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Abstract Although best known for his work in symbolic logic, George Boole made semi-
nal contributions in the logic of probabilities. He solved the probabilistic inference problem
with a projection method, leading to the insight that inference (as well as optimization)
is essentially a projection problem. This unifying perspective has applications in con-
straint programming, because consistency maintenance is likewise a form of inference
that can be conceived as projection. Viewing consistency in this light suggests a con-
cept of J-consistency, which is achieved by projection onto a subset J of variables. We
show how this projection problem can be solved for the satisfiability problem by logic-
based Benders decomposition. We also solve it for among, sequence, regular, and
all-different constraints. Maintaining J-consistency for global constraints can be
more effective than maintaining traditional domain and bounds consistency when propagat-
ing through a richer structure than a domain store, such as a relaxed decision diagram. This
paper is written in recognition of Boole’s 200th birthday.

Keywords Projection - Consistency - Optimization - Inference - Satisfiability -
Logic-based Benders decomposition - Boole

1 Introduction

Although George Boole is best known for his work in symbolic logic, he made a strikingly
original contribution to the logic of probabilities [12, 13]. He formulated the probabilistic
inference problem as an optimization problem we now call linear programming. He solved
the problem with a projection method we now call Fourier-Motzkin elimination. In a single
stroke, he linked the concepts of projection, optimization, and logical inference.
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Boole’s insight extends to constraint programming (CP) as well, because consistency
maintenance is a form of projection. Projection is, in fact, the root idea that unites the other
three concepts. Optimization is projection of the feasible set onto a variable that repre-
sents the objective value. Inference, as we will see, can be understood as projection onto a
desired subset of variables. Consistency maintenance is a form of inference that is likewise
equivalent to projection.

We suggest that this unifying vision can be exploited in CP by addressing consistency
maintenance explicitly as a projection problem. Existing types of consistency are already
forms of projection, but viewing them in this light suggests a particularly simple type of
consistency that has apparently not seen application. We call it J-consistency, which is
achieved by projecting the problem’s solution set onto a subset J of variables.

Our goal is not to solve a particular problem, but to show how projection is a uni-
fying concept, and to take initial steps in a research program that applies this insight in
inference and CP. We first review how Boole united optimization, inference, and projec-
tion in his treatment of probability logic. We then turn to propositional logic and note that
the resolution procedure, which is closely related to Fourier-Motzkin elimination, achieves
J-consistency. Because resolution is generally impractical, we propose a more efficient
projection method based on the fact that logic-based Benders decomposition computes a
projection. We illustrate how conflict clauses generated during solution of the satisfiability
problem can deliver the desired projection.

We next discuss the relationship between consistency and projection. We observe that
domain consistency is a particularly simple form of projection, while k-consistency is a
less obvious form. We then indicate how achieving J-consistency, which is quite different
from k-consistency, can reduce backtracking when the solver propagates through a richer
structure than a domain store. One such structure is a relaxed decision diagram, which recent
research suggests can be a more effective propagation medium than variable domains [7-9,
14, 15].

We next investigate the projection problem for a few popular global constraints. We find
that projections are easy to compute for among constraints, relatively easy for sequence
constraints, and quite straightforward for regular constraints. Projection is complicated
in principle for all-different constraints, but it tends to simplify when the domains
are small, making it feasible to project out some of the variables. These results suggest that
achieving J-consistency could have practical application in a solver.

In a concluding section, we propose that a natural generalization of bounds consistency
that parallels J-consistency is projection of the convex hull of the solution set. This might
be called continuous J-consistency. Computing this type of consistency is closely related to
the project of identifying valid cutting planes, which has long been pursued in mathematical
programming.

2 Probability logic

Our presentation of Boole’s probability logic largely follows the interpretation of Hailperin
[20]. We are given a set S = {C; | i € I} of logical clauses, where each clause C; has
probability m; of being true. The problem is to deduce the probability of a given clause Co
O ¢g1I.

Boole formulated this inference problem as what we now call a linear programming (LP)
problem. Let x = (xq, ..., x,) be the atomic propositions that appear in S, and let p, be
the (unknown) probability that (x1, ..., x,) have truth values v = (vy, ..., v,). If V; is the
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set of truth value assigments v that make C; true, then r; = >, . pv. The possible range
of probabilities g of Cy is obtained by minimizing and maximizing o subject to these
equations and the facts that the probabilities p, must be nonnegative and sum to one:

[min/max no‘n():va; Zpu=ni, iel; va=1; pZO} (D)

veVy veV; veV

This is an LP problem in variables 7g and p, for v € V, where V is the set of all 2" possible
truth value assignments to x.

For example, suppose we are given clause set S = {x1, X V x2, X2 V x3} in which the
three clauses have probabilities 0.9, 0.8, and 0.4, respectively. If we wish to determine a
range of probabilities for x3, the LP problem (1) becomes

min / max mo

01010101 Pooo | =| mo
00001111 Doot 0.9
11110011 Po1o 0.8
11011101 : 0.4
11111111 ’ 1
P11
P000> PO0L> P010s - - -5 P111 = 0

The minimum and maximum values of g are 0.1 and 0.4, indicating that the probability of
x3 must lie in this range.

Interestingly, the model (1) was reinvented in the Al community in the 1980s [42], more
than a century after an equivalent formulation appeared in Boole’s work. The number of
variables in the model grows exponentially with the number of atomic propositions, but
column generation methods can often overcome this difficulty in practice by allowing the
solver to consider only a tiny fraction of the variables [21, 25, 33-36].

Boole solved (1) by a method we now call Fourier-Motzkin elimination [16, 41]. Given a
general LP problem that minimizes or maximizes yg subject to yo = ay and Ay > b, where
y = (y1,-.., yn), we can compute the projection onto yy, ..., yx by eliminating variables
Yns Yn—1, - - - » Yk+1 One at a time. Let S initially be the set of inequalities ay > yg, ay < yo,
and Ay > b. Each variable y; is eliminated as follows. For each pair of inequalities in S that
have the form cy +coy; > y and dy —dpy; > 8, where co, dp > Oand y = (y1,...,yj-1),
we have

c_+y< <d_ 8
Coy Co_y]_doy do

or L < y; < U for short. We therefore add inequality L < U to S for each such pair. This
done, we remove from § all inequalities that contain y;. The inequalities in S at the end of
the procedure describe the projection. Eliminating y,, ..., y; leaves bounds ¢ < yy < u,
which tell us that £ and u are the minimum and maximum values of yy.

The method is generally impractical because S tends to explode unless special struc-
ture prevents it. However, by proposing a projection algorithm to solve the probabilistic
inference problem, Boole revealed the connections among projection, optimization, and
inference.
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3 Inference

Inference can be understood as the process of extracting information that relates to a par-
ticular question or topic. For example, if S is a constraint set that describes the operation
of a factory, we may wish to deduce facts about a certain product P. Let’s suppose the
constraints in § collectively contain variables x, ..., x,, and that x1, ..., x; are relevant
to product P. For example, x; may be the model of P produced, x, the output level of P,
X7 its unit manufacturing cost, and so forth up to x;. Then we wish to deduce from § all
constraints containing xi, . .., x;. We will see that this is a projection problem.

3.1 Inference as projection

To make the connection between inference and projection more precise, we standardize
terminology as follows. For J C {1, ..., n}, let x; be the tuple of variablesin {x; | j € J}
arranged in increasing order of indices, and similarly for v;. Let D; be the domain of x;,
with D = Dy x --- x Dy and Dy = [];.; D;. Projection can be defined semantically
by saying that a set V' C Dy of tuples is the projection onto x; of V. C D when V' =
{vy | v € V}. This can be written V' = V| ;. However, we are also interested in a syntactic
concept that tells us when a constraint set is a projection onto x; of another constraint set.

To this end, we define a constraint to be an object that contains certain variables
and is either satisfied or violated by any given assignment of values to those variables.
An assignment can satisfy or violate a contraint only when it fixes all variables in the
constraint.!

Let D;(S) be the set of all v € Dj for which x; = v satifies S (i.e., satisfies all the
constraints in S), where in particular D(S) = Dy, .. »)(S). We say that S is a constraint
set over x when it contains only variables in x = (xy, ..., x,), perhaps not all. If S is a
constraint set over x, then S implies constraint C if an assignment to x satisfies C whenever
it satisfies S, or D(S) € D({C}).

Let S’ and S be constraint sets over x; and x, respectively. We define S’ to be a projection
onto xj of S when S’ describes the projection onto x; of S’s satisfaction set, or more
precisely, D;(S") = D(S)|;. It is easy to show that projection captures exactly what S
implies about about x, in the following sense:

Lemma 1 Let S and S’ be constraint sets over x and xj, respectively. Then set S’ is a
projection of S onto xj if and only if S’ implies all and only constraints over xj that are
implied by S.

As an example, consider a constraint set S consisting of the logical clauses in Table 1.
The clause set § = {x V x2, x1 V x3} is a projection of S onto (x1, x2, x3). This means that
any clause over (x1, x3, x3) implied by S is implied by S’. The two clauses in S” capture all
that can be inferred in terms of atoms xp, x3, x3.

One can, of course, sometimes infer from a partial assignment that a constraint must be satisfied or violated.
For example, if x1, x; are binary variables, then x; = 1 implies that x; +x, > 1 is satisfied. But for purposes
of definition, it is convenient to say that the constraint is not actually satisfied or violated until all of its
variables are instantiated.
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Table 1 A set of logical clauses 1 ViV s
1 VsV s

T VsV Te

1 VsV Tg

T2 VsV xe

T2 VZs5VZTe

3V T4V Ts
x3VITaV Ts

3.2 Inference in propositional logic

An elimination procedure based on resolution solves the projection problem for logical
clauses. The procedure is the same as Fourier-Motzkin elimination, except that when elim-
inating variable x, it considers pairs of clauses of the form C Vv x; and D V X;, where no
one variable occurs negated in C and posited in D (or vice-versa). Each pair generates a
resolvent on x j, namely C Vv D. For example, resolving x| V x2 V x4 and x2 V X3 V X4 0n x4
yields x1 V x2 Vv x3. Resolution can in fact be seen as a form of Fourier-Motzkin elimination
plus rounding [47].

The following can be shown [27, 29] by modifying the classical completeness proof for
resolution in [44, 45]:

Theorem 1 Given a clause set S over x = (x1, ..., X,), eliminating variables x j for j & J
by resolution (in any order) yields a projection of S onto x.

A projection obtained in this manner will contain all prime implications of S whose
variables are the variables in x; [45]. A prime implication of S is a clause implied by § that
is implied by no other clause implied by S.

Like Fourier-Motzkin elimination, resolution tends to be impractical unless there is spe-
cial structure, particularly when J is small (so that a large number of variables must be
eliminated). However, an alternative procedure can be much more efficient, especially when
J is small. It is based on the fact that Benders decomposition [6] can generate a projec-
tion of the constraint set onto the variables in the master problem. The classical Benders
method applies only to problems with an LP subproblem, but we use logic-based Benders
decomposiiton, which is suitable for general constraint solving and optimization [28-31].

We apply Benders decomposition to a clause set S as follows. The master problem (ini-
tially empty) consists of Benders cuts in the form of clauses over x;. Each iteration of
the Benders method begins by checking if the master problem is infeasible, in which case
the procedure terminates. Otherwise a solution x; of the master problem is obtained. This
defines a subproblem S(x ;) that is the result of fixing x to X7 in S. If S(x ;) is infeasible, a
nogood clause (Benders cut) is generated that excludes x s, as well as perhaps other values of
xy for which S(x) is infeasible for similar reasons. If S(x) is feasible, a clause (enumera-
tive Benders cut) is generated that excludes only x ;. (The cut is “enumerative” in the sense
that it allows the Benders algorithm to enumerate distinct feasible solutions.) In either case,
the Benders cut is added to the master problem, and the process repeats. At termination, the
nogood clauses in the master problem define the projection of S onto x; [29].

This procedure can be implemented by a single depth-first branching algorithm that gen-
erates conflict clauses. Let the variables in x; be first in the branching order. When unit
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propagation detects unsatisfiability at a node of the tree, generate conflict clauses and back-
track (see [4] for a survey of these concepts). Subsequent branches must be consistent with
the conflict clauses so far generated. When a feasible node is reached, backtrack to the last
variable in x ;. When enumeration is complete, the conflict clauses over x; define the pro-
jection of S onto x;. Because the search backtracks to level |J| when a satisfying solution
is found, the algorithm can be practical when J is not too large.

Suppose, for example, that we wish to project the clause set in Table 1 onto x; for
J = {1,2,3}. A branching tree appears in Fig. 1. Each branch first attempts to set x; = F
and then x; = T. Conflict clause x| V x5 is generated at the leftmost leaf node, which means
that setting x; = x5 = F results in failure, and similarly at the other infeasible leaf nodes.
When all clauses in Table 1 are satisfied at a node, the search backtracks to level |J| = 3.
Upon completion of the search, the set of conflict clauses over (x1, x», x3) is a projection
onto xy, in this case {x; V x2, x1 V x3}.

See Algorithm 1 for a more precise description of the procedure. Note that conflict
clauses are resolved on the last variable x; in the clauses when this is possible. In the exam-
ple, x1 V x5 and x» V X5 are resolved to create conflict clause x1 V x3, and x1 V x4 and x3 V X4
are resolved to yield xj V x3.

The algorithm is presented here as a branching procedure to simplify exposition, but
more efficient implementations are possible. For example, the algorithm in [18] uses an effi-
cient SAT algorithm to enumerate all solutions of the projection. It may suggest an efficient
algorithm that generates a clause set describing the projection.

Theorem 2 Algorithm 1 generates a projection of S onto x.

Proof We will show that Algorithm 1 implements a Benders method in which the
nogood Benders cuts are conflict clauses over x ;. The conflict clauses therefore define the
projection of S into x.

For any node u of the search tree, let x;(u) be the assignment to variables in x; along
the path from the root node to u. Whenever an infeasible node u# generates a conflict clause
C(u) over xy, we add C(u) to the master problem as a nogood clause. Whenever a feasible
solution is found at a node u, we may suppose that a clause C (u) excluding precisely x s (u)
is added to the master problem, because the backtracking mechanism ensures that this value
of x; will not be encountered again.

X2 <

X3 s

]
X4 / /\
/ /
'
X5 / x1Vxy X3V X4
/ x1 VX3
)

X1 VXxs X2V Xs
x1Vx

Fig. 1 Branching tree for a SAT instance. Dashed arcs indicate x; = F and solid arcs x; = T. Conflict
clauses are shown at failure nodes. Solutions are found at remaining leaf nodes, from which the search
backtracks to x3
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Algorithm 1 Given a clause set S over (xi, ..., x,), this recursive algorithm computes a
projection of S onto x; = (x, ..., xx). The parameter j of SAT is the current depth in the
search tree, and v = (vy, ..., v;) are the values to which (xi, ..., x;) have been fixed. The

returned value is k if the search is backtracking from a feasible solution to level &, and n
otherwise. The global variable N is the set of conflict clauses (nogoods) generated so far.
At termination, the clauses in N whose variables are in x; comprise a projection onto x;

Let N = 0.
SAT(1,0, S).
If x; = 1 does not violate N then SAT(1, 1, S).

Function SAT(j, v, S)
If v; = O then let S contain results of unit propagation on S U {—x;}.
Else let S contain results of unit propagation on S U {x}.
If S contains the empty clause then
Generate conflict clauses and add them to N.
Add to S all resolvents on x; of clauses in § whose last variable is x;.
Return(n).
If S fixes xq, ..., x, then return(k) (feasible solution found).
If (xj,xj41) = (v, 0) does not violate N then
Let £ = SAT(j + 1, (v, 0), S).
If j < £ then
If (x7,xj41) = (v, 1) does not violate N then
Let ¢ = SAT(j + 1, (v, 1), 5).
Return(?).

If a node u that generates C(u) is at level k or lower, then x;(«) is a solution of the
current master problem, and C(x) a nogood that excludes it. If u is above level k, then some
completion down to level k of the assignment x; () is a solution of the master problem,
because otherwise resolution of conflict clauses would have produced a conflict clause that
excludes u. In either case, u can be regarded as generating a nogood C («) that excludes a
solution of the master problem. A feasible node u gives rise to a feasible solution x of S, in
which case x; is a solution of the master problem that is excluded by C (u).

Because conflict clauses are resolved, all values of x; that have no feasible extension are
excluded by some conflict clause. This means that the tree search terminates precisely when
the master problem no longer has a solution. The search therefore implements a Benders
algorithm, and the projection of S onto x; is defined by the conflict clauses C (u). O

Other adaptations of resolution and Fourier-Motzkin elimination can be used to compute
projections for cardinality clauses [24], 0—1 linear inequalities [26], and general integer lin-
ear inequalities [48]. Polyhedral projection methods have been studied in the Al community
as well [32].

4 Consistency

Popular forms of consistency maintenance already compute projections, but viewing them
from this perspective can suggest new and possibly useful forms of consistency.
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4.1 Consistency maintenance as projection

Domain consistency is achieved by projecting the solution set onto each individual variable.
A constraint set S over x is domain consistent when for each variable x; and each value
v € Dj, the assignment x; = v is part of some assignment x = v that satisfies S. This
is equivalent to saying that {x; € D;} is a projection of § onto x;, or D; = D(S)|y}, for
j=1...,n

Achieving domain consistency for S at each node of the search tree avoids backtracking,
because it allows us to assign any value in D; to x; when branching on x; (if S is satis-
fiable) without creating an infeasible subtree. Since it is generally impractical to achieve
domain consistency for S as a whole, solvers typically maintain domain consistency (or an
approximation of it) for some individual constraints in S and propagate the reduced domains
through a domain store. This tends to reduce the search tree due to smaller domains.

Another type of consistency related to backtracking is k-consistency. It is again achieved
by projection, but not by projecting the entire constraint set. It projects only subsets of
constraints over k variables onto subsets of k — 1 variables.

A constraint set S over x is k-consistent when forevery J C {1, ...,n} with |J| = k—1,
every assignment x; = vy € D that does not violate S, and every variable x; not in xy,
there is an assignment x; = v; € D; for which (x;, x;) = (v;, v;) does not violate S. A
constraint set S is strongly k-consistent when it is £-consistent for £ =1, ..., k.

To relate k-consistency to projection, we define S; to be the set of constraints in S that
are over x;. Then x; satisfies S; if and only if x; violates no constraints in S. This implies
the following:

Lemma 2 A constraint set S over x is k-consistent if and only if Dj(S;y) =
Dyuy(Squgly forall J C {1, ... ,nywith|J| =k —landall j & J.

k-consistency is not an obvious generalization of domain consistency, because 1-
consistency is not achieved by projecting the constraint set onto individual variables.

Strong k-consistency avoids backtracking when one branches on x, . .., x, if the primal
graph of S has width less than k with respect to this ordering [17]. However, it is impractical
to maintain strong k-consistency (k > 1) for S as a whole. Furthermore, when propagation is
through a domain store as in standard solvers, there is no point in maintaining k-consistency
rather than domain consistency for individual constraints.

4.2 J-Consistency

We propose a type of consistency that is more directly related to projection and naturally
generalizes domain consistency. Let S be J-consistent when some S’ C S is a projec-
tion of S onto x;. That is, S contains constraints that describe its projection onto x;, or
D;(Sy) = D(S)|,. If we view § as containing the in-domain constraints x; € Dj, S is
domain consistent if and only if it is {j}-consistent for j = 1, ..., n.

Due to Theorem 1, resolution on variables x; for j & J achieves J-consistency for SAT.
The Benders procedure described in the previous section also achieves J-consistency, due
to Theorem 2.

As in the case of domain consistency, we focus on maintaining J-consistency for indi-
vidual constraints. If we branch on variables in the order xi, ..., x,, a natural strategy is to
project out variables in reverse order x;, x,,—1, . . . until the computational burden becomes
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excessive. We will see below that for some important global constraints, it is relatively easy
to project out some or all of the variables.

As in the case of k-consistency, there is no point in maintaining J-consistency for indi-
vidual constraints when propagation is through a domain store. However, recent research
shows that propagation through relaxed decision diagrams can be substantially more effec-
tive than domain propagation [7-9, 14, 15]. Maintaining J-consistency could have a
significant effect on propagation in this context.

For a simple example of this phenomenon, suppose S consists of the constraints

among((x1, x2), {c,d}, 1,2) 2)
(x1 =0¢)= (x2=4d) 3)
alldiff(xy,...,x4) C))

where (2) requires that at least 1 and at most 2 of the variables xi, x» take a value in
{c,d}, and (4) is an all-different constraint. The variable domains are D = D) =
{a,b,c,d}, D3 = {a, b}, and D4 = {c, d}. No domain reduction is possible for the indi-
vidual constraints, and so we must branch on all 4 values of x; at the top of the search
tree.

However, suppose we propagate through a relaxed decision diagram of width 2 rather
than a domain store (which is a decision diagram of width 1). Let’s suppose we have already
constructed a relaxed decision diagram for constraints (2) and (3), shown in Fig. 2a. The 52
paths from r to ¢ in the diagram represent assignments to (xi, ..., x4). Thirty-six of these
paths represent all of the solutions of (2)—(3), indicating that the diagram in fact represents
a relaxation of these constraints.

When branching on x1, we need only consider values that label outgoing arcs from the
root node r of the diagram. Unfortunately, all 4 values appear on these arcs. However, we
can reduce branching if we project out x3, x4 for the al1diff constraint (4). We will see
later that the resulting projection is a constraint set consisting of

alldiff(xy, xz), atmost((xy,x2),{a,b}, 1), atmost((xy, x2),{c,d}, 1)

where the constraint atmost(x, V, u) is equivalent to among(x, V, 0, u). We can propa-
gate the second atmost constraint in a downward pass through the first 2 variables of the
relaxed decision diagram of Fig. 2(a). To do so, we let the length of a path be the number
of arcs on the path with labels in {c, d}. Then we indicate, on each arc, the length of the

Fig. 2 (a) Relaxed decision

diagram for an among

constraint. Arcs with multiple X1
labels represent multiple arcs
connecting the same endpoints,
each arc with one of the labels.
The numbers are part of a
mechanism for propagating a X3
projected alldiff constraint.
(b) Decision diagram after
propagating the projected
alldiff constraint

X1 a,b,d

X2 X2

a,b,c,d

X3
a, b

X4 X4

cd

(b)
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shortest path from r ending with that arc. This allows us to delete any arc assigned a num-
ber greater than 1, and any other arcs that lie on no r— path as a result. We eliminate two
arcs, resulting in the smaller decision diagram of Fig. 2b. We therefore need only branch
on values a, b, and d. A fuller discussion of propagation through relaxed decision diagrams
can be found in [1, 9, 22].

Aside from any advantages in accelerating search, computing projections can infer valu-
able information from a constraint set. To return to the earlier example of a factory, it may be
useful to know what characteritics of a particular product are consistent with the constraint
set describing the factory. A projection yields constraints that the product must satisfy. Or
if certain variables represent key decisions that are made in the early stages of a project, it
may be important to know what options are available for these decisions. Again, projection
can answer this question.

4.3 Projection of among constraint

Projecting out variables in an among constraint [5] is quite simple because each vari-
able elimination yields another among constraint. If x = (xy,..., x,), the constraint
among(x, V, £, u) requires that at least £ and at most u of the variables in x take a value in

V. Variable x,, is projected out as follows. Let o™ = max{c, 0}.

Theorem 3 If 0 < ¢ < u < n, the projection of among(x,V,€,u) onto x =

(X1,...,xp_1) is among(x, V, ¢', u’), where
(=D u-1), ifD, CV ()
&, uy =14 (¢, min{u,n — 1}), ifD, NV =0 (b)
((¢ — DY, min{u, n — 1)), otherwise (¢)

Proof In case (a), x,, must take a value in V, which means that the upper bound « is reduced
by 1 and the lower bound £ by 1 (unless it is already 0). In case (b), x,, cannot take a value in
V, which means that the lower bound ¢ is unchanged. The upper bound u is also unchanged,
but if u = n it can be reduced by 1 since there are now only n — 1 variables. In case (c), x,
can take a value in V, which means that ¢ is modified as in case (a). However, x,, can fail to
take a value in V, which means that u is treated as in case (b). O

Variables x,,, x,—1, ..., x| are projected out sequentially by applying the theorem recur-
sively. The original constraint is feasible if and only if ¢/ < u’ after projecting out all
variables.

As an example, let x = (x1, ..., x5), let V = {c, d}, and let the domains D, ..., D5 be
{a, b}, {a, b, c}, {a, d}, {c,d}, and {d}. Then while sequentially projecting out xs, ..., xi,
the original lower bound £ becomes £’ = (£ — )F, (£ —2)T, (¢ —3)T, (£ — 4™, and
(¢ —4)™, while the upper bound u becomes u’ = u — 1, u — 2, min{u — 2, 2}, min{u —2, 1},
and min{u — 2, 0}. The constraint is feasible if and only if (£ — 4)* < min{u — 2, 0}.

4.4 Projection of sequence constraint
Fourier-Motzkin elimination provides a fast and convenient method for projecting a
sequence constraint. The constraint has an integrality property that makes a polyhedral

projection technique adequate, and Fourier-Motzkin simplifies to the point that a single
generalized sequence constraint describes the projection after each variable elimination.
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Following standard convention, we assume without loss of generality that the
sequence constraint applies to 0-1 variables xy, ..., x, [23, 46]. It enforces overlapping
constraints of the form

among((x¢—g+1, - - -» x¢), {1}, Le, Up) (5

for ¢ =gq,...,n, where Ly, Uy are nonnegative integers, and where domain D; is defined
by a;j < x; < Bj for aj, B; € {0, 1}. Note that we allow different bounds for different
positions ¢ in the sequence. The following theorem provides a recursion for eliminating
Xpyovvs X0

Theorem 4 Given any k € {0, ..., n}, the projection of the sequence constraint defined
by (5) onto (x1, ..., xx) is described by a generalized sequence constraint that enforces
constraints of the form

among((xi, ., %) A1) L4, Ui ) ©)

wherei =€ —q+1,....8fort =q,....,kandi =1,... . Lfort =1,...,q — 1. The
projection of the sequence constraint onto (xy, ..., Xx—1) is given by (6) with Lf},m
by Ut

replaced by ﬁﬁ_i 4 andU f_ where

i+1 i+
Pt { max{Lf, Li'{+k—e — U,f_e}, fori=1,....,9 —k+1¢,

=1, .
! L;, fori=q—k+L+1,...,q

(7
ot _ { min{Uf, Uf,,_, — LE_ ), fori=1,....q —k+¢,
i 1 ;o
Ui, fori=q—k+L{+1,...,q9
Proof Constraint (5) is equivalent to
¢
Lz Y x;<U ®
j=t—q+1
andx; € {0, 1} for j =€ —q +1,..., £, while (6) is equivalent to
¢
¢ ¢
Ly i1 = ij =Ui_jn )
j=i
and x; € {0, 1} for j =1i,..., £. As pointed out in [39], the constraint matrix for inequal-

ities (8) has the consecutive ones property. The inequalities therefore describe an integral
polyhedron. Imposing 0-1 bounds L; < x; < U; has no effect on integrality, so that
inequalities (8) and domain bounds describe an integral polyhedron P,. Because the pro-
jection of an integral polyhedron onto any subspace is integral, the projection Py of P,
onto (x1, ..., xx) is integral for k = 1, ..., n — 1. The projection of the feasible set of the
sequence constraint is therefore described by Py and x; € {0, 1} for j =1, ..., k.

Py_1 can be derived by applying Fourier-Motzkin elimination to Pj. To show that each
Py is described by inequalities of the form (9), note first that P, is described by inequali-
ties (8) and domain bounds, which correspond to a subset of inequalities (9). Specifically,
(L5, UL = (Lo, Up) for £ = q,...,nand (L, U{) = (ar, Be) for € = 1,...,n. The
remaining inequalities (9) can be assumed to be present with nonbinding upper and lower
bounds. Now assuming that Py is described by inequalities of form (9), a tedious but
straightforward application of Fourier-Motzkin elimination to (9) shows that inequalities of
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precisely the same form describe Py_. It follows by induction that inequalities of form (9)
describe Py for all k. Furthermore, the resulting bounds in the inequalities describing Py_
are given by (7). This proves the theorem. O

The worst-case complexity of projecting out each variable x; is O(kq). We can illustrate
the theorem with an example from [29]. Suppose we have a sequence constraint that
imposes (5) withn = 6, ¢ = 4, and Ly = Uy = 2 for each £. Variables x1, x3, x4, and
x6 have domain {0, 1}, while x, and x5 have domain {1}. There is one feasible solution,
namely x = (1, 1,0,0, 1, 1). Initially the bounds in (6) are L} = U{ = 2 for ¢ = 4,5,6,
(LY, Ufy = (0,1) for ¢ = 1,3,4,6, and (L%, U{) = (1, 1) for £ = 2,5, with all other
Lf = —oo and all other Uf = 00. Projecting out x¢ yields

among((x3, x4, x5), {1}, 1, 1)

in addition to the original among constraints and domains for variables xp, ..., xs.
Projecting out x5 yields

among((x2, x3, x4), {1}, 1, 1), among((x3, x4), {1}, 0, 0)

in addition to the original constraints on x, ... x4. The second constraint fixes x3 = x4 =
0, which makes the first constraint redundant because x; has the singleton domain {1}.
Projecting out x4 yields

among((x1), {1}, 1, 1), among((x1, x2, x3), {1}, 1, 2),
among((xz, x3), {1},0, 1), among((x3), {1}, 0, 0)

in addition to the original constraints on x1, x3, x3, where the second and third constraints
are redundant. This and the domain of x; fix (x1, x2, x3) = (1, 1, 0). Projecting out x3
similarly fixes (x1, x2) = (1, 1), and projecting out x; fixes x; = 1.

4.5 Projection of regular constraint

The regular constraint [43] can be projected onto xk = (x1, ..., xg) in a straightforward
manner by constructing and truncating the associated state transition graph. The idea is best
conveyed by illustration, such as a shift scheduling example from [29]. Suppose we wish to
assign a worker to shift a, b, or ¢ on each of 7 days. The worker must work any given shift
at least 2 and at most 3 days in a row, and the worker may not transition directly between
shifts a@ and c. In addition to these constraints, the variable domains are initially restricted to
X1, x5 € {a,c}, xo € {a, b, c}, x3, x6, x7 € {a, b}, and x4 € {b, c}. The relevant constraint
is regular(x’, A), where A is the deterministic finite automaton in Fig. 3. A regular
expression that encodes the automaton is

(((aalaaa) (bb|bbb))*|((cc|ccc)(bb|bbb))*)*(€|(aalaaa)|(cc|ccc))

The domains may be filtered by constructing the state transition graph of Fig. 4, where
the original domains D; and the filtered domains D} are as shown in the figure. Dashed arcs
lead to states that are not backward reachable from accepting states in stage 7 and therefore
can be deleted. Each D} consists of shifts on solid arcs leading states in stage j of the graph.

A projection onto x* can be obtained simply by truncating the state transition graph at
stage k4 1 and imposing the resulting graph as a constraint. Such a constraint is easily prop-
agated in a relaxed decision diagram. For example, the projection onto x> has 2 solutions,
x3 = aab and ccb, corresponding to the two feasible paths to state 7. If we rely solely on

domain filtering, x> can take any of 4 values. The worst-case complexity of projecting onto
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Fig. 3 Finite deterministic a N a
automaton for a shift scheduling 1 3 \@
problem instance. State O is the
initial state, and accepting states a a b b
are circled a
b b
0 )= 8 7
c
c ¢ b b

any x is the same as for projecting onto all x*, namely O (nm?), where m is the number of
states in the automaton.

4.6 Projection of al1diff constraint

Projection of an all-different constraint is inherently complicated but tends to sim-
plify when the domains are small. The projection onto x* = (x1, ..., x¢) takes the form of a
disjunction of constraint sets, each of which consists of an a11diff constraint and a fam-
ily of atmost constraints. Such a disjunction can be straightforwardly propagated through
a relaxed decision diagram. The number of disjuncts can grow quite large in principle, but
the disjuncts tend to simplify and/or disappear as variable elimination proceeds, particularly
if the domains are small. In practice, one can eliminate variables until the disjunction grows
too large, at which point propagating the projection is likely to have little effect in any case.
The projection onto x¥ is a disjunction of constraint sets, each of which has the form

alldiff(xk); atmost(xk, Vi,bij)fori € I; xjeDjforj=1,...,k (10)

where b; < k fori € I. When k = n there are no atmost constraints. The sets V; are
computed as defined below as projection proceeds. Since the projection of a disjunction
is the disjunction of the projected disjuncts, it suffices to project each constraint set (10)
separately and take the disjunction of the projections.

To simplify matters, we note that atmost(x¥, V;, b;) is redundant if the number of
variables in x* whose domains intersect V; is at most b;, or in particular if k£ < b;.

The projection of (10) onto x*~! consists of a disjunction of one or more constraint sets
having a form similar to (10). We first remove redundant atmost constraints from (10).

Dj = {a,c¢} {a,b,c} {a,b} {b, c} {a,c} {a, b} {a, b}
Dj = {a,c}  {a,c} {b} {v} {a} {a} {a}

Fig. 4 State transition graph for the shift scheduling problem instance
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We then consider several cases, corresponding to possible values of x;, where each case can
give rise to a constraint set.

First we consider cases in which x; takes a value in V; for some i € I. In each such
case, only b; — 1 values in V; are available for variables in x*=1 to take. So the constraint
atmost(xk, Vi, b;) becomes atmost(xk’l, Vi, b — 1).If b; — 1 = 0, then the values in
V; are forbidden, which means we can delete the atmost constraint and remove the values
in V; from all domains and all sets V;/ for i’ # i. The constraints atmost (x*, Vjr, byr) for
i’ # i become atmost(xf—1, Vir, bir), except that we omit redundant constraints.

Now we consider the case in which x; takes a value that is in none of the sets V;. Let
R = D\ UiE ; Vi be the set of x;’s domain values that lie outside these sets. If R is
empty, there is no need to consider this case. If R contains at least 2 values, then since xk
is taking a value in R, the variables in x*~! can take at most |R| — 1 values in R, and so
we impose an additional constraint atmost(x¥~!, R, |R|—1). The atmost constraints in
(10) carry over without a change in bounds. If R is a singleton {v}, then we know xj takes
the value v. This means that v is unavailable in the projection and can be removed from
domains Dy, ..., Dy_1 as well as from V; for alli € I.If a domain becomes empty, then we
create no constraint set. Otherwise we carry over the nonredundant atmost constraints in
(10). See Algorithm 2 for a precise statement of the procedure. Due to the above argument,
we have

Theorem 5 Algorithm 2 correctly computes the projection of (10) onto x*~1. Furthermore,
the projection of alldiff(x) onto x* is a disjunction P of constraint sets of the form
(10). Thus the projection of al1dif£(x) onto x*~ 1 is the disjunction of all constraint sets
generated by applying the algorithm to the disjuncts of P.

Algorithm 2 Given a projection of a11d1if£(x") onto x¥, this algorithm computes a pro-
jection onto x*~1. The projection onto x* is assumed to be a disjunction of constraint sets,
each of which has the form (10). The above algorithm is applied to each disjunct, after
which the disjunction of all created constraint sets forms the projection onto x¥~1.

Foralli € I: if atmost (xX, V;, b;) is redundant then remove i from I.
Foralli € I:
If D NV; #£ @ then
If b; > 1 then
Create a constraint set consisting of al1diff (xk 1,
atmost(x*, Vs, byy) for i’ € I\ {i}, and atmost (x*~1, V;, b; — 1).
Let R = Dy \ U;¢; Vi
If |R| > 1 then
Create a constraint set consisting of al1diff (xk 1,
atmost(x¥~1, Vi, by1) fori’ € I, and atmost (x*~!, R, |R| — 1).
Else if |R| = 1 then
Let R = {v} and remove v from D; for j = 1,...,k — 1 and from V; fori € I.
If D; is nonempty for j =1, ...,k — 1 then
Forall i’ € I:if atmost(x*~!, Vi, b;) is redundant then remove i’ from i.
Create a constraint set consisting of al 1diff(x*~1) and
atmost(x¥=1, Vi, b)) fori’ € I.
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As an example, suppose we wish to project alldiff(x’), where the domains
Dy, ..., Dsaref{a,b,c},{c,d, e}, {d, e, f},{e, f, g}, and {a, f, g}, respectively. To project
onto x*#, we note that R = {a, f, g}, which yields the constraint set

alldiff(x*), atmost(x* {a, f.g}.2) (11

When projecting (11) onto x3, we first consider the case x4 € V1 ={a, f, g}, which yields
the constraint set

alldiff(x?), atmost(x>, {a, f, g}, 1) (12)

There is one other case, in which R = {e}, which allows us to remove ¢ from the domains.
We generate the atmost constraint atmost(x3, {a, f, g}, 2), which is redundant, yielding
the constraint set

alldiff(x®), Dy, ...,D3=/{a,b,c}, {c,d}, {d, f} (13)

The projection onto x3 is the disjunction of (12) and (13).

To project (12) onto x2, we first consider the case x3 € V| = {a, f, g}, which reduces
b1 = 1 to zero. This allows us to drop the atmost constraint and remove values a, f, g
from all domains, leaving the constraint

alldiff(x?), Dy, Dy ={b,c}, {c.d, e} (14)

In the other case, we have R = {d,e}, which yields the redundant constraint
atmost(xz, {d, e}, 1). The projection onto x2 is therefore simplyalldiff (xz), and there
is no need to compute the projection of (13). Further projection onto x| has no effect on the
domain of x;.

5 Concluding remarks

Following George Boole’s lead, we have identified projection as a unifying element of opti-
mization, logical inference, and consistency maintenance. We have also begun to explore
a research program that addresses inference and constraint satisfaction problems from
the perspective of projection, particularly by achieving J-consistency. We showed how to
achieve J-consistency for propositional satisfiability, as well as for among, sequence,
regular, and alldiff constraints.

An obvious next step is to investigate the projection problem for additional global con-
straints. Even if computing the exact projection is laborious, it may be practical to derive a
partial description of the projection, much as solvers often only approximate domain con-
sistency. It is also important to find efficient procedures for propagating projections through
a relaxed decision diagram or other structure.

We have not discussed bounds consistency from the perspective of projection, but pro-
jection is clearly the essence of the matter. Bounds consistency is most naturally defined
when variable domains can be embedded in the real numbers. Then a constraint set S is
bounds consistent when the real interval spanned by the domain of each variable x; is the
projection onto x; of the convex hull of S’s satisfaction set. This suggests a natural exten-
sion of bounds consistency to an analogue of J-consistency that might be called continuous
J-consistency. It is achieved by projecting the convex hull of S’s satisfaction set onto x .

Projecting a convex hull is closely related to optimization in integer and linear program-
ming [40]. In particular, it is equivalent to finding all valid linear inequalities or cutting
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planes over a subset of variables. The identification of cutting planes is a project that has
occupied the mathematical programming community for decades. Cutting planes normally
serve a different purpose, namely to tighten the continuous relaxation of a set of integer lin-
ear inequalities, and the community is generally satisfied to find a few effective cuts, since
deriving all valid cuts is generally impractical. Yet a few cuts can partially describe the
projection as well as tighten the continuous relaxation.

In fact, cutting planes can serve both purposes in both fields. In CP, they can be propa-
gated through a linear programming relaxation of the problem, which can be effective for
bounding the objective function, as well as achieving consistency. In integer programming,
they can reduce backtracking even if a continuous relaxation is not used, by improving the
degree of consistency of the constraint set, although this phenomenon appeares not to have
been investigated.

One difference in the two fields, however, is that cutting plane theory in integer program-
ming focuses on 0—1 variables, as well as general integer variables that appear in inequality
constraints, while CP is primarily interested in finite-domain variables that appear in other
kinds of combinatorial constraints. In many cases, it is practical to reformulate a problem
with 0-1 variables for purposes of relaxation, but ideally one would generate cuts in the
original finite-domain variables. Finite-domain cuts have been derived for a few constraints,
such as alldiff systems (graph coloring) [2, 3, 10, 11, 37, 38], the circuit constraint
(which can be used to formulate the traveling salesman problem) [19], and disjunctive
scheduling [29]. Yet much remains to be done.
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