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Abstract This paper discusses a new method to perform propagation over a (two-layer,
feed-forward) Neural Network embedded in a Constraint Programming model. The method
is meant to be employed in Empirical Model Learning, a technique designed to enable
optimal decision making over systems that cannot be modeled via conventional declarative
means. The key step in Empirical Model Learning is to embed a Machine Learning model
into a combinatorial model. It has been showed that Neural Networks can be embedded
in a Constraint Programming model by simply encoding each neuron as a global con-
straint, which is then propagated individually. Unfortunately, this decomposition approach
may lead to weak bounds. To overcome such limitation, we propose a new network-level
propagator based on a non-linear Lagrangian relaxation that is solved with a subgradi-
ent algorithm. The method proved capable of dramatically reducing the search tree size
on a thermal-aware dispatching problem on multicore CPUs. The overhead for optimizing
the Lagrangian multipliers is kept within a reasonable level via a few simple techniques.
This paper is an extended version of [27], featuring an improved structure, a new filtering
technique for the network inputs, a set of overhead reduction techniques, and a thorough
experimentation.
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1 Introduction

Combinatorial Optimization techniques have been subject to dramatic improvements in the
last decades, which enabled their successful application to a large number of industrial
problems. Yet, many real-world domains are still out-of-reach for such approaches. In many
cases, this is due to difficulties in formulating an accurate declarative model for the system
to be optimized.

Recently, the Empirical Model Learning technique (EML, see [2]) was introduced to
address this kind of issues. The main idea in EML is to embed a Machine Learning model
into a more complex and comprehensive combinatorial optimization model. The Machine
Learning model approximates the behavior of a system that is impervious to traditional
modeling efforts. In an EML based approach, the optimization model contains a predicate
in the form:

y = H(x) (1)

where H is the encoding of a Machine Learning model that captures the effect of some deci-
sion variables (i.e. x) on some observables of interest (i.e. y). The observables may appear
in the cost function or in some of the constraints. Unlike in derivative-free optimization (see
[1, 12]), in EML the H function is not treated as a black-box. On the contrary, there is an
emphasis on exploiting the structure of the Machine Learning model to boost the search
process.

So far, the EML approach has been instantiated using Artificial Neural Networks
(ANNs), Decision Trees, and Random Forests on the Machine Learning side. The employed
optimization techniques are instead Constraint Programming (CP) and Local Search. For
more details, the interested reader can refer to [2, 3, 9]. EML approaches based on Mixed-
Integer Non-Linear Programming (MINLP) and SAT Modulo Theories (SMT) are currently
under development.

Possible application examples for EML include more complex version of traditional
engineering problems (e.g. design of chemical plants, prosthetic limbs, land and air vehi-
cles), operating data centers and their cooling systems, traffic light placement, or classical
optimization problems that could benefit from a more advanced predictive model (e.g. retail
store location, shift scheduling).

This paper is related to works [2, 3] that show how to embed an ANN into a CP model
by encoding each neuron as a global Neuron Constraint. The neuron inputs and the output
are encoded as real-valued decision variables (say xi for the i-th input and z for the output).
Each Neuron Constraint enforces bound consistency on the equation that defines the neu-
ron behavior. In other words, a dedicated algorithm (i.e. a propagator) can prune provably
infeasible values from the domain of z based on the domain of the xi , and vice versa.

In turn, such domain updates can trigger the propagators associated to other constraints.
This cascade process is known as constraint propagation and it is one of the cornerstones
of CP. Propagation is typically employed during optimization in order to reduce (often dra-
matically) the size of the search tree. The technique should not be confused with the error
propagation employed during the training of an ANN: indeed, in this paper we will always
assume to deal with pre-trained networks.

Using a separate constraint to encode each neuron allows for great flexibility, but such
fine-grain decomposition may decrease the propagation effectiveness. It makes therefore
sense to devise specialized propagators for the most common ANN types, or for more
coarse-grain sub-structures. In this spirit, in [27] we have introduced a new propagator for
two-layer, feed forward, ANNs. The approach does not subsume the propagation performed
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by individual Neuron Constraints, but it can provide tighter bounds on the network output.
The new propagator can be instantiated multiple times to model networks with more than
two layers, or it can be combined with Neuron Constraints to encode almost any type of
ANN, including recurrent networks.1

The bounds for the new propagator are based on a non-linear Lagrangian relaxation,
with the multipliers being optimized via a subgradient method. Lagrangian relaxation has
proved to be a powerful technique for performing reduced-cost filtering in CP, mainly
in the context of linear relaxations of integer programs (e.g., [32–34]). The non-linear
Lagrangian relaxation used in this paper is inspired by the work presented in [19],
for solving resource constrained shortest path problems with a super additive objective
function.

This paper extends our previous work [27] by: 1) introducing a simple an efficient
method to obtain bounds on the input variables; 2) presenting techniques to reduce the com-
putation overhead; 3) adding an extensive experimentation. We compare our new propagator
to a baseline approach using only separate Neuron Constraints to encode ANNs. The two
approaches are compared in a standard fashion, i.e. by solving to completeness a number
of instances of an optimization problem. In particular, we consider small-size instances of a
thermal-aware job mapping problem for a multicore CPU. We show how the new propagator
can lead to a substantial (sometimes massive) reduction of the search tree size. Our over-
head reduction techniques allow us to keep the propagation time within manageable limits,
so that in a significant number of cases the new approach is considerably more efficient than
the baseline.

The paper is structured as follows: Section 2 provides background information.
Section 3 introduces the new propagator. Then, Section 3.1 presents the Lagrangian relax-
ation, Section 3.2 explains how the multipliers are optimized, Section 3.3 shows how to
perform filtering on the network input, and Section 3.4 discusses the overhead reduc-
tion techniques. Section 4 provides our experimental results and Section 5 the concluding
remarks.

2 Background

The Lagrangian propagator presented in this paper is designed for EML. The key idea of
EML is using Machine Learning to obtain an approximate Empirical Model for a part of
the system that is difficult to tackle via conventional modeling techniques. For example, in
[3] the authors address a workload dispatching problem: a set of jobs must be mapped on
a 48-core system with thermal controllers; bad mapping decisions may lead to overheating,
which may cause a loss of efficiency when the controllers slow down the cores to decrease
their temperature. The problem is in principle well suited for Combinatorial Optimization,
except that modeling the mapping-dependent efficiency is nearly-impossible via conven-
tional means: in fact, it requires to capture the combined effect of the thermal physics and
the action of the on-line controllers, with their dynamic policies. EML allows dealing with
the issue by using Machine Learning to obtain an approximate model for the mapping-to-
efficiency relation. In [3], this is done by means of ANNs that are then embedded in a CP
model via Neuron Constraints.

1Of course the propagation is likely to be less effective for more complex networks.
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This example is particularly important in the paper because we target the same problem,
and the same Machine Learning and optimization techniques. In order to provide the nec-
essary background, in this section we discuss the basics of ANNs and recall how they have
been employed for modeling purpose in optimization approaches. We then (briefly) point
out what sets EML apart from such methods, and finally we describe how to embed an ANN
into a CP model by means of Neuron Constraints.

Artificial neural networks An ANN is a system emulating the behavior of a biological
network of neurons. Each ANN unit (artificial neuron) corresponds to a function in the form:

z = f

(
b +

n−1∑
i=0

wi xi

)
(2)

where xi are the neuron inputs, wi are their weights, b is called the bias and z is the neuron
output. All the terms are ∈ R. Besides, f : R → R is called activation function and it is
always monotone non-decreasing. Some examples of activation functions follow:

(a) f (x) = x (b) f (x) =
{

1 if x ≥ 0
−1 otherwise

(c) f (x) = tanh(x) (3)

Case (a), (b) and (c) correspond to a linear, step and (bipolar) sigmoid neuron.
The neurons are connected in a network structure, a very common case being a feed-

forward (i.e. acyclic), two-layer, graph [4, 36]. The first layer is referred to as hidden layer,
the second is called the output layer, because it provides the network output. Figure 1 shows
an example of such a network. Each node represents a neuron, the weights are reported as
labels on the arcs, the xi are the network inputs, and o is the network output. The activation
function for each neuron (a letter code referring to (3)) is written inside the node.

An ANN can be trained to approximate a complex mathematical relation for which a set
of input-output pairs (i.e. a training set) is known. This is done by solving an optimization
problem where the goal is to choose the network weights so as to minimize the average
square error between the predicted and real output values on the training set.

There are many specifically designed, readily available, training algorithms [5, 24, 28].
Most of them are heuristic and require to have differentiable and invertible activation func-
tions. Additionally, non-linear activation functions are always employed for the hidden
neurons: if this is not the case, then it is possible (by algebraic manipulation) to transform
the two-layer ANN into an equivalent single-layer ANN. Finally, all the activation functions
classically employed in the hidden layer have a single flex point at 0, i.e. they are convex
when x ≤ 0 and concave afterwards. Sigmoid neurons satisfy all those properties and are a
very popular choice for the hidden layer.

ANNs in optimization methods The idea of learning a system model from data is well
established in Control Theory, where it is referred to as System Identification [26]. In such

-1

-1

-1

1

1

1

(c)

(c)

(a)

Fig. 1 A two-layer, feed forward ANN
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field, the goal is to learn a dynamic model to be used by an on-line controller. Most of the
systems modeled via this approach are linear, but there are important examples where ANNs
are employed as on-line predictors, with their parameters being continuously adjusted based
on the prediction error [15]. ANNs have been used as cheap-to-compute cost functions in
metaheuristics: in [11] a Genetic Algorithm exploits an ANN to estimate the performance
of an absorption chiller. Work [29] proposes a custom heuristic for workload dispatching
in a data center, using an ANN for temperature estimation. A few works, such as [23],
have employed ANNs for solution checking. In the OptQuest metaheuristic system [17],
an Artificial Neural Network is trained during search with the aim to avoid trivially bad
solutions. Other approaches have used ANNs as surrogate system models, to avoid repeated
calls to a simulator: in [18], this is done to estimate the condition of road pavement. An
excellent overview about surrogate models (including a few examples based on ANNs) can
be found in [31].

As a common trait, in all the mentioned approaches the ANN is exploited in a rather
limited fashion, namely as a black-box function evaluator. Conversely, EML stresses the
importance of reasoning on the network structure and weights to improve the performance
of the optimization process. Additionally, to the best of our knowledge, all the mentioned
optimization techniques are designed for problems lacking a complex combinatorial struc-
ture and without complex constraints: this marks a profound difference with Empirical
Model Learning, which focuses exactly on problems with such characteristics.

Embedding ANNs in CP via neuron constraints For a CP solution approach, perform-
ing filtering and propagation is the most natural way to reason on a network and boost the
search process. In [2] this is achieved by means of Neuron Constraints. A Neuron Constraint
is a global constraint that encodes a single network neuron and enforces consistency on (2).
It is equivalent to the following pair of constraints:

(c0) z = f (y) (c1) y = b +
n−1∑
i=0

wixi (4)

where z, y and xi are real-valued decision variables2 with interval domain. Hence, we
have z ∈ [z, z], y ∈ [y, y] and xi ∈ [xi, xi], where the underlined and overlined notation
refers respectively to the domain minimum and maximum. The term y is called the neuron
activity.

Bound Consistency algorithms for the linear constraint (c1) are readily available. Defin-
ing a propagator for (c0) is actually easy, since the f function is always monotone and
monovariate. Bound Consistency on the domain maxima can therefore be enforced by the
following rules:

y changes
triggers−−−−→ z = min(z, f (y)) (5)

z changes
triggers−−−−→ y = min(y, f −1(z)) (6)

the rules for filtering the minima are analogous. The computation of f −1 requires some
extra care to handle numerical inaccuracies due to the finite precision employed by all phys-
ical computers (more details can be found in [2]). For a single neuron, this approach leads

2Real-valued variables with fixed precision can be modeled via integer variables: e.g. a number in [0, 1]
with precision 0.01 corresponds to a number ∈ {0..100}. This representation requires some care to ensure
consistent rounding. More details can be found in [2].
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to the tightest possible bounds on all the variables, i.e. it is sufficient to enforce Bound
Consistency.

It is possible to embed an ANN in a CP model by building a Neuron Constraint for each
network neuron and by introducing decision variables to represent the input/output of each
neuron. Each Neuron Constraint can be implemented either as a single entity or as an actual
pair of constraints.

3 A global constraint for two-layer feed-forward ANNs

Using individual constraints to encode each neuron has two advantages. First, the approach
allows embedding basically any type of ANN into a CP model. Second, propagating indi-
vidual neurons is quite easy, as shown in Section 2. As a main drawback, the decomposition
may lead to poor overall propagation.

As a motivating example, consider the network from Fig. 1. Let us assume that x0, x1 ∈
]−1,+1[ and that we are interested in computing an upper bound for the network output
o. Since the output neuron is linear, the bound can be computed easily by summing the
lower/upper bounds on the inputs, depending on the sign of their weights. In this case we
have:

ub(o) = tanh(ub(y0)) + tanh(ub(y1)) (7)

where y0 and y1 are the activities of the two hidden neurons, and we have exploited the
fact that tanh is a monotone function. The activities are linear expressions, hence the upper
bounds ub(y0) and ub(y1) are given by:

ub(y0) = − min(x0) − min(x1) = 2 (8)

ub(y1) = − min(x0) + max(x1) = 2 (9)

and therefore ub(o) � 1.928. Unfortunately, the actual network maximum with the
described input ranges is � 1.515, meaning that our bound is quite loose. The cause of the
lack of tightness is having allowed conflicting values for x1 in (8) and (9). Unfortunately,
avoiding this miscalculation is impossible as long as we reason on each neuron individually.

It makes therefore sense to use global constraints to capture whole networks, or fre-
quently occurring network sub-structures. In this paper we consider the case of two-layer,
feed-forward, ANNs, by introducing a family of global constraints in the form:

ann〈f,g〉(x, o,w, b, ŵ, b̂) (10)

where f is the activation function for the hidden layer (assumed to be differentiable, invert-
ible, and with a single flex point – see Section 2) and g is the activation function for the
output layer: together they define a specific constraint within the family. The role of all the
other constraint parameters is described visually in Fig. 2, which is based on the example
network from Fig. 1. In detail, x is the vector of variables xi representing the network input,
and o is the variable for the network output. The vector w contains all weights wj,i of each
input i for the hidden neuron j . The vector b contains the bias value bj for all the hidden
neurons. The vector ŵ contains the weights ŵj of the outputs of the j -th hidden neurons,
when they are used as input for the output neuron. The scalar b̂ is the bias for the output neu-
ron. For sake of simplicity we assume to deal with single output networks, but our methods
can be generalized to multiple outputs.
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Fig. 2 Our notation for two-layer Artificial Neural Networks

Two-layer, feed-forward ANNs are very frequently employed in practice. Networks with
multiple layers can be encoded via multiple instances of Constraint (10). Finally, by com-
bining Constraint (10) with the Neuron Constraints from [2] it is possible to encode virtually
any type of ANN.

An instantiation of Constraint (10) should enforce consistency on the set of all neuron
equations in the network. Unfortunately, since non-linear neurons are employed in the hid-
den layer in all practical cases, even bound consistency cannot be enforced in polynomial
time. Therefore, any practically relevant propagator should rely on some kind of relaxation.
In particular, we employ two relaxations: (i) we reason on each neuron individually, and (ii)
we employ a non-linear Lagrangian relaxation to compute possibly tighter bounds on the
network input and output. In other words, there are two propagators simultaneously associ-
ated to Constraint (10): the first is the Neuron Constraint filtering algorithm from [2], the
second is the new Lagrangian-based approach that we presented in [27] and is extended in
this paper.

3.1 Computing bounds for the network output

We now consider the problem of finding an upper bound on the network output. Since all
activation functions are monotone, we can focus on computing bounds for the activity of
the output neuron (let it be z) rather than on the output itself (i.e. o). This also implies that
different g functions in Constraint (10) can be handled with minor changes to our method.
Formally, computing an upper bound requires to solve:

P0 : max z = b̂ +
m−1∑
j=0

ŵj f (yj ) (11)

subject to: yj = bj +
n−1∑
i=0

wj,ixi ∀j = 0..m − 1 (12)

xi ∈ [
xi, xi

] ∀i = 0..n − 1 (13)

where yj is the activity of the j -th hidden neuron, and all other variables and parameters
are as in Fig. 2. A lower bound can be obtained by changing the optimization direction. As
already mentioned, problem PO is NP-hard.
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Problem relaxation We employ a Lagrangian relaxation to obtain a scalable bounding
procedure. Specifically, we relax Constraints (12), obtaining:

LP0(λ) : max
x,y

z(λ) = b̂ +
m−1∑
j=0

ŵj f (yj ) + (14)

+
m−1∑
j=0

λj

(
bj +

n−1∑
i=0

wj,ixi − yj

)

subject to: xi ∈ [
xi, xi

] ∀i = 0..n − 1 (15)

yj ∈
[
y

j
, yj

]
∀j = 0..m − 1 (16)

where λ is a vector of Lagrangian multipliers λj (real numbers), acting as parameters for
the relaxation. The notations x and y refer to the vectors of the xi and yj variables. Con-
straints (16) have been added to prevent LP0(λ) from becoming unbounded, and the values
y

j
and yj are chosen so that the constraints are redundant in the original problem. In

particular we have:

y
j

= bj +
∑

i

{
wj,i xi if wj,i ≥ 0
wj,i xi otherwise

(17)

and the value yj is computed similarly.
Now, since problem LP0(λ) is a relaxation, its feasible space includes that of P0. Addi-

tionally, for every possible λ, on all points where Constraints (12) are satisfied we have
z = z(λ). Therefore, the set of solutions of LP0(λ) contains all the solutions of P0, with the
same objective value. As a consequence, the optimal solution z∗(λ) of LP0(λ) is always at
least as good as that of P0, i.e. z∗(λ) is a valid upper bound for z∗.

If all the λ multipliers are zero, then (14) becomes a sum of monotone functions and
LP0(λ) can be solved by either minimizing or maximizing yj based on the sign of ŵj . This
is the same bound computation performed by individual Neuron Constraints. If some λj is
non-zero, then the Lagrangian bound may be stronger or weaker, depending on the multi-
plier values. Due to some of our overhead reduction techniques, we cannot guarantee that
the case λ = 0 is considered at each search node: this is one of the reasons for employing
the original propagation from [2] along with the Lagrangian relaxation.

Solving the relaxation Problem LP0(λ) can be decomposed into two independent sub-
problems LP1(λ) and LP2(λ), defined respectively on the x and y variables and such
that:

z∗(λ) = b̂ +
m−1∑
j=0

λjbj + z∗
LP 1(λ) + z∗

LP 2(λ) (18)

with:

LP1(λ) : z∗
LP 1(λ) = max

x
zLP 1(λ) =

n−1∑
i=0

⎛
⎝m−1∑

j=0

λjwj,i

⎞
⎠ xi (19)

s.t. xi ∈ [
xi, xi

] ∀i = 0..n − 1 (20)
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and:

LP2(λ) : z∗
LP 2(λ) = max

y
zLP 2(λ) =

m−1∑
j=0

(
ŵj f (yj ) − λjyj

)
(21)

s.t. yj ∈
[
y

j
, yj

]
∀j = 0..m − 1 (22)

Since the two subproblems are independent, they can be addressed separately.

Solving LP 1(λ) Each xi appears in the objective of LP1(λ) with weight:

w̃i(λ) =
m−1∑
j=0

λjwj,i (23)

Therefore, the problem can be solved by assigning each xi either to xi or to xi , depending
on the sign of w̃i(λ). In detail:

z∗
LP 1(λ) =

n−1∑
i=0

{
w̃i(λ) xi if w̃i(λ) ≥ 0
w̃i(λ) xi otherwise

(24)

The process has time complexity �(nm), due to the weight computation step. If a single
multiplier changes, it is possible to update all weights in �(n) and solve LP1(λ) with the
same complexity level. If all the multipliers change at the same time (as it is the case in this
paper), no simple incremental technique can be applied to reduce the complexity.

Solving LP 2(λ): Problem LP2(λ) can be further decomposed into a sum of single-
variable maximization problems over a finite feasible interval:

max
yj

hj (yj , λ) = ŵj f (yj ) − λjyj (25)

s.t. yj ∈
[
y

j
, yj

]
(26)

Each single-variable subproblem can be tackled via classical analytical methods. In
particular the maximum feasible value of hj (yj , λ) will be reached at either (i) a local max-
imum point, provided it falls within the feasible interval, or (ii) at the boundaries of the
feasible interval, i.e. y

j
and yj .

The value of hj

(
yj , λ

)
at y

j
and yj is immediate to compute. The position of all

local maxima can be found by checking all the stationary points, i.e.the points where the
derivative of hj (yj , λ) is null:

d hj (yj , λ)

d yj

= ŵj

d f

d yj

(yj ) − λj = 0 (27)

where we recall from Section 2 that f can be assumed to be differentiable. If ŵj = 0 and
λj �= 0, then no stationary point exists: hj (yj , λ) reaches a maximum on one of the interval
boundaries. If ŵj = 0 and λj = 0, then all points are stationary: hj (yj , λ) is constant and
its maximum/minimum value can be computed at the interval boundaries. If ŵj �= 0, we
have:

d f

d yj

(yj ) = λj

ŵj

(28)
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Since f is non-linear in all practical cases, (28) may be in principle hard to solve. Luckily,
we recall from Section 2 that in all classical cases f has a single flex point at 0. Hence, the
derivative of f will be increasing for yj ≤ 0, and decreasing afterwards.

This behavior can be observed in Fig. 3, showing (as an example) the value of the deriva-
tive for a tanh activation function. From a graphical perspective, solving (28) amounts to
finding the intersections between a function with shape similar to that in Fig. 3 and a hor-
izontal line. It can be seen that there can be either no intersection at all, or exactly two
intersections.

Therefore, if f has a single flex point, then (28) has either no solution or exactly two
solutions, one before 0 and the other afterwards. It is always possible to find such solutions
with arbitrary precision via bisection over the half intervals ]yj , 0] and ]0, yj [, although the
process may be inefficient.

Solving (28) with sigmoid neurons In many practical cases it is possible to obtain a
closed-form solution for (28). In this paper we focus on the case where f is a bipolar
sigmoid (i.e. tanh), but most of the activation functions typically employed in ANNs can be
tackled with minor adaptations. If f = tanh, we have that:

tanh(x) = 2

1 − e−2x
− 1

d tanh

d x
(x) = 4e−2x(

1 + e−2x
)2

(29)

where the derivative is precisely the function from Fig. 3, which takes values in the range
]0, 1]. Therefore, (28) has no solution if λj is zero, or λj /ŵj

is negative, or λj /ŵj
is greater

than one. If none of such conditions holds, then we can combine (29) and (28) to obtain:

4e−2yj(
1 + e−2yj

)2
= λj

ŵj

(30)

Fig. 3 Value of
d f (yj )

d yj
for a tanh activation function
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where
(
1 + e−2yj

)2
is always greater than zero. Then, by substituting u = e−2yj and

performing algebraic transformations, we get:

u2 +
(

2 − 4
ŵj

λj

)
u + 1 = 0 (31)

Which can be solved via the classic quadratic formula for second degree equations,
yielding two solutions u′ and u′′. The solutions are non-complex iff:

(
2 − 4

ŵj

λj

)2

− 4 ≥ 0 ⇔ ŵj

λj

(
ŵj

λj

− 1

)
≥ 0 (32)

Inequality (32) always holds if the conditions to have a solution are true, because in that
case ŵj /λj

is non-negative and greater than or equal to 1. The same conditions ensure also
that u′ and u′′ are both positive. Once u′ and u′′ are known, we can obtain the yj values
corresponding to the stationary points:

y′
j = −1

2
log u′, y′′

j = −1

2
log u′′ (33)

In detail, one point will correspond to a local minimum of h(yj , λ) and the other to a
local maximum.

In summary For a certain assignment of the multipliers λ, the Lagrangian relaxation
LP0(λ) can be solved by:

1. Finding the optimal values x∗(λ) for all x variables (complexity �(nm))
2. Using the x∗(λ) values to compute z∗

LP 1(λ) (complexity �(n))
3. Finding the optimal values y∗(λ) for all the y variables, which is done by:

(a) Computing y
j

and yj (complexity �(n))

(b) Evaluating hj (yj , λ) at y
j

and yj (complexity O(1))

(c) If the conditions for the existence of the two stationary points apply, evaluating
hj (yj , λ) at y′

j and y′′
j (complexity depending on f )

4. Using the y∗(λ) values to compute ZLP 2(λ)

5. Computing the bound using (18) (complexity �(m))

Algorithm 1 shows the detailed process when the hidden neurons use a bipolar sig-
moid activation function, i.e. f is tanh. In such case and in any case where (28) has
a closed form solution, step 4(c) has complexity O(1), hence the bound computation
is done in �(nm), which is the same complexity of propagating each neuron equation
individually.
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3.2 Optimizing the lagrangian multipliers

Any assignment of the multipliers λ yields a different bound on the z variable. Hence it is
possible to improve the bound quality by optimizing the multiplier values, i.e. by solving
the following unconstrained minimization problem:

L0 : min
λ

z∗(λ) (34)

Where z∗(λ) is here a function that denotes the optimal solution of LP0(λ). Problem L0
is convex in λ and hence has a unique minimum. This is true even if LP0(λ) is non-convex:
in fact, the two problems are defined on different variables (i.e. λ versus x and y). The
minimum point can therefore be found via a descent method.

Now, let λ′ be an assignment of λ and let x∗(λ′) and y∗(λ′) be the values of x and y in
the corresponding solution of LP0(λ). If such solution stays constant for small changes of
λ′, then z∗(λ) is differentiable at λ′ and the j -th component of the gradient is given by:

sj ≡ bj +
n−1∑
i=0

wj,ix
∗
i (λ′) − y∗

j (λ′) (35)

The expression sj is obtained by differentiating the objective of LP0(λ) under the above
mentioned assumptions.

If the solution of LP0(λ) is not stable for small changes of λ′, then s (i.e. the vector of all
sj ) is still a valid subgradient. The optimum of L0 can therefore be found via a subgradient
method [25], by starting from an assignment λ(0) and iteratively applying the update rule:

λ(k+1) = λ(k) − σ (k)s(k) (36)

where λ(k) denotes the multipliers for the k-th step, s(k) is the subgradient, and σ (k) is a
scalar representing a step length.

Step update policy In subgradient methods, the step length must be dynamically updated
for the process to converge. In this paper, we perform the updates according to the corrected
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Polyak policy with non-vanishing threshold from [13]. This guarantees the convergence
with bounded error to the optimal multipliers. Other policies from the literature are more
accurate, but have a slower convergence rate, which is in our case the critical parameter
(since we run the subgradient method within a propagator). In detail, we choose σ (k) as
follows:

σ (k) = β
z∗ (

λ(k)
) − (

zbest − δ(k)
)

‖s(k)‖2
(37)

where β is a scalar parameter in ]0, 2[. The term zbest − δ(k) is an estimate for the optimum
of L0: it is computed as the difference between the lowest bound found so far (referred to as
zbest ) and a scalar δ(k), which is dynamically adjusted during the process. Hence, the step
size is directly proportional to the distance of the current bound z∗(λ(k)) from the estimated
optimum, i.e. zbest − δ(k). Larger δ(k) values lead to larger step sizes.

The value of δ(k) is non-vanishing, namely it is constrained to be larger than a threshold
δ∗. This ensures to have always positive step sizes and prevents the subgradient optimiza-
tion from getting stuck. We determine the δ∗ value based on the multipliers from the first
subgradient iteration (let them be λ(0)). Specifically, we choose δ∗ = γ z∗(λ(0)), with γ

being a small, positive, scalar parameter. During search, we compute δ(k) according to the
following rules:

δ(k+1) =
{

max(δ∗, νδ(k)) if z∗(λ(k)) > zbest − δ(k)

max(δ∗, μz∗(λ(k))) otherwise
(38)

where ν, μ are again scalar parameters, ranging in ]0, 1[. Informally speaking, if the last
computed bound z∗(λ(k)) does not improve over the estimated optimum zbest − δ(k), then
we reduce the current δ(k) value, i.e. we make the estimated optimum closer to zbest . Con-
versely, when an improvement is obtained, the freshly computed bound becomes the new
zbest and we “reset” δ(k): this is done by choosing δ(k) so that the estimated optimum is
μ% lower than the current best bound. Since the Polyak non-vanishing policy provides no
termination criterion, we stop the subgradient optimization when a maximum number of
iterations is reached.

Deflection Subgradient methods are known to exhibit a zig-zag behavior when close to an
area where the cost function is non-differentiable. In this situation the convergence rate can
be improved via deflection techniques [13]. In its most basic form (the one we adopt), a
deflection technique consists in replacing the subgradient with the following vector in (36)
and (37):

d(k) = αs(k) + (1 − α)d(k−1) (39)

where d(k) is the new search direction. The α parameter is a scalar in ]0, 1], hence d(k) is a
convex combination of the last search direction and the current subgradient. When using the
deflection technique, the value β from (37) must be less than or equal to α for the method
to converge.

The components sj having alternating sign in consecutive gradients (i.e. such that

s
(k)
j s

(k−1)
j < 0) tend to cancel each other in the deflected search direction. This behavior

can be observed in Fig. 4. The figure depicts the bound value as a function of λ for the net-
work from Fig. 1, together with the trace of the first 10 subgradient iterations. The use of
deflection allows to get considerably closer to the best possible bound. Specifically, in 10
iterations we reach � 1.523 against a true optimum of � 1.515. As a comparison, the bound
obtained by reasoninig on individual constraints was � 1.928.
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min bound min bound

a b

Fig. 4 a Subgradient optimization trace (10 iterations, no deflection). b Subgradient optimization trace (10
iterations, with deflection)

3.3 Computing bounds for the network input

In this section, we investigate the use of the Lagrangian relaxation to obtain bounds on the x

and y variables, via a form of reduced-cost based filtering [14]. We will show that the tech-
nique is viable and efficient for the x variables (i.e. the ANN input), but too computationally
expensive for the y variables.

We start by assuming to have access to a collection of functions z∗
xi

(λ, xi) and z∗
yj

(λ, yj ),
which specify how the Lagrangian (upper) bound for z depends on a single xi or yj variable.
For sake of simplicity and with an abuse of notation, we will refer to such functions as
z∗(λ, xi) and z∗(λ, yj ).

The functions can be used to filter the x and y domains. Namely, we can: (i) compute the
largest and lowest values of xi that maintain feasibility given the domain of z; and then (ii)
update xi and xi accordingly. Formally:

xi = min
(
xi, max{xi : z∗(λ, xi) ≥ z}) (40)

xi = max
(
xi, min{xi : z∗(λ, xi) ≥ z}) (41)

and similarly for yj , and y
i
. Other (possibly tighter) bounds can be obtained by reasoning

on the Lagrangian lower bound on z. For sake of simplicity, here we limit the discussion to
the filtering based on the upper bound.

The two functions z∗(λ, xi) and z∗(λ, yj ) are always theoretically well defined, but they
may be expensive to compute. Here we attempt to determine their complexity by relying on
the following rewritten form of LP0(λ):

max
x,y

z(λ) = b̂ +
m−1∑
j=0

λjbj +
n−1∑
i=0

w̃i(λ)xi +
m−1∑
j=0

hj (yj , λ) (42)

s.t.: xi ∈ [
xi, xi

] ∀i = 0..n − 1 (43)

yj ∈
[
y

j
, yj

]
∀j = 0..m − 1 (44)
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where the weights w̃i(λ) are as defined in (23) and the functions hj (yj , λ) are as
defined in (25). The values y

j
and yj are treated here as constant, despite they actu-

ally depend on the domain of the x variables: the reason for this simplification will be
given later.

As already observed, the relaxed problem has no constraint involving multiple variables.
Moreover, each term of the objective function depends on a single xi or yj variable. Hence,
a change in the value of a variable has no effect on the value of the other variables in the
optimal solution.

Filtering the x variables: Problem LP0(λ) is linear in x, and a closed form expression
for z∗(λ, xi) is given by:

z∗(λ, xi) = z∗(λ) + w̃i(λ)
(
xi − x∗

i (λ)
)

(45)

where we recall that z∗(λ) is the cost of the optimal solution of the relaxation (i.e. the
original Lagrangian upper bound), and x∗

i (λ) is the value of xi in such solution. By rely-
ing on (45), we can compute the value of xi that makes the Lagrangian bound equal
to z, i.e.:

z∗(λ, xi) = z (46)

which is linear and solved by xi = z−z∗(λ)

w̃i (λ)
+ x∗

i (λ) if w̃i(λ) is not equal to zero. Then, we
can compute the maximal and minimal values of xi that maintain the upper bound feasible:

max{xi : z∗(λ, xi) ≥ z} =
{ ∞ if w̃i(λ) ≥ 0

z−z∗(λ)

w̃i (λ)
+ x∗

i (λ) otherwise
(47)

min{xi : z∗(λ, xi) ≥ z} =
{ −∞ if w̃i(λ) ≤ 0

z−z∗(λ)

w̃i (λ)
+ x∗

i (λ) otherwise
(48)

from (40) and (41), we can then obtain the following filtering rules:

if w̃i(λ) < 0 : xi = min

(
xi,

z − z∗(λ)

w̃i(λ)
+ x∗

i (λ)

)
(49)

if w̃i(λ) > 0 : xi = max

(
xi,

z − z∗(λ)

w̃i(λ)
+ x∗

i (λ)

)
(50)

Both rules have O(1) complexity, hence all the x variables can be filtered in �(n). Sim-
ilarly to other techniques based on Lagrangian relaxations (e.g. [10]), tighter values of the
Lagrangian bound z∗(λ) do not necessarily translate in tighter bounds obtained via reduced-
cost based filtering. For this reason, it is a good idea to filter the x variables whenever the
multipliers λ are updated.

Finally, the bounds from (49) and (50) are not guaranteed to be tighter than
those obtained by propagating individual Neuron Constraints: this is our second rea-
son for using the original approach from [2] along with the new Lagrangian-based
techniques.

Filtering the y variables Filtering rules for each yj can in principle be obtained via the
same process. This may be of interest since, along with the Lagrangian relaxation, in our
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approach we rely on the original Neuron Constraint filtering, which may be capable of
exploiting tighter bounds on yj to filter the x variables.

In order to obtain the filtering rules, we first need to determine a closed form for
z∗(λ, yj ), which is given by:

z∗(λ, yj ) = z∗(λ) + hj (yj , λ) − hj (y
∗
j (λ), λ) (51)

Then, we need to solve the equation z∗(λ, yj ) = z, i.e.:

z∗(λ) + ŵj f (yj ) − λjyj − hj (y
∗
j (λ), λ) = z (52)

where we have expanded hj (yj , λ) according to its definition. Unfortunately, (52) con-
tains both a linear term (i.e. λjyj ) and a non-linear, non-convex and non-concave term (i.e.
f (yj )). This kind of equation cannot be solved in general by analytical methods, not even
in the case where f is a sigmoid or another classical neuron activation function. Numerical
solution approaches (e.g. Newton-Raphson) are viable, but they have considerably higher
computational complexity.

This may appear to be in contrast with our results from Section 3.1, but we recall that
in such case we were interested in finding stationary points: hence, we were employing the
derivative of hj (yj , λ), which lacks a linear term.

Because of the higher complexity, in this paper we have chosen to perform no reduced-
cost filtering on the y variables. This is also the reason for treating the values y

j
and yj

as constant in this section: taking into account their dependence on the x variables would
require to solve problems even harder than (52).

3.4 Overhead reduction techniques

The Lagrangian-based propagation techniques from Sections 3.1–3.3 can provide tighter
bounds w.r.t. propagating individual Neuron Constraints. As a major drawback, the new
techniques have increased computational complexity, mainly due to the necessity to opti-
mize the Lagrangian multipliers. In this section we outline four techniques for reducing the
computational cost of the new propagator.

Low priority propagation: The new propagator can be scheduled with the lowest possi-
ble priority in the constraint solver. Hence, if infeasibility is detected by the (cheaper)
Neuron Constraint propagation from [2], the Lagrangian propagator is not even
activated.

Limit the number of subgradient iterations: A simple approach to manage the computa-
tion time consists in controlling the number of subgradient iterations. Fewer iterations
result in a smaller overhead, but may reduce the quality of the Lagrangian multipliers
and the opportunities for filtering the x variables (see Section 3.3).

Multiplier caching and dynamic iteration limit: We can cache the two sets of multipli-
ers that led respectively to the best lower/upper bound in the past. During branching,
the multiplier values are passed from parent node to child, and they are restored when
backtracking. Caching may allow to reduce the number of subgradient iterations during
search, with limited adverse effects on the multiplier quality. The underlying rationale
is that small updates of the network inputs (such as those occurring during search) are
expected to result in small modifications of the optimal multipliers. As a special case it is
possible to optimize the multipliers once and for all at the root node: this is a frequently
employed approach for propagators based on Lagrangian relaxations (see e.g. [7, 10]).
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Activation budget: The new propagator has the largest potential to save search time
when it is used in the top nodes in the search tree. Based on this idea, we tried
to limit the propagator action via an activation budget. This is done by introducing
an activation counter, which is cached from parent to child node during search and
restored when backtracking. Once the activation counter reaches a given limit, the
Lagrangian approach is disabled and we perform only the baseline Neuron Constraint
propagation.

4 Experimental Results

In this section, we discuss our experimental results. We focus on comparing the orig-
inal Neuron Constraint from [2] with our new approach, where the individual neuron
propagation is strengthened via Lagrangian-based bounds.

For the comparison to be fair, we want the two approaches to explore the same search
space, which is ensured by solving the benchmark instances to optimality using a static
search strategy. Despite being far from perfect (see [35]), this approach is very popular for
comparing propagators in CP.

We do not compare our method to alternative approaches such as Local Search or
Mixed-Integer Non-Linear Programming. A comparison of this kind would indeed be very
interesting, but it is outside the scope of this paper.

In the following paragraphs, first, we present in Section 4.1 our application and our
benchmark instances, then, we present our experimentation in three stages: in Section 4.2
we assess the quality of the Lagrangian bounds (on the ANN output) at the root of the search
tree. During this stage we also performed a manual tuning (not discussed in detail) of the
parameters related to the subgradient optimization process. In Section 4.3 we investigate the
effect of the overhead reduction techniques and try to determine an optimal configuration.
Finally, in Section 4.4 we report results for a larger-scale experimentation.

4.1 The target problem and the benchmark

Our benchmark consists in a number of instances of the thermal-aware job mapping prob-
lem presented in [3]. A number of jobs needs to be executed on a 48-core CPU by Intel
called SCC (Single Chip Cloud Computer [20]), the research prototype that evolved into
the current Xeon Phi. Each CPU core has a thermal controller, which reacts to overheating
by reducing the operating frequency until the temperature is safe. The frequency reduction
causes a loss of efficiency that depends: (i) on the workload of the core, (ii) on the workload
of the neighboring cores, (iii) on the thermal physics, and (iv) on the policy of the controller
itself.

The platform is simulated via an internally developed tool based on the popular Hotspot
system [21] and tuned on a physical SCC platform. Using a simulator rather than the real
chip allowed a research group cooperating with us to test advanced control policies that are
outside the scope of this paper.

Job durations are not known. Therefore, in an attempt to balance the total workload
duration, we require that each core runs a similar number of jobs. Without (great) loss
of generality we assume the number of jobs n is a multiple of the number of cores
m (in our case, m = 48), and that exactly the same number of jobs must be mapped
to each core. The general case can be handled via the Weighted Average Constraint
from [8].
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The goal of our optimization problem is finding a job mapping that maximizes the lowest
core efficiency. This permits to achieve good overall performance and avoid thermal hot-
spots, i.e. excessively warm areas in the chip. We use a vector of integer variables p to
model the task mapping, with pi = k iff task i is mapped to core k. We use a vector of
continuous variables e to model the efficiency of each core, i.e. ek gives the efficiency of
the k-th core. Using these variables, we model the job mapping problem as follows:

max
p

min
k=0..m−1

ek (53)

s.t. gcc
(
p, [0..m − 1], n

m

)
(54)

ann〈f,g〉
(
xk, ek, wk, bk, ŵk, b̂k

)
∀k = 0, . . . , m − 1 (55)

pi ∈ [0, . . . , m − 1] ∀i = 0, . . . , n − 1, (56)

We use the gcc constraint to have exactly n/m jobs per core. We use the ann constraint
from Section 3 to encode m Artificial Neural Networks, each modeling how the efficiency
ek of core k depends on the platform workload xk .

The artificial neural networks In our job mapping problem, each ANN has the follow-
ing features: (i) it is two-layer and feed forward, (ii) it uses tanh as activation function at
both the hidden and output layers, (iii) it has two hidden neurons, (iv) it has weights and bias
values (i.e., vectors wk, bk, ŵk, b̂k) trained using the Levenberg-Marquardt algorithm [30].
Further details about the ANN training are out of the scope of this paper. All our networks
are available for download.3

The ANNs inputs xk in (55) are functions of the platform workload. In detail, each task i

is characterized by a Clock Per Instruction (CPI) value cpii , measuring the degree of its CPU
usage: lower CPI values correspond to more computation intensive (and heat generating)
tasks, while higher CPI values are symptomatic of idle cycles due to frequent memory
access. Each network has four, CPI based, inputs: (i) the average CPI of the jobs mapped
on the considered core k, corresponding to a fresh acpik variable; (ii) the average acpik of
the neighbouring cores, corresponding to a fresh ncpik variable; (iii) the average acpik on
all the remaining platform cores, corresponding to a fresh rcpik variable; (iv) the minimum
CPI of the jobs mapped on core k, corresponding to a fresh mcpik variable. Formally, using
the platform workload, each vector xk is composed by four elements:

xk
0 = acpik = 1

n/ m

nt−1∑
i=0

cpii [[pi = k]] ∀k = 0..m − 1 (57)

xk
1 = ncpik = 1

|N(k)|
∑

h∈N(k)

acpik ∀k = 0..m − 1 (58)

xk
2 = rcpik = 1

m − |N(k)| − 1

∑
h/∈N(k),

h�=k

acpik ∀k = 0..m − 1 (59)

xk
3 = mcpik = min

i=0..n−1
(cpii + M [[pi �= k]]) ∀k = 0..m − 1 (60)

3At https://bitbucket.org/m lombardi/constraints-15-ann-lag-resources

https://bitbucket.org/m_lombardi/constraints-15-ann-lag-resources
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where the set N(k) contains the indices of the cores neighboring k, while M is the maximum
cpii value (the choice is done so that jobs not mapped on core k are ignored in the computa-
tion of the minimum). The notation [[cst]] stands for the reification of constraint cst . Even
if not shown in the formulas (for sake of simplicity), each ANN input is normalized into the
range [−1, 1] via a linear transformation.

We have experimented with two sets of neural networks, which differ in their num-
ber of inputs, denoted ANN1 and ANN2, respectively. ANN1 has all the four variables just
described, while ANN2 lacks xk

3 , i.e., the mcpik input. Both networks are practically rel-
evant: ANN1 tends to be more precise than ANN2, but also more complicated to embed
in optimization approaches. The two sets of networks have the same number of hidden
neurons, but they are very different in terms of weights.

The benchmarks Due to the need to solve each instance to completeness, we had to focus
on a restricted-size version of the original problem. In particular, we focus on optimizing a
subset of the platform cores, assuming that the rest of the job mapping is fixed. Moreover,
when optimizing a subset of cores, the efficiency of all the remaining cores is disregarded
in the cost function. This setup is general enough to allow assessing the performance of our
propagator: the only peculiarity is that in each benchmark instance only a subset of the 48
ANNs will be considered in the model.

Formally, let π be an initial mapping of all jobs, and in particular let pi(π) be the core
where job i is mapped. Let R be the considered subset of cores. Then what we do is: (i)
posting the additional constraint pi = pi(π) for all jobs such that pi(π) /∈ R, and (ii)
considering the modified cost function mink∈R ek .

We obtained two distinct benchmarks via the same process. In particular, we start from a
single fixed mapping of 288 jobs to the 48 cores on the platform. Then, we obtain different
instances by selecting random subsets of three cores. Our first benchmark consists of 46
instances and is employed in Section 4.3 for assessing the impact of the overhead reduction
techniques. The second benchmark consists of 200 instances and is employed for the last
stage of our experimentation, in Section 4.4.

4.2 Bound tightness

We started our experimentation by evaluating the tightness of the Lagrangian bounds outside
of the context of our benchmark problem. This was done by forcing all network inputs to
range in [−1, 1]: since all inputs are assumed to be normalized, this is the same as leaving
their domain unrestricted.

We compared the z bounds from Section 3.1 with real maxima/minima obtained via
the non-linear (global) solver Couenne [6]. Obtaining the exact z range took usually a few
seconds for each network (which unfortunately is still too much for a direct use within a
constraint). The non-linear solver incurred in numerical issues in a few cases, which were
fixed by making very small adjustments to the input ranges.

Subgradient optimization parameters During this experimentation we manually tuned
most of the parameters of our subgradient optimization procedure. For the deflection tech-
nique we always use α = 0.5 and we keep β = α. The threshold parameter δ∗ in the Polyak
policy is re-initialized every time the constraint is triggered (hence only once during this
experimentation), using γ = 0.01 and the bound computed in the first subgradient iteration.
Therefore the bound estimate in the policy is always at least 1 % better than the Lagrangian
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bound from the first subgradient iteration. The attenuation factor ν, used when no improve-
ment is obtained, is fixed to 0.75. The μ coefficient is 0.25 at the first constraint activation,
which is the only one considered in this experimentation. In Section 4.3 and 4.4 however, we
switch to using μ = 0.05 after the first constraint activation, so as to enable finer updates.
At the first constraint activation, all multipliers are initialized to zero. The tuning could be
improved via an experimentation based on factorial design, or by relying on a tool such as
ParamILS [22], but this is left as part of future work.

Results We experimented with different subgradient iteration limits. In all cases computing
the Lagrangian bounds took a few milliseconds, with larger numbers of iterations leading
to larger run-times. The comparison was performed for all the 48 networks in ANN1 and
ANN2. The results are displayed in Fig. 5, which reports bound values for the activity of
the output neuron (i.e. the z variable from Section 3.1). For each network/core, we visualize
the bounds obtained via different approaches as overlapping bars of different colors. As a
baseline, we use the bounds obtained by reasoning on the neurons individually (white bars).

Fig. 5 Bound tightness for the neural networks in ANN1 (top) and ANN2 (bottom)



Constraints (2016) 21:435–462 455

Darker colors refer to the Lagrangian bounds after 10, 100, and 1,000 subgradient iterations.
An even darker shade of grey is used for the exact bounds. The z ranges for core 46 in
ANN1 and core 43 in ANN2 were so large than displaying them would make the rest of the
figure poorly readable: for this reason they have been omitted. In both cases, however, all
the approaches (including the baseline) gave very similar bound values.

For many of the platform cores (20 cores in ANN1, 28 cores in ANN2) the baseline
propagation is sufficient to provide tight bounds. When the baseline bounds are not tight,
the Lagrangian relaxation does enable improvements, despite the improved bounds never
match the exact z range. A limit of 100 iterations is typically sufficient to obtain the best
Lagrangian bound on ANN1, while performing more iterations is sometimes worthwhile for
ANN2.

4.3 Effect of the overhead reduction techniques

The next step of our experimentation is testing the new propagator in action (i.e. dur-
ing search) and investigating the effectiveness of the overhead reduction techniques from
Section 3.4. The experimentation was performed over the first of our benchmarks, con-
taining 46 instances where a subset of 18 jobs must be mapped on a subset of 3 platform
cores.

Our code is implemented on top of the Google or-tools solver4 and all experiments are
performed on an Intel Core i7, 2.3 GHz. A time limit of 300 seconds was enforced on all
runs, but it was never exceeded. Our code, datasets, and results are available for download.5

Solution technique Each instances is solved using Depth First Search guided by an ad-
hoc variable- and value-selection heuristic. Our search strategy is based on the idea that the
average CPI on each core is inversely correlated with its efficiency level. Therefore, CPI-
balanced solutions have a good chance to be efficiency-balanced as well. By steering search
towards CPI-balanced mappings we are likely to find high quality solutions and boost the
optimization process. Intuitively, our strategy always tries to map the most computation
intensive job on the least loaded core. Formally, the process is as follows:

– We select for branching the (non-mapped) job i∗ with lowest CPI.
– We compute for each core k the value of the expression:∑

pibound,
pi=k

(M − cpii) (61)

where M is the largest possible CPI value. The expression has the following two
properties:

1. It grows if the workload on k is computation intensive.
2. It grows with the number of jobs mapped on core k.

– Let k∗ be the index of the core with the smallest value for Expression (61). On the left
branch we post pi∗ = k∗, on backtracking we post pi∗ �= k∗

This search strategy proved to work better than the classical min-size-domain rule on this
problem.

4Google OR-tools, at https://developers.google.com/optimization/
5At https://bitbucket.org/m lombardi/constraints-15-ann-lag-resources

https://developers.google.com/optimization/
https://bitbucket.org/m_lombardi/constraints-15-ann-lag-resources
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The variables (i.e. the jobs) are considered by the new heuristic in a static order. The
value (i.e. core) selection rule is not static in a strict sense, but it is based on past decisions
rather than on the current variable domains. Hence, propagation cannot change the order in
which the cores are considered. As a consequence, we have the guarantee that more pow-
erful propagation leads to smaller search trees. This enables a fair comparison of different
propagators: pruning a value has the effect of skipping part of the search tree, but does not
affect the branching decisions in an unpredictable fashion.

Reference propagator configuration In this section we report results for an initial setup
for the Lagrangian propagator, obtained by: (i) fixing the subgradient iteration limit to 100
for the first constraint activation; (ii) employing multiplier caching; and (iii) disabling mul-
tiplier updates (i.e. fixing the iteration limit to 0) for all subsequent constraint activations.
In other words, we use the multipliers from the root node in the whole search tree, which is
a common strategy to reduce the overhead of Lagrangian-based propagators (see [7, 10]).

Figure 6 shows the results of this evaluation, in particular the number of branches (in log
scale) and the solution time (in seconds). The propagation obtained by individual Neuron

Fig. 6 Results for the reference configuration for ANN1 (top) and ANN2 (bottom)
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Constraints is used as a baseline (x-axis). On the y-axis we report the results of our approach,
where the baseline propagation is augmented via Lagrangian bounds on the network input
and output.

On ANN1, the Lagrangian approach manages to considerably decrease the size of the
search tree, in a significant number of instances. The improvement is typically enough to
compensate for the increased propagation time. The approach is not analogously effective
on ANN2, despite the number of branches is still reduced by a factor of 2-5 in some cases.

Subgradient iterations at the first activation We started our analysis by investigat-
ing the effect of increasing the number of subgradient iterations at the first constraint
activation. In principle, improving the multipliers could provide considerable benefits
with a small impact on the solution time. In practice, however, we found that increas-
ing the number of initial subgradient iterations from 100 to 10,000 does not signifi-
cantly affect the propagation strength and the solution time: we obtained only a minor
improvement on ANN2 for 1,000 iterations. These results (not reported in any figure)
are consistent with the first stage of our experimentation, suggesting that 100 itera-
tions are usually enough for the multipliers to converge approximately to their optimal
values.

Subgradient iterations during search Next, we tried to assess the effect of perform-
ing multiplier updates during search. This was done by relying on multiplier caching
and performing a small number of subgradient iterations at each activation of the
constraint.

The results of this experimentation are reported in Fig. 7, using box plots. In particu-
lar, we show the values of the ratio between the number of branches and the solution time
of our approach w.r.t. the baseline. The line in the middle of each box correponds to the
median, the box boundaries are the first and third quartile, and the “whiskers” correpond to
the minimum and maximum. In other words, 25 % of the values are contained in the inter-
val between the lower whisker and box boundary, another 25 % of the values is between
the lower box boundary and the median, and so on. Values lower than 1 correspond to cases
where the new propagator beats the baseline. We show separate boxes for the new propa-
gator and a restricted version of the approach, where the Lagrangian bounds are employed
only for the z variable. This version corresponds in fact to the method we introduced
in [27].

Introducing even a few subgradient iterations during search affects significantly the
effectiveness of our Lagrangian approach: the number of branches is reduced by a factor
from 3 to 100 in 50 % of the instances on the ANN1 networks. The improvement is less
dramatic, but still considerable, for the ANN2 networks. The advantage is more pronounced
for the version of the propagator that employs reduced-cost based filtering, with the per-
formance gap being particularly large on the ANN2 networks with 5 iterations. The lower
number of branches does not translate into a reduction of the solution time, because of the
cost of performing additional subgradient iterations at all search nodes.

Activation budget The activation budget approach introduced in Section 3.4 was designed
as a simple technique to limit the propagator activation to the upper-most part of the search
tree. The main underlying idea is that running a powerful propagator in that region has
the highest pruning potential (since the underlying search subtrees are big) and the lowest
overhead (since the number of upper nodes is comparatively small).
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The approach is not strictly equivalent to a depth limit, because propagators may get
activated multiple times per search node. As an advantage, the activation budget can be
easily implemented in off-the-shelf available solvers, which to not provide access to the
depth of search nodes.

In Fig. 8 we show the effect of introducing an activation budget, when the number of
subgradient iteratons during search is fixed to 5 and 10. Introducing a 36 unit budget has
a very small impact on the propagation strength and provides some benefits in terms of
run time. Reducing the budget to 18 units has a more significant, negative, effect on the
number of branches, but it provides very large improvements in terms of run time. The
propagator configuration with 5 subgradient iterations and budget 18 beats the baseline over
more than 75 % of the instances with ANN1 and over ∼50% of the instances with ANN2.
Using reduced-cost based filtering on the network inputs provides the best results on ANN1,
while on ANN2 the restricted version of the propagator behaves slightly better in terms of
solution time.

Fig. 7 Effect of increasing the number of subgradient iterations during search, for ANN1 (top) and ANN2
(bottom)
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Fig. 8 Effect of introducing an activation budget, for ANN1 (top) and ANN2 (bottom)

4.4 Evaluation on a large-scale benchmark

With the goal to assess the performance of our new propagator in a more reliable fashion,
we performed one last set of experiments on the second of our benchmarks (counting 200
instances). For the new propagator we used the best configuration identified in Section 4.3:
an activation budget of 18 units, 1,000 initial subgradient iterations, multiplier caching
with 5 subgradient iterations during search, and reduced-cost based filtering on the network
input. As a baseline, we still have the individual Neuron Constraint propagation from [2].

The results of this evaluation are reported in Fig. 9. On the ANN1 networks, the
Lagrangian-based propagator enables a reduction of the number of branches by a factor
of 2-10 in the large majority of instances. Thanks to the overhead reduction techniques,
the solution time is also significantly improved. Moreover, when the smaller number of
branches does not pay off for the additional computational effort, the gap in solution time
between the Lagrangian approach and the baseline is still not large.
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Fig. 9 Results on the large-scale benchmark, for ANN1 (top) and ANN2 (bottom)

The situation is different for ANN2, for which the Lagrangian approach is often not
capable of pruning more than the baseline. However, improvements in terms of both the
number of branches and the solution time still occur for a significant number of instances.

Considerations on the experimental results On the large-scale benchmark, the new
Lagrangian propagator managed to provide a sharp improvement on many problem
instances. The approach was able of reducing the search tree size by a factor of 2 to 10.
Due to the increased propagation time, the improvements translated reliably into time gains
only via the use of overhead reduction techniques: our simple activation budget proved quite
effective in that respect. We experimented with other techniques (e.g. running the propagator
once every two constraint activations, or randomizing the multipliers), but we obtained poor
or non-significant results (not reported in this paper).

The simple filtering technique for the input variables from Section 3.3 proved effective
in reducing the number of branches in a number of instances. This is a significant result,
especially if we take into account that the ANN input in our problem consists of features
obtained via sums (see Section 4.1), which notoriously have poor back-propagation.
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The effectiveness of the Lagrangian approach, in particular the cost-based filtering,
seems to be strongly dependent on the weights of the target network. The difference appears
to be quite sharp: on ANN1 the new propagator prunes much more than the baseline, and
updating the multipliers during search is crucial. The performance of the new approach is
more limited on ANN2, and updating the multiplier seems to be less effective. Based on
some preliminary observations, we conjecture that the different performance is connected
to specific networks in ANN1 and ANN2, and in particular to (as yet unidentified) properties
of the network weights.

5 Conclusions and future research directions

We have introduced a new propagator for two-layer, feed-forward Artificial Neural Net-
works, relying on a non-linear Lagrangian relaxation to compute bounds on the output and
input variables. The quality of the computed bounds depends on the value of the Lagrangian
multipliers, which are optimized using a subgradient algorithm. The approach can yield
better bounds compared to the current state of the art (a method based on propagating
each neuron individually): this is confirmed via an experimentation on a thermal-aware
workload dispatching problem. As a drawback, the need to perform multiplier optimization
significantly increases the propagation time. In our experiments, we managed to reduce the
overhead to an acceptable level via three simple techniques: low priority propagation, mul-
tiplier caching, and an activation budget. Our final propagator setup outperformed the state
of the art in a large number of cases, in terms of both search tree size and solution time.

There are several possible directions for future research: here we highlight three of them.
First, our conjecture about the link between properties of the ANN weights and the perfor-
mance of the Lagrangian-based propagation should be verified. If such properties could be
identified (e.g. via Machine Learning, see [16]), it would be possible to decide at model
construction time the propagation approach to use for ANN constraints. Second, several
of the techniques we proposed rely on parameterized heuristics. The effect of some of
the parameters has been assessed experimentally in this paper, but making the approach
robust (and possibly adaptive) will require further research. In particular, tuning the value
of the activation budget for specific problem instances, or specific networks, seems partic-
ularly important. Finally, from another perspective the relatively small time required by the
Couenne solver to provide tight bounds suggests the possibility to design novel MINLP-CP
hybrids.
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