision diagrams take many forms in the literature [27]. We will particularly focus on
binary decision diagrams in the context of this paper. A BDD B = (n, U, A, �, d, v) is
a layered-acyclic digraph composed of node set U and arcs A. The mapping � : U →
{1, 2, . . . , n + 1} partitions the nodes into n + 1 layers Li := {u ∈ U : �(u) = i}, i =
1, 2, . . . , n+1. Layers L1 and Ln+1 have cardinality 1 with the single nodes in these layers
called the root r and terminal t, respectively. d : A → {0, 1} defines the domain of each
arc a ∈ A, and v : A → Z defines the value of each arc (v may not be defined in which
case v(a) = 0 for all a). Each arc a ∈ A has tail t (a) and head h(a), respectively, where
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t (a), h(a) ∈ U denote the nodes that it connects. It is assumed that � (h(a)) = � (t (a)) + 1
so that each arc connects nodes in adjacent layers. The width of a layer w(Li) is the number
of nodes at that layer, |Li |, and the width of B is defined by w(B) := maxi∈{1,...,n+1} w(Li).
The size |B| of a BDD is the number of nodes in the diagram.

A BDD represents a set of binary vectors in the following way. Each arc-specified path
p = (a1, a2, . . . , ak) represents the vector

x(p) = (d(a1), d(a2), . . . , d(ak)) .

Any path from r to t thereby corresponds to a vector in B
n. Let H(B) be the set of arc-

directed paths from r to t. Define Sol(B) as the set of binary vectors (also called solutions)
corresponding to arc-directed r − t paths:

Sol(B) = {x ∈ B
n : x = x(p) for some p ∈ H(B)}.

The value val(p) of a path p (and of the solution x(p)) is val(p) = val(x(p)) = ∑
a∈p v(a).

Let z(B) be the length of the longest path in B and p(B) any path in B realizing this
bound.

BDDs can be manipulated through the well-known APPLY operation so as to create new
BDDs that are logically related to the previous ones [12]. This function, in general, can
handle disjunction/conjunction of BDDs, thereby providing the capability to complement,
extract solutions, and many other tasks. With suitable input BDDs, the output of APPLY
can be the same as the output of the algorithms described in this paper. Nonetheless, the
algorithms presented in this paper work directly on the input BDD and so do not require
auxiliary BDDs that are created in the general procedures. Additionally, the bounds on qual-
ity of approximate BDDs proven here cannot be easily derived using the APPLY operations
alone.

2.2 Exact and approximate BDDs

A BDD B with n + 1 layers can be used to encode a set of solutions to a COP
(P, f ). In particular, B is an exact BDD for P if Sol(B) = Sol(P) and ∀p ∈
H(B), val(p) = f (x(p)). In other words, B is exact if there exists a bijection between
paths in B and feasible solutions to P , and the length of each path in B coincides
with the objective function value of the solution to which it corresponds to. The opti-
mal solutions to P thereby coincide with the longest r − t paths with respect to the arc
values v(a).

Although a BDD can compactly represent an exponential number of solutions to a COP,
the diagram will in general grow exponentially large as the number of variables increases.
One proposed technique for dealing with this issue is the use of approximate BDDs which
come in two forms: relaxed BDDs and restricted BDDs. A BDD is relaxed if Sol(B) ⊇
Sol(P) and, for all p ∈ H(B) for which x(p) is feasible, val(p) ≥ f (x(p)). A BDD is
restricted if Sol(B) ⊆ Sol(P) and, for all p ∈ H(B), val(p) ≤ f (x(p)). This enables the
identification of objective function bounds: the longest path in a relaxed BDD provides an
upper bound on the optimal value of P , while the longest path in a restricted BDD provides
a lower bound to such value.
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As an illustration, consider the following COP, formulated as an integer linear program:

max f (x) = 3x1 + 4x2 + 2x3 + 2x4 + 7x5
subject to (P1)

x1 + x2 + x3 ≤ 1

x2 + x3 + x4 ≤ 1

x4 + x5 ≤ 1

xj ∈ {0, 1} j = 1, . . . , 5

Figure 1 depicts (a) an exact BDD, (b) a relaxed BDD, and (c) a restricted BDD for P1.
Arcs a depicted as solid lines have arc domain d(a) = 1 and arcs depicted with dashed arcs
have arc domain d(a) = 0. The arc costs are indicated next to each arc. r is drawn on the
top and t is drawn at the bottom, so arcs are directed downwards.

The path with the longest path in the exact BDD has value 11 and corresponds to solution
(0, 1, 0, 0, 1), an optimal solution. In the relaxed BDD, solution (0, 1, 1, 0, 1) (an infeasible
solution) has the longest path value among all r − t paths and provides a relaxation bound
of 13 (an upper bound because the problem is stated as a maximization problem). It can
be verified that for each feasible solution the value of the path is an upper bound on the
objective function value of the solution it represents. Alternatively, in the restricted BDD,
the path with the largest value corresponds to solution (1, 0, 0, 0, 1) and provides a lower
bound of 10 on the objective function.

Restricted BDDs [7, 11] are obtained through top-down compilation schemes in which
nodes are heuristically deleted during construction to keep the diagram within a limited size.
Relaxed BDDs required more involved operations [5, 10, 11]. Namely, compilation methods
for relaxed BDDs typically merge nodes during a top-down construction in a way that all
feasible solutions are preserved, but some infeasible solutions are added to cope with the
combinatorial growth.

A novel branching scheme within relaxed BDDs, coupled with the bounds provided by
relaxed and restricted BDDs, provide the basis for BDD-based optimization. The technique
has been used to close open instances of benchmark problems for classical COPs and has
proven in many cases to outperform state-of-the-art commercial linear integer programming
solvers [6].
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Fig. 1 a Exact BDD, b relaxed BDD, and c restricted BDD for COP P1
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Given nodes u, v ∈ U in B, let B[u, v] be the BDD with root u and terminal v

obtained from B by removing all nodes and arcs not contained in any path from u to v.
If B is exact and the layers of B[u, v] are associated with the same variables as B, the
set Sol(B) ⊆ B

�(v)−�(u) corresponds to the projection of solutions Sol(B) onto variables
x�(u), . . . , x�(v)−1. If B is a relaxation or a restriction, then Sol(B) corresponds to either a
superset or subset of such projection, respectively.

Similarly, for any u ∈ U , define B[u] to be the BDD obtained by removing from B all
nodes and arcs that do not lie on paths from r to u or from u to t. Observe that, for any layer
Li , the collections of BDDs B[u], u ∈ Li , partition the set of solutions Sol(B) into the sets
{Sol(B[u])}u∈Li

, since all solutions must necessarily pass through some node in Li .
B is said to be reduced if, for any u, u′ ∈ U with �(u) = �(u′), the condition

Sol(B[u, t]) = Sol(B[u′, t]) holds if and only if u = u′. This implies that the set of solution
completions emanating from a node on any given layer of the BDD is unique. Equivalently,
a BDD B is reduced if all isomorphic sub-BDDs of B are superimposed, i.e. no two sub-
BDDs represent the same set of solutions. It has been shown that, for a given ordering of
the variables, there exists a unique reduced BDD for any Boolean function— implying the
same for any CSP. A BDD B can be reduced in time O(|B| · log|B|) [27]. Reduced BDDs
are important from a theoretical and algorithmic point of view because, for a given ordering
of the problem variables, this unique BDD is the most compact BDD representation of a set
of solutions.

3 Size of exact BDDs

In this section we address the question of determining bounds on the size of an exact BDD
for constraint satisfaction problems, which will proven to be important to assess the quality
of approximate BDDs. Namely, we wish to establish lower and upper bounds on the width
(and hence the size) of an exact BDD for any arbitrary CSPP . Note that bounding the width
bounds the size since |B| = O(nw(B)).

The problem of bounding the size of a BDD is directly linked to that of variable ordering,
i.e. the bijection between layers L of an exact BDD and the variables X of the CSP it
represents. Previous work has shown that different orderings can yield drastically different
BDDs for combinatorial optimization problems [5]. Since there is an unique reduced BDD
for a particular variable ordering [27], searching for small BDDs amounts to searching for
good variable orderings for a problem.

3.1 Lower bounds

We first provide a discussion on the lower bound of the size of a BDD. Previously, Hosaka
et al. [23] demonstrated that there are threshold Boolean functions1 for which the size of the
BDD has a lower bound of Ω(2

n
2 ). Thus, in general it is not possible to obtain BDDs that

are polynomially-sized on n or on the constraint set size, |C|.
Alternatively, this result can also be seen as a consequence of a theorem by Rothvoß

[25], who shows that there are 0-1 polytopes which require exponential-size extended

1Given scalars a and b, a threshold Boolean function evaluates to 1 if ax ≤ b and 0 otherwise.
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formulations; i.e., have exponential extension complexity. Since an exact BDD for a COP
induces an extended formulation by writing the longest path problem from r to t as an LP
model [2], in general there does not exist an ordering of the variables for which the exact
BDD has polynomial size on n. Rothvoß later produced explicit models for the matching
problem and independent set problem with exponential extension complexity [26]. This
implies that, for any variable ordering, the exact BDD for such instances have exponential
size as well.

3.2 Upper bounds

A trivial upper bound on the width of a BDD for a CSP is O(2n), which follows because
w(Li+1) ≤ 2 · w(Li) for any layer Li , i ≤ n.

We now demonstrate in Theorem 1 a new result that tightens this bound substantially. In
particular, the theorem holds for any ordering and for any arbitrary CSP.

Theorem 1 The width w(B) of any reduced BDD B satisfies w(B) ≤ 2κ(n),

κ(n) := W(2n+1ln(2))

ln(2)
and W(x) is the Lambert W function (or product logarithm function), defined as the inverse
function of f (x) = xex(or, equivalently, W(xex) = x ).

Proof Fix layer �. We first claim that w(L�) ≤ min
{
2�, 22

n−�+1}
. The first term in the

minimization holds because each node has at most 2 outgoing arcs, and so w(L�+1) ≤
2 · w(L�). Since w(L�) = 1, the bound follows.

For the second term, more care is needed. First, for u ∈ Lj and k ∈ {0, 1}, define
o(u)k to be the node in layer Lj+1 which is connected via a k-arc emanating from node
u, where o(u)k = 0̂ if no k-arc emanates from u. Let o(u) = (o0(u), o1(u)). Note that, if
o(u) = o(u′) for any pair of nodes u, u′ ∈ Lj , then the BDD is not reduced because these
nodes can be merged. Therefore, for the remainder of the proof it is assumed that the BDD
is reduced so that the set of vectors o(u) in each layer are unique. The proof proceeds via
two claims.

Claim 1 |L�| ≤ |L�+1| · (|L�+1| + 2). Since o(u) is unique for each node u ∈ L�, we count
the number of distinct vectors o(u) that are possible in L�. Note that ok(u) ∈ {0̂} ∪ L�+1
for each k ∈ {0, 1}, hence there are |L�+1| + 1 options for each coordinate k, with the
only unacceptable vector being {0̂, 0̂}. Thus, we have (|L�+1| + 1) · (|L�+1| + 1) − 1 =
|L�+1| (|L�+1| + 2) possible nodes in layer L�.

Claim 2 L�| ≤ 22n−�+1 − 1 f or � ≤ n . The proof proceeds by backward induction on �.
For the basis case � = n, we have that |Ln+1| = 1, since the BDD ends with the terminal
node t. From Claim 1, it follows that

|Ln| ≤ 1 · (1 + 2) = 22n−n+1 − 1 = 3,

which is the maximum number of nodes at layer Ln in a reduced BDD. Fix now
�′ ∈ {n − 1, n − 2, . . . , 1} and by induction hypothesis, suppose the claim is true for
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� ∈ {n − 1, n − 2, . . . , �′ + 1}. It follows that |L�′+1| ≤ 22
n−(�′+1)+1 − 1 = 22

n−�′ − 1. Using
Claim 1, we have

|L�′ | ≤ |L�′+1| · (|L�′+1| + 2
) ≤

(
22

n−�′ − 1
)

·
(
22n−�′ − 1 + 2

)

=
(
22

n−�′ − 1
)

·
(
22

n−�′ + 1
)

= 22
n−�′+2n−�′ − 1

= 22
n−�′+1 − 1,

as desired. It therefore follows that

|L�| ≤ min
{
2�, 22

n−�+1
}

. (1)

To find the layer �∗ with the largest possible width, we equate the expressions:

2�∗ = 22
n−�∗+1

The left-hand side is increasing in �∗ and the right-hand side is decreasing in �∗. Thus, the
maximum must occur at (approximately) the value �∗ such that

�∗ = 2n−�∗+1,

or, equivalently,
�∗ + log2(�

∗) = n + 1.

Since log2(�∗) = ln (�∗)/ln(2), the expression above can be rewritten as follows:

�∗ + ln(�∗)
ln(2)

= n + 1

�∗ln(2) + ln(�∗) = (n + 1)ln(2)

e�∗ln(2)+ln(�∗) = e(n+1)ln(2)

e�∗ln(2)eln(�
∗) = eln(2)

n+1

�∗e�∗ln(2) = 2n+1

�∗ln(2)e�∗ln(2) = 2n+1ln(2)

Finally, from the definition of the Lambert W function,

W
(
�∗ln(2)e�∗ln(2)

)
= W

(
2n+1ln(2)

)

�∗ln(2) = W
(
2n+1ln(2)

)

e�∗ = W
(
2n+1ln(2)

)

ln(2)
= κ(n).

This implies that, for any BDD B, w(B) ≤ 2κ(n).

The value kw′ in the following lemma will be used for proving future existential results.



Constraints (2016) 21:533–556 541

Lemma 1 For any CSP and for any variable ordering, the number of layers in the reduced
exact BDD having width larger than w′ is bounded above by

kw′ := n − log2(w
′) − log2(log2(w

′)). (2)

Proof This follows directly from (1).

Note that the proof of Theorem 1 gives a construction procedure of a reduced BDDwhich
achieves a width of 2κ(n), and therefore the upper bound is tight. Starting from the root
node and until layer �κ(n)�, construct a node with two outgoing arcs that will be directed to
unique nodes on the subsequent layer. Then, from the terminal node up to layer �κ(n)�, build
the maximum number of nodes on the previous layer having distinct pairs o as specified in
the proof.

However, a question for future research is whether or not the binary set represented
by such a BDD can be represented by a another smaller BDD having a different variable
ordering. To illustrate this on a classical example, consider the set below, for n even:

X′
n = {x ∈ B

n : 2
n
2 −1x1 + 2

n
2 −2x2 + . . . + 20x n

2
+ 20x n

2 +1 + . . .

+2
n
2 −2xn−1 + 2

n
2 −1xn = 2

n
2 − 1}.

For n = 6 the equation on X′
n above becomes 4x1 + 2x2 + x3 + x4 + 2x5 + 4x6 =

7. Using the lexicographic ordering of the variables, the BDD width for the set X′
n

is 2
n
2 . This is illustrated in the BDD depicted in Fig. 2(a). If, however, the ordering

x1, xn, x2, xn−1, . . . , x n
2
, x n

2 +1 is used, the BDD has width 2, as depicted in the BDD in
Fig. 2(b).

4 Size of complement BDDs

Our next results concern the size of complement BDDs. A BDD ¬B is a complement of
another BDDB when x ∈ Sol(B) if and only if x �∈ Sol(¬B) (i.e., Sol(¬B) = B

n\Sol(B)).
In the context of Boolean logic, complementing BDDs is a constant-time operation since

(a) (b)

Fig. 2 Two BDDs for the set X′
n
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typically BDDs encode both the true and false assignments of a Boolean formula [12].
In our representation, however, we only encode solutions which evaluate to a true state,
as in optimization we are primarily interested in operations over the exact or approximate
feasible solution set, e.g. to compute bounds on the optimal solution value. Complementing
a BDD for a COP is therefore a more involved operation since feasibility of solutions are
not explicitly distinguished in the BDD.

It is of important theoretical value to be able to compute and bound the size of comple-
ment BDDs. In particular, complement BDDs are used here as a tool to prove existential
theorems of Section 5, and can be also applied to negate table constraints, typical in
constraint programming models [13].

The main result of this section is that, under the same ordering of variables, one can
obtain a complement BDD¬B for a reduced BDD B such that the width of B and¬B differ
by at most one. This implies that, given an exact BDD B for a CSP P , there exists a BDD
encoding exactly the infeasible solutions to P with size O(|B|). We formalize this result in
Theorem 2:

Theorem 2 For any BDD B, there exists a complement BDD ¬B for which

|w(¬B) − w(B)| ≤ 1

and hence ||¬B| − |B|| ≤ n.

Theorem 2 will be proved constructively from the algorithm that follows. A few pre-
liminary definitions are in order. A node u ∈ Lj is said to be a tautologous node if
|Sol(B[u, t])| = B

n−�(u)+1, i.e. the partial solutions obtained by r−u paths can be extended
with any 0-1 completion of variables x�(u), . . . , xn. Correspondingly, a tautologous path is
a node-specified path p consisting only of tautologous nodes and ending at the terminal
node. The left-most node in layer L5 in each of the BDDs in Fig. 1 is a tautologous node.
The paths consisting of this node and t are examples of tautologous paths.

Lemma 2 In any reduced BDD, there is at most one tautologous node per layer and these
nodes, together, create the only (maximal) tautologous path in B.

Proof Suppose u, u′ ∈ Li are both tautologous nodes. Then Sol(B[u, r]) = Sol(B[u′, r]),
contradicting that B is reduced. Therefore there is at most one tautologous node per layer
in B.

Let layer Lj be the highest layer (the layer with the lowest index) in B with a tautologous
node, and let u be this node. If this is the terminal node then the path consisting only of t
is the one tautologous path in B. Otherwise, by definition, u has two outgoing arcs, one for
each arc-domain value, and each node u′ for which (u, u′) ∈ A must also be tautologous.
There can be at most one such node on layer Lj+1. Continuing in this fashion until reaching
t identifies the unique maximal tautologous path.

Algorithm 1 provides the pseudocode for an algorithm that can be used to complement a
reduced BDD B = (n, U, A, �, d), producing complement BDD ¬B = (n, U, E, �, g) (the
arc values are omitted and can be calculated after building ¬B, if necessary). The algorithm
assumes that the tautologous nodes of B are pre-identified, which can be done in O(|B|)
by a simple breadth-first search traversal of B starting at t. Namely, the search starts by
marking node t at tautologous, and proceed to visit nodes in the previous layers. A node u is
marked tautologous when visited if it has two out-going arcs ending at a tautologous node.
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The algorithm works as follows. It initializes the edge set of ¬B with an empty set
(E ← ∅), which will be associated with arc domains g. Next, it traverses B identifying
the tautologous node of a layer Li as ti ; if such a node does not exist, it artificially creates
one to be added to the node set of ¬B later if necessary (lines 6 to 10). The algorithm then
traverses the nodes of B in a top-down manner (i.e., from r to t, layer-by-layer), adding arcs
to E according to three cases. If an examined node is tautologous (line 13), the out-going
arcs from u are preserved in ¬B. If a node u has only one out-going arc a (line 18), an
arc with an opposite arc domain is created in ¬B and directed from u to the tautologous
node on the next layer. In this case, if the head h(a) of a is not a tautologous node, this arc
is preserved and directed to the same node as it is in B. Finally, in the case that the node
has two out-going arcs and it is not tautologous (line 26), only those out-going arcs that
are directed at non-tautologous nodes are added to ¬B. The algorithm ends by adding the
tautologous nodes to ¬B which have some paths traversing them.
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Theorem 3 Algorithm 1 is correct and runs in O (|B|) time.

Proof The proof requires showing

1: an assignment of values to variables corresponding to some path in B does not
correspond to any path in ¬B, and

2: any assignment of values to variables which does not correspond to a path in B does
correspond to a path in ¬B.

Take some path p = (a1, . . . , an) of arcs in B and let (r = u1, u2, . . . , un, un+1 = t)
be the nodes on p. For condition 1 it suffices to show that x(p) /∈ Sol(¬B). Follow p until
it hits a tautologous node ui . By construction, since ui is the first tautologous node visited,
each arc will be preserved in ¬B until ui−1. When processing ui−1 the algorithm breaks
into cases based on the out-degree of ui−1. In either case, arc xi−1 which is directed inB to a
tautologous node ui is re-created in E, but with the opposite arc-domain. Since any solution
of values to the first i − 2 variables can only lead from r to exactly one node in layer i − 1,
the solution (x(p)1, . . . , x(p)i−2) only appears in ¬B within Sol(¬B[r, ui−1]). Since no
arc with arc-domain d(a) is added to E out of ui−1, x(p) cannot appear in Sol(¬B).

For condition 2, let x′ be an solution for which x′ /∈ Sol(B). Starting from r, follow the
sequence of arcs dictated by the values of x′; i.e., take the arc a1 out of r with arc-domain x′

1
(if it exists), and then take the arc a2 out of node h(a1) with arc-domain x′

2 (if it exists), and
so on. At some point, there will be a node u∗ reached in some layer Lj , j < n for which no
arc with arc-domain x′

j has tail u∗, otherwise x′ ∈ Sol(B).
First note that this sequence of arcs is preserved in E so that the partial solution up to

x′(p)i−1 corresponds to some path from r to u∗ in¬B. This follows because no node visited
in B in this order is a tautologous node and Algorithm 1 duplicates every arc a when t (a)

and h(a) are not tautologous.
Consider then when the algorithm processes u∗. Because there is one arc directed out

of u∗, in line 18, there is an arc directed out of u∗ in E with arc-domain x′(p)i−1 — and
this arc is directed to the tautologous node on layer Li . Therefore, the remaining solutions
x′(p)i, . . . , x

′(p)n must correspond to the arc-domains of some path from ti to t in ¬B, so
that x′(p) ∈ Sol(¬B) and completing the proof of correctness.

Concerning the running time, the algorithm examines each node in B a constant number
of times, and each processing also is done in time O(1).

Returning to the example from Section 2, Fig. 3(a) depicts the exact BDD (with arc costs
omitted) for the feasible set, containing 10 paths corresponding to the 10 feasible solutions.
Figure Fig. 3(b) depicts the complement BDD, containing the 25 − 10 = 32 − 10 = 22
paths corresponding to the 22 infeasible solutions.

Equipped with Algorithm 1 the proof of Theorem 2 follows.

Proof - Theorem 2 By Theorem 3, Algorithm 1 produces a complement BDD. During the
execution of the algorithm, in creating ¬B, at most one node per layer (the tautologous
node, if it does not exist and needs to be added as prescribed by the algorithm) is added to
the node set. Additionally, at most one node is deleted from the node set (if the tautologous
node does not have any arcs directed to it). The bounds on the difference of the widths and
the sizes of B and ¬B follow.

Additionally, the complement BDD will be reduced.
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(a) (b)

Fig. 3 (a) The exact reduced BDD for COP P1 and (b) the complement of this BDD

Theorem 4 The complement BDD created via Algorithm 1 is reduced.

Proof For u ∈ Lj and k ∈ {0, 1}, recall the definition of o(u)k as the node in layer
Lj+1 which is connected via a k-arc emanating from node u, where o(u)k = 0̂ if no k-arc
emanates from u and o(u) = (o0(u), o1(u)). Note again that if o(u) = o(u′) for a pair of
nodes u, u′ ∈ Lj , then the BDD is not reduced because these nodes can be merged. This
condition is sufficient and necessary for a reduced BDD: If no such pair exists, then the set
of solution completions emanating from any pair of nodes in a given layer must be distinct.

Proceed by contradiction and assume that, in the BDD created, there are two nodes
u, u′ ∈ Lj for which o′ := o(u) = o(u′). The vector o′ can be one of 9 different config-
urations: A component k may not have an associated arc (i.e., o′

k = 0̂), may be directed
at the tautologous node (i.e., o′

k = tj+1), or may be directed at some other node (i.e.,
ok ∈ {v, v′} ⊆ Lj+1). The 9 possibilities are:

P1.(v, 0̂) P 2.(tj+1, 0̂) P 3.(0̂, v′) P4.(0̂, tj+1) P5.(v, v′)
P6.(v, v) P7.(v, tj+1) P8.(tj+1, v) P 9.(tj+1, tj+1)

The claim is that nodes which satisfy P1–P9 in the input BDD are permuted via a per-
mutation σ in Algorithm 1 into nodes that satisfy P1 - P9 in the output BDD, which implies
that there cannot be such a pair u, u′. Otherwise, the nodes σ−1(u1), σ

−1(u2) would be two
nodes in the original BDD that can be merged. In particular, one can verify that σ(P1) = P7,
σ(P2) = P4, σ(P3) = P8, σ(P4) = P2, σ(P5) = P5, σ(P6) = P6, σ(P7) = P1,
σ(P8) = P3, and σ(P9) = P9. This implies that if two nodes can be merged in the com-
plement BDD that is created, then they could have been merged in the original BDD as
well.

5 Quality of approximate BDDs

Although approximate BDDs have been useful for solving COPs, a theoretical analysis
of their quality is lacking in the literature, with only few works done in domain-specific
problems [17]. This section provides, to the best of our knowledge, the first-ever published
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theorems for the existence of approximate BDDs satisfying two types of quality measures
for general discrete problems. Our main goal is to provide a first step towards an analytical
treatment of relaxed and restricted BDDs.

There are two ways to define the quality of an approximate BDD B for P : (1) the ratio
of the number of solutions in B with respect to the number of feasible solutions to P , and
(2) the value of the upper and lower bound from relaxed and restricted BDDs, respectively,
compared to the optimal solution value. The first measure has direct implications in mathe-
matical and constraint programming methods based on decision diagrams, while the second
plays an important role in BDD-based branch-and-bound methods. The following sections
provide new results for each quality measure.

5.1 Quality measure in terms of solution ratio

The solution ratio of an approximate BDD indicates the degree of infeasibility of the BDD.
This is measured by the number of infeasible solutions in a relaxed BDD, and the number
of missed feasible solutions in a restricted BDD.

For the case of relaxed BDD, this is a relevant quality measure for hybrid approaches that
combine BDDs with mixed-integer linear programming and constraint programming. For
example, in DD-based methods for scheduling [15], timetable problems [4], and Lagrangian
relaxation [9], the solution process is geared towards branching and eliminating arcs that are
inconsistent, i.e. do not participate in any feasible solution. The smaller the set of infeasible
solutions present in Sol(B), the fewer the number of arcs that need to be eliminated to find
a feasible solution; e.g., in an infeasible CSP, ideally no paths would be present - the more
paths, the harder the decision. As for restricted BDDs, less feasible solutions missed result
in a more diverse set of solutions in a BDD. This measure is critical, e.g., when the decision
maker is interested in having many different alternative solutions to apply.

Another reason for having a tight relaxation and restriction is when the objective func-
tion contains stochastic elements. In such a case, each realization of the random coefficients
can be perceived as a distinct objective function to be optimized over the BDD. The
smaller the infeasibility of a relaxed BDD, the better this bound will be across a wide
variety of objective functions. In restricted BDDs, a better solution ratio implies that the
bounds provided are potentially stronger for many objective functions as opposed to a
few ones.

We now present our results, first focusing on restricted BDDs and then on relaxed BDDs.

Restricted BDDs Define the quality of a restricted BDD B for a CSP P , qres(B), to be
the ratio of the number of solutions (or paths) in B to the number of feasible solutions to P
(here assuming |Sol(B)| > 1):

qres(B) = |Sol(B)|
|Sol(P)| .

The higher the quality, the better the restricted BDD. The existence of restricted
BDDs with a specified quality are addressed in Theorem 5. Recall from Lemma 1
that ki defined in (2) bounds the number of layers that can possibly have width larger
than i.

Theorem 5 Let W be the width of an exact reduced BDD B for COP P (we can assume
that W is the minimum over all orderings of the variables). There exists a restricted BDD
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B ′ with width w̃ having quality

qres(B ′) ≥
W−1∏

j=w̃

(
j

j + 1

)kj+1

,

(where it is assumed that if the product on the right-hand side is vacuous the term is 1).

Proof If the exact BDD has width less than or equal to w̃ thenB ′ = B satisfies the condition
in the statement of the theorem.

Otherwise, suppose first that w̃ = W − 1. The expression in the theorem reduces to

qres(B ′) ≥
(

w̃

w̃ + 1

)kw̃+1

.

By Lemma 1 there are, at most, kw̃+1 layers with width larger than w̃ (in this case by the
assumption exactly equal to W ) in B. Consider the top layer Li with this width and select
the node u with the minimum number of paths going through this node; i.e., the node u ∈ Li

for which |Sol(B[u])| is minimal. Since each path in B goes through one and only one node
on each layer, there exists some node on this layer for which |Sol(B[u])| ≤ 1

W
· |Sol(B)|.

Deleting this node from B creates a restricted BDD B ′ with one less layer of width W

containing at least W−1
W

· |Sol(B)|. Performing the same deletion for all remaining layers

with width W = w̃ +1 results in a restricted BDD with at least
(

w̃
w̃+1

)kw̃+1 · |Sol(B)| paths,
and, therefore, quality at least

(
w̃

w̃+1

)kw̃+1
, as desired.

For general w̃ < W one can continue the process, taking the restriction of width W − 1
with the desired quality bound and iteratively decreasing the width while only sacrificing a

w′
w′+1 fraction of the width for each w′ between w̃ and W .

By Theorem 1 we know that θ(n) := 2κ(n) is an upper bound on the width of the exact
BDD for any CSP. The following corollary therefore follows:

Corollary 1 For any COP P there exists a restricted BDD B ′ with width w̃ having quality

qres(B ′) ≥
θ(n)−1∏

j=w̃

(
j

j + 1

)kj+1

.

Relaxed BDDs In terms of relaxations, define the quality of a relaxed BDD B for a CSP
P , qrel(B), to be the ratio of the number of feasible solutions toP to the number of solutions
(or paths) in B :

qrel(B) = |Sol(P)|
|Sol(B)| .

The higher the quality, the better the relaxed BDD.
Let α(P) = |Sol(P)|

2n denote the fraction of the Boolean vectors in B
n which are feasible

to P , and let β(P ) = 1 − α(P). We now address the measure qrel(B) in Theorem 6.

Theorem 6 Let W be the width of an exact reduced BDD B for a CSP P = 〈X,Bn, C〉
(we can assume that W is the minimum over all orderings of the variables). There exists a
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relaxed BDD B ′ with width w̃ having quality

qrel(B ′) ≥ α(P)

1 − β(P)

(
∏W

j=w̃−1

(
j

j+1

)kj+1
)

.

Before proceeding with the proof, consider the case when α(P) = 1
2 . The expression in

the theorem becomes

qrel(B ′) ≥ 1

2 −
(

∏W
j=w̃−1

(
j

j+1

)kj+1
) , (3)

where the expression in the subtrahend of the denominator relates to the expression in The-
orem 5. This expression will be positive, but as it grows the fraction approaches 1

2 , which
is the trivial bound one can obtain by using a BDD representing B

n (which, when reduced,
has a width of 1). The tightening of the bound in Theorem 5 would enable a tightening of
this expression as well.

Proof of Theorem 6
Let B be an exact BDD for P with width W . Consider the COP P ′ = 〈X,Bn, ¬ C〉

where ¬ C is any collection of constraints for which a solution x ∈ B
n satisfies C if and

only if it does not satisfy ¬ C. Let B̂ be the complement of B created via Algorithm 1. ¬B

is an exact BDD for P ′, with width at most W + 1. By Theorem 5 there exists a restricted
BDD B̄ for P ′ with qres(B̄) with width at most w̃ − 1 satisfying

qres (
B̄

) = |Sol(B̄)|
|Sol(P ′)| ≥

W∏

j=w̃−1

(
j

j + 1

)kj+1

.

Define B ′ as the complement of B̄. B̄ is a restricted BDD for P ′ so that Sol(B̄) ⊆
Sol(P ′). Together with the facts that Sol(B ′) = B

n\Sol(B̄) (because they are complements)
and that Sol(P) = B

n\Sol(P ′), we conclude that B ′ is a relaxation for P .
Additionally, by Theorem 2, since w(B̄) ≤ w̃ − 1 it follows that w(B ′) ≤ w̃. What

remains to be shown is that B ′ satisfies inequality (3). This follows from

qrel (B ′) = |Sol(P)|
|Sol(B ′)| (4)

= α(P)2n

2n − |Sol (B̄) | (5)

= α(P)

1 −
(∣

∣Sol(B̄)
∣
∣

2n

) (6)

= α(P)

1 − β(P)

( ∣
∣Sol(B̄)

∣
∣

|Sol(P ′)|
) (7)

= α(P)

1 − β(P)qres(B̄)
(8)

≥ α(P)

1 − β(P)

(
∏W

j=w̃−1

(
j

j+1

)kj+1
) , (9)

as desired, completing the proof.
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An analogous, general result to Theorem 1 follows. Recall from such theorem that
θ(n) := 2κ(n) is an upper bound on the width of any BDD.

Corollary 2 For any CSP P there exists a relaxed BDD B ′ with width w̃ having quality

qrel(B ′) ≥ α(P)

1
− β(P)

⎛

⎝
θ(n)∏

j=w̃−1

(
j

j + 1

)kj+1

⎞

⎠ .

5.2 Quality measure in terms of bounds

The value of the bound provided by approximate BDDs is perhaps most critical. In standard
uses of relaxations, such as in optimization, objective function bounds are utilized for prun-
ing search and proving optimality of incumbent solutions. For restricted BDDs, the bound
corresponds to the value of a feasible solution found; the better the bound, the better the
incumbent solution that is identified.

It is therefore of interest to identify the size of the approximate BDDs needed to obtain
objective function bounds of a given value, even though this is a much more challenging
task. We provide initial results in Proposition 1 for restricted BDDs and in Theorem 7 for
relaxed BDDs.

For restricted BDDs, we have the following simple result.

Proposition 1 Let z∗ be the optimal value for COP P with objective function f (x) =∑n
i=1 cixi . There exists a restricted BDD B with w(B) = 1 for which the longest path in

the BDD, z(B), satisfies that z(B) = z∗.

Proof Let x∗ be an optimal solution to P . The BDD B representing this single solution,
containing one node ui per layer Li together with arcs (ui, ui+1) having arc-domain x∗

i and
arc-value cix

∗
i , is such a desired BDD.

Unlike in the case of restricted BDDs, proving the existence of a relaxed BDD for which
the upper bound provided by the relaxation is at least some specified (valid) bound is non-
trivial—a restricted BDD need only represent a single feasible solution while for a relaxed
BDD B, a super-set of the feasible solutions needs to be present in Sol(B). We show a
theorem proving the existence of BDDs achieving any given valid objective function bound
with a limited width:

Theorem 7 Let zUB be an upper bound on the optimal value for COP P = 〈X,Bn, C〉
with objective function f (x) = ∑n

i=1 cixi to be maximized. There exists a relaxed
BDD B with w(B) ≤ zUB + 1 for which the longest path in the BDD, z(B), satisfies
that z(B) ≤ zUB.

Proof Consider the CSP P ′ = 〈
X,Bn, {∑n

i=1 cixi ≤ zUB}〉. Exact BDDs for binary opti-
mization problems with a single linear constraint have been investigated by Behle [3]. In
particular, even if ci < 0 for some i, an exact reduced BDD for P ′ (with a suitable vari-
able ordering) will have width bounded above by zUB + 1 (see, e.g., page 128 in [3]).
Assign arc-lengths v(a) to be c�(t (a)) (the objective function coefficient in P of the variable
associated with the tail of a). Since for every path p in B the condition

∑n
i=1 cix(p)i ≤ zUB
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holds, the longest path in B is bounded by zUB. Furthermore, B is a relaxed BDD because
Sol(B) contains every vector x in B

n for which f (x) ≤ zUB and zUB is an upper bound on
the optimal value of P so that each solution in Sol(P) must be in Sol(B).

As a corollary to Theorem 7, consider COPs with objective function
∑n

i=1 xi . Such
objective function appear frequently in the literature on combinatorial optimization because
they are useful in modeling problems where a maximum (or minimum) number of items
need to be selected, such as in the case of set covering, set packing, maximum clique, or the
maximum independent set.

Corollary 3 Let zUB be an upper bound on the optimal value for COP P = 〈X,Bn, C〉
with objective function f (x) = ∑n

i=1 xi to be maximized. There exists a relaxed BDD B

with w(B) ≤ n for which z(B) ≤ zUB.

Proof An upper bound of n is trivially valid for classes of COPs with this objective function.
The result therefore follows from a direct application of Theorem 7.

6 Bounds tightening techniques for relaxed BDDs

This section provides three techniques for improving upon objective function bounds pro-
vided by relaxed BDDs for COPs formulated with linear objective functions. The techniques
can be seen as parallels to pure cutting-plane algorithms developed in the context of linear
programming (LP) relaxations. Each of the techniques discussed can be used to iteratively
improve the objective function bound until either an optimal feasible solution is found, or
the problem is proved to be infeasible. In practice, they can be used within branch-and-
bound solution methods to improve bounds during search, much like cutting planes are used
in branch-and-cut methods for integer programming (IP).

For each technique, it is assumed that a relaxed BDD B has been constructed for COP
P = 〈X,Bn, C〉 (letting n = |X| and m = |C|), and that the objective function f to
be maximized is linear — f (x) = ∑n

i=1 cixi (this is easily generalizable to additively
separable objective functions). It is always safe to assume that a relaxed BDD exists. In
particular, one can create the full BDD consisting of one node ui per layer Li and arc set
A = ∪n

i=1{a0i , a1i } where for k = 0, 1, ak
i connects nodes ui and ui+1 and has arc-domain

d(ak
i ) = k and arc-value v(a0i ) = 0, v(a1i ) = ci . Constructed in this way, B is a relaxed

BDD since Sol(B) = B
n and the longest r − t path will have length

∑n
i=1 max{ci, 0}, a

trivial upper bound on the optimal solution value. It is therefore assumed that a relaxed BDD
B0 is provided.

6.1 Longest path trimming

A simple, complete algorithm for solving P is to iteratively trim infeasible paths from B0

creating a sequence of relaxed BDDs B0, B1, B2, . . . until a feasible (and hence optimal)
solution is identified. The procedure longest path trimming (LPT) proceeds as follows. First,
find a longest path p0 in B0. Since B0 is a relaxed BDD, if x(p0) is feasible, x(p0) must
also be optimal. If x(p0) is infeasible, the solution x(p0) is trimmed from B0 to create
another BDD B1 in such a way that Sol(B1) = Sol(B)\x(p0). This results in a tighter
relaxation for O. Continuing in this fashion, finding the longest path pk in Bk , checking
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for feasibility of x(pk), and eliminating it from the solution set of Bk if infeasible to create
Bk+1 will converge to the optimal solution since each BDD created is a relaxed BDD for
P . The pseudocode for the algorithm is presented in Algorithm 2.

Line 9 in Algorithm 2 calls for the trimming operation, which will keep all solutions in
B intact but x(p). The pseudocode is provided in Algorithm 3.

The algorithm starts from the root and iteratively traverses the BDD path p by following
the arc domains in x(p). Whenever a node u′′ is identified on this path that has arcs directed
into u′′ other than the arc a∗ in p on the corresponding layer, a new node v on is created.
All arcs directed out of u′′ are duplicated, except with tail v. Additionally, every arc with
tail u′′, besides a∗, is redirected to have tail v.

Theorem 8 Algorithm 3 is correct (i.e., Sol(B) contains all solutions but x(p) at the end
of the algorithm), runs in time O(|B|), and increases the width of the BDD by at most one.

Proof Whenever a node is split, upon creation of a new node v, no solutions are added or
deleted from Sol(B). This is because the solution x(p) remains intact, while all other arcs
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directed to u′′ are redirect through v, with the exact same completions; i.e., v is created so
that Sol(B[v, t]) is equivalent to Sol(B[u′′, t]).

This implies that until the last line of the algorithm, the solution set remains unchanged.
At the culmination, the tail of a∗, node u′, has only one arc directed out of it. This is also true
for all nodes in path p—by construction there is only one arc-directed path going through
the nodes along p. This, therefore, is the only solution that is eliminated upon the removal
of a∗.

For the running time, note that every node and arc are accessed at most twice, and since
|A| ≤ 2|U | the overall run time is O(|B|).

Finally, since the algorithm can only increase the node count by at most one node per
layer (when node v is created, if necessary), the width can grow by at most 1.

One thing to note is that after the execution of the algorithm, there may be dangling
nodes—nodes containing no out-going arcs. There can be deleted with single bottom-up
pass of the BDD, but it is not necessary for the proof of correctness.

It follows that LPT is a complete algorithm for any COP, much like the parallel of pure-
cutting plane methods in IP.

Theorem 9 The longest path trimming algorithm, presented in Algorithm 2, is a complete
algorithm for COPs.

Note that the algorithm can be enhanced by, instead of finding the single longest path in
the relaxed BDD, finding the k-longest paths, for some value k. This can be done in time
proportional to O(k · n · (m + n log(n))) [16] and for each of the paths checking feasibility.
If no feasible solutions are found, eliminating them from the BDD will increase the width
by at most k, and then again find the k longest paths. If a feasible solution exists among the
solutions corresponding to the k longest paths, the minimum among the set will correspond
to the optimal solution.

6.2 Separating inequalities

IP solution methodology relies heavily on the identification of valid cuts, that is, inequalities
of the form ax ≤ b which are valid for the convex hull of integer feasible points of the
problem. In this section we describe a similar cutting plane technique to BDDs: For any
relaxed BDD B, this technique separates all solutions which violate a (general) constraint
C from B.

Given a COP P = 〈X,Bn, C〉, a BDD B is exactly consistent with respect to a constraint
C ∈ C if every solution x ∈ Sol(B) satisfies C. Thus, the question we address is how
to modify B to make it exactly consistent for C. To this end, recall that the scope of C,
henceforth denoted as s(C), is the set of variables in X that are involved in the constraint.
Additionally, define sf(C) and s�(C) to be indices of the first and last variables in X that
participate in C, respectively.

Our main result is presented in Theorem 10, which requires a well-known
result by Bryant [12] stated in Lemma 3. It concern intersection BDDs—a BDD
whose solution set coincides with the intersection of the solution sets of two input
BDDs.

Lemma 3 Let B1, B2 be BDDs, each with n + 1 layers. There exists a BDD B int with
Sol(B int) = Sol(B1) ∩ Sol(B2) and for which w(Lint

i ) ≤ w(L1
i ) · w(L2

i ), where {Lint
i }n+1

i=1
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are the layers of B int and {Lk
i }n+1

i=1 , k = 1, 2 are the layers of Bk . Additionally, B int can be
constructed in time O(nw(B1)w(B2)).

Theorem 10 Let P = 〈X,Bn, C〉 be a COP and C any constraint in C. Suppose B is a
relaxed BDD for P . There exists a relaxed BDD B ′ for P which is exactly consistent with
respect to C satisfying

w(L′
i )

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

= w(Li), i ≤ sf(C), i > s�(C)

≤ w(Li) · 2i−sf(C), sf(C) < i ≤ sf(C) + (s�(C) − sf(C) + 1)·(
ln(3)

/
ln(2) + ln(3)

)

≤ w(Li) · 3s�(C)−i , sf(C) + (s�(C) − sf(C) + 1)·(
ln(3)

/
ln(2) + ln(3)

) ≤ i ≤ s�(C),

where {Li}n+1
i=1 are the layers of B and {L′

i}n+1
i=1 are the layers of B ′.

Proof Consider the COP P ′ = 〈X,Bn, {C}〉. Inequality (1) in Section 3.2 implies that in
the exact reduced BDD B̃ for P ′, the width of the layers, denoted by L̃i , satisfy

w(L̃′
i )

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

= 1, i ≤ sf(C), i > s�(C)

≤ 2i−sf(C), sf(C) < i ≤ sf(C) + (s�(C) − sf(C) + 1)·(
ln(3)

/
ln(2) + ln(3)

)

≤ 3s�(C)−i , sf(C) + (s�(C) − sf(C) + 1)·(
ln(3)

/
ln(2) + ln(3)

) ≤ i ≤ s�(C).

This follows because outside of the range of indices in the scope of the constraint, C

does not constrain the variables. Also, the intersection of B and B̃ results in a BDD B ′ with
a width bounded by the product of the widths of the input BDDs, according to Lemma 3.
This BDD must have its solution set contained in the solution set of B̃ (the exact BDD for
P ′) and does not eliminate any other solution in B. Hence, it must be a relaxed BDD for P ,
which is exactly consistent to C.

Thus, a constraint can be separated from a BDD B by simply constructing a BDD B ′
representing the set of solutions satisfied by C and intersecting it with B. Moreover, the
theorem can be simplified to the following lemma, which restates the theorem only based
on the maximum width.

Corollary 4 Let P = 〈X,Bn, C〉 be a COP and C any constraint in C. Suppose B is a
relaxed BDD for P . There exists a relaxed BDD B ′ for P satisfying

w(B ′) ≤ w(B) · θ
(
s�(C) − sf(C) + 1

)

For a linear inequality ax ≤ b, a stronger results follows because the exact BDD for such
constraint has width at most b + 1.

Corollary 5 Let P = 〈X,Bn, C〉 be a COP and ax ≤ b a valid inequality for P . Suppose
B is a relaxed BDD for P . There exists a relaxed BDD B ′ for P satisfying that

w(B ′) ≤ w(B) · (b + 1)
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This leads to a novel exact algorithm for binary IPs. A binary IP is a COP with a linear
objective function for which D = B

n and C consists of a set of linear inequalities Ax ≤ b

with A an m × n matrix and b an m-vector. It is assumed for this paper that all inputs are
integral. The theorem proves the existence of an algorithm for solving binary IPs that is only
linearly dependent on n.

Theorem 11 An IP problem can be solved in pseudo-polynomial time
O(nC(mb)), where C is a function that is independent of n.

Proof For each linear inequality aix ≤ bi in Ax ≤ b, let Bi, i = 1, . . . , m, be an exact
BDD for the binary IP consisting of the single constraint aix ≤ bi . Notice that the width of
Bi is bounded by bi + 1, and therefore each BDD can be constructed in time O(nb log(b)).
Thus, the entire construction takes O(nmb log(b)). Intersecting the BDDs one-by-one will
result in an exact BDD for the original problem. This BDDwill be bounded by

∏m
i=1(bi+1).

By Lemma 3, each intersection is linear in n, and since there are m − 1 intersections, the
running time follows.

We note that there is a stream of research on parametrized complexity for 0/1 integer
linear programming (see for example [24]). The results typically fix n and seek worst case
bounds on running time. The result proven here take the alternative viewpoint—for fixed m

and b, the class of 0/1 integer linear programming can be solved in time linear in n.

6.3 Value Extraction

Value extracting is a technique introduced by Bergman et al. [10], that can be used to iter-
atively decrease a relaxation bound provided by a relaxed BDD, until a feasible solution
is found. It can be perceived as a generalization of LPT in that solutions are taken from
the relaxed BDD until a feasible solution is identified, and was introduced for the set cov-
ering problem where it was shown to outperform state-of-the-art commercial IP solver on
randomly generating instances with limited bandwidth.

The algorithm starts with a relaxed BDD B for COP P with objective function f . Let
Bax=b be the exact BDD for the COP P[ax = b] := 〈X,Bn, ax = b〉. Let the upper bound
provided by the relaxed BDD be zUB.

Consider the BDD B int, the intersection between B and Bf (x)=zUB . First,

w
(
Bf (x)=zUB

)
≤ zUB + 1 and therefore w(B int) ≤ w(B) · (zUB + 1

)
and so for any upper

bound the width of this BDD will be bounded by the upper bound times the width of the
relaxation BDD.

Second, if a feasible solution exists in B int, it must be optimal. Otherwise, the upper
bound can be reduced to zUB − 1. Deciding whether or not a feasible solution exists in B int

is precisely the task that a number of previous techniques were designed to solve [4, 14,
15, 20, 21]. In the case a set covering, Bergman et al. [10] proposed a specialized filtering
algorithm that, when used in the value extraction framework, was able to provide tighter
objective function bounds that LP root-node relaxation values augmented with cutting
planes.

One observation is that, unlike LPT, value extraction can be instantiated with any bound.
Suppose, for example, that for a given binary IP, the root node LP relaxation bound is much
stronger than the relaxation bound obtained from a relaxed BDD. In this case, the value
extraction procedure can be initialized with the tighter LP bound.
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7 Conclusions

This paper presents theoretical insights into the use of BDDs for constraint satisfac-
tion/optimization problems. A worst-case bound on the size of exact BDDs is proven
together with several results regarding the quality, both in terms of objective function
bounds and degree of infeasibility, of limited-width relaxed and restricted decision dia-
grams. Finally, several bound tightening procedures for relaxed decision diagrams are
described and their various merits discussed.
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