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Abstract The ATMOSTNVALUE global constraint, which restricts the maximum number
of distinct values taken by a set of variables, is a well known NP-Hard global constraint.
The weighted version of the constraint, ATMOSTWVALUE, where each value is associated
with a weight or cost, is a useful and natural extension. Both constraints occur in many
industrial applications where the number and the cost of some resources have to be min-
imized. This paper introduces a new filtering algorithm based on a Lagrangian relaxation
for both constraints. This contribution is illustrated on problems related to facility loca-
tion, which is a fundamental class of problems in operations research and management
sciences. Preliminary evaluations show that the filtering power of the Lagrangian relax-
ation can provide significant improvements over the state-of-the-art algorithm for these
constraints. We believe it can help to bridge the gap between constraint programming and
linear programming approaches for a large class of problems related to facility location.

Keywords Global constraint · Filtering algorithm · Lagrangian relaxation · Atmost n values

1 Introduction

Many operations research and management science applications include software com-
ponents to minimize the number and/or the cost of resource units that are necessary
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to run the business. Typical examples are plant location problems such as the unca-
pacitated facility location problem [11] or personnel scheduling problems [10]. Mixed
integer linear programming and column generation are often used in these application
fields, providing excellent results. Probably due to a lack of lower bounding techniques,
constraint-programming (CP) approaches are not competitive. We investigate stronger fil-
tering algorithms to fill the gap between integer linear programming (ILP) and CP on these
problems.

This paper focuses on the ATMOSTNVALUE global constraint, which restricts the max-
imum number of distinct values taken by a set of variables, and its weighted variant, the
ATMOSTWVALUE. These constraints have been introduced in Beldiceanu et al. [1, 2].
Filtering these constraints has been proved to be NP-hard [4]. Therefore, unless P=NP,
no polynomial time algorithm can perform a complete filtering for these constraints. The
design of an efficient filtering algorithm for the ATMOSTNVALUE constraint has been
widely investigated by the CP community [4] and remains an active topic [5, 12, 16].
The state-of-the-art algorithm is a graph-based algorithm relying on minimum independent
set relaxation [4]. It provides a very good trade-off between filtering and runtime. How-
ever, the resulting filtering may not be sufficient to deal with the most difficult problems.
Nevertheless, it has been shown [4] that embedding the linear program associated with
ATMOSTNVALUE into a global constraint could increase the filtering power of the model,
often at the expense of runtime. This paper stems from this observation and suggests an
alternative between those two state-of-the-art propagators.

The main contribution of this paper is a new filtering procedure, based on a Lagrangian
relaxation, for both ATMOSTNVALUE and ATMOSTWVALUE.

Lagrangian relaxation (LR) is often seen as a class of algorithms to reformulate and
solve an integer linear program [17]. An active area of research seeks to generalize
theses algorithms to nonlinear optimization problems [27] and CP might be an appro-
priate framework to extend and benefit from Lagrangian relaxation in a more general
context [15]. Our present goal is different and aims at embedding LR as a generic fil-
tering mecanism for constraint solvers. The use of LR for propagating NP-hard global
constraints is not new but has mostly been performed in very specific and applicative
contexts [7, 8, 25, 26]. Sellman et al. [25] presents LR as a way to design powerful
propagation by taking into account several constraints together. This idea is applied to a
knapsack constraint coupled with a maximum weighted stable set constraint. Later, propa-
tors relying on Lagrangian relaxation are designed for the MULTI-COST-REGULAR and
WEIGHTED-CIRCUIT global constraints [3, 13, 21]. Our present work extends this line
of research as we believe that many global constraints (and in particuler NP-hard global
constraints involving costs) could be propagated using Lagrangian relaxation in a rela-
tively generic manner [6]. This paper is investigating this idea for ATMOSTNVALUE

and ATMOSTWVALUE.
The algorithm proposed in this paper has several advantages : First, from a soft-

ware engineering point of view, it is simple to implement and it does not require any
connection with a linear solver. Second, it provides a good tradeoff between filtering and
runtime. Third, as opposed to the graph-based algorithm, it can be used to propagate the
ATMOSTWVALUE global constraint for which no simple and efficient filtering algorithm
exists. Thus, it is relevant to include it in a CP solver. Several design options are discussed
and empirically evaluated. The practical impact of these contributions is evaluated on the
p-median and a discrete facility location problem. Results show that the Lagrangian propa-
gator we introduce for both ATMOSTNVALUE and ATMOSTWVALUE provides significant
improvement over a CP approach, up to being competitive with an ILP approach.
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2 Technical context

2.1 Notations

In this paper, we consider a set X = {X1, ..., Xn} of n integer variables, taking their value
in V = {1, ..., m}, and an integer variable N taking its value in [1, n]. The global constraint
ensuring that the number of distinct values taken by X is bounded by N is called ATMOST-
NVALUE (see definition 1). We use the notation dom(X) to represent the domain of the
variable X, i.e., its potential values. For any Xi ∈ X , we have dom(Xi) ⊆ V . Furthermore,
for any Xi ∈ X , let Xi and Xi respectively denote the lower and the upper bound of Xi .

Therefore, dom(Xi) ⊆ [Xi,Xi].

Definition 1 Given a set of integer variables X and an integer variable N , the
ATMOSTNVALUE(X , N) constraint states that at most N distinct values are taken by X ,
i.e., |{j | ∃Xi ∈ X , Xi = j}| ≤ N .

We refer to the weighted extension of the constraint as ATMOSTWVALUE (see definition
2), but it has various names in the literature [2]. Therefore, N stands for number, whereas
W stands for weight. To avoid any confusion, we introduce a cost variable W , which takes
its value in R

+, to represent the limit.

Definition 2 Given a set of integer variables X , a variable W ∈ R+ and a weight
function w : V → R

+, the ATMOSTWVALUE(X ,W,w) constraint states that W is
greater or equal to the sum of weights associated with all distinct values taken by X , i.e.,∑

{j∈V|∃Xi∈X ,Xi=j}
w(j) ≤ W .

Notice that we consider non-negative weights in the present paper for the sake
of simplicity. Moreover, ATMOSTNVALUE(X , N) is a restricted case of ATMOST-
WVALUE(X , N, w1), where w1 : j ∈ V �→ 1. Therefore, we will focus on the more
general ATMOSTWVALUE.

2.2 Explicit representation of used values

Most often, it is convenient to represent explicitly the distinct values which are taken by
X with a set of binary variables Y = {Y1, ..., Ym}. This may ease the declaration of other
constraints of the model as well as the declaration of the search strategy. For instance, a
common branching scheme is a two-stage approach where the values to be used are decided
before starting their assignment to the variables in X , i.e., branching on variables in Y
before variables in X . Y is introduced to express reasonings that can not necessarily be
expressed on X . We can propagate that a particular value j ∈ V must be used, without
having any variable in X assigned to j , because that information is encoded in the domain
of Yj . Therefore, we add Y to the signature of both global constraints.

Let us assume, without loss of generality, that values range from 1 to m. The channeling
between X and Y requires to propagate the following relations:

∀j ∈ [1, m], Yj = 1 ⇔ ∃Xi ∈ X |Xi = j

This is not straightforward to encode in CP solvers as they generally do not support exis-
tential constraints. Nevertheless, it can be implemented in a declarative way by introducing



Constraints (2015) 20:362–380 365

a variable Nj for every value j , to count the number of variables in X that take value j , and
adding the following constraint network to the model:

∧

j∈[1,m]
Occurrence(j,X , Nj ) ∧ (Yj = 1 ⇔ Nj > 0)

However, by computing the exact number of occurrences of every value in X , this
approach is performing unnecessary computations. Therefore, we implemented a more
efficient ad-hoc propagator, for every value j , to propagate the equivalence Yj = 1 ⇔
∃Xi ∈ X |Xi = j directly, without introducing new variables. In the rest of the paper,
we assume that this channeling between X and Y is part of both ATMOSTNVALUE and
ATMOSTWVALUE. The following example will be used throughout the paper to illustrate
ideas:

Example 1 Consider the 0/1 variablesY = {Y1, Y2, Y3, Y4, Y5} (dom(Yi) = {0, 1} for every
i ∈ [1, 5]) as well as X = {X1, X2, X3} and variable N with the domains:

dom(X1) = {1, 2}, dom(X2) = {2, 3}, dom(X3) = {4, 5}, dom(N) = [0, 2]
Enforcing Generalized Arc-Consistency (GAC) for ATMOSTNVALUE(X ,Y, N)would,

in particular, forbid the use of values 1 and 3 i.e. remove 1 from dom(Y1) and dom(Y3). Let
us briefly explain why value 1 is forbidden. Two distinct values are used by X2 and X3 since
dom(X2) ∩ dom(X3) = ∅. Moreover value 1 does not belong to dom(X2) or dom(X3).
Thus, using 1 would lead to at least 3 distinct values which is forbidden since N = 2. The
domains of N and the variables in X after GAC are thus as follows:

dom(X1) = {2}, dom(X2) = {2}, dom(X3) = {4, 5}, dom(N) = {2}�

2.3 The linear relaxation of ATMOSTWVALUE

This section extends the approach by Bessiere er al. [4], to filter ATMOSTNVALUE with its
linear relaxation. Firstly, we simply extend it to ATMOSTNVALUE by introducing weights
in the objective function of the linear program. Secondly, we introduce the Y variables in
the CP model to allow back-propagation performed with reduced-cost based filtering. The
approach proposed by [4] is detailed in Section 3.4.

Given the current state of the domains of variables inX andY , we would like to compute
the linear relaxation of ATMOSTWVALUE. For this purpose, we introduce continuous vari-
ables {y1, ..., ym} for each value. The linear program associated with ATMOSTWVALUE is
referred to as LP0:

(LP0) Minimize : w = ∑

1≤j≤m

wjyj

Subject to : ∑

j∈dom(Xi)

yj ≥ 1 ∀i ∈ [1, n]
yj ∈ [Yj , Yj ] ∀j ∈ [1, m]

The optimum w∗ of the above linear program is a valid lower bound for W . Moreover,
this lower bound can be back-propagated toY by applying reduced cost-based filtering [14].
Note that grounded variables can be removed from the formulation, leaving two types of
constraints

∑
j∈dom(Xi)

yj ≥ 1 and yj ≤ 1. Moreover the constraints yj ≤ 1 can be omitted
as well from the model when assuming positive costs. A feasible solution with yj strictly
greater than 1 can be improved by setting yj to 1 without questioning its feasibility, so that
the yj ≤ 1 constraints are satisfied in any optimal solution.
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Let us denote by α∗
i , the optimal value of the dual variable related to the i-th constraint∑

j∈dom(Xi)
yj ≥ 1. The linear reduced cost of yj , obtained at the optimum point, is equal

to:
r∗
j = wj −

∑

{i|j∈dom(Xi)}
α∗

i (1)

Reduced-cost filtering, for all ungrounded variables of Y , is performed once LP0 has
been solved, by using the optimal values y∗

j and r∗
j :

w∗ + (1 − y∗
j )r∗

j > W =⇒ Yj �= 1

w∗ − y∗
j r∗

j > W =⇒ Yj �= 0

The domain reductions on Y are propagated to X through the channeling constraints.

Example 2 (Continued) Since none of the Yj variables is grounded, LP0 is as follow:

Minimize : w = y1 + y2 + y3 + y4 + y5
Subject to : y1 + y2 ≥ 1

y2 + y3 ≥ 1
y4 + y5 ≥ 1
yj ≥ 0 ∀j ∈ [1, 5]

The optimal value is 2 and w∗ = 2. Moreover the tuple (0, 1, 0, 0, 1) for (y∗
1 , . . . , y

∗
5 )

is an optimal solution of LP0. It is feasible and the solution (0, 1, 1) for (α∗
1 , α

∗
2 , α

∗
3) is

a feasible dual solution with the same objective value: α∗
1 + α∗

2 + α∗
3 = 2 = w∗. The

reduced costs (r∗
1 , . . . , r∗

5 ) are therefore equal to (1, 0, 0, 0, 0) since r∗
1 = 1 − α∗

1 = 1,
r∗
2 = 1 − α∗

1 − α∗
2 = 0, r∗

3 = 1 − α∗
2 = 0, ... As a result, value 1 is filtered from dom(Y1)

because of the following rule:

w∗ + (1 − y∗
1 )r

∗
1 = 2 + 1 ∗ 1 = 3 > N = 2

Notice that value 1 is not filtered from dom(Y3) with this approach since r∗
3 = 0. �

3 A new filtering algorithm for both ATMOSTNVALUE and
ATMOSTWVALUE

Lagrangian relaxation (see e.g. [28]) is a very important technique in operation researchs
that moves the “complicating constraints” into the objective function with a penalty term.
It is an important practical tool for many structured problems and has been used to solve
facility location problems for a long time [22]. We describe in this section how to solve LP0
with Lagrangian relaxation.

For this purpose, we relax the constraints ofLP0 by adding them to the objective function.
More precisely, for every i ∈ [1, n], the constraint ∑j∈dom(Xi)

yj ≥ 1 is removed from the
constraints set. Instead, we add the term λi(1−∑

j∈dom(Xi)
yj ) into the objective function to

take into account the constraint violation or over-satisfaction. The Lagrangian subproblem
LS0 is defined as follow:

(LS0) Minimize : w(λ) = ∑

1≤j≤m

wjyj + ∑

1≤i≤n

λi(1 − ∑

j∈dom(Xi)

yj )

Subject to : yj ∈ {0, 1} ∀j ∈ [1, m]
The subproblem is therefore to find the optimal y for a given set of non-negative λ mul-

tipliers. For w∗(λ) to be a lower bound of the original problem, the λ coefficients must
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belong to R
+. Hence when all constraints are satisfied, w∗(λ) is always smaller or equal to

w∗ and provides a valid lower bound. Solving the Lagrangian relaxation LR0 of ATMOST-
WVALUEconsists in finding the Lagrangian multipliers vector λ for which the Lagrangian
subproblem optimum is maximal. LR0 is also called the Lagrangian dual.

(LR0) Maximize : w∗(λ)

Subject to : λi ∈ R
+ ∀i ∈ [1, n]

The objective function of LR0 is known to be a piecewise linear concave function and
can thus be optimized with a subgradient procedure updating the λ values to move toward
the optimum point.

Example 3 (Continued) The Lagrangian subproblem for our example is as follow:

Minimize : w(λ1, λ2, λ3) = y1(1 − λ1) + y2(1 − λ1 − λ2)

+ y3(1 − λ2) + y4(1 − λ3) + y5(1 − λ3)

+(λ1 + λ2 + λ3)

Subject to : yj ∈ {0, 1} ∀j ∈ [1, 5]
The optimal valuew∗(λ1, λ2, λ3) is a lower bound ofN as long as (λ1, λ2, λ3) is a vector

of non-negative values. For instance,w∗(0.3, 0.3, 0.3) is easily computed by setting all y∗
j to

0 (since the coefficients in front of each yj are all non-negative). So w∗(0.3, 0.3, 0.3) = 0.9
proving that N = 1. A vector (2, 2, 2) would lead to w∗(2, 2, 2) = 11−12 = −1 by setting
all y∗

j to 1 (each coefficient is now negative). (0.6, 0.6, 0.8) is a better solution for LR0 and
proves that N = 2 since w∗(0.6, 0.6, 0.8) = 1.8 (all y∗

j are set to 0 except y∗
2 = 1). Finally

(1, 1, 1) is an optimal solution of LR0 because w∗(1, 1, 1) = 2 by setting all y∗
j to 1. �

Since any non-negative λ vector provides a lower bound, filtering can be performed
from the optimal solution of LS0 for any value of λ. A propagator filtering according to
the Lagrangian relaxation of ATMOSTWVALUE is thus made of three main components:
An algorithm that solves the Lagrangian subproblem (Section 3.1), an algorithm that filters
variable domains from a subproblem solution (Section 3.2) and an algorithm to manage the
subgradient optimization (Section 3.3).

Algorithm 1 shows the general filtering procedure for ATMOSTWVALUE. Note that a
filtering step on W and variables of Y is applied at every iteration.

3.1 Solving the Lagrangian subproblem

The Lagrangian subproblem LS0 consists of computing a subset of values that minimizes
the objective function which depends on the weight function, the Lagrangian multipliers
and the violation/satisfaction of the relaxed constraints. Since there are no hard constraints
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linking the y variables, this problem can be solved by inspection with Algorithm 2. For
each value yj , the quantity qj represents the variation of the objective function for setting
yj to 1:

qj = wj −
∑

{i|j∈dom(Xi)}
λi (2)

The time complexity of the algorithm is given by the sum of domain sizes in X , which is
bounded by O(nm). Computing the qj values is the time-consuming part of the algorithm.
Since this is repeated at every iteration (see Algorithm 1), it is important to perform it in the
current domain sizes O(

∑
i∈[1,n] |dom(Xi)|).

3.2 Filtering from the Lagrangian subproblem

Each Lagrangian subproblem optimum provides a valid lower bound forW . Furthermore, as
for a linear relaxation, this lower bound can be back-propagated to Y by applying reduced
cost-based filtering. Here, reduced costs are given by the qj of Algorithm 2. The entire
filtering procedure is given by Algorithm 3.

Example 4 (Continued) Consider the vector (0.6, 0.6, 0.8) previously mentionned for
(λ1, λ2, λ3). We had w∗(0.6, 0.6, 0.8) = 1.8 by setting all y∗

j to 0 except y∗
2 = 1. The

reduced cost of y1 is equal to q1 = (1 − 0.6) = 0.4. Value 1 is thus filtered from dom(Y1)

because 1.8 + 0.4 = 2.2 > N = 2. Similarly q3 = (1 − 0.6) = 0.4 and value 1 is filtered
from dom(Y3). �

Notice that in this case, the Lagrangian reduced costs (2) and the linear reduced costs (1)
are identical if the λ are equal to α∗ ie if they reached the same optimal solution.

Example 5 (Continued) The vector (0, 1, 1) for (α∗
1 , α

∗
2 , α

∗
3) given as an optimal solution

of the dual of LP0 is also an optimal solution of LR0. We can check that w∗(0, 1, 1) = 2 by
setting all y∗

j to 0. Although this solution is optimal for LR0, the filtering performed from
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this solution does not detect that value 3 is forbidden as opposed to the non optimal solution
(0.6, 0.6, 0.8). �

3.3 Solving the Lagrangian relaxation

A simple and popular approach for solving the Lagrangian dual LR0 is to use a subgra-
dient algorithm. The subgradient algorithm is made for solving a piecewise linear convex
function. A subgradient is the direct generalization of the classic gradient used for contin-
uously differentiable convex function [28]. The use of a subgradient algorithm to solve the
Lagrangian dual stems from Held and Karp [18]. Propagators designed with Lagrangian
relaxation [3, 13, 21] have so far used simple subgradient procedures very similar to the
ones presented in the next section. However, [25] has a single multiplier and therefore
implements a specific method to maximize one-dimensional concave functions based on the
golden section.

3.3.1 Convergence process

Different subgradient algorithms exist [29] and may lead to different performances. Such a
choice should not be seen as a defect (choice implies configuration) but as an improvement
opportunity, to best fit the instance we are trying to solve. Therefore, from a software engi-
neering point of view, the propagator architecture allows to use different (possibly ad hoc)
subgradient algorithms.

In this paper, we consider three classic subgradient algorithms in the form of Algorithm
4. They are respectively called Harmonic, Geometric and Newton. These algorithms are
defined by their μk function (see Table 1), which is often called the step-size rule. Note
that, as long as the multipliers remain non-negative, any update algorithm (possibly random)
is correct i.e. provides a valid lower bound when the subproblem is solved to optimality.
However, convergence towards the best possible λ can be ensured if for instance μk → 0
and

∑
k μk → +∞ as k → +∞ (see [28] for other convergence criteria).
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Table 1 Three different subgradient algorithms

Harmonic Geometric Newton

μ0 = 1 103 5

μk = μ0

k
μ0 × 0.95k μ0

2�k/10� × (W−LBk)∑

i∈[1,n]
γi (1− ∑

j∈dom(Xi )

yj )2

with γi =
⎧
⎨

⎩

0 if λi = 0 ∧ (1 − ∑

j∈dom(Xi )

yj ) ≤ 0

1 otherwise

The Harmonic update satisfies the conditions as the harmonic series is divergent. In
practice, we often encounter numerical issues and we also state a maximum limit of the
number of iterations so that real convergence is never guaranteed. Let us first illustrate a
simple geometric subgradient approach.

Example 6 (Continued) We consider a simple step-size rule μk = 1 × (0.8)k .
The following table shows the first 4 iterations on our running example:

k μk λ1 λ2 λ3 w∗(λ1, λ2, λ3) Filtering detected

0 - 0 0 0 0
1 0.8 0.8 0.8 0.8 1.8 Y2 �= 0
2 0.64 0.8 0.8 1.44 1.56
3 0.512 0.8 0.8 0.928 1.9279 Y1 �= 1, Y3 �= 1
4 0.4096 0.8 0.8 1.3376 1.6624
. . . . . . . . . . . . . . . . . .

0.8 0.8 1.001 1.999

Initially all λi are null and the optimal solution (y∗
1 , . . . , y

∗
5 ) of LS0 is (0, 0, 0, 0, 0). At

the first iteration, μ1 = 0.8 so the λ vector is updated with algorithm 4 to (0 + 0.8, 0 +
0.8, 0 + 0.8) = (0.8, 0.8, 0.8). The optimal solution of LS0 becomes (0, 1, 0, 0, 0) and
the lower bound is now 1.8. Setting y2 to 0 would raise the bound to 0.8 + 0.8 + 0.8 =
2.4 (q2 = −0.6) so that value 2 is detected as mandatory at iteration 1. In the solution
(0, 1, 0, 0, 0) of LS0, constraints y1 + y2 ≥ 1 and y2 + y3 ≥ 1 are satisfied without slacks
but y4 + y5 ≥ 1 is violated by 1 unit so the subgradient is 1 for λ3. λ is thus updated to
(0.8 + 0, 0.8 + 0, 0.8 + 1 × 0.64) = (0.8, 0.8, 1.44) at iteration 2. Notice that the value of
w∗(λ1, λ2, λ3) is typically non monotonous. �

Harmonic and Geometric do not depend on past iteration results as they are completely
defined with a parameter μ0 and the iteration number k. In contrast, Newton is more elab-
orated. This adaptation of the subgradient procedure of [18] has been successfully used in
[3, 13]. It involves a coefficient, which is based on a parameter μ0, that is updated (divided
by 2�k/10�) during the convergence process. As μk will rapidly converge towards 0, it trig-
gers the stopping criterion sooner. Moreover, μk depends on the distance between the lower
bound of the previous iteration and an estimation of the optimum from above. In other
words, the step size is adjusted according to how close we are from an estimated optimum.
Finally, it also depends on the constraint violations in the previous iteration. The γ function
enables to count constraint violations, with strictly positive multipliers, and not constraint
over-satisfactions. This gives the first iterations a big step size. Overall, Newton has initially
large, but rapidly decreasing, step sizes, so that it can get close to the optimum quickly and
stop soon.
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3.3.2 Parameters and implementation

We stop the subgradient algorithm when the change of the λ values is not significant any-
more (this threshold is set to 10−4 in our experiments) indicating that the subgradient
procedure might be stalled. In addition, a maximum number of iterations (set to 103 in our
experiments) is also used as a stopping criterion. Finally, to prevent numerical issues (e.g.
overflows) from happening, we bound the maximum value of a multiplier with a constant.

It is often beneficial to start with relevant λ values rather than the zero values used by
Algorithm 1for initialization. The best λ found are therefore stored at the end of the sub-
gradient algorithm and used as a starting point for the next call of the algorithm. Moreover,
these values are also restored upon backtracking.

Finally, the infeasible values detected are marked during the execution of the subgradient
and the removal from the domains is only done after LR0 has been solved.

3.4 Stronger filtering

An alternative to reduced costs filtering is to perform a simple form of shaving, or single-
ton consistency, by running the Lagrangian relaxation for every variable-value pair. Note
that this technique brings a significant overhead and can rarely be used for domains of rea-
sonable size. As a compromise, we follow the procedure proposed by Bessiere et al. in [4]
for ATMOSTNVALUE with the linear relaxation. More precisely, they first solve the linear
relaxation to obtain a lower bound for N . Then, for each value v such that y∗

v = 0 in the
optimal solution of LP0, they enforce yv = 1 and solve LP0 ∪ {yv = 1} optimally again.
Value v is removed from all domains of X if the optimal value of the LP0 ∪ {yv = 1} is
greater than N . It is restricted to the detection of forbidden values but not the mandatory
ones since [4] do not represent the use of values explicitely with the Y variables.

We apply the same procedure (restricted to the filtering of forbidden values) as it can be
done similarly for ATMOSTWVALUE and performed with either LP0 or LR0 to compute
the lower bound. We call singleton this optional propagator configuration.

3.5 Comparing the LR0 and LP0 filtering power

It is known that the best bound w∗
LR achieved by a Lagrangian relaxation (LR) of an integer

linear program (ILP) is at least as good as the optimal value w∗
LP of the linear relaxation

(LP) of ILP so we have in this casew∗
LP ≤ w∗

LR ≤ w∗
ILP . It is also known, as a consequence

of a theorem of Geoffrion [17], thatw∗
LP = w∗

LR if the Lagrangian subproblem is an integral
linear program i.e. such that its linear relaxation is integral. LS0 presented in Section 3
meets this criteria. yj remains integral in any optimal solution even if we relax yj ∈ {0, 1}
into yj ≥ 0 and yj ≤ 1. The lower bounds propagated for N and W (in ATMOSTNVALUE

and ATMOSTWVALUE) by both approaches are therefore equal in theory (i.e. assuming
LR0 is solved optimally). Let us now consider the two options proposed for filtering Y :

– reduced-cost: we already noticed that the linear reduced costs have the same definition
than the Lagrangian ones. So if LR0 and LP0 have reached the same optimal solution
i.e. the optimal λ are equal to α∗ then the filtering performed at the optimal point
is the same. We can however have many optimal solutions which makes the filtering
incomparable. Furthermore, as explained in [24], by filtering at every iteration of the
subgradient algorithm (not just the last one), the algorithm can detect infeasible values
that would not be detected at one optimal λ. An illustration of this situation is given
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in Example 5. So, assuming that LR0 and LP0 reach the same optimal multipliers, LR0
would filter theoretically more infeasible values than LP0, which only filters once from
the optimal linear reduced costs.

– singleton: in this case, the filtering performed by LP0 is in theory equal to the one of
LR0 since the bounds are the same. In practice, due to numerical and convergence issues
of LR0, the filtering of LP0 may be stronger.

4 Empirical evaluation

Setup The experiments ran as a single thread on a Dual Quad Core Xeon CPU, 2.66GHz
with 12MB of L2 cache per processor and 16GB of RAM overall, running Linux 2.6.25
x64. The constraint programming solver used is Choco 3 [23] and the linear solver solver is
version 12.5 of CPLEX.

Algorithms In the following we denote by:

– CP: the constraint programming model where the propagator of [4] for ATMOST-
NVALUE is used.

– CP+NVAL(s) / CP+WVAL(s) with s ∈ {Harmonic, Geometric, Newton}: the constraint
programming model using our Lagrangian propagator respectively for ATMOST-
NVALUE and ATMOSTWVALUE with subgradient s. Newton is used by default if s is
not given.

– CP+NVAL(LP): the constraint programming model where propagation of ATMOST-
NVALUE is done by LP0.

– ILP: an integer linear programming model used as a baseline.
– ILP+H: the ILP model using the specific branching heuristic implemented for the CP

approaches.

Metrics For a given algorithm, we denote by:

– Cpu: the cpu times in seconds,
– Fails: the number of failures for a CP approach.
– Iters: the total number of iterations (over the complete search-tree) performed by a

subgradient algorithm.
– #Feas / #Solv / #Best: the number of times the algorithm respectively finds a feasible

solution, achieves the proof of optimality, finds a best known solution.

Benchmark

– The dominating queens problem: a benchmark used by [4] that helps analyzing and
understanding the behaviour of the various algorithms.

– The p-median problem: a benchmark related to facility location and taken from the
discrete location problems benchmark library. Timelimit is set to 300s.

– A variant of the facility location problem: randomly generated instances. Timelimit is
set to 60s.
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Table 2 Comparison of various propagators for ATMOSTNVALUE on the dominating queens

Instance CP+NVAL(Harmonic) CP+NVAL(Geometric) CP+NVAL(Newton)

n v Feas Cpu Fails Iters Cpu Fails Iters Cpu Fails Iters

6 3 Yes 0.2 7 25k 0.2 10 13k 0.1 9 3k

7 4 Yes 0.5 52 128k 0.4 81 80k 0.1 31 9k

8 5 Yes 1.0 86 210k 0.9 158 149k 0.2 79 17k

8 4 No 23.3 1796 2767k 14.4 2172 1352k 5.1 6260 299k

9 5 Yes 14.7 862 1426 k 8.9 910 604k 3.4 1593 157k

4.1 ATMOSTNVALUE: The dominating queens problem

This benchmark was originally used in [4] for comparing various propagation algorithms of
the ATMOSTNVALUE constraint. The problem is to place v queens on a chessboard such
that every square can be attacked by one of the queens (according to chess rules) and no
two queens can attack each other. Hence there is nowhere to hide from the queens. The CP
model boils down to a single ATMOSTNVALUE constraint. For a chessboard of size n, the
model is made of variables X1, . . . , Xn2 for each square and value j is in the domain of Xi

if square j can be attacked from square i. The initial domain of every variable Xi is thus
given by the set of squares Di ⊂ {1, . . . , n2} that a queen located at square i may attack.
A queen is considered to be attacking the square on which it is located. The CP model is
simply:

ATMOSTNVALUE([X1, . . . Xn2 ], v)

Xi ∈ Di ∀i = 1 . . . n2

Branching is performed lexicographically on the X variables and values are assigned
from the lower to the upper bound. This heuristic is static (does not depend on the current
state of the domains) to fairly compare the filtering of the various approaches. We compare
the behaviour of propagators for ATMOSTNVALUE including the one of [4] (CP), three
variants of the LR based propagation that only differ in the subgradient used (Harmonic,
Geometric, Newton) and the LP based propagation presented in Section 2.3. The results are
shown in Tables 2 and 3 for the instances used by [4].

1. Propagators based on LR outperform both LP based propagation and the state-of-the-art
propagator presented in [4].

2. The propagation performed by LR can be stronger than the one done by LP (see the
discussion in Section 3.5).

Table 3 Comparison of various propagators for ATMOSTNVALUE on the dominating queens

Instance CP CP+NVAL(LP)

n v Feas Cpu Fails Cpu Fails

6 3 Yes 0.2 15 0.5 9

7 4 Yes 0.1 353 4.4 93

8 5 Yes 0.7 2275 18.8 259

8 4 No 155.6 1074789 222.8 2596

9 5 Yes 186.8 920666 153.7 884
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Table 4 Propagators performing a form of singleton consistency on values 1 of the Y variables

Instance CP+NVAL(Harmonic) CP+NVAL(Geometric) CP+NVAL(Newton) CP+NVAL(LP)

n v Feas Cpu Fails Iters Cpu Fails Iters Cpu Fails Iters Cpu Fails

6 3 Yes 0.1 0 39k 0.1 0 18k 0.04 0 3k 0.1 0

7 4 Yes 3.7 4 759k 1.5 4 234k 0.36 4 54k 0.8 3

8 5 Yes 7.5 3 1095k 3.7 5 401k 1.05 8 104k 2.0 2

8 4 No 11.5 21 1474k 7.5 22 744k 13.53 276 1317k 4.0 21

9 5 Yes 14.0 5 1412k 6.9 5 525k 26.21 407 2017k 4.8 5

3. The Harmonic subgradient procedure is very slow and tends to perform more iterations
than Geometric which in turns performs more iterations than Newton. Overall, Newton
offers the best tradeoff between filtering and runtime here.

Table 4 shows the results obtained when all propagators perform a simple form
of singleton consistency on the Y variables, described in Section 3.4. We assign
each Yj in turn to 1 and recompute the lower bound to check the consistency
of value j .

1. The singleton procedure dramatically reduces the number of fails. This points out that,
even though the relaxations are already elaborated, reduced costs are not that good and
even more filtering may be achieved.

2. We can check that LP now captures all the filtering whereas LR can miss some of
it due to occasional convergence issues. Moreover, LP is very fast as CPLEX is very
incremental when changing the bounds of the variables one by one.

3. The best gradient is no longer Newton as it cannot afford to miss any filter-
ing. The cost of propagation per node is now so high that one should make
the most of it. Thus, slower gradients, converging better, are more effective
in this case.

4.2 Facility location benchmark

We now consider a class of problem related to facility location. The general problem is
to open at most p facilities for serving n clients at minimum cost. The set of facilities
is chosen out of a discrete set of m facilities. A client i can only access to a subset P(i) of
the m facilities and the cost for serving client i by facility j is denoted cij . A cost must also

Table 5 Results of ILP approaches on P-Median instances

Instance ILP ILP+H

n m Class #Feas #Solv #Best #Feas #Solv #Best

100 100 A 30 30 30 30 29 29

100 100 B 30 30 30 30 22 26

100 100 C 27 11 22 27 0 11
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be paid for opening facility j and is denoted wj . The ILP model used as a baseline is the
following:

(ILP) Minimize :
n∑

i=1

m∑

j=1
cij xij +

m∑

j=1
wjyj

Subject to : ∑

j∈P(i)

xij = 1 ∀i ∈ [1, n]
m∑

j=1
yj ≤ p

xij ≤ yj ∀i ∈ [1, n], ∀j ∈ [1,m]
xij ∈ {0, 1} ∀i ∈ [1, n], ∀j ∈ [1,m]
yj ∈ {0, 1} ∀j ∈ [1,m]

Notice that if the yj variables are known, then the remaining problem is simply to assign
each client to its cheapest opened facility. From a linear programming point of view, this
amounts to a simple flow problem and xij ∈ {0, 1} can be relaxed into 0 ≤ xij ≤ 1. In
fact, xij ≥ 0 is enough. This greatly affect the performances of CPLEX by informing the
branching to operate on the y variables solely.

We use two specific versions of this problem for benchmarking: the p-median problem
(Section 4.2.1) where all fixed costs are null (wj = 0 for all j ∈ [1, m]) and a restriced
facility location problem (Section 4.2.2) where connection costs are null (cij = 0 for all
i ∈ [1, n] and j ∈ [1,m]).

4.2.1 ATMOSTNVALUE: The p-median problem

The benchmark is taken from the discrete location problems benchmark library1 and fea-
tures 90 instances split in three classes A, B, C of 30 instances each. The instances have
a large duality gap for the linear relaxation making them hard to handle with LP based
methods.

Minimize
∑n

i=1 Ci

(1) ATMOSTNVALUE([X1, . . . Xn], [Y1, . . . Ym], N)

(2) ELEMENT(Xi, [ci1, . . . , cim], Ci) ∀i ∈ [1, n]
(3)

∑m
i=1 Yi = N

Xi ∈ P(i) ∀i ∈ [1, n]
Ci ≥ 0 ∀i ∈ [1, n]
Yj ∈ {0, 1} ∀j ∈ [1, m]
N ∈ [1, p]

Dominance As mentionned before, once the Y variables have been assigned (facilities
are known), then the remaining problem is simply to assign each client Xi to its cheapest
opened facility. In other words, dominance relations hold between the values of a given Xi .
To model the fact that value a dominates b, we add redundant constraints. For all i ∈ [1, n]
and {a, b} ∈ P(i) such that cia < cib ∨ (cia = cib ∧ a < b)

(4) Ya = 1 =⇒ Xi �= b

This is implemented in a dedicated dominance breaking propagator which removes value
b from Xi if Ya = 1, cia ≤ cib and {a, b} are still in the current domain of Xi (a ∈ dom(Xi)

1http://www.math.nsc.ru/AP/benchmarks/UFLP/Engl/uflp dg eng.html

http://www.math.nsc.ru/AP/benchmarks/UFLP/Engl/uflp_dg_eng.html
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Table 6 Results of CP approaches on P-Median instances

Instance CP CP+NVAL(Newton)

n m Class #Feas #Solv #Best #Feas #Solv #Best Avg G Max G

100 100 A 1 0 1 30 19 26 1.2 17.1

100 100 B 10 0 0 30 7 15 2.2 9.1

100 100 C 0 0 0 23 0 4 9.5 25.6

and b ∈ dom(Xi)). This approach avoids the use of an a priori initial ordering of the values
which can be counter-productive with the search heuristic.

Branching The branching is performed on the Y variables (Xi variables are grounded by
propagation once Y are known due to constraint (4)). The variable Yv is chosen first if v

is a value that belongs to a variable Xi of minimum domain size (first-fail principle). To
break the ties between values, we simply select the ’cheapest’ in average, ie the value v

minimizing
∑

i|v∈Xi
civ

|{i|v∈Xi }| . Note that ILP+H is the ILP approach where the same heuristic is
implemented using callbacks of CPLEX.

The timelimit is set to 300s. We also report in Tables 5 and 6, for the Lagrangian
based approach, the average (Avg G) and maximum (Max G) gap (as a percentage) to the
best known solution computed as 100∗(UB−BestKnown)

BestKnown
over all instances where a feasible

solution has been found.

1. The CP model using the standard propagator for ATMOSTNVALUE is struggling to
find feasible solutions. It is completely outperformed by the new propagator.

2. ILP is more efficient than ILP+H showing that the default branching of the MIP (based
on pseudo-costs) is more powerful than the dedicated heuristic.

3. Our CP model does not propagate a strong lower bound on the objective (assignment
costs are only handled using ELEMENT), does not start the search with any upper bound
(as opposed the MIP approaches when they manage to identify a feasible solution in
pre-solve) and is thus not expected to be competitive with ILP at this stage. Nonethe-
less, propagation on ATMOSTNVALUE is surprisingly effective and the CP approach
generally provides solutions close to the best known.

4. On the hardest class C, ILP and ILP+H fails to find a feasible solution on 3 differ-
ent instances each. The best value reported by each algorithm on the corresponding 6
instances is shown in Table 7.

Table 7 Highlight on the six instances where ILP or ILP+H fails to find a feasible solution.The value of the
best solution found is shown for each approach

ILP ILP+H CP(NVAL)

333PM GapC - 157 147

633PM GapC - 152 145

733PM GapC 137 - 157

1833PM GapC 154 - 175

2633PM GapC 132 - 137

3033PM GapC - 153 167
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Table 8 Results comparing four approaches for instances generated in the class (50, 50, 0.1)

ILP CP CP+NVAL CP+WVAL CP+NVAL+WVAL

Cpu Cpu Fails Cpu Fails Cpu Fails Cpu Fails

Median 0.04 11.63 112026 0.22 481 10.12 9326 0.12 100

StDev 0.02 17.74 199847 1.32 2725 25.61 25765 0.16 80

#Best 20 20 20 16 20

#Solv 20 18 20 15 20

4.2.2 ATMOSTWVALUE: A restricted facility location problem

We consider here the facility location problem presented earlier where all cij are set to 0.
Random instances are generated with parameters (n,m, d) where d is the probability to let
client i access facility j , ie j ∈ P(i). p is set to � n

4 � and the fixed costs wi are taken uni-
formly in [1000, 1300]. We consider classes with n, m ∈ {50, 80, 100} and d ∈ {0.1, 0.2}.
20 random instances are generated in each class. The constraint model is as follows:

Minimize W = ∑m
i=1 wiYi

(1) ATMOSTNVALUE([X1, . . . Xn], [Y1, . . . Ym], N)

(2)
∑m

i=1 Yi = N

Xi ∈ P(i) ∀i ∈ [1, n]
Yj ∈ {0, 1} ∀j ∈ [1, m]
N ∈ [1, p]

The ATMOSTWVALUE constraint can be added as a redundant constraint to strengthen
the lower bound of the objective function:

(3)ATMOSTWVALUE([X1, . . . Xn], [Y1, . . . Ym], [w1, . . . , wm], W)

Note also that constraint (3) can entirely replace the objective function and (2) is a useful
redundant constraint (in particular for the CP approach).

4.3 Comparing CP models

We compare four approaches including an ILP formulation, the CP model given above, and
the three possible extended models using our Lagrangian based propagator. The approach
CP + NVAL + WVAL is thus stating both global constraints.

Branching The branching is performed first on N (from its lower to its upper bound) then
on the Y variables, lexicographically (the heuristic is therefore static).

Table 9 reports the cpu times and number of failures (median and deviation) for 20
random instances generated in the class (50, 50, 0.1).

Significant improvements are observed for the model using both global constraints: the
median numbers of failures are divided by more than 1000 when compared to the standard
propagation of ATMOSTNVALUE.

4.4 Comparing with ILP

To ensure further scalability, we improve the model with ideas similar to the ones already
introduced for the p-median.
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Table 9 Results for larger instances of the restricted facility location problem

Instances ILP ILP+H CP CP+NVAL+WVAL

Cpu Cpu Cpu Fails Cpu Fails

(80,80,0.1) Median 0.43 1.55 60.00 117632 6.99 754

Stdev 0.34 2.11 0.00 16734 5.87 728

#Best 20 20 19 20

#Solv 20 20 0 20

(80,80,0.2) Median 3.22 12.47 60.00 85196 32.92 3628

Stdev 2.26 12.03 0.00 7359 16.13 1970

#Best 20 20 20 20

#Solv 20 20 0 16

(100,100,0.1) Median 3.60 29.52 60.00 49370 60.00 4264

Stdev 3.10 22.12 0.00 2813 11.68 969

#Best 20 17 11 20

#Solv 20 16 0 7

(100,100,0.2) Med 46.75 60.00 60.00 38808 60.00 4671

Stdev 23.16 20.75 0.00 1315 8.72 756

#Best 15 11 5 20

#Solv 13 4 0 1

(100,100,0.5) Med 55.65 60.00 60.00 46518 60.00 6337

Stdev 21.78 19.11 8.24 7938 11.43 1418

#Best 12 17 20 20

#Solv 10 7 2 4

Symmetry: In this particular case, all values of the X variables are symmetrical (all cij

are null). For every i ∈ [1, n] and for all {(a, b) | a < b} ∈ P(i), we can add:

(3) Ya = 1 =⇒ Xi �= b

As explained in Section 4.2.1, it is implemented as a specific symmetry breaking
constraint.

Branching The branching on Y variables is improved. Variable Yv is chosen first if v is
a value that belongs to a variable Xi of minimum domain size (first-fail principle) and ties
are broken by preferring the value v with smallest average cost wv|{i|v∈Xi }| .

The timelimit is set to 60s. Table 9 shows the results.
As the size grows, the strenghtened CP model is able to find better solutions than the ILP

or ILP+H but is less effective to perform the proof of optimality.
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5 Conclusion and future work

This paper has introduced a simple and powerful filtering algorithm for both ATMOST-
NVALUE and ATMOSTWVALUE. The algorithm relies on a network of channeling
constraints and a Lagrangian relaxation whose subproblem can be solved very efficiently by
inspection. We have illustrated its practical relevance on several benchmarks. The proposed
algorithms significantly increase the filtering power of both constraints, while remaining
profitable in terms of propagation runtime.

This work can be extended in several ways. From a technical point of view, the man-
agement of the subgradient has potential for progress. We plan to investigate different
techniques, such as bundle methods [29] as well as the use of simple machine learning
components [19] to select the parameters. We also believe that it is worth to gener-
alize this work for assignment costs i.e. costs, related to the use of a value j by a
given variable Xi . Many problems involving costs related to the Y variables also involve
costs related to the X variables and the connections with the work of [9, 20] should be
investigated.
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