
Constraints (2015) 20:304–324
DOI 10.1007/s10601-015-9192-z

A hybrid exact method for a scheduling problem
with a continuous resource and energy constraints

Margaux Nattaf1,2 ·Christian Artigues1,3 ·
Pierre Lopez1,3

Published online: 22 April 2015
© Springer Science+Business Media New York 2015

Abstract This paper addresses a scheduling problem with a cumulative continuous
resource and energy constraints. Given a set of non-preemptive tasks, each task requires
a continuously-divisible resource. The instantaneous resource usage of a task is limited
by a minimum and maximum resource requirement. Its processing has to lie within a
time-window and the total energy received obtained by integrating a function fi of the
instantaneous resource usage over the processing interval must reach a required value
(where fi is a non-decreasing, continuous function). The problem is to find a feasible sched-
ule of the tasks, which satisfies all the constraints. This problem, which is a generalization
of the well-known cumulative scheduling problem, is NP-complete. For the case where all
functions fi are linear, we exhibit structural properties of the feasible solutions and we
present a Mixed Integer Linear Program (MILP) based on an event-based formulation. We
also adapt the famous “left-shift/right-shift” satisfiability test (energetic reasoning) and the
associated time-window adjustments to our problem. To achieve this test, we present three
different ways for computing the relevant intervals. Finally, we present a hybrid branch-
and-bound method to solve the problem, which performs, at each node, the satisfiability test
and time-window adjustments and, when the domains of all start and end times are small
enough, the remaining solution space is searched via the event-based MILP.

� Christian Artigues
artigues@laas.fr

Margaux Nattaf
mnattaf@laas.fr

Pierre Lopez
lopez@laas.fr

1 CNRS, LAAS, 7 avenue du colonel Roche, 31400 Toulouse, France

2 Université de Toulouse, UPS, 31400 Toulouse, France

3 Université de Toulouse, LAAS, 31400 Toulouse, France

mailto:artigues@laas.fr
mailto:mnattaf@laas.fr
mailto:lopez@laas.fr

Constraints (2015) 20:304–324 305

Keywords Continuous scheduling · Energy constraints · Energetic reasoning · Branching
scheme · Mixed integer programming

1 Introduction

The Continuous Energy-Constrained Scheduling Problem (CECSP) is a generalization of
the well-known Cumulative Scheduling Problem (CuSP). In CuSP, given a resource with a
limited capacity and a set of tasks each one having a release date, a due date, a duration and
a resource requirement, we want to schedule all tasks in their time windows and without
exceeding the capacity limit of the resource.

One of the main limitations of CuSP is that task durations and resource requirements
do not vary over time. However, in many practical cases these variations are part of the
problem.

A practical example where the task duration and resource requirement are not fixed is
presented in [1]. In this paper, a foundry application is presented where a metal is melted
in induction furnaces. The electrical power of the furnaces, which can be adjusted at any
time to avoid exceeding a maximum prescribed power limit, can be seen as a continuous
function of time to be determined. However the function must lie within a limit; thus, a
minimum and a maximum power level must be satisfied for the melting operation. Addi-
tionally, the melting operation can be stopped once the necessary energy has been received,
depending of the selected power function, so the duration of this operation is not known
in advance. Moreover, if we increase the power of an electrical furnace to accelerate melt-
ing operations, the energy received by the operation is not identical to the electrical energy
consumed but is linked to it via a function. Efficiency functions should then be considered
for the furnaces. However, the paper did not consider them. Finally, due to the complexity
of the problem, the solution method proposed in [1] considers a time discretization, which
can lead to suboptimal or infeasible solutions by over-constraining the problem, as shown
below in Section 3.

In the literature, several scheduling problem involving controllable time-varying resource
requirements of the tasks can be found [12, 13, 18] but none of them encompasses
all the characteristics of the problem we consider in this paper. For the scheduling
problem with malleable tasks [5], the task duration depends on the number of pro-
cessors allocating to it. Another problem with this property is the scheduling problem
with continuous resources [4], although in this case there is no task time-windows.
The Resource-Constrained Project Scheduling Problem (RCPSP) with work-content con-
straint [10] also has this property as a work quantity needs to be received by each task
but the resource requirement of a task can only be changed at discrete time periods.
Some variants of the CuSP have been proposed to relax the constraint of constant or
fixed resource requirement. Baptiste et al. [3] propose two such relaxations: the fully
and the partially elastic case. But, in both cases, no fixed energy requirement is set for
the tasks.

To tackle this issue, we model the scheduling problem with a continuously-divisible
resource thus, now, the resource-usage profile of a task can take any shape bounded
by a time-window and a minimum and maximum resource requirement, provided that a
fixed amount of energy is received by the task. This problem, called CECSP (Continuous
Energy-Constrained Scheduling Problem), has been introduced by Artigues et al. in [2] who
considered the particular case in which the resource consumed by a task is equal to the

306 Constraints (2015) 20:304–324

energy received by it (identity function). We consider a more general case where the energy
is expressed as a linear function of the resource consumed.

For CuSP and CECSP with identity functions, a polynomial satisfiability test called
“left-shift/right-shift” exists [2, 3]. This test is based on the so-called energetic reason-
ing. One of the goals of this paper is to adapt this satisfiability test and the corresponding
time-window adjustments to our problem, extending the work done in [17]. We also pro-
vide an adaptation of the new way of computing relevant intervals that was proposed
for CuSP in [9].

Another goal of this paper is to present a solution method for our problem. We present
two methods, one consisting in solving an event-based MILP inspired by the existing one
for RCPSP [14] and the RCPSP with flexible resource profiles [15, 16]. The second method
is a hybrid branch-and-bound algorithm, using the branching scheme of Carlier et al. [8], the
“left-shift/right-shift” test and the corresponding time-window adjustments and the event-
based MILP.

In Section 2, we describe the problem. Section 3 is dedicated to the event-based MILP.
Section 4 presents the adaptation of the “left-shift/right-shift” test and Section 5 shows how
we compute relevant intervals for this test. In Section 6, we describe the hybrid branch-
and-bound algorithm and in Section 7 we present some computational results showing the
interest of our approach.

2 Problem statement and properties

In the considered scheduling problem with a continuous resource and energy constraints
(CECSP), we are given as input a set A = {1, . . . , n} of tasks and a cumulative, continuous
and renewable resource with limited capacity B. During its execution, a task uses a variable
amount of this resource which has to lie between a minimum and a maximum requirement,
bmin
i and bmax

i , respectively. A task finishes when a required amount of energy Wi has
been received by it. To compute this energy we use a non-decreasing power processing
rate function fi which is continuous in [bmin

i , bmax
i] with a special behavior at point zero,

i.e. f (0) = 0. This function allows us to convert the resource quantity used by i in an
energy quantity. Furthermore, each task needs to be performed in its time-window [ri , di].
All the following results can be adapted to the case where tasks are preemptive but, for
ease of notation, in this paper, we only consider the non-preemptive case, i.e. bmin

i �= 0.
These notations, their corresponding domains and the main notations used in this paper are
summarized in Appendix (see Table 3).

Finding a feasible solution is equivalent to finding, for each i ∈ A, a start time sti , a
finish time f ti and for every t ∈ [sti , f ti] the amount bi(t) of resource allocated to task i

at time t . These three quantities have to satisfy the following constraints:

ri ≤ sti ≤ f ti ≤ di ∀i ∈ A (1)

bmin
i ≤ bi(t) ≤ bmax

i ∀i ∈ A and t ∈ [sti , f ti] (2)

bi(t) = 0 ∀i ∈ A and t �∈ [sti , f ti] (3)∫ f ti

sti

fi(bi(t))dt = Wi ∀i ∈ A (4)

∑
i∈A

bi(t) ≤ B t ∈ [0,Dmax] (5)

with Dmax = maxi∈A di (by translation, we can always assume that mini∈A ri = 0).

Constraints (2015) 20:304–324 307

Fig. 1 An example of instance and corresponding solution of CECSP

This problem is NP-complete by simple reduction from the well-known Cumulative
Scheduling Problem (CuSP). In this problem, given a set of n tasks and a discrete, cumula-
tive and renewable resource available in quantity B ′, the goal is to find a feasible schedule
of the tasks where each task consumes a fixed amount of resource b′

i , has a duration p′
i and

has to lie in its time-window [r ′
i , d

′
i].

The reduction from CuSP to CECSP is as follows. Let I ′ be an instance of CuSP. We
construct an instance I of CECSP in the following way: bmin

i and bmax
i are set to b′

i , ∀i ∈
A, fi is the identity function, Wi is set to p′

ib
′
i and all other data remain unchanged (ri = r ′

i ,
di = d ′

i and B = B ′). Trivially, I is feasible if and only if I ′ is feasible. Therefore, the
CECSP is NP-complete.

In this paper, we consider the case where all functions fi are linear, i.e. of the form
aib + ci with ai > 0 and ci ≥ 0. We restricted the study to positive coefficients ai and ci

in order to avoid case where fi(b) = 0 when b ∈ [bmin
i , bmax

i]. We start by presenting an
example of an instance of CECSP and one corresponding solution (see Fig. 1).

In the example of Fig. 1, we can see that, the energy received by task 2 is equal to
(2 × 3 + 1) + (2 × 4 + 1) + (2 × 4 + 1) = 25 which is not equal to the amount of resource
consumed (11 in this case).

Now, we present a property of the CECSP, which will be helpful for solving it. Actually,
we prove that if a solution S exists, then another solution S′ can be created from S with the
property that each function bi(t) is piecewise constant. This is the statement of the following
theorem:

Theorem 1 Let I be a feasible instance of CECSP, with linear functions fi , ∀i ∈ A. A
solution such that, for all i ∈ A, bi(t) is piecewise constant, exists. Furthermore, ∀i ∈ A

the only breakpoints of bi(t) can be restricted to the start and end times of the tasks.

Proof Let S be a feasible solution of I and let (tq){q=1..Q} be the increasing series of
distinct start time and end time values (Q ≤ 2n). We construct a new solution S′ in the
following way: ∀i ∈ A, we set st ′i and f t ′i to sti and f ti respectively, and ∀q ∈ {1, . . . , Q−
1} we set, ∀t ∈ [tq , tq + 1], b′

i (t) to
∫ tq+1
tq

bi (t)dt

tq+1−tq
= b′

iq .

As S is a feasible solution, S′ clearly satisfies constraints (1) and (3). First, we prove
that S′ satisfies constraint (4). In order to do so, we prove that ∀q ∈ {1, . . . ,Q − 1} and
∀i ∈ A,z

∫ tq+1
tq

fi(bi(t))dt = ∫ tq+1
tq

fi(b
′
iq)dt .

As we have:

∫ tq+1
tq

fi(b
′
iq)dt = ∫ tq+1

tq
(aib

′
iq + ci)dt

= ai(tq+1 − tq)

∫ tq+1
tq

bi (t)dt

tq+1−tq
+ ci(tq+1 − tq)

= ∫ tq+1
tq

fi(bi(t))dt

308 Constraints (2015) 20:304–324

S′ satisfies constraint (4).
We can prove that S′ also satisfies constraints (2) and (5) in a similar way.

Notice that this theorem may be no longer valid when the CECSP constraints are used in
a larger model, for example, if allocation functions bi(t) are involved in other constraints.

An interesting corollary of Theorem 1 is as follows:

Corollary 1 For fixed (sti , f ti)i∈A the satisfiability of CECSP can be checked polynomially
in function of n.

Indeed, for each interval [sti , f tj] or [f tj , sti] (at most 2n), we have to decide how
much resource we give to tasks w.r.t (1)–(5). This problem can easily be modeled by a linear
program.

Another interesting remark can be made about Theorem 1. Indeed, in order to find a
solution to CECSP, we only have to find, for each task, its start time sti , its finish time
f ti and the quantity of resource allocated to i between two consecutive start/end time. This
allows us to model this problem with a Mixed Integer Linear Program.

3 Mixed integer program

In this section, we present an event-based MILP for solving CECSP. We choose this repre-
sentation instead of a time-indexed one for the following reason: we can build an instance,
with integer data and identity functions fi , having only non-integer solutions (see Fig. 2).
Note that we could scale the input in order to get back to integer start and end times. How-
ever this might lead to an instance with a very large time horizon and then to a prohibitive
number of variables for a time-indexed model.

Furthermore, it might not be possible to do the same scaling in order to have integer
bi(t). In this case, any solver/model used to solve correctly this problem would need to be
able to handle continuous variables in the context of a cumulative constraint.

Our formulation is inspired by the start/end event-based formulation for the RCPSP [14].
In this formulation, the events correspond to the start and end times of tasks and are repre-
sented by continuous variables te. Let E = {1, . . . , 2n} be the index set of these events. A
decision variable xie (resp. yie) is equal to 1 if task i starts (resp. ends) at event e. In addi-
tion, we define two new variables Bie and Wie, which stand for the quantity of resource
(resp. energy) received by task i during interval [te, te+1]. Since there are 2n events, this
model has 8n2 variables. This yields the following formulation:

max
∑
i∈A

∑
e∈E

Wie (6)

te ≤ te+1∀e ∈ E (7)

Fig. 2 Counter-example for integer data

Constraints (2015) 20:304–324 309

∑
e∈E

xie = 1 ∀i ∈ A (8)

∑
e∈E

yie = 1 ∀i ∈ A (9)

xieri ≤ te ∀i ∈ A ; ∀e ∈ E (10)

te ≤ xies
max
i + (1 − xie)Dmax ∀i ∈ A ; ∀e ∈ E (11)

te ≥ yiee
min
i ∀i ∈ A ; ∀e ∈ E (12)

diyie + (1 − yie)Dmax ≥ te ∀i ∈ A ; ∀e ∈ E (13)∑
i∈A

Bie ≤ B(te+1 − te) ∀e ∈ E (14)

td ≥ te + (xie + yid − 1)Wi/fi(b
max
i) ∀i ∈A ; ∀(e, d) ∈ E ; d >e (15)

Wie ≤ aiBie + ci(te+1 − te) ∀i ∈ A ; ∀e ∈ E (16)

Wie ≤ M(

e∑
e′=0

xie′ −
e∑

e′=0

yie′) ∀i ∈ A ; ∀e ∈ E (17)

∑
e∈E

Wie = Wi ∀i ∈ A (18)

Bie ≥ bmin
i (te+1 − te) − M(1 −

e∑
e′=0

xie′ +
e∑

e′=0

yie′) ∀i ∈ A ; ∀e ∈ E (19)

Bie ≤ bmax
i (te+1 − te) ∀i ∈ A ; ∀e ∈ E (20)

(

e∑
e′=0

xie′ −
e∑

e′=0

yie′)Wi − Bie ≥ 0 ∀i ∈ A ; ∀e ∈ E (21)

te ≥ 0 ∀e ∈ E (22)

Bie ≥ 0 ∀i ∈ A ; ∀e ∈ E (23)

Wie ≥ 0 ∀i ∈ A ; ∀e ∈ E (24)

xie ∈ {0, 1}, yie ∈ {0, 1} ∀i ∈ A ; ∀e ∈ E (25)

where M is some large enough constant, smax
i = di − Wi/fi(b

max
i) (resp. emin

i = ri +
Wi/fi(b

max
i)) is the latest start (resp. earliest end) time of task i and Dmax = maxi∈A di .

In order to provide better understanding of the model, we want to point out the fact that,
if task i is in process at event e, then

∑e
f =0(xif − yif) = 1 and 0 otherwise. We now

described the constraints of the model. Constraints (7)–(15) are classical constraints of an
event-based MILP model for a cumulative constraint. Constraints (16)–(18) combined with
objective function (6) guarantee that the required energy is available for the tasks. Indeed,
constraints (17) set Wie to 0 if the task is not in process and constraints (16) combined with
the objective function ensure resource conversion. Constraints (19) (resp. (20)) impose that,
during its execution, a task satisfies its minimum (resp. maximum) resource requirement.
Constraints (21) set the resource consumption of task i to 0 if the task is not in process.
Indeed, in this case, constraints become Bie ≤ 0.

We have presented an event-based MILP solving the CECSP. Experimental results are
described in Section 7. The rest of the paper is dedicated to the hybrid branch-and-bound.
We start by presenting the checking and filtering algorithms which will be used in the main
algorithm.

310 Constraints (2015) 20:304–324

4 Energetic reasoning based satisfiability test

4.1 Mandatory consumption

In this section, we present a polynomial satisfiability test for CECSP. This test is based on
the famous “left-shift/right-shift” test for the Cumulative Scheduling Problem [3] and use
the so-called energetic reasoning [11].

Before explaining how this reasoning yields a polynomial satisfiability test for our prob-
lem, we exhibit an elementary necessary condition to check whether all task data are
consistent. This condition can be expressed as follows: if there exists a task i such that
fi(b

max
i)(di − ri) < Wi then the instance is infeasible.

Indeed, as fi(b) is a non-decreasing linear function, execute a task i at its maximum
requirement during interval [ri , di] gives the maximum possible energy. Therefore, if Wi is
greater than this quantity, then we cannot have a solution for the instance.

In order to present our satisfiability test, we define two quantities: the minimum resource
consumption (resp. minimum energy requirement) of a task i over an interval [t1, t2],
b(i, t1, t2) (resp. w(i, t1, t2)). These quantities are expressed by the following equations:

b(i, t1, t2) = min
S

∫ t2

t1

bi(t)dt S = {bi(t)|bi(t) satisfies (1) − (4)} (26)

w(i, t1, t2) = min
S

∫ t2

t1

1NZ(t)fi(bi(t))dt (27)

where 1NZ(t) :=
{

1 if t ∈ NZ := {t |bi(t) �= 0}
0 otherwise

These two values are used to compute the slack of the interval [t1, t2] defined by
SL(t1, t2) = B(t2 − t1)−∑

i∈A b(i, t1, t2). With these definitions, we are now able to define
a necessary condition for CECSP to have a solution:

Theorem 2 Let I be an instance of CECSP. If there exists (t1, t2) ∈ R
2, with t1 < t2, such

that SL(t1, t2) < 0 then I is an infeasible instance of CECSP.

Proof By contradiction, suppose the condition is satisfied for some (t1, t2). Since,
b(i, t1, t2) is the minimum resource consumption of i over [t1, t2], for any feasible solution,
we have

∫ t2
t1

bi(t) ≥ b(i, t1, t2).

It implies
∑

i∈A

∫ t2
t1

bi(t) ≥ ∑
i∈A b(i, t1, t2) > B(t2 − t1), and this is a contradiction

with the integration of (5) on [t1, t2].

An example of this theorem is described by Fig. 3 in which the available quantity of
resource is equal to B(t2 − t1) = 3(6 − 1) = 15 and the sum of all resource mandatory

Fig. 3 Illustration of Theorem 2

Constraints (2015) 20:304–324 311

consumptions is equal to 18. So, SL(t1, t2) = −3 < 0 and the instance is infeasible. The
method used for computing the mandatory consumption of a task is described after the
example.

In order to have a complete polynomial satisfiability test, we have to prove that the slack
function can be computed in a polynomial time and that it is sufficient to perform the test
on a polynomial number of intervals.

To compute the slack function in polynomial time, we have analyzed the possible config-
urations of minimum resource consumption. First, since fi(b) is a non-decreasing function,
we can observe that, given an interval [t1, t2], the minimum consumption always corre-
sponds to a configuration where task i is either left-shifted (the task starts at ri and is
scheduled at bmax

i between ri and t1) or right-shifted (the task ends at di and is scheduled at
bmax
i between t2 and di) or both (both-shifted).

We will denote by ω+
i (t1, t2) (resp. ω−

i (t1, t2) and ωi(t1, t2)) the minimum energy
requirement of task i inside [t1, t2] if the task is left-shifted (resp. right-shifted or
both-shifted). We have:

– ω+
i (t1, t2) = max(0,Wi − max(0, t1 − ri)fi(b

max
i))

– ω−
i (t1, t2) = max(0,Wi − max(0, di − t2)fi(b

max
i))

– ωi(t1, t2) = max(fi(b
min
i)(t2 − t1),Wi − fi(b

max
i)(max(0, t1 − ri) + max(0, di − t2)))

Therefore, the minimum energy requirement in [t1, t2] is:

w(i, t1, t2) = min(ω+
i (t1, t2), ω

−
i (t1, t2), ωi(t1, t2)) (28)

We still have to compute the minimum required resource consumption. For this, let J

be the interval over which task i has to receive an energy quantity w(i, t1, t2), i.e. J =
[t1, t2] ∩ [ri , di]. We have two cases to consider :

– the remaining interval is sufficiently large to schedule the task at its minimum
requirement, i.e. |J | ≥ w(i,t1,t2)

fi (b
min
i)

, and then b(i, t1, t2) = bmin
i

w(i,t1,t2)

fi (b
min
i)

– the remaining interval is not large enough to schedule the task at its minimum
requirement and finding b(i, t1, t2) is equivalent to solving:

minimize
∫
J

bi(t)dt

subject to
∫
J

fi(bi(t))dt ≥ w(i, t1, t2)

The constraint can be written as: ai

∫
J

bi(t)dt + ci

∫
J

dt ≥ w(i, t1, t2), which is
equivalent to

∫
J

bi(t)dt ≥ 1
ai

(w(i, t1, t2) − |J |ci).

Then, since there is only one constraint, the minimum value of
∫
J

bi(t)dt =
b(i, t1, t2) = 1

ai
(w(i, t1, t2) − |J |ci).

The expression of the minimum resource consumption of i inside [t1, t2] is:

b(i, t1, t2) = max(bmin
i

w(i, t1, t2)

fi(b
min
i)

,
1

ai

(w(i, t1, t2) − |J |ci)) (29)

We show that we can compute the slack function in polynomial time. To have a complete
polynomial satisfiability test, we have to prove that it is sufficient to perform the test on a
polynomial number of intervals and that we can compute them in polynomial time. Since
the same intervals are used to perform the time-window adjustments, we start by presenting
them and after that, in Section 5, we will describe the interval computation method.

312 Constraints (2015) 20:304–324

4.2 Time-window adjustments

In this section, we describe some time-adjustments that can be deduced from the
satisfiability test. These adjustments are an adaptation of the adjustments of Baptiste et al.
[3].

We start by defining some notations. We denote by β+
i (t1, t2) (resp. β−

i (t1, t2) and
βi(t1, t2)) the minimal resource consumption corresponding to ω+

i (t1, t2) (resp. ω−
i (t1, t2)

or ωi(t1, t2)).

We have β+
i (t1, t2) = max(bmin

i

ω+
i (t1,t2)

fi (b
min
i)

, 1
ai

(ω+
i (t1, t2)− ci |J |)) and similar expressions

for β−
i (t1, t2) and βi(t1, t2).

Now, we are able to describe our time-window adjustments. Given a task i and an interval
[t1, t2] the goal is to decide whether i can end before t2.

Lemma 1 If there exists [t1, t2] such that:∑
j∈A
i �=j

b(j, t1, t2) + min(β+
i (t1, t2), βi(t1, t2)) > B(t2 − t1)

then, we have:

emin
i ≥ t2 + 1

bmax
i

(
∑
j∈A
i �=j

b(j, t1, t2) + min(β+
i (t1, t2), βi(t1, t2)) − B(t2 − t1)) (30)

Indeed,
∑

j∈A;i �=j b(j, t1, t2) + min(β+
i (t1, t2), βi(t1, t2)) is the total minimum

resource consumption in [t1, t2] when i is left-shifted. Therefore, if this quantity is
greater than the quantity of available resource then a part of i must be scheduled
after t2.

Furthermore,
∑

j∈A;i �=j b(j, t1, t2)+min(β+
i (t1, t2), βi(t1, t2))−B(t2−t1) is the amount

of resource that has to be allocate to i after t2. Hence, we can divide this number by bmax
i to

obtain a valid lower bound of the end time of i.
Similarly, if bmin

i �= 0 then, when:
∑
j∈A
i �=j

b(j, t1, t2) + min(β+
i (t1, t2), βi(t1, t2)) > B(t2 − t1)

then, we have:

ri ≥ t2 − 1

bmin
i

(B(t2 − t1) −
∑
j∈A
i �=j

b(j, t1, t2)) (31)

We perform these adjustments on the intervals on which we perform the satisfiability
test1 (see Algorithm 1). These intervals are described in Section 5.

Example 1 Consider the following instance:

1Note that we did not prove that these intervals are sufficient to perform all the relevant adjustments.

Constraints (2015) 20:304–324 313

On interval [1, 4], we have:

– b(i, t1, t2)[1][1][4] = min(12 − 5 × 1, 3, 12 − 5 × 2) = 2 (right-shifted)
– b(i, t1, t2)[2][1][4] = min(12 − 5 × 1, 7, 12) = 7 (left-shifted)
– b(i, t1, t2)[3][1][4] = min(6, 6, 6) = 6 (both-shifted)
– B(t2 − t1) = 5(4 − 1) = 15

Considering task 1, the quantity of resource available for 1 in [1, 4] is 15 − (15 − 2) =
15 − 13 = 2. If task 1 starts before t1, we need either β+

1 (1, 4) = 7 (the task is left-shifted)
or β1(1, 4) = 3 (the task is both-shifted) units of resource available in [1, 4]. So, since the
task is non-preemptive, i.e. bmin

i �= 0, task 1 cannot start before t1. Furthermore, since only
2 units of resource are available in [1, 4], ri can be set to t2 − 2/bmin

i = 4 − 2/1 = 2.

We have presented the time adjustments we performed in the hybrid branch-and-bound
procedure. Now, we prove that the time needed to apply the satisfiability test on an instance
is polynomial by proving it is sufficient to do the test only on a quadratic number of intervals
[t1, t2].

314 Constraints (2015) 20:304–324

4.3 Complexity

The following theorem establishes the polynomiality of the test by proving that the number
of relevant intervals is quadratic.

Theorem 3 ([2]) The energetic reasoning (Theorem 2) needs only to be applied on a
quadratic number of intervals.

Proof Since the slack function is the difference of one linear function B(t2 − t1) and a
sum of two-dimensional piecewise linear functions, it is a two-dimensional piecewise lin-
ear function. Therefore, its minimum is reached on an extreme point of one of the convex
polygons on which it is linear. As the break line segments of the slack function are the same
as the ones of the sum of the individual minimum consumption functions, an extreme point
of the slack function is the intersection of two break line segments of an individual task
minimum consumption.

Thus, we only have to perform the satisfiability test on the intervals corresponding to
these intersection points and, since for each task there is a constant number of break line
segments, there is at most O(n2) such points.

For each intersection point, the slack function is computed in O(n). So, the satisfiability
test needs also O(n) time and, since the test is performed on a quadratic number of intervals,
the total time complexity is O(n3) with a naive enumeration algorithm. In the following
section, we described three different methods for computing these intervals.

5 Computing relevant intervals

We now present three ways for computing these intervals. The first and second ones are
based on an analysis of the break line segments of the individual task minimum consumption
functions, as done in [2]. The first one computes the intersection points in a naive way and
the second uses a sweep line algorithm to compute them. The last one is an adaptation of
the work of Derrien et al. [9]. It is based on an analysis of the partial derivatives of the slack
function.

In our work, we have considered the following cases:

1. bmin
i = bmax

i

2. 0 < bmin
i < bmax

i

(a) Wi ≤ (di − ri)fi(b
min
i)

(b) Wi ≥ (di − ri)fi(b
min
i)

Since all cases are treated in a similar way, we only describe our results for case (22b).

5.1 Task break line segment analysis

In this section, we perform an analysis of the task break line segments. Indeed, we know
that an extreme point of the slack function, i.e. a point for which it can be minimal, is
at the intersection of two break line segments of an individual task minimum consump-
tion. So, we are interested in finding, for each task, a list of these break line segments.

Constraints (2015) 20:304–324 315

Once these lists are computed, we only have to test intersection of each pair of break
line segments.

First, we have to analyse the expression of w(i, t1, t2) depending on the value of
(t1, t2). This analysis has already been done in [2]. So, we just summarize these results
in Fig. 4 before doing the analysis for function b(i, t1, t2). The left part of the fig-
ure corresponds to the case where emin

i ≤ smax
i and the right part to the case where

emin
i ≥ smax

i .
In the red polygon, w(i, t1, t2) = Wi . In both green ones w(i, t1, t2) = Wi −

(di − t2)fi(b
max
i). In blue ones w(i, t1, t2) = Wi − (t1 − ri)fi(b

max
i). In the white one

w(i, t1, t2) = Wi − (di − t2 + t1 − ri)fi(b
max
i). And, in the yellow one w(i, t1, t2) =

(t2 − t1)fi(b
min
i). All the other areas correspond to w(i, t1, t2) = 0.

For ease of notation, we define the following set of points:

– C = (ri , di), F = (emin
i , smax

i), G = (smax
i , smax

i) and G′ = (emin
i , emin

i)

– I = (ri ,
difi (b

max
i)−rifi (b

min
i)−Wi

fi (b
max
i)−fi (b

min
i)

), I ′ = (
rifi (b

max
i)−difi (b

min
i)+Wi

fi (b
max
i)−fi (b

min
i)

, di)

– H = (
ri (fi (b

max
i)−fi (b

min
i))−difi (b

min
i)+Wi

fi (b
max
i)−2fi (b

min
i)

,
di (fi (b

max
i)−fi (b

min
i))−rifi (b

min
i)−Wi

fi (b
max
i)−2fi (b

min
i)

)

These points correspond to the intersection of two segments delimiting two areas
with different expressions of w(i, t1, t2). For example, H is the intersection point of line
Wi − (di − t2)fi(b

max
i) = (t2 − t1)fi(b

min
i) and line Wi − (t1 − ri)fi(b

max
i) = (t2 −

t1)fi(b
min
i).

To perform the same analysis to function b(i, t1, t2), we have to consider, for each poly-
gon, the following inequality: w(i, t1, t2) ≤ fi(b

min
i)|J |, i.e. knowing whether the interval

J = [ri , di] ∩ [t1, t2] is large enough to execute i at bmin
i .

So, in the blue polygon, we consider this inequality:

Wi − (t1 − ri)fi(b
max
i) ≤ fi(b

min
i)|J |

Fig. 4 Break line analysis

316 Constraints (2015) 20:304–324

Since, the blue area is delimited by equation t1 = ri , we only have to consider two cases:
t2 ≥ di and t2 ≤ di . In both cases, the inequality becomes

t1 ≥ Wi + rifi(b
max
i) − t2fi(b

min
i)

fi(b
max
i) − fi(b

min
i)

In the case where t2 ≥ di , replacing t2 by di gives us the ordinate of point I ′ and, in the other
case, the inequality corresponds to the equation of either the segment I ′H (emin

i ≤ smax
i) or

the segment I ′G′ (emin
i ≥ smax

i). So, the blue polygon is separated into two parts:

– the light one where b(i, t1, t2) = 1
ai

(w(i, t1, t2) − ci |J |)
– and the dark one where b(i, t1, t2) = bmin

i (w(i, t1, t2)/fi(b
min
i))

and so does for the green polygon.
By applying the same reasoning, we find that:

– in the red polygon b(i, t1, t2) = 1
ai

(Wi − ci(di − ri))

– in the yellow one b(i, t1, t2) = 1
ai

(Wi − (di − t2 + t1 − ri)fi(b
max
i) − ci(t2 − t1))

– and, in the white one b(i, t1, t2) = (t2 − t1)b
min
i

All the other areas correspond to b(i, t1, t2) = 0. These results are displayed in Fig. 4.
We have analyzed the expression of b(i, t1, t2) depending of the value of (t1, t2). The

break line segments to consider correspond to segments delimiting two areas with different
expressions of b(i, t1, t2). Thus, the break line segments to consider are (we denote by It1

(resp. It2) the x-coordinate (resp. y-coordinate) of point I):

– in both cases: (ri ,Dmax)C, (0, di)C, (0, smax
i)F, F (emin

i , Dmax),

CI, CI ′, I (0, It2), I ′(I ′
t1
,Dmax), II ′

– for case emin
i ≤ smax

i : IH, I ′H and HF .
– for case emin

i ≥ smax
i : IG and I ′G.

To identify the relevant intervals, we need to compute, for all pairs of break line seg-
ments, their intersection (t1, t2). To achieve this, either we use a naive algorithm, i.e. we
test intersection of all couples of break line segments, or we use the sweep line algorithm of
Bentley-Ottmann [6].

The main idea of the sweep line algorithm is that two segments cannot have an intersec-
tion point if they do not share x-coordinates and y-coordinates. A fictive horizontal line is
used to sweep the x-axis and, at some “events”, we test the intersection of two segments if
they both cross this line and if they follow each other in vertical order. So, the number of
tested intersections may decrease in comparison with a naive algorithm.

In the first case, we obtain a total complexity for the satisfiability test of O(n3) and, in
the second case, the complexity is O((n2 + nk) log n) with k the number of intersection
points. Even if the theoretical complexity is higher with the sweep line algorithm (k may be
in O(n2)), in practice, the algorithm can be faster than the naive one (see Section 7).

5.2 Slack function analysis

The last way of computing relevant intervals is an adaptation of work of Derrien et al. [9]
and is based on the following theorem:

Constraints (2015) 20:304–324 317

Theorem 4 The slack function is locally minimum in interval [t1, t2] only if there exists two
tasks i and j such that the following conditions are satisfied:

δ+b(i, t1, t2)

δt1
<

δ−b(i, t1, t2)

δt1
(32)

δ+b(j, t1, t2)

δt2
<

δ−b(j, t1, t2)

δt2
(33)

with δ+b(j,t1,t2)

δt2
(resp. δ−b(j,t1,t2)

δt2
) the right (resp. left) derivative of b(j, t1, t2) w.r.t t2.

Proof By contradiction, suppose (t1, t2) is a local minimum of the slack function and
equation (32) is satisfied for all tasks. Then, SL(t1, t2) has its left derivative greater
than or equal to its right. Since, by the second derivative test, minimal value of a func-
tion can only be reached at a point where its left derivative is lower than its right,
(t1, t2) can not be a local minimum of the slack function. The proof for condition
(33) is similar.

In the following lemma, we characterize, for a task i and a fixed t1, the value of function
t2 → b(i, t1, t2) for which its left derivative is greater than its right.

Lemma 2 Suppose task i satisfies the following condition: Wi ≥ fi(b
min
i)(di − ri). Then,

for any fixed t1, only one interval [t1, t2] satisfying (33) exists:

1. if t1 ≤ ri then only interval [t1, di] has to be considered
2. if t1 ≥ emin

i then no interval has to be considered

3. if ri ≤ t1 ≤ emin
i ∧ t1 ≥ I

′
t1

∧ (t1 ≤ smax
i ∨ t1 ≤ Ht1) then intervals [t1, U(t1)] and

[t1,D(t1)] have to be considered
4. if ri ≤ t1 ≤ emin

i ∧ t1 ≤ I
′
t1
then intervals [t1, di] and [t1,D(t1)] have to be considered

5. if ri ≤ t1 ≤ emin
i ∧ t1 ≥ Ht1 then only interval [t1, di + ri − t1] has to be considered

6. if ri ≤ t1 ≤ emin
i ∧ t1 ≥ smax

i then only interval [t1, U(t1)] has to be considered

with U(t1) = Wi−t1(fi (b
min
i)−fi (b

max
i))+rifi (b

max
i)

fi (b
min
i)

and

D(t1) = Wi − fi(b
min
i)di + t1fi(b

max
i)

fi(b
max
i) − fi(b

min
i)

.

Proof We only present the third case, the other ones are similar.
In order to prove the lemma, we analyse the variation of t2 → b(i, t1, t2). Figure. 5

represents these variations. The color corresponds to its expression w.r.t Fig. 4.

Fig. 5 Relevant intervals for
case (3)

318 Constraints (2015) 20:304–324

The two intervals for which condition (33) is satisfied are [t1, U(t1)] and [t1, D(t1)].

We can apply the symmetric reasoning on t2 in order to obtain a list of relevant intervals.
This list is described in Lemma 3:

Lemma 3 Suppose tasks i and j satisfy: Wl ≥ fl(b
min
l)(dl − rl), l = i, j . Then the slack

function is locally minimum in (t1, t2) only if it is one of the following intervals:

[rj , di] if (rj ≤ ri ∨ (rj ≤ emin
i ∧ rj ≤ I ′

t1
))∧

(di ≥ dj ∨ (di ≥ smax
j ∧ di ≥ It2))

[D′(di), di] if (D′(di) ≤ ri ∨ (D′(di) ≤ emin
i ∧ D′(di) ≤ I ′

t1
))∧

dj ≥ di ≥ smax
j ∧ di ≤ It2 ∧ di ≥ Ht2

[U ′(di), di] if (U ′(di) ≤ ri ∨ (U ′(di) ≤ emin
i ∧ U ′(di) ≤ I ′

t1
))

∧dj ≥ di ≥ smax
j ∧ (di ≥ emin

j ∨ di ≥ Ht2)

[dj + rj − di, di] if (dj + rj − di ≤ ri ∨ (dj + rj − di ≤ emin
i ∧ dj + rj − di ≤ I ′

t1
))∧

dj ≥ di ≥ smax
j ∧ di ≤ Ht2

[rj , U(rj)] if ri ≤ rj ≤ emin
i ∧ rj ≥ I ′

t1
∧ rj ≤ Ht1∧

(U(rj) ≥ dj ∨ (U(rj) ≥ smax
j ∧ U(rj) ≥ It2))

[rj , D(rj)] if (D(rj) ≥ dj ∨ (D(rj) ≥ smax
j ∧ D(rj) ≥ It2))∧

ri ≤ rj ≤ emin
i ∧ (smax

i ≥ rj ∨ rj ≤ Ht1)[rj , di + ri − rj] if (di + ri − rj ≥ dj ∨ (di + ri − rj ≥ smax
j ∧ di + ri − rj ≥ It2))∧

ri ≤ rj ≤ emin
i ∧ rj ≥ Ht1

with D′(t2) = t2(fi (b
min
i)−fi (b

max
i))+difi (b

max
i)−Wi

fi (b
min
i)

and

U ′(t2) = Wi − t2fi(b
min
i) + rifi(b

max
i)

fi(b
max
i) − fi(b

min
i)

.

Proof Lemma 3 By contradiction, suppose the slack function is locally minimum in (t1, t2)

and [t1, t2] is not one of the intervals defined by the lemma. Then, either condition (32) or
(33) is not satisfied. Then, by Theorem 4, the slack function can not be locally minimum in
(t1, t2).

Here, we have described only the case where i and j are such that Wl ≥ fl(b
min
l)(dl −

rl), l = i, j . The other cases to consider are:

– Wl ≤ fl(b
min
l)(dl − rl), l = i, j

– Wi ≥ fi(b
min
i)(di − ri) and Wj ≥ fj (b

min
j)(dj − rj)

There is no need to consider case where bmin
i = bmax

i since it is included in case Wi ≤
fi(b

min
i)(di − ri). Cases not described in this paper can be found in a similar way to the

case we have presented.
In terms of complexity, since three cases of Lemma 3 can not happen simultaneously,

we have only, for all couples of tasks (i, j), at most two intervals to consider. The total
complexity of the satisfiability test is still O(n3) but the hidden constant is much smaller
than the one of the naive algorithm.

Constraints (2015) 20:304–324 319

Table 1 Results of experiments for computing relevant intervals

tasks time (ms)

naive sweep-line adaptation [9]

10 0.51 1.56 0.22

20 3.67 5.39 0.92

25 7.79 6.45 1.59

30 14.59 15.26 4.08

60 43.03 54.76 13.7

Experiments have been done on randomly generated instances to compare these three
methods (see Section 7).

6 Hybrid branch and bound

In this section, we define a hybrid branch and bound algorithm to solve CECSP. First, we
use a branch and bound algorithm to reduce the size of possible start and end intervals (until
their size is less than a given ε > 0) and, then, we use our event-based MILP in order to
find exact task start and end times and to determine the quantity of resource allocated to i

between two consecutive events, i.e. bie, ∀i ∈ A; ∀e ∈ E .
We start by describing our branching procedure. This procedure is inspired by the work

of Carlier et al. [8]. At the beginning, a task can start (resp. end) at any time sti ∈ [ri , smax
i]

(resp f ti ∈ [emin
i , di]). The idea is, at each node, to reduce the size of one of these intervals.

Suppose that we choose to reduce the start time interval of i, then we create two nodes: one
with constraint sti ∈ [ri , (ri + smax

i)/2] and one with constraint sti ∈ [(ri + smax
i)/2, smax

i].
We choose the interval to reduce randomly.

At each node, we apply first, the data consistency check and, if the data are consistent,
our satisfiability test. If the test does not fail, we perform the associated time-window adjust-
ments. We continue this procedure until all intervals are smaller than an ε, i.e. until arriving
on a leaf of the search tree. When the algorithm is on a leaf of the tree, the remaining
solution space is searched via the event-based MILP.

We follow a depth-first strategy in the search tree. We backtrack when the satisfiability
test fails, i.e. the node is infeasible, or when the algorithm is on a leaf and the MILP fails to
provide a solution. In the case where the MILP finds a solution, then, since the goal is only
to find a feasible solution, the algorithm stops.

7 Computational results

The experiments are conducted on an Intel Core i7-4770 processor with 4 cores and 8 giga-
bytes of RAM under the 64-bits Ubuntu 12.04 operating system. We use CPLEX 12.6 with
8 threads and a time limit of 7200 seconds for solving the MILP model. The hybrid branch-
and-bound algorithm is coded in C++ and uses CPLEX at each leaf. The total time limit of
the algorithm is set to 7200 seconds.

320 Constraints (2015) 20:304–324

Ta
bl
e
2

C
om

pa
ri

so
n

be
tw

ee
n

th
e

M
IL

P
m

od
el

an
d

th
e

hy
br

id
br

an
ch

-a
nd

-b
ou

nd

#
ta

sk
M

IL
P

m
od

el
hy

br
id

br
an

ch
-a

nd
-b

ou
nd

ε
=

5

tim
e(

s)
%

so
l.

#n
od

es
To

ta
lt

im
e(

s)
C

PL
E

X
tim

e(
s)

T
re

e
tim

e(
s)

%
so

l.(
3)

#n
od

es
%

co
ns

./a
dj

.

Fa
m

ily
1

10
0.

62
10

0
0

0.
52

0.
51

0.
01

10
0

13
.1

5.
50

20
29

5.
44

10
0

25
44

.9
7

11
1.

58
11

1.
49

0.
08

10
0

26
.3

5
5.

44

25
20

60
.6

4
77

19
79

.7
9

14
34

.8
4

14
34

.7
1

0.
14

10
0

43
.6

5
11

30
54

18
.2

40
46

14
36

84
.3

4
36

84
.1

4
0.

22
60

58
.7

7
7.

08

60
72

00
0

X
69

68
.0

1
69

67
.9

1
0.

53
0

78
0

Fa
m

ily
2

20
47

88
40

57
89

.5
36

37
.6

3
36

37
.5

9
0.

07
40

25
.3

3
61

.4
4

25
72

00
0

X
50

86
.1

4
50

86
.1

3
0.

01
20

1.
5

75

30
72

00
0

X
72

00
72

00
X

0
X

X

Fa
m

ily
3

10
0.

94
10

0
17

.4
0.

48
0.

47
0.

01
10

0
16

26
.1

20
22

37
.7

6
77

10
40

6.
38

20
79

.5
7

20
79

.5
2

0.
05

73
21

.6
4

61
.3

8

25
55

08
.4

1
33

96
19

.4
6

35
23

.3
8

35
23

.3
2

0.
06

56
27

.2
8

77
.7

8

30
65

09
.0

3
10

41
46

.5
51

93
.3

2
51

93
.2

8
0.

06
10

35
.5

63
.0

4

60
72

00
0

X
57

60
57

60
0.

01
20

1
10

0

Constraints (2015) 20:304–324 321

First, the instances have been randomly generated with identity power processing rate
functions, i.e. fi(b) = b, ∀i ∈ A. We generated 5 instances of 10 and 60 tasks and 10
instances of 20, 25 and 30 tasks according to the following framework. The resource avail-
ability B is set to 10 and all other data are randomly generated in their corresponding
interval: Wi ∈ [1, 1.25∗B], bmin

i ∈ [0, 0.25∗Wi], bmax
i ∈ [bmin

i , 2∗bmin
i], ri ∈ [0, 0.5∗n]

and di ∈ [emin
i , emin

i + n]. Then, we transform them in order to obtain two families of
instances with power processing rate functions in the following way: we randomly gener-
ated the parameters of the function ai and ci, ∀i ∈ A, within interval [1, 10] and, for the
first family (Family 1), we set Wi to a random number within [0, fi(Wi)] and, for the sec-
ond family (Family 2), we set Wi to fi(Wi). To illustrate the algorithm performance on
different configurations, experiments are conducted on all instances of Family 1, a subset of
instances of Family 2 (5 instances with 20, 25 and 30 tasks respectively) and on the family
with identity functions (Family 3).

On these sets of instances, at least 76 % of them are feasible and 6 % are infeasible. For
the other 18 %, we were not able to know whether there feasible or not.

Table 1 presents the results of the comparison of the three ways for computing relevant
intervals for the energetic satisfiability test (see Section 5). The first column corresponds
to the naive algorithm, the second one to the sweep-line algorithm, and the last one to the
adaptation of the algorithm presented in [9]. The sweep line algorithm is the one from the
CGAL C++ library.2 The time is set in milliseconds and corresponds to the arithmetic mean
time needed to perform the satisfiability test and the time-window adjustments on one node.

As expected, the best way of computing relevant intervals is the third method. Moreover,
we can see that the sweep-line algorithm does not provide better results than the naive algo-
rithm, except for the 25-task instances. The main reason of this result is the great number of
intersection points.

Table 2 presents the results of the MILP model and of the hybrid branch-and-bound
algorithm. Both algorithms have been tested on the three families of instances. Since the
average size of interval [ri , smax

i] and [emin
i , di] being 32, we tested our branch-and-bound

procedure for parameter ε ∈ {2.5, 5, 10, 15}. However, we only present our results for ε = 5
since it is the parameter value which gives the best results.

The first three columns correspond to the results of the MILP model. The first column
represents the average time (arithmetic mean) needed to solve the instances. If the MILP
reaches the time limit, we set the execution time at 7200s. The second column corresponds
to the percentage of solved instances and the last one shows the number of nodes consumed
by CPLEX.

The other six columns correspond to the results of the hybrid branch-and-bound. The
first column represents the average time (arithmetic mean) needed to solve the instances.
The time, set in seconds, is the average of four runs of the algorithm. Furthermore,
when one run of the branch-and-bound reaches the time limit, we set the execution time
of this run to 7200 seconds (this execution time is playing the role of a penalty espe-
cially if only one run of the branch-and-bound solves the instance). The second and
third columns show the comparison of the time spent to solve the MILPs in leaves and
the time spent in the tree. The fourth column corresponds to the percentage of solved
instances. We consider that an instance is solved by the algorithm if it is solved on at

2CGAL, Computational Geometry Algorithms Library. http://www.cgal.org.

http://www.cgal.org

322 Constraints (2015) 20:304–324

least three runs. The fifth column corresponds to the average number of nodes of the
branching tree. Finally, the last column shows the percentage of nodes on which either
the checker fails (the instance is proved infeasible) or the algorithm performs some time
adjustments.

The hybrid branch-and-bound solves generally more instances than the event-based
MILP alone and takes less time to solve these instances. We can also see that, for the first
family of instances, the “left-shift/right-shift” test is not really efficient. This comes from
the fact that instances from this set are not very constrained, due to the required energy ran-
dom generation, i.e. there exist many feasible solutions for them. However, the test is crucial
for the relative good performance of the hybrid method on Families 2 and 3. We also see
that on constrained instances (Families 2 and 3), some small-sized instances are still out of
reach of all the tested methods.

We also compute the average deviation of all runs, i.e. if we denote by xi, i =
1, . . . , 4 the CPU time of each run of the branch-and-bound and by x̃ the average time
(in column 4), then the average deviation is 1

4

∑4
i=1 |xi − x̃|. We obtain an average

deviation of 0.13 for 10-task instances, 959.15 for 20-task instances, 1491.32 for 25-
task instances, 1161.79 for 30-task instances and 115.99 for 60-task instances. Thus, we
can see that, most of the time, the difference between the random runs may be large.
Therefore, the development of better branching heuristics is an important continuation
of this work.

8 Conclusions and perspectives

We have adapted the famous “left-shift/right-shift” satisfiability test for CuSP to our prob-
lem and we present three ways for computing relevant intervals for this test. These methods
have been compared experimentally and we show that the adaptation of the methods of
Derrien et al. [9] is the most efficient.

We also presented a new hybrid branch-and-bound algorithm for CECSP as well
as an event-based MILP. We have compared these two methods and we have
thereby shown the interest of integrating MILP and energetic reasoning to solve
the problem.

Further research on this subject is necessary, especially to obtain an efficient method for
large instances. For example, knowing whether an adaptation of the incremental algorithm
for energetic reasoning [3] exists will be an interesting problem. Another open question
is whether the intervals on which we perform the time-window adjustments are sufficient
to perform all the possible adjustments and whether we can adapt the algorithm of [7] to
our problem. The adaptation of the MILP (event-based and time-indexed), heuristics and
priority rules of Resource-Constrained Project Scheduling Problem with flexible resource
profiles [15] or of scheduling problems with work-content resources [10] might bring inter-
esting results. Furthermore, these linear programs might include valid inequalities deduced
from energetic reasoning.

Finally, in order to provide better applications to actual scheduling problems under
energy constraints, it will be interesting to study the case where function fi(b) is no longer
linear.

Acknowledgments The authors thank the referees for making relevant comments that improve the
presentation of the paper.

Constraints (2015) 20:304–324 323

Appendix

Table 3 Main notations

Name Description Domain/Expression

Problem parameters

A set of tasks {1, . . . , n}
B resource capacity R

+

ri release date of task i R
+

di deadline of task i R
+

bmin
i minimum resource requirement of i]0, B]

bmax
i maximum resource requirement of i [bmin

i , B]
Wi required energy of i]0, fi (b

max
i)(di − ri)]

fi(b) power processing rate function of i aib + ci

emin
i earliest end time of i ri + Wi/fi(b

max
i)

smax
i latest start time of i di − Wi/fi(b

max
i)

Recurrent notations

sti starting time of i [ri , di [
f ti finishing time of i]ri , di]
bi(t) resource allocation function of i [0, bmax

i]
Dmax deadline of the project maxi∈A di

w(i, t1, t2) minimum energy requirement of i inside min
∫ t2
t1

fi(bi (t))dt

b(i, t1, t2) minimum resource consumption of i inside min
∫ t2
t1

bi(t)dt

SL(t1, t2) slack function of cf. page 8

Main notations of Section 4

minimum energy requirement of task i inside [t1, t2] if i is: cf. page 9

ω+
i (t1, t2) left-shifted

ω−
i (t1, t2) right-shifted

ωi(t1, t2) both-shifted

minimum resource consumption of task i inside [t1, t2] if i is: cf. page 10

β+
i (t1, t2) left-shifted

β−
i (t1, t2) right-shifted

βi(t1, t2) both-shifted

Main notations of Section 5

I, I ′, H intersection point of Fig. 4 cf. page 13

Ix x-coordinate of point I

Iy y-coordinate of point I

U(t1), D(t1) variation point of t2 → b(i, t1, t2) cf. page 15

U ′(t2), D′(t2) variation point of t1 → b(i, t1, t2) cf. page 16

324 Constraints (2015) 20:304–324

References

1. Artigues, C., Lopez, P., & Haı̈t, A. (2013). The energy scheduling problem: industrial case-study and
constraint propagation techniques. International Journal of Production Economics, 143(1), 13–23.

2. Artigues, C., & Lopez, P. Energetic reasoning for energy-constrained scheduling with a continuous
resource. Journal of Scheduling. doi:10.1007/s10951-014-0404-y.

3. Baptiste, P., Le Pape, C., & Nuijten, W. (2001). Constraint-based scheduling. Boston/Dordrecht/London:
Kluwer Academic Publishers.

4. Błażewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., & Wȩglarz, J. (2001). Scheduling computer and
manufacturing processes. Berlin/Heidelberg: Springer-Verlag.

5. Błażewicz, J., Machowiak, M., Wȩglarz, J., Kovalyov, M., & Trystram, D. (2004). Scheduling malleable
tasks on parallel processors to minimize the makespan. Annals of Operations Research, 129(1-4), 65–80.

6. Bentley, J.L., & Ottmann, T.A. (1979). Algorithms for reporting and counting geometric intersections.
IEEE Transactions on Computers, 28(9), 643–647.

7. Bonifas, N. (2014). Fast propagation for the energy reasoning. In Doctoral program of the 20th
international conference on principles and practice of constraint programming (CP) (pp. 16–22).

8. Carlier, J., & Latapie, B. (1991). Une méthode arborescente pour résoudre les problèmes cumulatifs.
RAIRO Recherche opérationnelle, 25(3), 311–340.

9. Derrien, A., & Petit, T. (2014). A new characterization of relevant intervals for energetic reasoning.
Principles and practice of constraint programming. Lecture Notes in Computer Science, 8656, 289–297.

10. Fündeling, C.-U., & Trautmann, N. (2010). A priority-rule method for project scheduling with work-
content constraints. European Journal of Operational Research, 203(3), 568–574.

11. Erschler, J., & Lopez, P. (1990). Energy-based approach for task scheduling under time and resources
constraints. In 2nd international workshop on project management and scheduling (pp. 115–121).
Compiègne, France.

12. Józefowska, J., Mika, M., Różycki, R., Waligóra, G., & Wȩglarz, J. (1999). Project scheduling under
discrete and continuous resources. In Wȩglarz, J. (Ed.) Project scheduling: recent models, algorithms,
and applications (pp. 289–308). Boston: Kluwer Academic Publishers.

13. Kis, T. (2005). A branch-and-cut algorithm for scheduling of project with variable-intensity activities.
Mathematical Programming Series A, 103, 515–539.

14. Koné, O., Artigues, C., Lopez, P., & Mongeau, M. (2011). Event-based MILP models for resource-
constrained project scheduling problems. Computers & Operations Research, 38(1), 3–13.

15. Naber, A., & Kolisch, R. (2014). MIP models for resource-constrained project scheduling with flexible
resource profiles. European Journal of Operational Research, 239, 335–348.

16. Naber, A., & Kolisch, R. (2014). A continuous time model for the resource-constrained project schedul-
ing with flexible resource profiles. In Proceedings of the 14th international conference on project
management and scheduling (pp. 166–168). Munich, Germany.

17. Nattaf, M., Artigues, C., & Lopez, P. (2014). A polynomial satisfiability test using energetic reasoning
for energy constraint scheduling. In 14th international workshop on project management and scheduling
(pp. 169–172). Munich, Germany.

18. Wȩglarz, J., Józefowska, J., Mika, M., & Waligóra, G. (2009). Project scheduling with finite or infinite
number of activity processing modes - A survey. European Journal of Operational Research, 208, 177–
205.

http://dx.doi.org/10.1007/s10951-014-0404-y

	A hybrid exact method for a scheduling problem with a continuous resource and energy constraints
	Abstract
	Introduction
	Problem statement and properties
	Mixed integer program
	Energetic reasoning based satisfiability test
	Mandatory consumption
	Time-window adjustments
	Complexity

	Computing relevant intervals
	Task break line segment analysis
	Slack function analysis

	Hybrid branch and bound
	Computational results
	Conclusions and perspectives
	Acknowledgments
	Appendix 1
	References

