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Abstract A wide range of problems can be modelled as constraint satisfaction problems
(CSPs), that is, a set of constraints that must be satisfied simultaneously. Constraints can
either be represented extensionally, by explicitly listing allowed combinations of values, or
implicitly, by special-purpose algorithms provided by a solver. Such implicitly represented
constraints, known as global constraints, are widely used; indeed, they are one of the key
reasons for the success of constraint programming in solving real-world problems. In recent
years, a variety of restrictions on the structure of CSP instances have been shown to yield
tractable classes of CSPs. However, most such restrictions fail to guarantee tractability for
CSPs with global constraints. We therefore study the applicability of structural restrictions
to instances with such constraints. We show that when the number of solutions to a CSP
instance is bounded in key parts of the problem, structural restrictions can be used to derive
new tractable classes. Furthermore, we show that this result extends to combinations of
instances drawn from known tractable classes, as well as to CSP instances where constraints
assign costs to satisfying assignments.

Keywords Tractability · Global constraints · Structural restrictions

1 Introduction

Constraint programming (CP) is widely used to solve a variety of practical problems such
as planning and scheduling [29, 39], and industrial configuration [3, 28]. Constraints can
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either be represented explicitly, by a table of allowed assignments, or implicitly, by special-
ized algorithms provided by the constraint solver. These algorithms may take as a parameter
a description that specifies exactly which kinds of assignments a particular instance of a
constraint should allow. Such implicitly represented constraints are known as global con-
straints, and a lot of the success of CP in practice has been attributed to solvers providing
global constraints [20, 36, 40].

The theoretical properties of constraint problems, in particular the computational com-
plexity of different types of problem, have been extensively studied and quite a lot is known
about what restrictions on the general constraint satisfaction problem are sufficient to make
it tractable [4, 8, 12, 23, 26, 33]. In particular, many structural restrictions, that is, restric-
tions on how the constraints in a problem interact, have been identified and shown to yield
tractable classes of CSP instances [24, 27, 33]. However, much of this theoretical work has
focused on problems where each constraint is explicitly represented, and most known struc-
tural restrictions fail to yield tractable classes for problems with global constraints. This is
the case even when the global constraints are fairly simple, such as overlapping difference
constraints with acyclic hypergraphs [30].

Theoretical work on global constraints has to a large extent focused on developing effi-
cient algorithms to achieve various kinds of local consistency for individual constraints.
This is generally done by pruning from the domains of variables those values that cannot
lead to a satisfying assignment [6, 37]. Another strand of research has explored condi-
tions that allow global constraints to be replaced by collections of explicitly represented
constraints [7]. These techniques allow faster implementations of algorithms for individ-
ual constraints, but do not shed much light on the complexity of problems with multiple
overlapping global constraints, which is something that practical problems frequently
require.

As such, in this paper we investigate the properties of explicitly represented constraints
that allow structural restrictions to guarantee tractability. Identifying such properties will
allow us to find global constraints that also possess them, and lift structural restrictions to
instances with such constraints.

As discussed in [9], when the constraints in a family of problems have unbounded
arity, the way that the constraints are represented can significantly affect the complexity.
Previous work in this area has assumed that the global constraints have specific represen-
tations, such as propagators [25], negative constraints [13], or GDNF/decision diagrams
[9], and exploited properties particular to that representation. In contrast, we will use a
definition of global constraints, used also in [14], that allows us to discuss different rep-
resentations in a uniform manner. Armed with this definition, we obtain results that rely
on a relationship between the size of a global constraint and the number of its satisfying
assignments.

Furthermore, as our definition is general enough to capture arbitrary problems in NP, we
demonstrate how our results can be used to decompose a constraint problem into smaller
constraint problems (as opposed to individual constraints), and when such decompositions
lead to tractability. The results that we obtain on this topic extend previous research by
Cohen and Green [10]. In addition to being more general, our results arguably use simpler
theoretical machinery.

Finally, we show how our results can be extended to weighted CSP [21, 22], that is, CSP
where constraints assign costs to satisfying assignments, and the goal is to find an optimal
solution.
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2 Preliminaries

In this section, we define the basic concepts that we will use throughout the paper. In par-
ticular, we give a precise definition of global constraints and of structural decompositions.

2.1 Global constraints

Definition 1 (Variables and assignments) Let V be a set of variables, each with an asso-
ciated finite set of domain elements. We denote the set of domain elements (the domain) of
a variable v by D(v). We extend this notation to arbitrary subsets of variables, W , by setting
D(W) =

⋃

v∈W

D(v).

An assignment of a set of variables V is a function θ : V → D(V ) that maps every
v ∈ V to an element θ(v) ∈ D(v). We write V(θ) for the set of variables V .

We denote the restriction of θ to a set of variables W ⊆ V by θ |W . We also allow the
special assignment ⊥ of the empty set of variables. In particular, for every assignment θ , we
have θ |∅ = ⊥.

Definition 2 (Projection) Let Θ be a set of assignments of a set of variables V . The pro-
jection of Θ onto a set of variables X ⊆ V is the set of assignments πX(Θ) = {θ |X | θ ∈
Θ}.

Note that when Θ = ∅ we have πX(Θ) = ∅, but when X = ∅ and Θ �= ∅, we have
πX(Θ) = {⊥}.

Definition 3 (Disjoint union of assignments) Let θ1 and θ2 be two assignments of disjoint
sets of variables V1 and V2, respectively. The disjoint union of θ1 and θ2, denoted θ1 ⊕ θ2, is
the assignment of V1 ∪V2 such that (θ1 ⊕ θ2)(v) = θ1(v) for all v ∈ V1, and (θ1 ⊕ θ2)(v) =
θ2(v) for all v ∈ V2.

Global constraints have traditionally been defined, somewhat vaguely, as constraints
without a fixed arity, possibly also with a compact representation of the constraint relation.
For example, in [29] a global constraint is defined as “a constraint that captures a relation
between a non-fixed number of variables”.

Below, we offer a precise definition similar to the one in [6], where the authors define
global constraints for a domain D over a list of variables σ as being given intensionally by
a function D|σ | → {0, 1} computable in polynomial time. Our definition differs from this
one in that we separate the general algorithm of a global constraint (which we call its type)
from the specific description. This separation allows us a better way of measuring the size
of a global constraint, which in turn helps us to establish new complexity results.

Definition 4 (Global constraints) A global constraint type is a parameterized polynomial-
time algorithm that determines the acceptability of an assignment of a given set of variables.

Each global constraint type, e, has an associated set of descriptions, Δ(e). Each descrip-
tion δ ∈ Δ(e) specifies appropriate parameter values for the algorithm e. In particular, each
δ ∈ Δ(e) specifies a set of variables, denoted by V(δ). We write |δ| for the number of bits
used to represent δ.
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A global constraint e[δ], where δ ∈ Δ(e), is a function that maps assignments of V(δ)

to the set {0, 1}. Each assignment that is allowed by e[δ] is mapped to 1, and each disal-
lowed assignment is mapped to 0. The extension or constraint relation of e[δ] is the set of
assignments, θ , of V(δ) such that e[δ](θ) = 1. We also say that such assignments satisfy the
constraint, while all other assignments falsify it.

When we are only interested in describing the set of assignments that satisfy a constraint,
and not in the complexity of determining membership in this set, we will sometimes abuse
notation by writing θ ∈ e[δ] to mean e[δ](θ) = 1.

As can be seen from the definition above, a global constraint is not usually explicitly
represented by listing all the assignments that satisfy it. Instead, it is represented by some
description δ and some algorithm e that allows us to check whether the constraint relation
of e[δ] includes a given assignment. To stay within the complexity class NP, this algorithm
is required to run in polynomial time. As the algorithms for many kinds of global con-
straints are built into modern constraint solvers, we measure the size of a global constraint’s
representation by the size of its description.

Example 1 (EGC) A very general global constraint type is the extended global cardinal-
ity constraint type [37]. This form of global constraint is defined by specifying, for every
domain element a, a finite set of natural numbers K(a), called the cardinality set of a. The
constraint requires that the number of variables which are assigned the value a is in the set
K(a), for each possible domain element a.

Using our notation, the description δ of an EGC global constraint specifies a function
Kδ : D(V(δ)) → P(N) that maps each domain element to a set of natural numbers.
The algorithm for the EGC constraint then maps an assignment θ to 1 if and only if,
for every domain element a ∈ D(V(δ)), we have that |{v ∈ V(δ) | θ(v) = a}| ∈
Kδ(a).

Example 2 (Table and negative constraints) A rather degenerate example of a a global
constraint type is the table constraint.

In this case the description δ is simply a list of assignments of some fixed set of variables,
V(δ). The algorithm for a table constraint then decides, for any assignment of V(δ), whether
it is included in δ. This can be done in a time which is linear in the size of δ and so meets
the polynomial time requirement.

Negative constraints are complementary to table constraints, in that they are described by
listing forbidden assignments. The algorithm for a negative constraint e[δ] decides, for any
assignment of V(δ), whether it is not included in δ. Observe that disjunctive clauses, used
to define propositional satisfiability problems, are a special case of the negative constraint
type, as they have exactly one forbidden assignment.

We observe that any global constraint can be rewritten as a table or negative constraint.
However, this rewriting will, in general, incur an exponential increase in the size of the
description.

As can be seen from the definition above, a table global constraint is explicitly repre-
sented, and thus equivalent to the usual notion of an extensionally represented constraint.

In some cases, particularly for table constraints, we will make use of the standard notion
of a relational join, which we define below.
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Definition 5 (Constraint join) A global constraint ej [δj ] is the join of two global con-
straints e1[δ1] and e2[δ2] whenever V(δj ) = V(δ1) ∪ V(δ2), and θ ∈ ej [δj ] if and only if
θ |V(δ1) ∈ e1[δ1] and θ |V(δ2) ∈ e2[δ2].

Definition 6 (CSP instance) An instance of the constraint satisfaction problem (CSP) is
a pair 〈V,C〉 where V is a finite set of variables, and C is a set of global constraints
such that V =

⋃

e[δ]∈C

V(δ). In a CSP instance, we call V(δ) the scope of the cons-

traint e[δ].
A classic CSP instance is one where every constraint is a table constraint.
A solution to a CSP instance P = 〈V, C〉 is an assignment θ of V which satisfies every

global constraint, i.e., for every e[δ] ∈ C we have θ |V(δ) ∈ e[δ]. We denote the set of
solutions to P by sol(P ).

The size of a CSP instance P = 〈V, C〉 is |P | = |V | +
∑

v∈V

|D(v)| +
∑

e[δ]∈C

|δ|.

Note that this definition disallows CSP instances with variables that are not in the scope
of any constraint. Since a variable that is not in the scope of any constraint can be assigned
any value from its domain, excluding such variables can be done without loss of general-
ity. While this condition is strictly speaking not necessary, it will allow us to simplify some
proofs later on. In particular, it entails that the set of solutions to a CSP instance is pre-
cisely the set of assignments satisfying the constraint obtained by taking the join of every
constraint in the CSP instance.

To illustrate these definitions, consider the connected graph partition problem (CGP)
[18, p. 209], formally defined below. Informally, the CGP is the problem of partitioning the
vertices of a graph into bags of a given size while minimizing the number of edges that have
endpoints in different bags.

Problem 1 (Connected graph partition (CGP)) We are given an undirected and connected
graph 〈V,E〉, as well as α, β ∈ N. Can V be partitioned into disjoint sets V1, . . . , Vm, for
some m, with |Vi | ≤ α such that the set of broken edges E′ = {{u, v} ∈ E | u ∈ Vi, v ∈
Vj , i �= j} has cardinality β or less?

Example 3 (The CGP encoded with global constraints) Given a connected graph G =
〈V, E〉, α, and β, we build a CSP instance 〈A ∪ B, C〉 as follows. The set A will have a
variable v for every v ∈ V with domain D(v) = {1, . . . , |V |}, while the set B will have a
boolean variable e for every edge in E.

The set of constraints C will have an EGC constraint Cα on A with K(i) = {0, . . . , α}
for every 1 ≤ i ≤ |V |. Likewise, C will have an EGC constraint Cβ on B with K(0) =
{0, . . . , |E|} and K(1) = {0, . . . , β}.

Finally, to connect A and B, the set C will have for every edge {u, v} ∈ E, with
corresponding variable e ∈ B, a table constraint on {u, v, e} requiring θ(u) �= θ(v) → θ(e) = 1.

As an example, Fig. 1 shows this encoding for the CGP on the graph C5, that is, a simple
cycle on five vertices.

This encoding follows the definition of Problem 1 quite closely, and can be done in
polynomial time.
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Fig. 1 CSP encoding of the CGP on the graph C5

2.2 Structural restrictions

In recent years, there has been a flurry of research into identifying tractable classes of classic
CSP instances based on structural restrictions, that is, restrictions on the hypergraphs of CSP
instances. Below, we present and discuss a few representative examples. In Sections 3 and 4,
we will show how these techniques can be applied to CSP instance with global constraints.
To present the various structural restrictions, we will use the framework of width functions,
introduced by Adler [1].

Definition 7 (Hypergraph) A hypergraph 〈V, H 〉 is a set of vertices V together with a set
of hyperedges H ⊆ P(V ).

Given a CSP instance P = 〈V, C〉, the hypergraph of P , denoted hyp(P ), has vertex set
V together with a hyperedge V(δ) for every e[δ] ∈ C.

Definition 8 (Tree decomposition) A tree decomposition of a hypergraph 〈V, H 〉 is a pair
〈T , χ〉 where T is a tree and χ is a labelling function from nodes of T to subsets of V , such
that

1. for every v ∈ V , there exists a node t of T such that v ∈ χ(t),
2. for every hyperedge h ∈ H , there exists a node t of T such that h ⊆ χ(t), and
3. for every v ∈ V , the set of nodes {t | v ∈ χ(t)} induces a connected subtree of T .

Definition 9 (Width function) Let G = 〈V, H 〉 be a hypergraph. A width function on G

is a function f : P(V ) − {∅} → R
+ that assigns a positive real number to every nonempty

subset of vertices of G. A width function f is monotone if f (X) ≤ f (Y ) whenever X ⊆ Y .
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Let 〈T , χ〉 be a tree decomposition of G, and f a width function on G. The f -width of
〈T , χ〉 is max({f (χ(t)) | t node ofT }). The f -width of G is the minimal f -width over all
its tree decompositions.

In other words, a width function on a hypergraph G tells us how to assign weights to
nodes of tree decompositions of G.

Definition 10 (Treewidth) Let f (X) = |X| − 1. The treewidth tw(G) of a hypergraph G

is the f -width of G.

Let G = 〈V, H 〉 be a hypergraph, and X ⊆ V . An edge cover of X is any set of
hyperedges H ′ ⊆ H that satisfies X ⊆ ⋃

H ′. The edge cover number ρ(X) of X is the size
of the smallest edge cover of X. It is clear that ρ is a width function.

Definition 11 ([1, Chapter 2]) The generalized hypertree width ghw(G) of a hypergraph
G is the ρ-width of G.

Next, we define a relaxation of hypertree width known as fractional hypertree width,
introduced by Grohe and Marx [27].

Definition 12 (Fractional edge cover) Let G = 〈V, H 〉 be a hypergraph, and X ⊆ V . A
fractional edge cover for X is a function γ : H → [0, 1] such that

∑

v∈h∈H

γ (h) ≥ 1 for every

v ∈ X. We call
∑

h∈H

γ (h) the weight of γ . The fractional edge cover number ρ∗(X) of X is

the minimum weight over all fractional edge covers for X. It is known that this minimum is
always rational [27]. We furthermore define ρ∗(G) = ρ∗(V ).

Definition 13 The fractional hypertree width fhw(G) of a hypergraph G is the ρ∗-width of
G.

For a class of hypergraphs H and a notion of width α, we write α(H) for the maximal
α-width over the hypergraphs in H. If this is unbounded we write α(H) = ∞; otherwise
α(H) < ∞.

Bounding any of the above width measures by a constant can be used to guarantee
tractability for classes of CSP instances where all constraints are table constraints.

Theorem 1 ([2, 15, 24, 27, 31]) Let H be a class of hypergraphs. For every α ∈
{tw, ghw, fhw}, any class of classic CSP instances whose hypergraphs are inH is tractable
if α(H) < ∞.

To go beyond fractional hypertree width, Marx [33] recently introduced the concept
of submodular width. This concept uses a set of width functions satisfying a condition
(submodularity), and considers the f -width of a hypergraph for every such function f .

Definition 14 (Submodular width function) Let G = 〈V, H 〉 be a hypergraph. A width
function f on G is edge-dominated if f (h) ≤ 1 for every h ∈ H .

An edge-dominated width function f on G is submodular if for every pair of sets X, Y ⊆
V , we have f (X) + f (Y ) ≥ f (X ∩ Y ) + f (X ∪ Y ).



Constraints (2016) 21:198–222 205

Definition 15 (Submodular width) Let G be a hypergraph. The submodular width
subw(G) of G is the supremum of the f -widths of G taken over all monotone, edge-
dominated, submodular width functions f on G.

For a class of hypergraphs H, we write subw(H) for the maximal submodular width over
the hypergraphs in H. If this is unbounded we write subw(H) = ∞; otherwise subw(H) <

∞.

Unlike for fractional hypertree width and every other structural restriction discussed so
far, the running time of the algorithm given by Marx for classic CSP instances with bounded
submodular width has an exponential dependence on the number of vertices in the hyper-
graph of the instance. The class of classic CSP instances with bounded submodular width
is therefore not known to be tractable. However, this class is what is called fixed-parameter
tractable [16, 17].

Definition 16 (Fixed-parameter tractable) A parameterized problem instance is a pair
〈k, P 〉, where P is a problem instance, such as a CSP instance, and k ∈ N a parameter.

Let S be a class of parameterized problem instances. We say that S is fixed-parameter
tractable (in FPT) if there is a computable function f of one argument, as well as a constant
c, such that every problem 〈k, P 〉 ∈ S can be solved in time O(f (k) × |P |c).

The function f can be arbitrary, but must only depend on the parameter k. For CSP
instances, one possible parameterization is by the size of the hypergraph of an instance,
measured by the number of vertices. Since the hypergraph of an instance has a vertex for
every variable, for every CSP instance P = 〈V, C〉 we consider the parameterized instance
〈|V |, P 〉.

Theorem 2 ([33]) Let H be a class of hypergraphs. If subw(H) < ∞, then a class of
classic CSP instances whose hypergraphs are inH is in FPT.

The three structural restrictions that we have just presented form a hierarchy [27, 33]:
For every hypergraph G, subw(G) ≤ fhw(G) ≤ ghw(G) ≤ tw(G).

As the example below demonstrates, Theorem 1 does not hold for CSP instances with
arbitrary global constraints, even if we have a fixed, finite domain. The only exception is
the restriction of Theorem 1 to treewidth, as bounded treewidth implies bounded arity for
every hyperedge.

Example 4 The NP-complete problem of 3-colourability [18] is to decide, given a graph
〈V, E〉, whether the vertices V can be coloured with three colours such that no two adjacent
vertices have the same colour.

We may reduce this problem to a CSP with EGC constraints (cf. Example 1) as follows:
Let V be the set of variables for our CSP instance, each with domain {r, g, b}. For every edge
〈v, w〉 ∈ E, we post an EGC constraint with scope {v, w}, parameterized by the function
K such that K(r) = K(g) = K(b) = {0, 1}. Finally, we make the hypergraph of this CSP
instance have low width by adding an EGC constraint with scope V parameterized by the
function K ′ such that K ′(r) = K ′(g) = K ′(b) = {0, . . . , |V |}. This reduction clearly takes
polynomial time, and the hypergraph G of the resulting instance has ghw(G) = fhw(G) =
subw(G) = 1.

As the constraint with scope V allows all possible assignments, any solution to this CSP
is also a solution to the 3-colourability problem, and vice versa.
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Likewise, Theorem 2 does not hold for CSP instances with arbitrary global constraints if
we allow the variables unbounded domain size, that is, change the above example to allow
each variable its own set of colours. In other words, the structural restrictions cannot yield
tractable classes of CSP instances with arbitrary global constraints. With that in mind, in
the rest of the paper we will identify properties of extensionally represented constraints that
these structural restrictions exploit to guarantee tractability. Then, we are going to look for
restricted classes of global constraints that possess these properties. To do so, we will use
the following definitions.

Definition 17 (Constraint catalogue) A constraint catalogue is a set of global constraints.
A CSP instance 〈V, C〉 is said to be over a constraint catalogue Γ if for every e[δ] ∈ C we
have e[δ] ∈ Γ .

Definition 18 (Restricted CSP class) Let Γ be a constraint catalogue, and let H be a
class of hypergraphs. We define CSP(H, Γ ) to be the class of CSP instances over Γ whose
hypergraphs are in H.

Definition 18 allows us to discuss classic CSP instances alongside instances with global
constraints. Let Ext be the constraint catalogue containing all table global constraints. The
classic CSP instances are then precisely those that are over Ext. In particular, we can now
restate Theorems 1 and 2 as follows.

Theorem 3 Let H be a class of hypergraphs. For every α ∈ {tw, ghw, fhw}, the class of
CSP instances CSP(H,Ext) is tractable if α(H) < ∞. Furthermore, if subw(H) < ∞
then CSP(H,Ext) is in FPT.

3 Properties of extensional representation

We are going to start our investigation by considering fractional hypertree width in more
detail. To obtain tractability for classic CSP instances of bounded fractional hypertree width,
Grohe and Marx [27] use a bound on the number of solutions to a classic CSP instance, and
show that this bound is preserved when we consider parts of a CSP instance. The following
definition formalizes what we mean by “parts”, and is required to state the algorithm that
Grohe and Marx use in their paper.

Definition 19 (Constraint projection) Let e[δ] be a global constraint. The projection of
e[δ] onto a set of variables X ⊆ V(δ) is the constraint pjX(e[δ]) such that μ ∈ pjX(e[δ]) if
and only if there exists θ ∈ e[δ] with θ |X = μ.

For a CSP instance P = 〈V,C〉 and X ⊆ V we define pjX(P ) = 〈X, C′〉, where C′ is
the set containing for every e[δ] ∈ C such that X ∩ V(δ) �= ∅ the constraint pjX∩V(δ)(e[δ]).

3.1 Algorithm for enumerating all solutions

The algorithm is given as Algorithm 1, and is essentially the usual recursive search algo-
rithm for finding all solutions to a CSP instance by considering smaller and smaller
sub-instances using constraint projections.

To show that Algorithm 1 does indeed find all solutions, we will use the following
property of constraint projections.
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Algorithm 1 Enumerate all solutions of a CSP instance

procedure ENUMSOLUTIONS(CSP instance P = 〈V, C〉) � Returns sol(P )

Solutions ← ∅
if V = ∅ then

return {⊥} � The empty assignment
else

w ← chooseVar(V ) � Pick a variable from V

Θ = EnumSolutions(pjV −{w}(P ))

for θ ∈ Θ do
for a ∈ D(w) do

θ ′(w) = a

if θ ⊕ θ ′ is a solution to P then
Solutions.add(θ ⊕ θ ′)

end if
θ ′ ← ⊥

end for
end for

end if
return Solutions

end procedure

Lemma 1 Let P = 〈V, C〉 be a CSP instance. For every X ⊆ V , we have sol(pjX(P )) ⊇
πX(sol(P )).

Proof Given P = 〈V, C〉, let X ⊆ V be arbitrary, and let C′ = {e[δ] ∈ C | X∩V(δ) �= ∅}.
For every θ ∈ sol(P ) and constraint e[δ] ∈ C′ we have that θ |V(δ) ∈ e[δ] since θ is a solu-
tion to P . By Definition 19, it follows that for every e[δ] ∈ C′, θ |X∩V(δ) ∈ pjX∩V(δ)(e[δ]).
Since the set of constraints of pjX(P ) is the least set containing for each e[δ] ∈ C′ the con-
straint pjX∩V(δ)(e[δ]), we have θ |X ∈ sol(pjX(P )), and hence sol(pjX(P )) ⊇ πX(sol(P )).
Since X was arbitrary, the claim follows.

Theorem 4 (Correctness of Algorithm 1) For every CSP instance P , we have that
EnumSolutions(P ) = sol(P ).

Proof The proof is by induction on the set of variables V in P . For the base case, if V = ∅,
the empty assignment is the only solution.

Otherwise, choose a variable w ∈ V , and let X = V −{w}. By induction, we can assume
that EnumSolutions(pjX(P )) = sol(pjX(P )). Since for every θ ∈ sol(P ) there exists a ∈
D(w) such that θ = θ |X ∪〈w, a〉, and furthermore θ |X ∈ πX(sol(P )), it follows by Lemma
1 that θ |X ∈ sol(pjX(P )). Since Algorithm 1 checks every assignment of the form μ∪〈w, a〉
for every μ ∈ sol(pjX(P )) and a ∈ D(w), it follows that EnumSolutions(P ) = sol(P ).

The time required for this algorithm depends on three key factors, which we are going to
enumerate and discuss below. Let

1. s(P ) be the maximum of the number of solutions to each of the instances pjW (P ), for
W ⊆ V ,
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2. c(P ) be the maximum time required to check whether an assignment is a solution to
pjW (P ), for W ⊆ V , and

3. b(P ) be the maximum time required to construct any instance pjW (P ), for W ⊆ V .

There are |V | calls to EnumSolutions. For each call, we need b(P ) time to construct the
projection, while the double loop takes at most s(P ) × |D(w)| × c(P ) time. Therefore,
letting d = max({|D(w)| | w ∈ V }), the running time of Algorithm 1 is bounded by
O

(|V | × (s(P ) × d × c(P ) + b(P ))
)
.

Since constructing the projection of a classic CSP instance can be done in polynomial
time, and likewise checking that an assignment is a solution, the whole algorithm runs in
polynomial time if s(P ) is a polynomial in the size of P . For fractional edge covers, Grohe
and Marx show the following.

Lemma 2 ([27]) A classic CSP instance P has at most |P |ρ∗(hyp(P )) solutions.

The reason for Lemma 2 is that fractional edge covers require the hypergraph to be quite
dense, and also that the hyperedges grow with the number of vertices in the hypergraph.
This result has since been shown to be optimal — a classic CSP instance has polynomially
many solutions in its size if and only if it has bounded fractional edge cover number [5].

Since fractional edge cover number is a monotone width function, it follows that for any
instance P = 〈V, C〉 and X ⊆ V , ρ∗(hyp(pjX(P ))) ≤ ρ∗(hyp(P )). This claim follows
from the fact that pjX(P ) projects every constraint down to X, and hence every hyper-
edge of hyp(P ) down to X. Therefore, for classic CSP instances of bounded fractional
edge cover number s(P ) is indeed polynomial in |P |. Grohe and Marx use this property
to solve instances with bounded fractional hypertree width (and hence, bounded fractional
edge cover number for every node in the corresponding tree decomposition) in polynomial
time.

3.2 CSP instances with few solutions in key places

As we have seen above, having few solutions for every projection of a CSP instance is a
property that can be used to obtain tractable classes of classic CSP instances. More impor-
tantly, we have shown that this property allows us to find all solutions to a CSP instance P ,
even with global constraints, if we can build arbitrary projections of P in polynomial time.
In other words, with these two conditions we should be able to reduce instances with global
constraints to classic instances in polynomial time. This, in turn, should allows us to apply
the structural decomposition techniques discussed in Section 2.2 to such instances.

However, on reflection there is no reason why we should need few solutions for every
projection. Instead, consider the following reduction.

Definition 20 (Partial assignment checking) A global constraint catalogue Γ allows par-
tial assignment checking if there exists a polynomial p(n) such that for any constraint
e[δ] ∈ Γ we can decide in time O(p(|δ|)) whether a given assignment θ to a set of vari-
ables W ⊆ V(δ) is contained in an assignment that satisfies e[δ], i.e. whether there exists
μ ∈ e[δ] such that θ = μ|W .

As an example, a catalogue that contains arbitrary EGC constraints (cf. Example 1) does
not satisfy Definition 20, since checking whether an arbitrary EGC constraint has a satis-
fying assignment is NP-hard [34]. On the other hand, a catalogue that contains only EGC
constraints whose cardinality sets are intervals does satisfy Definition 20 [35].
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If a catalogue Γ satisfies Definition 20, we can for any constraint e[δ] ∈ Γ build arbitrary
projections of it, that is, construct the global constraint pjX(e[δ]) for any X ⊆ V(δ), in
polynomial time. In the case of Algorithm 1, where we build projections of projections, we
can do so by keeping a copy of the original constraint, and projecting that each time.

Definition 21 (Intersection variables) Let 〈V, C〉 be a CSP instance. The set of inter-
section variables of any constraint e[δ] ∈ P is iv(δ) = ⋃{V(δ) ∩ V(δ′) | e′[δ′] ∈
C − {e[δ]}}.

Intersection variables are, in a sense, the only “interesting” variables of a constraint, as
they are the ones interacting with the rest of the problem.

Definition 22 (Table constraint induced by a global constraint) Let P = 〈V, C〉 be a
CSP instance. For every e[δ] ∈ C, let μ∗ be the assignment to V(δ)−iv(δ) that assigns a spe-
cial value ∗ to every variable. The table constraint induced by e[δ] is ic(e[δ]) = e′[δ′], where
V(δ′) = V(δ), and δ′ contains for every assignment θ ∈ sol(pjiv(δ)(P )) the assignment
θ ⊕ μ∗.

If every constraint in a CSP instance P = 〈V, C〉 allows partial assignment checking,
then building ic(e[δ]) for any e[δ] ∈ C can be done in polynomial time when |sol(pjX(P ))|
is itself polynomial in the size of P for every subset X of iv(δ). To do so, we can invoke
Algorithm 1 on the instance pjiv(δ)(P ). The definition below expresses this idea.

Definition 23 (Sparse intersections) A class of CSP instances P has sparse intersections
if there exists a constant c such that for every constraint e[δ] in any instance P ∈ P , we
have that for every X ⊆ iv(δ), |sol(pjX(P ))| < |P |c.

If a class of instances P has sparse intersections, and the instances are all over a con-
straint catalogue that allows partial assignment checking, then we can for every constraint
e[δ] of any instance from P construct ic(e[δ]) in polynomial time. While this definition con-
siders the instance as a whole, one special case of it is the case where every constraint has
few solutions in the size of its description, that is, there is a constant c and the constraints are
drawn from a catalogue Γ such that for every e[δ] ∈ Γ , we have that |{μ | μ ∈ e[δ]}| < |δ|c.

Note that the problem of checking whether a class of CSP instances satisfies Corollary 1
for a given c is, in general, hard. To see this, consider the special case of checking whether
a global constraint e[δ] has any satisfying assignments at all. Letting δ be a SAT instance,
that is, a propositional formula, and e an algorithm that checks whether an assignment to
V(δ) satisfies the formula makes this an NP-hard problem to solve.

More generally, consider an arbitrary problem in NP. By definition, there is a
polynomial-time algorithm that can check if a proposed solution to such a problem is
correct. By treating the algorithm as the constraint type e, and the problem instances as
descriptions δ, with a variable in V(δ) for each bit of the solution, it becomes clear that every
problem in NP corresponds to a class of global constraints. The fact that global constraints
have this much expressive power will be explored further in Section 4.

Despite such bad news, however, it is not always difficult to recognise constraints with
polynomially many satisfying assignments. A trivial example would be table constraints.
For a less trivial example, consider the constraint Cβ from Example 3, where the number
of satisfying assignments is bounded by a polynomial with exponent β (cf. the discussion
after Corollary 1 for a detailed analysis).
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For a more general example, consider a family of constraints that satisfy Definition 20.
To check whether the number of solutions to a constraint from such a family is bounded by
|δ|c for a fixed c in polynomial time, we can use Algorithm 1, stopping it if the number of
partial assignments that extend to solutions exceeds the bound. Since we can check whether
a partial assignment extends to a solution in polynomial time by Definition 20, we are also
guaranteed an answer in polynomial time.

Armed with these definitions, we can now state the following result.

Theorem 5 Let P be a class of CSP instances over a catalogue that allows partial assign-
ment checking. If P has sparse intersections, then we can in polynomial time reduce any
instance P ∈ P to a classic CSP instance PCL with hyp(P ) = hyp(PCL), such that PCL

has a solution if and only if P does.

Proof Let P = 〈V,C〉 be an instance from such a class P . For each e[δ] ∈ C, PCL will
contain the table constraint ic(e[δ]) from Definition 22. Since P is over a catalogue that
allows partial assignment checking, and P has sparse intersections, computing ic(e[δ]) can
be done in polynomial time by invoking Algorithm 1 on pjiv(δ)(P ).

By construction, hyp(P ) = hyp(PCL). All that is left to show is that PCL has a solution
if and only if P does. Let θ be a solution to P = 〈V, C〉. For every e[δ] ∈ C, we have that
θ |iv(δ) ∈ pjiv(δ)(P ) by Definitions 19 and 21, and the assignment μ that assigns the value

θ(v) to each v ∈
⋃

e[δ]∈C

iv(δ), and ∗ to every other variable is therefore a solution to PCL.

In the other direction, if θ is a solution to PCL, then θ satisfies ic(e[δ]) for every e[δ] ∈
C. By Definition 22,, this means that θ |iv(δ) ∈ sol(pjiv(δ)(P )), and by Definition 19, there
exists an assignment μe[δ] with μe[δ]|iv(δ) = θ |iv(δ) that satisfies e[δ]. By Definition 21, the
variables not in iv(δ) do not occur in any other constraint in P , so we can combine all the
assignments μe[δ] to form a solution μ to P such that for e[δ] ∈ C and v ∈ V(δ) we have
μ(v) = μe[δ](v).

From Theorem 5, we get tractable and fixed-parameter tractable classes of CSP instances
with global constraints, in particular by applying Theorem 3.

Corollary 1 LetH be a class of hypergraphs, and Γ a catalogue that allows partial assign-
ment checking. If CSP(H, Γ ) has sparse intersections, then CSP(H, Γ ) is tractable or in
FPT if CSP(H,Ext) is.

Proof Let H and Γ be given. By Theorem 5 we can reduce any P ∈ CSP(H, Γ ) to an
instance PCL ∈ CSP(H,Ext) in polynomial time. Since PCL has a solution if and only
if P does, tractability or fixed-parameter tractability of CSP(H,Ext) implies the same for
CSP(H, Γ ).

To illustrate the above result, consider again the connected graph partition problem
(Problem 1). This problem is NP-complete [18, p. 209], even for fixed α ≥ 3. However,
note that when β is fixed, we can solve the problem in polynomial time, by successively
guessing sets E′, with |E′| ≤ β, of broken edges, and checking whether the connected com-
ponents of the graph 〈V,E − E′〉 all have α or fewer vertices. The number of such sets E′

is bounded by
β∑

i=1

(|E|
i

)
≤ (|E| + 1)β , which is polynomial if β is fixed. As we show
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below, this argument can be seen as a special case of Theorem 5. To simplify the analysis,
we assume without loss of generality that α < |V |, which means that any solution has at
least one broken edge.

We claim that if β is fixed, then the constraint Cβ = eβ [δβ ] allows partial assignment
checking, and has only a polynomial number of satisfying assignments. The latter implies
that for any instance P of the CGP, |sol(pjiv(δβ )(P ))| is polynomial in the size of P for every
subset of iv(δβ). Furthermore, we will show that for the constraint Cα = eα[δα], we also
have that |sol(pjiv(δα)(P ))| is polynomial in the size of P . That Cα allows partial assignment
checking can be seen by noting that each variable in V(δα) has a domain value for every
vertex in the underlying graph. Therefore, given a partial assignment to V(δα), we can
check that no value is assigned more than α times. If yes, this assignment can be extended
to a full one by assigning each remaining variable a domain value not yet assigned to any
variable.

First, we show that the number of satisfying assignments to Cβ is limited. Since Cβ

limits the number of ones in any solution to β, the number of satisfying assignments to
this constraint is the number of ways to choose up to β variables to be assigned one. This

is bounded by
β∑

i=1

(|E|
i

)
≤ (|E| + 1)β , and so we can generate them all in polynomial

time. This argument also implies that we can perform partial assignment checking, simply
by looking at the generated assignments.

Now, let θ be such a solution. How many solutions to P contain θ? Every constraint
on {u, v, e} with θ(e) = 1 allows at most |V |2 assignments, and there are at most β such
constraints. So far we therefore have at most (|E| + 1)β × |V |2β assignments.

On the other hand, a ternary constraint with θ(e) = 0 requires θ(u) = θ(v). Consider the
graph G0 containing for every constraint on {u, v, e} with θ(e) = 0 the vertices u and v as
well as the edge {u, v}. Since the original graph was connected, every connected component
of G0 contains at least one vertex which is in the scope of some constraint with θ(e) = 1.
Therefore, since equality is transitive, each connected component of G0 allows at most one
assignment for each of the (|E| + 1)β × |V |2β assignments to the other variables of P . We
therefore get a total bound of (|E| + 1)β × |V |2β on the total number of solutions to P , and
hence to pjiv(δα)(P ).

The hypergraph of any CSP instance P encoding the CGP has two hyperedges covering
the whole problem, so the hypertree width of this hypergraph is two. Therefore, Corollary
1 apply and yield tractability for fixed β.

3.3 Back doors

If a class of CSP instances includes constraints from a catalogue that is not known to allow
partial assignment checking, we may still obtain tractability in some cases by applying the
notion of a back door set. A (strong) back door set [19, 41] is a set of variables in a CSP
instance that, when assigned, make the instance easy to solve. Below, we are going to adapt
this notion to individual constraints.

Definition 24 (Back door) Let Γ be a global constraint catalogue. A back door for a con-
straint e[δ] ∈ Γ is any set of variables W ⊆ V(δ) (called a back door set) such that we can
decide in polynomial time whether a given assignment θ to a set of variables V(θ) ⊇ W is
contained in an assignment that satisfies e[δ], i.e. whether there exists μ ∈ e[δ] such that
μ|V(θ) = θ .
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Trivially, for every constraint e[δ] the set of variables V(δ) is a back door set, since by
Definition 4 we can always check in polynomial time if an assignment to V(δ) satisfies the
constraint e[δ].

The key point about back doors is that given a catalogue Γ , adding to each e[δ] ∈ Γ

with back door set W an arbitrary set of assignments to W produces a catalogue Γ ′ that
allows partial assignment checking. Adding a set of assignments Θ means to add Θ to the
description, and modify the algorithm e to only accept an assignment if it contains a member
of Θ in addition to previous requirements. Furthermore, given a CSP instance P containing
e[δ], as long as Θ ⊇ πW (sol(P )), adding Θ to e[δ] produces an instance that has exactly
the same solutions. This point leads to the following definition.

Definition 25 (Sparse back door cover) Let ΓPAC be a catalogue that allows par-
tial assignment checking and ΓBD a catalogue. For every instance P = 〈V,C〉 over
ΓPAC ∪ ΓBD , let P ∩ ΓPAC be the instance with constraint set C′ = C ∩ ΓPAC and set of
variables

⋃{V ∩ V(δ) | e[δ] ∈ C′}.
A class of CSP instances P over ΓPAC ∪ ΓBD has sparse back door cover if there exists

a constant c such that for every instance P = 〈V, C〉 ∈ P and constraint e[δ] ∈ C, if
e[δ] �∈ ΓPAC , then there exists a back door set W for e[δ], findable in time polynomial in
|P |, such that |sol(pjX(P ∩ ΓPAC))| ≤ |P |c for every X ⊆ W .

Sparse back door cover means that for each constraint that is not from a catalogue that
allows partial assignment checking, we can in polynomial time get a set of assignments
Θ for its back door set using Algorithm 1, and so turn this constraint into one that does
allow partial assignment checking. This operation preserves the solutions of the instance
that contains this constraint.

Theorem 6 If a class of CSP instance P has sparse back door cover, then we can in poly-
nomial time reduce any instance P ∈ P to an instance P ′ such that hyp(P ) = hyp(P ′) and
sol(P ) = sol(P ′). Furthermore, the class of instances {P ′ | P ∈ P} is over a catalogue
that allows partial assignment checking.

Proof Let P = 〈V, C〉 ∈ P . We construct P ′ by adding to every e[δ] ∈ C such that
e[δ] �∈ ΓPAC , with back door set W , the set of assignments sol(pjW (P ∩ ΓPAC)), which we
can obtain using Algorithm 1. By Definition 25, we have for every X ⊆ W that |sol(pjW (P ∩
ΓPAC))| ≤ |P |c, so Algorithm 1 takes takes polynomial time since ΓPAC does allow partial
assignment checking.

It is clear that hyp(P ′) = hyp(P ), and since sol(pjW (P ∩ ΓPAC)) ⊇ πW (sol(P )), the
set of solutions stays the same, i.e. sol(P ′) = sol(P ). Finally, since we have replaced each
constraint e[δ] in P that was not in ΓPAC by a constraint that does allow partial assignment
checking, it follows that P ′ is over a catalogue that allows partial assignment checking.

One consequence of Theorem 6 is that we can sometimes apply Theorem 5 to a CSP
instance that contains a constraint for which checking if a partial assignment can be
extended to a satisfying one is hard. We can do so when the variables of that constraint are
covered by the variables of other constraints that do allow partial assignment checking —
but only if the instance given by those constraints has few solutions.

As a concrete example of this, consider again the encoding of the CGP that we gave in
Example 3. The variables of constraint Cα are entirely covered by the instance P ′ obtained
by removing Cα . As the entire set of variables of a constraint is a back door set for it, and
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the instance P ′ has few solutions (cf. the discussion after Theorem 5), this class of instances
has sparse back door cover. As such, the constraint Cα could, in fact, be arbitrary without
affecting the tractability of this problem. In particular, the requirement that Cα allows partial
assignment checking can be dropped.

4 Subproblem decompositions

To generalize Theorem 5, consider the fact that our definition of a global constraint allows
us to view a CSP instance 〈V, C〉 as a single constraint e[δ], by letting δ contain the set of
constraint C, and setting V(δ) = V . The algorithm e then checks if an assignment satisfies
all constraints. Of course, such a constraint encodes an NP-complete problem, but this is
no different from e.g. the EGC constraint [34] (cf. Example 1). With this in mind, in this
section we are going to investigate what happens if a CSP instance is split up into a set of
smaller instances.

Splitting up a (classic) CSP instance into smaller instances has previously been con-
sidered by Cohen and Green [10]. They use a very general framework of guarded
decompositions [12] to define what they call “typed guarded decompositions”. This notion
allows them to obtain a tractability result for a CSP instance that can be split into smaller
instances drawn from known tractable classes.

In this section, we are going to adapt the notions defined in Section 3.2 to work with CSP
instances rather than single constraints. Then, in Section 4.1, we will show how the result
of Cohen and Green can be derived as a special case of Corollary 2.

Definition 26 (CSP subproblem) Given two CSP instances P = 〈V, C〉 and P ′ =
〈V ′, C′〉, we say that P ′ is a subproblem of P if C′ ⊆ C.

In other words, a subproblem of a CSP instance is given by a subset of the constraints in
that instance. In [10], Cohen and Green call a subproblem a component of P .

Definition 27 (CSP union) Let Q1 = 〈V1, C1〉 and Q2 = 〈V2, C2〉 be two CSP instances.
The union of Q1 and Q2 is the instance Q1 � Q2 = 〈V1 ∪ V2, C1 ∪ C2〉.
Definition 28 (Subproblem decomposition) Let P be a CSP instance. A set S of
subproblems of P is a subproblem decomposition of P if

⊔
S = P .

A subproblem decomposition of a CSP instance is proper if no element of the decompo-
sition is a subproblem of any other.

A subproblem decomposition of an instance P , then, is a set of subproblems that together
contain all the constraints and variables of P . Note that a constraint may occur in more than
one subproblem in a decomposition.

Below, we shall assume that all subproblem decompositions are proper. Since subprob-
lems are given by subsets of constraints, the solutions to a CSP instance can be turned into
solutions for any subproblem by projecting out the variables not part of the subproblem.
Therefore, solving a subproblem P that contains another subproblem P ′ also solves P ′,
making P ′ redundant.

Example 5 Let P = 〈V, C〉 be a CSP instance. A very simple subproblem decomposition of
P would be {〈V(δ), e[δ]〉 | e[δ] ∈ C}, that is, every constraint of P is a separate subproblem.
This subproblem decomposition is clearly proper.



214 Constraints (2016) 21:198–222

Example 6 Consider a family of CSP instances on the set of boolean variables {xi, yi, zi |
1 ≤ i ≤ n ∈ {4, 6, 8, . . .}}, with the following constraints: An EGC constraint A on
{x1, . . . , xn} with K(1) = 4 and K(0) = {0, . . . , n}. A second EGC constraint B, on
{y1, . . . , yn, z1, . . . , zn} with K(1) = K(0) = {n}, and binary constraints on each pair
{xi, yi} enforcing equality. A possible subproblem decomposition for an instance from this
family would be {P,Q}, where P contains A as well as the binary constraints, and Q con-
tains the constraint B. This family is depicted in Fig. 2, with P containing the constraints
marked by solid lines, and Q the constraint marked by a dashed line.

Viewing subproblems as constraints and a subproblem decomposition S as a CSP
instance 〈V(

⊔
S), S〉, we have sol(〈V(

⊔
S), S〉) = sol(

⊔
S), since every constraint is in

some subproblem. As such, we will treat S as a CSP instance when it is convenient to
simplify notation.

Using Definition 28, we can treat any set of CSP instances S as a subproblem decom-
position of the instance

⊔
S. With that in mind, whenever we say that S is a subproblem

decomposition without specifying what it is a decomposition of, we mean that S is a
decomposition of the CSP instance

⊔
S.

Definition 29 (CSP instances given by subproblem decompositions) Let F be a family
of subproblem decompositions. We define CSP(F) to be the class of CSP instances {⊔ S |
S ∈ F}.

Definition 30 (Hypergraph of a subproblem decomposition) Let S be a subproblem
decomposition. The hypergraph of S, denoted hyp(S), has vertex set V(

⊔
S) and set of

hyperedges {V(P ) | P ∈ S}.
For a family F of subproblem decompositions, let hyp(F) = {hyp(S) | S ∈ F}.

a b

Fig. 2 Family of instances from Example 6 with decomposition {P,Q}. Subproblem P marked with solid
lines and Q with a dashed line
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Since a CSP instance can be seen as a global constraint, Definition 20 (partial assignment
checking) and Definition 23 (sparse intersections) carry over unchanged. To apply them to a
family of subproblem decompositions F , we need only consider the catalogue

⋃F in both
cases.

One way of interpreting Definition 20 for a catalogue of CSP instances is that every
instance has been drawn from a tractable class — not necessarily the same one, as long as
these classes all allow us to check in polynomial time whether a partial assignment extends
to a solution. Most known tractable classes of CSP instances have this property; in particu-
lar, all the classes discussed in Section 2.2 have it. To see this, note that a partial assignment
can be seen as a set of constraints on one variable each, and adding such hyperedges to a
hypergraph does not change its tree, hypertree, or submodular width. On the other hand,
tractable classes defined by restricting the allowed assignments of a constraint, rather than
the hypergraph, are usually preserved by adding a constraint with only one assignment
[11].

To illustrate how these definitions apply to subproblem decompositions, consider the
following example.

Example 7 Recall the family of subproblem decompositions in Example 6. For a decompo-
sition S = {P,Q} from this family, the set of intersection vertices for both subproblems is
{y1, . . . , yn}. Furthermore, the EGC constraint A requires that there are exactly 4 variables
assigned 1 among {x1, . . . , xn}, so there are

(
n
4

)
satisfying assignments for this constraint.

The equality constraints ensure that this is the number of solutions to the whole subproblem
P , so for every X ⊆ {y1, . . . , yn} we have that |sol(pjX(S))| ≤ (

n
4

)
. Therefore, this family

of subproblem decompositions has sparse intersections.

We can now derive a straightforward generalization of Theorem 5.

Theorem 7 Let F be a family of subproblem decompositions that allows partial assign-
ment checking. If F has sparse intersections, then we can in polynomial time reduce any
subproblem decomposition S ∈ F to a classic CSP instance P with hyp(P ) = hyp(S), such
that P has a solution if and only if S does.

Proof As subproblems can be seen as global constraints, the proof follows directly from
Theorem 5.

Corollary 2 Let F be a family of subproblem decompositions that allows partial assign-
ment checking and has sparse intersections. If CSP(hyp(F),Ext) is tractable or in FPT,
then so is CSP(F).

Proof LetF be given. By Theorem 7, we can reduce any subproblem decomposition S ∈ F
to an instance P ∈ CSP(hyp(F),Ext) in polynomial time. Since P has a solution if and
only if S does, tractability of CSP(hyp(F),Ext) implies the same for CSP(F).

To illustrate this result, recall Example 6. From Example 7, we know that this family of
subproblem decompositions has sparse intersections. Furthermore, both subproblem allow
partial assignment checking, as the EGC constraints both have interval cardinality sets [35],
and the equality constraints of subproblem P can always be satisfied. Therefore, Corollary
2 applies to this problem.
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4.1 Applying corollary 2

We are now ready to discuss the result of Cohen and Green mentioned at the beginning of
Section 4, and to show how it can be derived as a special case of our result. First, we need
to define guarded decompositions.

Definition 31 (Guarded decomposition) A guarded block of a hypergraph G is a pair
〈λ, χ〉 where the guard λ is a subset of the hyperedges of G, and the block, χ , is a subset of

⋃
λ.

For every classic CSP instance P and every guarded block 〈λ, χ〉 of hyp(P ), we define
the constraint generated by P on 〈λ, χ〉 to be the projection onto χ of the join of all the
constraints of P whose scopes are in λ.

A set of of guarded blocks Θ of a hypergraph G is a guarded decomposition of G if for
every P ∈ CSP({G},Ext), the CSP instance over the same variables as P with constraints
generated by the blocks in Θ has the same solutions as P .

A guarded decomposition is acyclic if the hypergraph having the union of the blocks χ

as vertices, and each χ as a hyperedge, is acyclic.

Cohen and Green then introduce a mapping μ from the constraints of a CSP instance P

to nonempty sets of elements of a guarded decomposition of hyp(P ). They demand that

1. For each guarded block 〈λ, χ〉 and hyperedge in λ, μ assigns at least one constraint
with that scope to this guarded block,

2. that the set of guarded blocks μ assigns to a constraint c contains the scope of c in all
the guards, and finally

3. that at least one of the guarded blocks assigned to c contains the variables of the scope
of c in the block.

Note that, taken together, the conditions above mean that the mapping μ turns each
guarded block of the decomposition into a subproblem, and the whole decomposition into
a subproblem decomposition, since each guarded block is assigned a set of constraints, and
each constraint is assigned to a guarded block.

Furthermore, they introduce two more notions. A type is a polynomial-time algorithm for
solving a set of CSP instances. A typed guarded decomposition is one where each guarded
block β is assigned a type, and the CSP instance given by the set of constraints assigned
to β is a member of the assigned type. This is almost Definition 20, however, there is no
provision for solving a problem with some variables assigned.

Finally, a guarded decomposition Θ is k-separated if for every guarded block 〈λ, χ〉
there exists a set of hyperedges ε, with |ε| ≤ k, such that for each guarded block 〈λ2, χ2〉 ∈
Θ − {λ, χ} we have that χ ∩ χ2 ⊆ ⋃

ε. Observe that when k is fixed, the intersection
variables of each subproblem are covered by a fixed number of table constraints, and hence
that the number of possible solutions is bounded by the size of the join of these constraints.
It follows that the intersections are sparse as per Definition 23.

They then proceed to show that for fixed k, a CSP instance with a k-separated, acyclic
typed guarded decomposition can be solved in polynomial time, under the condition that
the types can handle problems with some variables assigned specific values.

The last condition is precisely what we need for partial assignment checking. Therefore,
since the decomposition is required to be acyclic, their result satisfies the conditions of
Corollary 2. Note, however, that since there are other ways to obtain sparse intersections,
Corollary 2 is a more general result even for classic CSP instances.
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5 Weighted CSP

Having few solutions in key parts of a CSP instance has turned out to be a property we
can exploit to obtain tractability. In this section, we are going to apply this property to an
extension of the CSP framework called weighted CSP instances [21, 22], where every con-
straint assigns a cost to every satisfying assignment, and we would like to find a solution
with smallest cost. This type of CSP is itself a special case of the more general valued CSP
framework [38, 42], where every constraint is specified by a function that assigns a cost to
every possible assignment for the variables of that constraint. The reason for considering
weighted, rather than valued, CSP, is that weighted (table) constraints list every satisfy-
ing assignment along with the costs, while a valued constraint is given by a function from
assignments to values. The representation of a valued constraint is thus much more compact,
and the notion of a satisfying assignment is no longer defined.

Definition 32 (Weighted constraint) A weighted global constraint e[δ] is a global
constraint that assigns to each θ ∈ e[δ] a value cost(e[δ], θ) from Q.

The size of a weighted global constraint e[δ] is given by the sum of |δ| and the size of
the bit representation for each cost.

In other words, the number of bits needed to represent the costs of all the satisfying
assignments is part of a weighted constraint’s size.

Definition 33 (WCSP instance) A WCSP instance is a pair P = 〈V, C〉, where V is a
set of variables and C a set of weighted constraints. An assignment is a solution to P if it
satisfies every constraint in C, and we denote the set of all solutions to P by sol(P ).

For every solution θ to P we define cost(P, θ) =
∑

e[δ]∈C

cost(e[δ], θ |V(δ)). An assign-

ment θ is an optimal solution to P if and only if it is a solution to P with the smallest cost,
i.e. cost(P, θ) = min({cost(P, θ ′) | θ ′ ∈ sol(P )}).

As is commonly done with optimization problems in complexity theory, below we
consider the decision problem associated with WCSP instances.

Definition 34 (WCSP decision problem) Given a WCSP instance P and k ∈ Q, the WCSP
decision problem is to decide whether P has a solution θ with cost(P, θ) ≤ k.

As for CSP instances, a classic WCSP instance is one where all constraints are table
global constraints. As an example of known tractability results for classic WCSP instances,
consider the theorem below.

Theorem 8 ([22]) LetH be a class of hypergraphs. If ghw(H) < ∞, then a class of classic
WCSP instances whose hypergraphs are inH is tractable.

Since we are free to ignore the costs a weighted constraint puts on assignments and treat
it as an “ordinary” constraint, definitions of subproblems and subproblem decompositions
carry over unchanged. Note that since the WCSP decision problem is clearly in NP, we can
view a WCSP instance as a weighted global constraint. Therefore, Definition 20 will now
be subtly different.
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Definition 35 (Weighted part. assignment checking) A weighted constraint catalogue Γ

allows partial assignment checking if for any weighted constraint e[δ] ∈ Γ we can decide in
polynomial time, given an assignment θ to a set of variables W ⊆ V(δ) and k ∈ Q, whether
θ is contained in an assignment that satisfies e[δ] and has cost at most k, i.e. whether there
exists μ ∈ e[δ] such that θ = μ|W and cost(e[δ], μ) ≤ k.

In other words, given a partial assignment we need to be able to solve the WCSP decision
problem for our constraint in polynomial time. Note also that doing so allows us to find the
minimum cost among the assignments that contain our partial assignment by binary search.
This will be needed in order to construct projections of a weighted global constraint. To
define the projection of a weighted constraint, we need to alter Definition 19 to take costs
into account.

Definition 36 (Weighted constraint projection) Let e[δ] be a weighted constraint. The
projection of e[δ] onto a set of variables X ⊆ V(δ) is the constraint pjX(e[δ]) such that
μ ∈ pjX(e[δ]) if and only if there exists θ ∈ e[δ] with θ |X = μ. The cost of an assignment
θ ∈ pjX(e[δ]) is cost(pjX(e[δ]), θ) = min({cost(e[δ], μ) | μ ∈ e[δ] andμ|X = θ}).

For a WCSP instance P = 〈V, C〉 and X ⊆ V we define pjX(P ) = 〈X, C′〉, where
C′ is the least set containing for every e[δ] ∈ C such that X ∩ V(δ) �= ∅ the constraint
pjX∩V(δ)(e[δ]).

Definition 37 (Weighted table constraint induced by a subproblem) Let S be a sub-
problem decomposition. For every T ∈ S, let μ∗ be the assignment to V(T ) − iv(T ) that
assigns a special value ∗ to every variable. The weighted table constraint induced by T is
ic(T ) = e[δ], where V(δ) = V(T ), and δ contains for every assignment θ ∈ sol(pjiv(T )(S))

the assignment θ ⊕ μ∗ with cost(ic(T ), θ ⊕ μ∗) = cost(pjiv(T )(T ), θ).

Since the variables of a subproblem T ∈ S not in iv(T ) occur only in T itself, if we have
a solution to pjiv(T )(S), it doesn’t matter what solution to T we extend it to. We should there-
fore pick the one that has the smallest cost, and that cost is precisely cost(pjiv(T )(T ), θ) by
Definition 36. The same as for CSP instances, if every subproblem in a weighted decompo-
sition S allows weighted partial assignment checking, building ic(T ) for any T ∈ S can be
done in polynomial time when |sol(pjiv(T )(S))| is polynomial in the size of

⊔
S for every

subset of iv(T ), again by using Algorithm 1. Since the definition of sparse intersections
(Definition 23) carries over unchanged, we are ready to prove the following analogue of
Theorem 5 for weighted subproblem decompositions.

Theorem 9 Let F be a family of weighted subproblem decompositions that allows partial
assignment checking. If F has sparse intersections, then we can in polynomial time reduce
any weighted subproblem decomposition S ∈ F to a classic weighted CSP instance P with
hyp(P ) = hyp(S), such that P has a solution with cost at most k ∈ Q if and only if S does.

Proof Let S be a subproblem decomposition from F . For each T ∈ S, P will contain
the table constraint ic(T ) from Definition 22. Since F allows partial assignment checking
and has sparse intersections, computing ic(T ) can be done in polynomial time by invoking
Algorithm 1 on pjiv(T )(S).

It is clear that hyp(P ) = hyp(S). All that is left to show is that P has a solution with
cost at most k ∈ N if and only if S does. Let θ be a solution to S. For every T ∈ S,
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θ |iv(T ) ∈ pjiv(T )(S) byDefinitions 21 and 36, so the assignment μ that assigns the value θ(v)

to each v ∈
⋃

T ∈S

iv(T ), and ∗ to every other variable is a solution to P . Furthermore, for

every T ∈ S we have by Definition 37 that cost(ic(T ), μ|V(T )) = cost(pjiv(T )(T ), μ|iv(T )),
so by Definition 36 cost(ic(T ), μ|V(T )) ≤ cost(T , θ |V(T )) and therefore cost(P, μ)

≤ cost(S, θ).
In the other direction, if θ is a solution to P , then θ satisfies ic(T ) for every

T ∈ S. By Definition 37 this means that θ |iv(T ) ∈ sol(pjiv(T )(S)), and by Definition
36, there exists an assignment μT with μT |iv(T ) = θ |iv(T ) that satisfies T , such that
cost(ic(T ), θ |V(T )) = cost(T , μT ). By Definition 21, the variables not in iv(T ) do not
occur in any other subproblem from S, so we can combine all the assignments μT to form
a solution μ to S such that for T ∈ S and v ∈ V(T ) we have μ(v) = μT (v), with
cost(P, θ) = cost(S, μ).

As before, for a family of weighted subproblem decompositions F we define
WCSP(F) = {⊔ S | S ∈ F}, and for a class of hypergraphs H we let WCSP(H,Ext) be
the class of classic WCSP instances whose hypergraphs are in H. With that in mind, we can
use Theorem 9 to obtain new tractable and fixed-parameter tractable classes of weighted
CSP instances with global constraints.

Corollary 3 Let F be a family of weighted subproblem decompositions that allows partial
assignment checking and has sparse intersections. If WCSP(hyp(F),Ext) is tractable or in
FPT, then so is WCSP(F).

Proof Let F be given. By Theorem 9, we can reduce any weighted subproblem decompo-
sition S ∈ F to an instance P ∈ WCSP(hyp(F),Ext) in polynomial time. Since P has a
solution with cost k if and only if S does, tractability of WCSP(hyp(F),Ext) implies the
same for WCSP(F).

6 Summary

We have studied the tractability of CSPs with global constraints under various structural
restrictions such as tree and hypertree width. By exploiting the number of solutions to CSP
instances in key places, we have identified new tractable classes of such problems, both in
the ordinary and weighted case.

Furthermore, we have shown how this technique can be used to combine CSP instances
drawn from known tractable classes, extending a previous result by Cohen and Green [10].
We have also shown how the existence of back doors in CSP instances can be used to
augment our results.

More work remains to be done on this topic. In particular, investigating whether a refine-
ment of the conditions we have identified can be used to show dichotomy theorems, similar
to those known for certain kinds of constraints and structural restrictions [9, 26, 32]. Also
of interest is the complexity of checking whether a constraint has few solutions, which ties
into finding classes of CSP instances that satisfy Definition 23.
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International Symposium on Theoretical Aspects of Computer Science (STACS’11), Leibniz Interna-
tional Proceedings in Informatics, (Vol. 9 pp. 12–28). doi:10.4230/LIPIcs.STACS.2011.12. http://drops.
dagstuhl.de/opus/volltexte/2011/2996.

5. Atserias, A., Grohe, M., Marx, D. (2013). Size bounds and query plans for relational joins. SIAM Journal
on Computing, 42(4), 1737–1767. doi:10.1137/110859440.

6. Bessiere, C., Hebrard, E., Hnich, B., Walsh, T. (2007). The complexity of reasoning with global
constraints. Constraints, 12(2), 239–259. doi:10.1007/s10601-006-9007-3.

7. Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T. (2010). Decomposition of
the NValue constraint. In Proceedings of the 16th International Conference on Principles and
Practice of Constraint Programming (CP’10), Lecture Notes in Computer Science, (Vol. 6308).
Berlin: Springer.

8. Bulatov, A., Jeavons, P., Krokhin, A. (2005). Classifying the complexity of constraints using
finite algebras. SIAM Journal on Computing, 34(3), 720–742. doi:10.1137/S0097539700376676.
http://link.aip.org/link/?SMJ/34/720/1.

9. Chen, H., & Grohe, M. (2010). Constraint satisfaction with succinctly specified relations.
Journal of Computer and System Sciences, 76(8), 847–860. doi:10.1016/j.jcss.2010.04.003.
http://www.sciencedirect.com/science/article/pii/S0022000010000450.

10. Cohen, D., & Green, M. (2006). Typed guarded decompositions for constraint satisfaction. In Benhamou,
F. (Ed.) Proceedings of the 12th International Conference on the Principles and Practice of Constraint
Programming (CP’06), Lecture Notes in Computer Science, (Vol. 4204 PP. 122–136). Berlin: Springer.
doi:10.1007/11889205 11.

11. Cohen, D., & Jeavons, P. (2006). The complexity of constraint languages. In Rossi, F., Van Beek, P.,
Walsh, T. (Eds.) Handbook of Constraint Programming, Foundations of Artificial Intelligence (Vol. 2,
pp. 245–280). New York: Elsevier. doi:10.1016/S1574-6526(06)80012-X.

12. Cohen, D., Jeavons, P., Gyssens, M. (2008). A unified theory of structural tractability for
constraint satisfaction problems. Journal of Computer and System Sciences, 74(5), 721–743.
doi:10.1016/j.jcss.2007.08.001. http://www.sciencedirect.com/science/article/pii/S0022000007001225.

13. Cohen, D.A., Green, M.J., Houghton, C. (2009). Constraint representations and structural tractabil-
ity. In Proceedings of the 15th International Conference on Principles and Practice of Con-
straint Programming (CP’09), Lecture Notes in Computer Science, (Vol. 5732 pp. 289–303).
Berlin: Springer.
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