
Constraints (2015) 20:346–361
DOI 10.1007/s10601-015-9193-y

Lagrangian bounds from decision diagrams

David Bergman1 ·Andre A. Cire2 ·
Willem-Jan van Hoeve3

Published online: 21 April 2015
© Springer Science+Business Media New York 2015

Abstract Relaxed decision diagrams have recently been used in constraint programming
to improve constraint propagation and optimization reasoning. In most applications, how-
ever, a decision diagram is compiled with respect to a single combinatorial structure. We
propose to expand this representation by incorporating additional constraints in the decision
diagram via a Lagrangian relaxation. With this generic approach we can obtain stronger
bounds from the same decision diagram, while the associated cost-based filtering allows
for further refining the relaxation. Experimental results on the traveling salesman prob-
lem with time windows show that the improved Lagrangian bounds can drastically reduce
solution times.

Keywords Decision diagrams · Lagrangian relaxation · Constraint propagation

� Willem-Jan van Hoeve
vanhoeve@andrew.cmu.edu

David Bergman
david.bergman@business.uconn.edu

Andre A. Cire
acire@utsc.utoronto.ca

1 School of Business, University of Connecticut, One University Place, Stamford, CT 06901, USA

2 Department of Management, University of Toronto Scarborough, 1265 Military Trail, Toronto,
ON M1C-1A4, Canada

3 Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh,
PA 15213, USA

mailto:vanhoeve@andrew.cmu.edu
mailto:david.bergman@business.uconn.edu
mailto:acire@utsc.utoronto.ca

Constraints (2015) 20:346–361 347

1 Introduction

Decision diagrams are compact graphical representations of Boolean functions, originally
introduced for applications in circuit design, and widely studied and applied in computer
science [1, 12, 21]. More recently, multivalued decision diagrams (MDDs) have been
utilized to represent the solution set of discrete optimization problems [3, 4, 16]. In order
to address the (typically) exponentially sized representation that the exact diagram yields,
Andersen et al. [2] introduced relaxed decision diagrams of a given maximum size.
Constraint propagation based on relaxed decision diagrams can be much stronger than con-
ventional domain propagation and has been shown to lead to orders of magnitude search
space (and time) reduction [7, 13, 18]. Relaxed MDDs have also been studied for obtaining
optimization bounds, both for stand-alone discrete optimization problems [8, 9, 11] and in
the context of constraint programming [13].

In the context of constraint programming, one typically associates a decision dia-
gram with a specific global constraint that is defined on a subset of variables (its
scope). The decision diagram is then (usually) compiled with respect to the combina-
torial structure represented by that global constraint. Other constraints that operate on
the same variables, or a subset of them, can then be used to subsequently refine and
filter the decision diagram. Additionally, if the objective function is defined on the
same set of variables, we can use the relaxed decision diagram to obtain an objec-
tive function bound, as well as apply cost-based filtering to further refine the decision
diagram.

Even when MDD-based constraint propagation reduces the search space, the opti-
mization bound may not be majorly impacted by the associated filtering due to
other constraints. This paper aims towards enhancing the inference from other con-
straints directly into the objective function evaluation of the MDD via a Lagrangian
relaxation method. This allows for obtaining stronger bounds than the original relax-
ation, which can in turn help to refine the MDD, and ultimately reduce the search
space.

Lagrangian relaxations have previously been incorporated in the context of con-
straint propagation; Benoist et al. [5] and Khemmoudj et al. [20] provide one of
the earliest examples. In almost all cases, however, a Lagrangian relaxation is intro-
duced for a specific global constraint or for a specific problem. The aim of the
present study is to provide a generic framework that utilizes the structure of a decision
diagram.

The remainder of the paper is organized as follows. First, in Section 2, a brief background
on Lagrangian relaxations is provided followed in Section 3 by necessary background on
MDD relaxations. Section 4 describes how Lagrangian relaxations can be incorporated in
MDD relaxations. An experimental evaluation is presented in Section 5, with a conclusion
in Section 6.

2 Preliminaries

Notation. Let x = (x1, . . . , xn) be a set of n decision variables having finite domains
D(x1), . . . , D(xn), respectively, withD = D(x1)×D(x2)×· · ·×D(xn). Given an objective
function f : D → R, a discrete optimization problem P = (f, S, x,D) is a problem of the
form {min f (x) : x ∈ S ∩ D}. The goal is to find an assignment of values from D to the
variables x within a feasible region S that minimizes the objective f . We assume throughout

348 Constraints (2015) 20:346–361

this paper that there is always at least one feasible solution (S ∩D �= ∅). The feasible region
S is traditionally described implicitly by a set of constraints, as in Problem (1):

min 5x1 + 7x2 + 10x3
s.t. alldifferent(x1, x2, x3) (1)

7x1 + 5x2 + 4x3 ≤ 51

x1 + x2 ≤ 6

x1, x2, x3 ∈ {1, 3, 6}.
The keyword alldifferent is a high-level constraint which enforces variables

x1, x2, x3 to be pairwise distinct, and appears in many constraint programming models
[24]. The problem above will be used as a running example throughout this paper. It has
an optimal solution value of 82 attained by the feasible assignment (optimal solution)
x = (3, 1, 6).

Relaxations. Generic solution methods for discrete optimization problems, such as math-
ematical programming and constraint programming, typically rely on relaxations. A
relaxation for P is an alternative optimization problem PR = (fR, SR, x, DR), usually eas-
ier to solve than P , where ∀j, D(xj) ⊆ DR(xj), and any solution x that is feasible to P
is also feasible to PR (i.e. S ⊆ SR) and satisfies fR(x) ≤ f (x). Relaxations are useful for
a variety of purposes in optimization models [19], most often for providing bounds on the
optimal value. Such bounds can be used both for certifying the quality of a feasible solution,
and for reducing the search space in enumerative solution procedures such as branch-and-
bound and backtracking search. For instance, a relaxation to Problem (1) may be the linear
program

min 5x1 + 7x2 + 10x3

s.t.
3∑

i=1

yij = 1, j = 1, 2, 3

3∑

j=1

yij = 1, i = 1, 2, 3

xi = 1yi1 + 3yi2 + 6yi3, i = 1, 2, 3 (2)

7x1 + 5x2 + 4x3 ≤ 51

x1 + x2 ≤ 6

1 ≤ x1, x2, x3 ≤ 6

0 ≤ yij ≤ 1, i, j = 1, 2, 3

obtained by representing the convex hull of the alldifferent constraint in linear form
[19]. This linear program can be solved much more efficiently than the original problem
and has an optimal value of 77, which in turn is a lower bound on the optimal solution value
of Problem (1).

Relaxations also have other uses in optimization besides providing optimization bounds.
In particular, solution methods in constraint programming are fundamentally based on a
relaxation of the original problem, the constraint store. A constraint store accumulates
inference from each individual constraint processing, thereby encoding a global structure
of the problem that can be shared among constraints. In practice the constraint store is
the domain store, which is defined by the Cartesian product of variable domains (and

Constraints (2015) 20:346–361 349

hence solutions in this relaxation are represented explicitely). Each constraint receives the
current set of variable domains and inference (or constraint propagation) is carried out
in the form of domain reductions. For instance, in Problem (1) the initial domain store
is D(x1) × D(x2) × D(x3) = {1, 3, 6}3. Propagation on the constraint x1 + x2 ≤ 6
results in the domain inference x1, x2 �= 6, which yields a new set of tighter domains
D′(x1) × D′(x2) × D(x3) = {1, 3}2 × {1, 3, 6}. These domains are then passed as input
to other constraints, which will process them in turn until a fixed point is reached. The
lower bound on the objective function from the domain store relaxation at this point is 22,
obtained by assigning 1 to all variables, although more filtering may be possible. If the
alldifferent is then processed and eliminates 1 and 2 from the domain of x3, the bound
becomes 72 by assigning 1 to both x1 and x2, and assigning 6 to x3.

Lagrangian relaxations. Another well-known relaxation for discrete optimization prob-
lems in operations research is the Lagrangian relaxation. Lagrangian relaxations were
originally introduced for discrete optimization problems P with S described at least par-
tially by inequality constraints, i.e. P = {min f (x) : gi(x) ≤ 0, i = 1, . . . , m, x ∈ S′ ∩D}.
The Lagrangian relaxation of P results from moving the inequality constraints to the
objective, associating each with a non-negative penalty or Lagrange multiplier λi . For any
λ = (λ1, . . . , λm) ≥ 0, the Lagrangian relaxation of P is

LP (λ) =
{
min f (x) +

m∑

i=1

λig
i(x) : x ∈ S′ ∩ D

}

It follows that LP is a relaxation of P : the feasible region of LP contains that of P (as
LP has fewer constraints) and, for any feasible x ∈ S,

f (x) +
∑

i

λi · gi(x) ≤ f (x)

since gi(x) ≤ 0 and λi ≥ 0 for all i = 1, . . . , m.
Different values of λ yield distinct relaxations. The problem L∗ of finding the tightest

Lagrangian relaxation, i.e.
L∗ = max

λ≥0
LP (λ),

is denoted by the Lagrangian dual. A number of methods exist for solving the Lagrangian
dual, all of which exploit the fact that maxλ≥0 LP (λ) is a piecewise concave function on
λ [14]. Examples include subgradient optimization, cutting-plane algorithms, and bundle
methods (the interested reader is referred to a survey of techniques [22]). These methods are
iterative, in that consecutive problems LP (λ0),LP (λ1),LP (λ2), . . . are solved until the
sequence λ0, λ1, λ2, . . . converges to a local or global optimal solution to the Lagrangian
dual. It is often the case that many iterations may be necessary for convergence, and hence
it is typically necessary that each LP (λi) can be solved in a computationally efficient way.

Lagrangian relaxations have frequently been used to decompose models for which some
of the constraints are “easy” and others are “hard”. As an illustration, a possible Lagrangian
relaxation to Problem (1) is

min 5x1 + 7x2 + 10x3 + λ1(7x1 + 5x2 + 4x3 − 51) + λ2(x1 + x2 − 6)

s.t. alldifferent(x1, x2, x3) (3)

x1, x2, x3 ∈ {1, 3, 6}
which corresponds to the well-studied matching problem and can be solved efficiently by
a number of methods [23]. The optimal bound obtained from Problem (3), after solving

350 Constraints (2015) 20:346–361

the Lagrangian dual, is 77 for λ1 = 1 and λ2 = 2. This is the same value obtained from
the linear programming relaxation (2), a result which is theoretically expected [14]: If the
relaxed inequality constraints define a linear system Ax ≤ b, then

L∗ = {min f (x) : Ax ≤ b, x ∈ conv(S′ ∩ D)} (4)

where conv(X) is the convex hull of a set X. In our example, the convex hull of the
alldifferent constraint in Problem (3) is represented exactly in the linear program,
and thus the Lagrangian bound matches that of a linear relaxation.

Recently, Lagrangian methods have been generalized to optimization models described
by highly structured languages [15], such as in constraint programming and local search
formulations. In that case, the semantics of each constraint is exploited in order to reveal the
degree to which a solution satisfies or violates the constraint. For simplicity, in this paper we
focus on problems that can be described, at least partially, by inequality constraints noting
that many concepts presented here have a natural extension to the more general setting [15].

3 Relaxed multivalued decision diagrams.

A multivalued decision diagram (MDD) M for a discrete optimization problem P is a
directed acyclic multigraph whose paths encode a set of solutions toP . Given the n variables
of the problem with domains D(x1), . . . , D(xn), the nodes ofM are partitioned into n + 1
layers L1, . . . , Ln+1, where L1 and Ln+1 are defined by single nodes: the root node r
and the terminal t, respectively. Each arc a in M is directed from a node in a layer Lj

to the consecutive layer Lj+1 for some j which is specified by layer(a), and has a label
val(a) ∈ D(xj) that represents a value to be assigned to variable xj . An arc-specified
path p = (a1, a2, . . . , an) from r to t thereby encodes the solution xp = (x1, . . . , xn) =
(val(a1), val(a2), . . . , val(an)).

The set of solutions encoded by the paths of an MDD M is denoted by Sol(M). In the
context of optimization, each arc a of M can be associated with a cost c(a). The cost of a
path p = (a1, . . . , an) is given by c(p) = ∑n

i=1 c(ai). We denote the function c(·) by the
MDD cost structure.

The diagrams in Fig. 1 are examples of MDDs that encode solutions for Problem
(1). Each arc a has two values associated with it - the first is val(a) and the second, in
parentheses, is c(a).

An MDDM represents a relaxation for P = (f, S, x) ifM underapproximates P ; that
is, S ∩ D ⊆ Sol(M) and c(p) ≤ f (xp) for any path p in M for which xp is feasible to
P , i.e. xp ∈ S ∩ D. MDDs satisfying these conditions are called relaxed MDDs. From this
definition, a lower bound on the optimal value ofP is minp∈M c(p), which can be obtained
in a straightforward way by computing a shortest path from r to t with respect to the costs
c(a) on arcs. Figure 1a depicts a relaxed MDD for Problem (1), where its shortest path value
yields a lower bound of 77 (solution (1, 6, 3)). Notice that this bound is also the same as the
one obtained from Problems (2) and (3), although this need not be the case in general.

A relaxed MDD for a problem P can be compiled either by a top-down algorithm [9]
or by an incremental refinement method [17]. The MDD in Fig. 1a was constructed via an
incremental refinement algorithm [13]. Compilation techniques rely on a recursive formu-
lation of the problem (such as a dynamic programming model) which do not require a linear
inequality-based description of the constraints. MDD relaxations are obtained by limiting
the width of the diagram, i.e. the maximum number of nodes in any layer, according to some
input parameter W . For example, in Fig. 1a we have W = 2. Larger values for W allow for

Constraints (2015) 20:346–361 351

Fig. 1 Relaxed MDD for Problem (1). For each arc a, the number immediately next to a represent the label
val(a) and the number in parenthesis, the cost c(a)

a more accurate representation of the problem and, in general, tighter optimization bounds,
though at a higher computational construction cost, in terms of both time and memory. Opti-
mization bounds from relaxed MDDs were studied in problems such as set covering [11],
maximum independent set [9], and maximum cut [6].

Notice that MDDs, similar to domain store relaxations, are an extensional solution encod-
ing of an optimization problem, in that solution values are represented explicitly as opposed
to an implicit representation given by other models, for example IP models. Recent work
in constraint programming has exploited this property by using relaxed MDDs either as a
constraint store or to encode solutions for groups of highly-structured constraints, which
may improve the global knowledge about the problem and lead to significant speed ups in
search. Applications include systems of alldifferent constraints [2], scheduling, [13],
and timetabling constraints [6].

4 Lagrangian bounds from MDDs

The underlying concept of the technique presented in this paper is to apply Lagrangian
methods to strengthen relaxed MDDs. This strengthening will be reflected both in terms
of the optimization bounds provided by the MDD and in the set of solutions encoded by
the diagram. Penalties are associated with the constraints that are violated by the solutions
of an MDD, which are in turn incorporated into the MDD’s cost structure. The general
properties of a relaxed MDD are maintained, readily allowing for the application of the
techniques described in this paper with previous work that makes use of this data structure
(e.g., [6, 9, 13]).

Let P = (f, S, x,D) be a discrete optimization problem and M a relaxed MDD for P .
Let gi(x) = ∑n

j=1 gi
j (xj), i = 1, . . . , m be a set ofm additively separable functions, a class

352 Constraints (2015) 20:346–361

that includes, for example, linear functions. Assume that gi(x) ≤ 0, i = 1, . . . , m, for any
feasible x ∈ S ∩ D, but some (or all) of the constraints above may be violated by solutions
in Sol(M) that are encoded inM. Our results are based on the following Theorem.

Theorem 1 For any arc a with label val(a) originating from layer �(a) and any λ =
(λ1, λ2, . . . , λm) ≥ 0, let

cλ(a) = c(a) +
m∑

i=1

λig
i
�(a)(val(a)). (5)

ThenM with redefined costs cλ is also a relaxed MDD:

∀λ ≥ 0,∀p ∈ M : cλ(p) ≤ f (xp). (6)

Additionally, the optimal Lagrangian dual on M never yields a bound worse than the one
obtained from the original cost structure:

min
p∈M c(p) ≤ max

λ≥0
min
p∈M cλ(p) ≤ min

x∈S∩D
f (x). (7)

Proof 1 To show (6), let x ∈ S ∩ D be a feasible solution to P and take any λ ≥ 0. Since
the graphical structure of the MDDM was not modified, there exists an arc-specified path
p = (a1, . . . , an) from the root r to the terminal t such that xp = (val(a1), . . . , val(an)) =
x. Then

cλ(p) =
n∑

j=1

cλ(ai) =
n∑

j=1

(
c(ai) +

m∑

i=1

λig
i
j (val(aj))

)

=
n∑

i=1

c(ai) +
m∑

i=1

λi

⎛

⎝
n∑

j=1

gi
j (val(ai))

⎞

⎠

= c(p) +
m∑

i=1

λig
i(x)

≤ f (xp) (8)

since c(p) ≤ f (xp) by the definition ofM and
∑m

i=1 λig
i(x) ≤ 0.

To show (7), let λ0 = (0, . . . , 0) and notice that

min
p∈M c(p) = min

p∈M cλ0(p) ≤ max
λ≥0

min
p∈M cλ(p).

Finally, let p∗ be the path inM that encodes an optimal solution ofP and λ∗ the optimal
Lagrange multipliers. By inequality (6),

max
λ≥0

min
p∈M cλ(p) = min

p∈M cλ∗(p) ≤ cλ∗(p∗) ≤ f (xp∗) = min
x∈S∩D

f (x),

as desired, completing the proof of the inequalities in (7).

According to Theorem 1, we can incorporate any λ ≥ 0 into the cost structure of M
following rule (5) and the resulting MDD will also be relaxed and may provide a stronger
bound than the one obtained with the original costs. Any set of inequalities which are valid
for P can be incorporated into a relaxed MDDM this way.

Constraints (2015) 20:346–361 353

Example. Take Problem (1) again and the relaxed MDD M from Fig. 1a. Consider the
following inequality constraints and their associated Lagrange multipliers λ1 and λ2:

7x1 + 5x2 + 4x3 ≤ 51 (λ1) and x1 + x2 ≤ 6 (λ2)

Using relation (5) from Theorem 1, the arc costs in layer L1 should take into account the
penalties λ1 and λ2 over the constraint coefficients that have x1 in their scope. In particular,
for the first layer we will take into account the constants related to the right-hand sides of
the inequalities. Thus, for each arc a emanating from L1, the arc costs should be replaced
by val(a) × (5+7λ1+λ2)−51λ1−6λ2. Analogously, arc costs in layers L2 and L3 should
be replaced by val(a) × (7+5λ1+λ2) and val(a) × (10+4λ1), respectively. For instance,
λ1 = 0 and λ2 = 1.5 give rise to the relaxed MDD depicted in Fig. 1b. The shortest path
value is now 78.5 (solution (1, 6, 3)), tighter than the bounds provided by (2) and (3). The
optimal λ, obtained using a subgradient algorithm, is λ∗ = (0, 1.6667) which yields a lower
bound of 78.6667. Notice it is stronger than the bound provided by the linear program (2),
which was 77. Some insights about the quality of the bound are provided in Section 4.2.

4.1 Cost-based filtering with Lagrangian bounds

Given P = (f, S, x,D), let U∗ be an upper bound on the optimal objective value which
is identified through a primal heuristic or any other mechanism. MDD cost-based fil-
tering consists of removing arcs encoding only suboptimal solutions, i.e. all arcs a for
which c(p) > U∗ for any path p from r to t that traverses a, since then f (xp) ≥
c(p) > U∗ for such paths. All arcs satisfying this property can be identified in lin-
ear time in the size of the MDD by computing the shortest path from r to any node
and from t to any node, which can be done within a single top-down and bottom-up
pass, respectively. MDD cost-based filtering reduces the size of the MDD, which in turn
could be further refined to strengthen the relaxation through incremental refinement algo-
rithms [17]. Having a more accurate relaxed MDD is paramount in branch-and-bound
procedures [6] and when enhancing inference in MDD-based constraint programming
methods [7, 13].

The Lagrangian cost structure cλ could be directly used for cost-based MDD filter-
ing as well: If cλ(p) > U∗ for all paths p crossing an arc a in M, then the arc
a can be removed since, by Theorem 1, f (xp) ≥ cλ(p) > U∗. The advantage in
this case is that cλ(p) > c(p) may hold for some of the paths p, thereby increas-
ing the number of arcs filtered. For instance, notice in Fig. 1a that the single path
going through arc (u3, t) has a value of 77, while in Fig. 1b that path has a value
of 78.5.

We note that the penalties maximizing the Lagrangian dual over a relaxed MDD
will still be optimal after cost-based filtering, since the shortest path will not be
excluded. Nonetheless, it might be necessary to recompute the optimal Lagrangian
dual if the shortest path is perturbed due to incremental refinement or branching, for
example.

4.2 Strength of bounds for the linear case

If the objective function and the dualized constraints are all linear, we can obtain insights
on the relative strength of the MDD Lagrangian bound in comparison to other linear
and/or Lagrangian relaxations of the problem. In this case, the cost structure of a relaxed

354 Constraints (2015) 20:346–361

MDD often directly represents the contribution of each variable assignment to the objec-
tive function (see for example [9, 10]). Namely, if the objective f is given by f (x) =
d1x1+· · ·+dnxn, where d1, . . . , dn are scalars, then the cost structure c(a) = d�(a)×val(a)

for all arcs a in M always yields a valid MDD relaxation, as long as Sol(M) contains all
feasible solutions to the problem. Note also that c(p) = f (xp) for any path p from r to t in
the MDD.

To state our result, consider an MDD M and let shortpath poly(M) be the
shortest path polytope of M [4]. The shortest path polytope of M is a linear program
that models a shortest path problem from r to t defined over the graphical structure
of M, considering the MDD arc costs directly as transition costs. It has been intro-
duced for cut generation and for enhancing branching in the context of mathematical
programming [4].

Given M, the shortpath poly(M) is formally described in (9). Let A and U be
the set of arcs and nodes, respectively, in M, with Aj denoting the set of arcs emanat-
ing from nodes in layer j . Additionally, let δ+(u) = {a : a = (u, v) for some v ∈
Llayer(u)+1} and δ−(u) = {a : a = (v, u) for some v ∈ Llayer(u)−1}. The
shortpath poly(M) can be perceived as a network model that assigns a variable
fa to each a ∈ A, ensures that the number of units entering the root and exiting
the terminal both equals 1, requires that the number of units directed into any other
node equals the number of units directed out of a node, and associates the value xj

as a linear combination of the units on the arcs in layer Lj , scaled by the associated
val(.) labels.

∑

a∈δ+(r)

fa = 1

∑

a∈δ−(t)

fa = 1

∑

a∈δ+(u)

fa −
∑

a∈δ−(u)

fa = 0, u ∈
n⋃

j=2

Lj (9)

xj =
∑

u∈Lj

∑

a∈δ+(u)

val(a)fa, j = 1, . . . , n

0 ≤ fa ≤ 1, a ∈ A

Theorem 2 Let P = (f, S, x, D) be a discrete optimization problem with a linear
objective function f and let M be a relaxed MDD with cost structure c(·) directly
encoding f . Assume the linear system Ax ≤ b must hold for all x ∈ S ∩ D. If we
associate penalties λ with the inequalities Ax ≤ b and obtain cλ according to (5),
then

max
λ≥0

min
p∈M cλ(p) =

⎧
⎨

⎩

min f (x)

s.t. Ax ≤ b

x ∈ shortpath poly(M)

⎫
⎬

⎭ .

and the optimal duals associated with the constraints Ax ≤ b of the right-hand side linear
program correspond to λ values that maximize the MDD Lagrangian dual.

Constraints (2015) 20:346–361 355

Proof 2 We have:

max
λ≥0

min
p∈M cλ(p) = max

λ≥0

{
min c(p) + λ(Axp − b)

p ∈ M

}
[by (8)]

= max
λ≥0

{
min f (x) + λ(Ax − b)

x ∈ Sol(M)

}
[since c(p) = f (xp)]

= max
λ≥0

{
min f (x) + λ(Ax − b)

x ∈ shortpath poly(M)

}
[By Behle[4]]

=
⎧
⎨

⎩

min f (x)

s.t. Ax ≤ b

x ∈ shortpath poly(M)

⎫
⎬

⎭ ,

where the last equality follows from strong Lagrangian duality for linear programs (see,
e.g., Hooker [19]).

Also from strong Lagrangian duality, the duals associated with the constraints Ax ≤ b of
the last linear program define an optimal solution to the previous program, maxλ≥0{f (x) +
λ(Ax − b) : x ∈ shortpath poly(M)}. By Behle [4], the extreme points of the projec-
tion of shortpath poly(M) over the variables x (which are encoded byM) correspond
exactly to Sol(M). Thus, for any λ ≥ 0,

{
min f (x) + λ(Ax − b)

x ∈ shortpath poly(M)

}
=

{
min f (x) + λ(Ax − b)

x ∈ Sol(M)

}

Hence, since there is an one-to-one correspondence between the paths p ∈ M and the
set Sol(M), the optimal duals for Ax ≤ b in the last linear program also define an optimal
set of λ for the MDD Lagrangian dual problem.

Thus, the optimal Lagrangian bound can be equivalently obtained by “linearizing” the
MDD through a minimum-cost network flow formulation, adding the dualized constraints
back, and solving the linear program with the original objective function. The quality of
the bound in comparison to other linear programming relaxations therefore depends on
whether shortpath poly(M) is tighter than the alternative linear formulation of the
other constraints of the problem (when projecting onto the same variable space). Indeed,
this was the case for relaxation (2) and the MDD bound in Section 4: The relaxed MDD
from Fig. 1a was built considering the combinatorial structure of all constraints of P . In
particular, alldifferent(x1, x2, x3) and 7x1 + 5x2 + 4x3 ≤ 51 are already satisfied by
all paths inM, which explains why the MDD Lagrangian bound was strictly better than the
one from relaxation (2).

This property could be particularly exploited in the context of constraint programming.
Research in relaxed MDDs has focused on encoding groups of highly structured con-
straints, such as a system of alldifferent constraints [2], clique constraints [9], and
the sequence constraint [7]. The corresponding relaxed MDDs often provided a stronger
bound than strengthened linear programming relaxations of these problems, due in part to
the fact that the linear programming relaxations do not capture the combinatorial nature of
the constraints as well as the relaxed MDDs do.

Some final observations are in order. We note that an equivalent lower bound of 78.6667
or better for Problem (1) could be obtained by incorporating the constraint 7x1+5x2+4x3 ≤
51 into the Lagrangian subproblem of the relaxation (3), though the resulting subproblem is
not necessarily polynomially solvable (while the complexity of the MDD approach depends
on the input maximum width). In addition, we observed in computational experiments that
solving the Lagrangian dual to optimality was often much faster than solving the linear

356 Constraints (2015) 20:346–361

program with shortpath poly(M) and the added dualized constraints. This is due to
the fact that optimizing a linear function over an MDD is equivalent to a shortest path
computation in a directed acyclic graph, which takes time linear in the size of the MDD.

5 Computational experiments

We embedded the Lagrangian techniques Section 4 in the MDD-based sequencing con-
straint presented in Cire and van Hoeve [13]. That work introduced a propagation
mechanism for disjunctive scheduling based on MDDs, which was incorporated into the
state-of-the-art constraint-based scheduler ILOG CP Optimizer as a new disjunctive global
constraint. The MDD is used both as a means for providing optimization bounds and for
inference, in particular by deducing precedence relations between tasks. It was shown that
MDD-based propagation for disjunctive scheduling can greatly improve the time to solve
single-machine problems to optimality (by several orders of magnitude in many cases) [13].

The goal of this section is to provide a case study analyzing the performance of these
techniques when the MDDs are augmented with the Lagrangian methods presented in
Section 4. All tests were performed with ILOG CP Optimizer 12.6 on an Intel Xeon E5346
with 32GB of RAM. The CP Optimizer parameters were modified to consider a time-limit
of 1 hour, one thread, depth-first search with default variable/value ordering, and extended
filtering. The source code has been made available for download.1

As a test problem we selected the traveling salesman problem with time windows
(TSPTW): Given n cities with travel times tij given between each pair of cities i, j , the
problem asks for the tour through all cities in which each city i is visited within a time
window [ri , di] and the total time is minimized. The TSPTW was formulated as the follow-
ing constraint programming model in ILOG CP Optimizer (some specific solver constructs
were simplified for clarity):

min z

s.t. noOverlap({s1, . . . , sn} | {tij : ∀i, j}) (10)

z =
n∑

i=1

ti,next(si) (11)

si : intervalVar(ri , di), i = 1, . . . , n (12)

disjunctiveMDD({s1, . . . , sn}, {x1, . . . , xn}, z | {tij : ∀i, j},W) (13)

alldifferent(x1, . . . , xn) (14)

x1, . . . , xn ∈ {1, . . . , n} (15)

In the model above, constraints (10) to (12) represent the typical CP Optimizer TSPTW
formulation, while constraints (13) to (15) add the special MDD constraints. The model
relies on interval variables si , each representing the time a city i is visited. The global
constraint (10) enforces that cities are visited in sequence, and constraint (11) models the
objective function using the sum of element constraints ti,next(si). In particular, next(si) is
a CP Optimizer construct that evaluates to the index of the city immediately succeeding city
si in the sequence defined by noOverlap. The constraint (12) defines the interval variables
and enforces cities to be visited within their specified time window. The disjunctive MDD

1http://www.andrew.cmu.edu/user/vanhoeve/mdd/

http://www.andrew.cmu.edu/user/vanhoeve/mdd/

Constraints (2015) 20:346–361 357

Fig. 2 Example of a relaxed MDD for a TSPTW instance

global constraint (13) is semantically equivalent to a noOverlap, but also receives as input
the objective variable z, the maximum allowed width W , and variables x, where each xi

represents the i-th city to be visited in the sequence. Constraint (14) is redundant and added
to enhance propagation and constraints (15) define the domain of variables x.

The disjunctiveMDD maintains a relaxed MDD of maximum width W defined over
variables x. Each layer Li is associated with variable xi , i = 1, . . . , n, and hence an arc
at layer Li assigns the i-th city to be visited. An example of a relaxed MDD for a 3-city
TSPTW instance is presented in Fig. 2, with an optimal tour of value 10 given by the
sequence (2, 3, 1). The MDD is compiled and filtered according to the same procedure in
the previous study [13]. In particular, let δ−(u) be the set of incoming arcs at a node u and
let src(a) be the source node of an arc a. The lower bound on the total travel time in the
relaxed MDD is given by mina∈δ−(t) V (a), where

V (a) =
{
0, if src(a) = r,
mina′∈δ−(src(a)),a′ �=a(V (a′) + tval(a′),val(a)), otherwise.

In Fig. 2, the lower bound on the total travel time is 8, given by the sequence (2, 3, 2).
Bounds on the objective function and the projection of the arcs onto the domains of vari-
ables x are passed to CP Optimizer. In addition, the relaxed MDD is also used to deduce
precedence relations that are communicated directly to the solver precedence graph. For
instance, one can deduce from the relaxed MDD in Fig. 2 that city 1 can never be the first
in the sequence.

Similar to the example above, often the shortest path in a relaxed MDD violates the con-
straint that each city must be visited exactly once. This happens since the width required
to represent an alldifferent constraint over the x space is O(2n) [13]. In our MDD
Lagrangian scheme we will penalize the violation of this constraint by associating a
Lagrange multiplier λi to the condition

∑n
j=1(xj = i) = 1 for each i = 1, . . . , n. Notice

that λ is not restricted in sign in this case. In view of rule (5) from Theorem 1, the new lower

358 Constraints (2015) 20:346–361

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

W
ith

 L
ag

ra
ng

e
m

ul
tip

lie
rs

Without Lagrange multipliers

Scatter plot of optimality gap at the root node

Fig. 3 Scatter plot comparing the optimality gaps with and without the Lagrangian

bound can be computed as mina∈δ−(t) Vλ(a), where

Vλ(a) =
{

λval(a) − ∑n
i=1 λi, if src(a) = r,

λval(a) + mina′∈δ−(src(a)),a′ �=a(V (a′) + tval(a′),val(a)), otherwise.

The case src(a) = r accounts for the constant 1 in the right-hand side of each equality.
Also, since the dualized constraints are equalities, paths that do not violate the tour con-
straint will have the same cost as the original objective function. For example, in Fig. 2 the
shortest path for λ1 = −3, λ2 = 2, and λ3 = 0 is (2, 3, 1) with a value of 10, which proves
its optimality.

The computational experiments reported here consider the same 230 TSPTW
instances that were tested in Cire and van Hoeve [13] (the sets Dumas and
GendreauDumasExtended). We evaluate two versions: the original code [13] and one
where the cost structure of the relaxed MDD M was modified only once at the root node
of the backtrack search tree, and re-used throughout the search. The optimal Lagrange mul-
tipliers were computed using the Kelly-Cheney-Goldstein method [22]. This is an iterative
cutting-plane approach where existing multipliers are accumulated in a “bundle” and the
next iterate is obtained from a linear program formed from the elements of this bundle (in
this case solved using ILOG CPLEX 12.6). Although this technique typically has a slow
convergence rate, the technique does not require any parameter settings which is ideal for
computational evaluation. Finally, the width of the relaxed MDD was fixed to 128.

Figure 3 compares the optimality gap of the MDD relaxation with and without the
Lagrangian at the root node of the backtracking tree for all tested instances. The optimality
gap here is computed as 100 ∗ (b − r)/b, where r is the bound at the root node and b is
the best solution found for that instance by either of the methods within the time limit. This
figure shows that the optimality gaps can improve substantially when Lagrangian multipli-
ers are incorporated for this problem class, which are up to 7 times better than the bounds
obtained originally.

The difference in the obtained bounds has a significant impact on total solution times as
well. Figure 4 depicts performance plots, comparing the number of solved instances versus
time (in seconds in log-scale). Figure 5 shows a scatter plot, where for each instance the

Constraints (2015) 20:346–361 359

 0

 50

 100

 150

 200

 0.01 0.1 1 10 100 1000 10000

N
um

be
r

of
 in

st
an

ce
s

so
lv

ed

Time (seconds)

Number of instances solved versus time

without Lagrangian
with Lagrangian

number of instances

Fig. 4 Performance plot comparing the MDD relaxation with and without the Lagrangian. Times are on a
log-log scale

time to solve with and without the Lagrangian method is reported (again in seconds in log-
scale); instances below the diagonal are solved faster using the Lagrangian method. For the
easier instances almost no performance gains are realized, but as the solution time for the
instance grows the enhanced model utilizing Lagrange multipliers prevails. In particular,
adding the Lagrangian relaxation allows for 203 of the instances to be solved as opposed to
the previous number of 170, within the 1 hour time limit.

Figure 6 depicts, for each instance, how much time the Lagrangian scheme spent on
solving the Lagrangian dual using the Kelly-Cheney-Goldstein method (black area) and the
total solution time (gray area). Instances are sorted in descending order of total solution
times, and points for which the total time was less than one second were discarded. In gen-
eral, the impact on the Lagrangian dual on the total time varies, though in many instances

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

W
ith

 L
ag

ra
ng

e
m

ul
tip

lie
rs

Without Lagrange multipliers

Scatter plot of times to solve instances (all instances)

Fig. 5 Scatter plot comparing the MDD relaxation with and without the Lagrangian. Times are on a log-log
scale

360 Constraints (2015) 20:346–361

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 10 100

T
im

e
(s

ec
on

ds
)

Instance

Composition of Time

Total Time
Time in Lagrangian Dual

Fig. 6 Time composition of the Lagrangian method

with large times it dominated total solution time, as can be verified in Fig. 6. We note that
in many cases for which the Lagrangian relaxation increased the solving time, the relatively
long solving time of Kelly-Cheney-Goldstein method was the cause. We expect that a dif-
ferent (subgradient) optimization method may yield better results in those cases. However,
even using the slow to converge Kelly-Cheney-Goldstein method can have a substantially
positive effect on the overall solution time.

6 Conclusion

In this paper we introduced a generic approach for improving bounds from relaxed decision
diagrams by representing the impact of side constraints via a Lagrangian relaxation. This
allows for improving optimization reasoning in the context of constraint programming with
decision diagrams. The experimental evaluation on a standard benchmark set of the TSP
with time windows has demonstrated that incorporating Lagrangian methods to decision
diagram-based optimization can lead to substantial savings in computation time.

References

1. Akers, S.B. (1978). Binary decision diagrams. IEEE Transactions on Computers, C-27, 509–516.
2. Andersen, H.R., Hadzic, T., Hooker, J.N., & Tiedemann, P. (2007). A constraint store based on multival-

ued decision diagrams. In Proceedings of the 13th international conference on Principles and practice
of constraint programming (pp. 118–132). Springer-Verlag, Berlin, Heidelberg.

3. Becker, B., Behle, M., Eisenbrand, F., & Wimmer, R. (2005). BDDs in a branch and cut framework.
In Nikoletseas, S. (Ed.), Experimental and efficient algorithms, proceedings of the 4th international
workshop on Efficient and experimental algorithms (WEA 05). Lecture Notes in Computer Science (Vol.
3503, pp. 452–463). Springer.

4. Behle, M. (2007). Binary decision diagrams and integer programming. Ph.D. thesis, Max Planck
Institute for Computer Science.

5. Benoist, T., Laburthe, F., & Rottembourg, B. (2001). Lagrange relaxation and constraint programming
collaborative schemes for travelling tournament problems. In Proceedings of the 3rd international work-
shop on Integration of AI and OR techniques in constraint programming for combinatorial optimization
problems (CPAIOR).

Constraints (2015) 20:346–361 361

6. Bergman, D. (2013). New techniques for discrete optimization. Ph.D. thesis, Tepper School of Business,
Carnegie mellon university.

7. Bergman, D., Cire, A.A., & van Hoeve, W.J. (2014). Mdd propagation for sequence constraints. Journal
of Artificial Intelligence Research (JAIR), 50, 697–722.

8. Bergman, D., Cire, A.A., van Hoeve, W.J., & Hooker, J.N. (2012). Variable ordering for the application
of bdds to the maximum independent set problem. In Proceedings of the 9th international conference on
integration of AI and OR techniques in Constraint programming for combinatorial optimization problems
(pp. 34–49). Springer-Verlag, Berlin, Heidelberg.

9. Bergman, D., Cire, A.A., van Hoeve, W.J., & Hooker, J.N. (2014). Optimization bounds from binary
decision diagrams. INFORMS Journal on Computing, 26(2), 253–268.

10. Bergman, D., Cire, A., van Hoeve, W.J., & Yunes, T. (2014). Bdd-based heuristics for binary optimiza-
tion. Journal of Heuristics, 20(2), 211–234.

11. Bergman, D., van Hoeve, W.J., & Hooker, J. (2011). Manipulating MDD relaxations for combinatorial
optimization. In T. Achterberg & J. Beck (Eds.), Integration of AI and OR techniques in constraint
programming for combinatorial optimization problems, Lecture notes in computer science (Vol. 6697,
pp. 20–35). Springer Berlin / Heidelberg.

12. Bryant, R.E. (1986). Graph-based algorithms for boolean function manipulation. IEEE Transactions on
Computers, C-35, 677–691.

13. Cire, A.A., & van Hoeve, W.J. (2013). Multivalued decision diagrams for sequencing problems.
Operations Research, 61(6), 1411–1428.

14. Fisher, M.L. (2004). The lagrangian relaxation method for solving integer programming problems.
Management Science, 50(12), 1861–1871. Supplement.

15. Fontaine, D., Michel, L., & Van Hentenryck, P. (2014). Constraint-based lagrangian relaxation. In B.
O’Sullivan (Ed.), Principles and practice of constraint programming, Lecture notes in computer science
(Vol. 8656, pp. 324–339). Springer International Publishing.

16. Hadzic, T., & Hooker, J. (2006). Postoptimality analysis for integer programming using binary decision
diagrams. Tech. rep., Carnegie Mellon University.

17. Hadzic, T., Hooker, J.N., O’Sullivan, B., & Tiedemann, P. (2008). Approximate compilation of con-
straints into multivalued decision diagrams. In Proceedings of the 14th international conference on
principles and practice of constraint programming (pp. 448–462). Springer-Verlag, Berlin.

18. Hoda, S., van Hoeve, W.J., & Hooker, J.N. (2010). A systematic approach to MDD-based constraint
programming. In Proceedings of constraint programming (Vol. 6308, pp. 266–280). LNCS, Springer.

19. Hooker, J.N. (2012). Integrated methods for optimization (International Series in Operations Research
& Management Science), 2nd Edn. Inc., Secaucus, Springer-Verlag New York.

20. Khemmoudj, M., Bennaceur, H., & Nagih, A. (2005). Combining arc-consistency and dual lagrangean
relaxation for filtering csps. In R. Barták & M. Milano (Eds.), Integration of AI and OR techniques in
Constraint programming for combinatorial optimization problems, Lecture notes in computer science
(Vol. 3524, pp. 258–272). Springer Berlin Heidelberg.

21. Lee, C.Y. (1959). Representation of switching circuits by binary-decision programs. Bell Systems
Technical Journal, 38, 985–999.

22. Lemaréchal, C. (2001). Lagrangian relaxation. In M. Jünger & D. Naddef (Eds.), Computational com-
binatorial optimization, Lecture notes in computer science (Vol. 2241, pp. 112–156). Springer Berlin
Heidelberg.

23. Papadimitriou, C.H., & Steiglitz, K. (1982). Combinatorial optimization: algorithms and complexity.
Prentice-Hall, Inc., Upper Saddle River.

24. Rossi, F., van Beek, P., & Walsh, T. (eds.) (2006). Handbook of constraint programming. Elsevier.

	Lagrangian bounds from decision diagrams
	Abstract
	Introduction
	Preliminaries
	Notation.
	Relaxations.
	Lagrangian relaxations.

	Relaxed multivalued decision diagrams.
	Lagrangian bounds from MDDs
	Example.
	Cost-based filtering with Lagrangian bounds
	Strength of bounds for the linear case

	Computational experiments
	Conclusion
	References

