
Constraints (2015) 20:452–467
DOI 10.1007/s10601-015-9180-3

Adaptive constructive interval disjunction: algorithms
and experiments

Bertrand Neveu ·Gilles Trombettoni · Ignacio Araya

Published online: 5 February 2015
© Springer Science+Business Media New York 2015

Abstract An operator called CID and an efficient variant 3BCID were proposed in 2007.
For the numerical CSP handled by interval methods, these operators compute a partial con-
sistency equivalent to Partition-1-AC for the discrete CSP. In addition to the constraint
propagation procedure used to refute a given subproblem, the main two parameters of CID
are the number of times the main CID procedure is called and the maximum number of sub-
intervals treated by the procedure. The 3BCID operator is state-of-the-art in numerical CSP,
but not in constrained global optimization, for which it is generally too costly. This paper
proposes an adaptive variant of 3BCID called ACID. The number of variables handled is
auto-adapted during the search, the other parameters are fixed and robust to modifications.
On a representative sample of instances, ACID appears to work efficiently, both with the
HC4 constraint propagation algorithm and with the state-of-the-art Mohc algorithm. Exper-
iments also highlight that it is relevant to auto-adapt only a number of handled variables,
instead of a specific set of selected variables. Finally, ACID appears to be the best inter-
val constraint programming operator for solving and optimization, and has been therefore
added to the default strategies of the Ibex interval solver.

Keywords Interval methods · Adaptive algorithms · Strong consistency

B. Neveu
Imagine LIGM Université Paris–Est, Paris, France
e-mail: Bertrand.Neveu@enpc.fr

G. Trombettoni (�)
LIRMM, University of Montpellier, CNRS, Montpellier, France
e-mail: gilles.trombettoni@lirmm.fr

I. Araya
Pontificia Universidad Católica de Valparaı́so, Valparaiso, Chile
e-mail: rilianx@gmail.com

mailto:Bertrand.Neveu@enpc.fr
mailto:gilles.trombettoni@lirmm.fr
mailto:rilianx@gmail.com


Constraints (2015) 20:452–467 453

1 Introduction

Interval-based solvers can solve systems of numerical constraints (i.e., nonlinear equations
or inequalities over the reals). Their reliability and increasing performance make them able
to handle domains such as robotics design and kinematics [16], dynamic systems in robust
control or autonomous robot localization [12], or proofs of conjectures [24].

A filtering/contracting operator for numerical constraint networks (CNs) called Con-
structive Interval Disjunction (in short CID) has been proposed in [23]. CID is based on
a shaving/singleton process. The shaving principle is used to compute the Singleton Arc
Consistency (SAC) of the finite domain CSP [10] and the 3B-consistency of the numerical
CSP [14]. It is also at the core of the SATZ algorithm [20] used to prove the satisfiability
of Boolean formula. Shaving works as follows on discrete constraint networks. A value is
temporarily assigned to a variable (the other values are temporarily discarded) and a partial
consistency is computed on the remaining subproblem. If an inconsistency is obtained then
the value can be safely removed from the domain of the variable. Otherwise, the value is
kept in the domain.

Contrarily to arc consistency, this consistency cannot be achieved in an incremental
way [10]. Indeed, the work of the underlying refutation procedure on the whole subprob-
lem is the reason why a single value can be removed. Thus, obtaining the singleton arc
consistency of finite-domain CNs requires an expensive fixed-point algorithm where all the
variables must be handled again every time a single value is removed [10]. The remark still
holds for the improved version SAC-Opt [7]. A similar shaving principle can be followed
on numerical CNs by roughly splitting intervals into sub-intervals/slices, as we will show in
Section 3, giving the algorithm CID and an efficient variant 3BCID [23].

Applied first to continuous constraint satisfaction problems handled by interval methods,
3BCID has been more recently applied to constrained global optimization problems. This
algorithm is state-of-the-art for constraint satisfaction, but is generally dominated by con-
straint propagation algorithms like HC4 for optimization. The main practical contribution of
this paper is to show that an adaptive version of CID becomes efficient for both real-valued
satisfaction and optimization problems, while needing no additional parameter value from
the user.

After a recall of the interval methods used for tackling numerical CSP in Section 2,
we describe in Section 3 the algorithms 3B, CID and 3BCID at the base of the new
ACID operator introduced in Section 4. Sections 5, 6, 7 and 8 show experiments highlight-
ing the practical interest of ACID in continuous constraint solving and constrained global
optimization, and justifying the auto-adaptation policy behind ACID.

2 Numerical CSP

A numerical constraint network (numerical CN) is defined by a tuple P = (X, [X], C),
where X denotes a n-set of numerical, real-valued variables ranging in a domain [X]. We
denote by [xi] = [xi, xi] the interval/domain of variable xi ∈ X, where xi , xi are floating-
point numbers (allowing interval algorithms to be implemented on computers). A solution
of P is an n-vector in [X] satisfying all the constraints in C. The constraints defined are
numerical. They are equations and inequalities using mathematical operators like +, •, /,
exp, log, sin.

A Cartesian product of intervals like the domain [X] = [x1] × ... × [xn] is called a
(parallel-to-axes) box. w(xi) denotes the width xi − xi of an interval [xi]. The width of a



454 Constraints (2015) 20:452–467

box is given by the width xm − xm of its largest dimension xm. The union of several boxes
is generally not a box, and a Hull operator has been defined instead to define the smallest
box enclosing all of them.

Numerical CNs can be solved by a Branch & Contract interval strategy:

– Branch: a variable xi is chosen and its interval [xi] is split into two sub-intervals, thus
making the whole process combinatorial.

– Contract: a filtering process allows contracting the intervals (i.e., improving interval
bounds) without loss of solutions.

The process starts with the initial domain [X] and stops when the leaves (boxes) of
the search tree reach a width inferior to a precision given as input. These leaves yield an
approximation of all the solutions of the numerical CN.

Several contraction algorithms have been proposed. Let us mention the constraint propa-
gation algorithm called HC4 [5, 17], an efficient implementation of 2B [14], that can enforce
the optimal local consistency (called hull-consistency) only if strong hypotheses are met (in
particular, each variable must occur at most once in a same constraint). The 2B-Revise pro-
cedure works with all the projection functions of a given constraint. Informally, a projection
function isolates a given variable occurrence within the constraint. For instance, consider
the constraint x + y = z.x; x ← z.x − y is a projection function (among others) that aims
at reducing the domain of variable x. Evaluating the projection function with interval arith-
metics on the domain [x]×[y]×[z] (i.e., replacing the variable occurrences of the projection
function by their domains and using the interval counterpart of the involved mathemati-
cal operators) provides an interval that is intersected with [x]. Hence a potential domain
reduction. A constraint propagation loop close to that of AC-3 [15] is used to propagate
reductions obtained for a given variable domain to the other constraints in the system.

3 Shaving algorithms for numerical CSP

Stronger consistencies for numerical CSP have also been proposed.

3.1 3B algorithm

3B-consistency [14] is a theoretical consistency similar to SAC for CSP although limited
to the bounds of the domains. Consider the 2n subproblems of the studied numerical CN
where each interval [xi] (i ∈ {1..n}) is reduced to its lower bound xi (resp. upper bound xi).
3B-consistency is enforced iff each of these 2n subproblems is hull-consistent.

In practice, the 3B(w) algorithm splits the intervals in several sub-intervals, also called
slices, of width w, which gives the accuracy: the 3B(w)-consistency is enforced iff the slices
at the bounds of the handled box cannot be eliminated by HC4. Let us denote var3B the
procedure of the 3B algorithm that shaves one variable interval [xi] and s3b its parameter,
a positive integer specifying a number of sub-intervals: w = w(xi)/s3b is the width of a
sub-interval.

3.2 CID

Constructive Interval Disjunction (CID) is a partial consistency stronger than 3B-
consistency [23]. CID-consistency is close to Partition-1-AC (P-1-AC) in finite domain
CSP [6]. P-1-AC is strictly stronger than SAC [6].



Constraints (2015) 20:452–467 455

The main procedure varCID handles a single variable xi . The main parameters of
varCID are xi , a number scid of sub-intervals (accuracy) and a contraction algorithm ctc

like HC4. [xi] is split into scid slices of equal width, each corresponding subproblem is con-
tracted by the contractor ctc and the hull of the different contracted subproblems is finally
returned, as shown in Algorithm 1.

Intuitively, CID generalizes 3B because a sub-box that is eliminated by var3B is also
discarded by varCID. In addition, contrary to var3B, varCID can also contract [X] along
several dimensions.

Note that in the actual implementation the for loop can be interrupted earlier, when [X]′
becomes equal to the initial box [X] in all the dimensions except xi .

3.3 3BCID

var3BCID is a hybrid and operational variant of varCID.

1. Like var3B, it first tries to eliminate sub-intervals at the bounds of [xi] of width w =
w(xi)/s3b each. We store the left box [Xl] and the right box [Xr ] that are not excluded
by the contractor ctc (if any).

2. Second, the remaining box [X]′ is handled by varCID that splits [X]′ into scid sub-
boxes. The sub-boxes are contracted by ctc and hulled, giving [Xcid ].

3. Finally, we return the hull of [Xl], [Xr ] and [Xcid ].
Figure 1 illustrates the contraction task achieved by the main procedure of 3B, CID and

3BCID.

Fig. 1 Task of the var3B (left), varCID (center) and var3BCID (right) procedures applied to the interval
[x1], with parameter s3b set to 10 and scid set to 1. The darkened region corresponds to the solution set of the
two constraints. The boxes in dotted lines are returned by the respective procedures



456 Constraints (2015) 20:452–467

var3BCID comes from the wish of managing different widths (accuracies) for s3b and
scid . Indeed, the best choice for s3b generally belongs to {5..20} while scid should always
be set to 1 or 2 (implying a final hull of 3 or 4 sub-boxes). The reason is that the actual
time cost of the shaving part is smaller than the one of the constructive domain disjunction.
Indeed, if no sub-interval is discarded by var3B, only two calls to ctc are performed, one
for each bound of the handled interval; if varCID is applied, the subcontractor is often
called scid times.

The procedure var3BCID has been deeply studied and experimented in the past. The
number and the order in which calls to var3BCID are achieved is a harder question studied
in this paper.

4 Adaptive CID: learning the number of handled variables

Like for SAC or 3B, a quasi fixed-point in terms of contraction can be reached by 3BCID
(or CID) by calling var3BCID inside two nested loops. An inner loop calls var3BCID on
each variable xi . An outer loop calls the inner loop until no interval is contracted more than
a predefined (width) precision (thus reaching a quasi-fixed point). Let us call 3BCID-fp
(fixed-point) this historical version.

Two reasons led us to radically change this policy. First, as said above, var3BCID can
contract the handled box in several dimensions. One significant advantage is that the fixed-
point in terms of contraction can thus be reached in a small number of calls to var3BCID.
On most of the instances in satisfaction or optimization, it appears that a quasi fixed-point
is reached in less than n calls. In this case, 3BCID is clearly too expensive. Second, the
varCID principle is close to a branching point in a search tree. The difference is that
a hull is achieved at the end of the sub-box contractions. Therefore an idea is to use a
standard branching heuristic to select the next variable to be “varcided”. We will write in
the remaining part of the paper that a variable is varcided when the procedure var3BCID
is called on that variable to contract the current box.

To sum up, the idea for rendering 3BCID even more efficient in practice is to replace
the two nested loops by a single loop calling numVarCID times var3BCID and to use an
efficient variant of the Smear function branching heuristic for selecting the variables to be
varcided (called SmearSumRel in [22]). Informally, the Smear function favors variables
having a large domain and a high impact on the constraints – by measuring interval partial
derivatives.

A first idea is to fix numVarCID to the number n of variables. We call 3BCID-n this
version. This gives good results in satisfaction but is dominated by pure constraint propa-
gation in optimization. As said above, it is too time costly when the right numVarCID is
smaller than n (which is often the case in optimization), but can also have a very bad impact
on performance if a bigger effort brought a significantly greater filtering.

The goal of Adaptive CID (ACID) is precisely to compute dynamically during search the
value of the numVarCID parameter. Several auto-adaptation policies have been tested and
we report three interesting versions. All the policies measure the decrease in search space
size after each call to var3BCID. They measure a contraction ratio of a box [X]b over
another box [X]a as an average relative gain in all the dimensions:

gainRatio([X]b, [X]a) = 1

n

n∑

i=1

(
1 − w(xb

i )

w(xa
i )

)



Constraints (2015) 20:452–467 457

4.1 ACID0: auto-adapting numVarCID during search

The first version ACID0 adapts the number of shaved variables dynamically at each node
of the search tree. First, the variables are sorted by their impact, computed by the same
formula as the SmearSumRel function (used for branching). Variables are then varcided
until the cumulative contraction ratio during the last nv calls to var3BCID becomes less
than ctratio. This algorithm has thus 2 parameters nv and ctratio, and it was difficult to
tune them. We experimentally found that ctratio could be fixed to 0.001 and nv should
depend on the number of variables n of the problem. Setting nv to 1 is often a bad choice,
and fixing it with the formula nv = max(3, n

4 ) experimentally gave the best results. The
experimental results are not bad but this policy prevents numVarCID from reaching 0,
i.e. from calling only constraint propagation. This is a significant drawback when a simple
constraint propagation is the most efficient approach.

4.2 ACID1: interleaving learning and exploitation phases

A more sophisticated approach avoids this drawback. ACID1 interleaves learning and
exploitation phases for auto-adapting the numVarCID value. Depending on the node
number, the algorithm is in a learning or in an exploitation phase.

The behavior of ACID1, shown in Algorithm 2, is the following:

– The variables are first sorted according to their impact measurement (using the
SmearSumRel heuristic).

– During a learning phase (during learnLength nodes), we then analyze how the contrac-
tion ratio evolves from a var3BCID call to the next one, and store the number kvarCID
of varcided variables necessary to obtain most of the possible filtering.

More precisely, 2.numVarCID variables are varcided at each node (with a minimum
value equal to 2, in case numVarCID= 0). In the first learning phase, we handle n

variables.
At the current node, the lastSignificantGain function returns the rank (kvar-

CID) of the last varcided variable giving a significant improvement (drop in domain
size). In other words, after the kvarCIDth call to var3BCID, the gain in current box
size from a var3BCID call to the next one (computed by the gainRatio formula)
never exceeds a small given ratio, called ctratio. This analysis starts from the last var-
cided variable to ensure we capture the last drop in domain size. (For the readibility of
the pseudo-code, we omit the parameters of the var3BCID procedure, i.e. s3b, scid ,
the constraints C and the contractor ctc.)

– During the exploitation phase following the previous learning phase, the average of the
different kvarCID values (obtained in the nodes of the learning phase) provides the new
value of numVarCID. This value will be used by 3BCID during the exploitation phase.
Compared to the previous value (previous call to an exploitation phase), note that this
new value can at most double, but can also drastically decrease.

Every cycleLength nodes in the search tree, both phases are called again.
Numerous variants of this schema were tested. In particular, it is counterproductive to

learn numVarCID only once or, on the contrary, to memorize the computations from a
learning phase to another one.

We fixed experimentally the 3 parameters of the ACID1 procedure learnLength, cycle-
Length and ctratio, respectively to 50, 1000 and 0.002. ACID1 becomes then a parameter



458 Constraints (2015) 20:452–467

free procedure. With these parameter values, the overhead of the learning phases (where we
double the previous numVarCID value) remains small.

4.3 ACID2: taking into account the level in the search tree

A criticism against ACID1 is that we average kvarCID values obtained at different levels
of the search tree. This drawback is partially corrected by the successive learning phases of
ACID1, where each learning phase corresponds to a part of the search tree.

In order to go further in that direction, we designed a refinement of ACID1 for which
each learning phase tunes at most 10 different values depending on the width of the studied
box. A value corresponds to one order of magnitude in the box width. For example, we store
a numVarCID value for the boxes with a width comprised between 1 and 0.1, another one
for the boxes with a width comprised between 0.1 and 0.01, etc. However, this approach,
called ACID2, gave in general results similar to those of ACID1 and appeared to be less



Constraints (2015) 20:452–467 459

robust. Indeed, only a few nodes sometimes fall at certain width levels, which renders the
statistics not significant.

5 Experiments

All the algorithms were implemented in the C++ interval library Ibex (Interval Based
EXplorer), version 2.0 [8]. All the experiments were run on the same computer (Intel
X86 3GHz). We tested the algorithms on square numerical CSP and on constrained global
optimization. The square numerical CSP consists in finding all the solutions of a square
system of n nonlinear equations with n real-values variables with bounded domains. Global
optimization consists in finding the global minimum of a function over n variables subject to
constraints (equations and inequalities), the objective function and/or the constraints being
non-convex.

5.1 Experiments in constraint satisfaction

We selected from the COPRIN benchmark1 all the systems that were solved by one of
the tested algorithms in a time comprised between 2 s and 3,600 s. The timeout was fixed
to 10,000 s. The required precision on the solution is 10−8. Some of these problems are
scalable. In this case, we selected the problem with the greatest number of variables that
was solved by one of the algorithms in less than one hour.

We compared our ACID method and its variants with the well known filtering techniques:
a simple constraint propagation HC4, 3BCID-n (see Section 4) and 3BCID-fp (fixed-
point) in which a new iteration on all the variables is run when a variable domain width is
reduced by more than 1 %. At each node of the search tree, we used the following sequence
of contractors : HC4, shaving, Interval-Newton [11], and X-Newton [3]. shaving
denotes a variant of ACID, 3BCID-n, 3BCID-fp or nothing when only HC4 is tested.

For each problem, we used the best bisection heuristics available (among two variants of
the Smear function [22]). The main parameter ctratio of ACID1 and ACID2, measuring
a stagnation (the last drop) in the filtering as long variables are varcided, was empirically
fixed to 0.002. The var3BCID parameters s3b and scid were fixed to the default settings,
respectively 10 and 1, proposed in [23]. Experiments on the selected instances confirm that
these settings are relevant and robust to variations. In particular, setting s3b to 10 gives
results better than with smaller values (s3b = 5) and with greater values. (For 21 over the
26 instances, s3b = 20 gives worse results.) As shown in Table 1, ACID1 appears to be
often the best one, or close to the best one. In only 4 problems on 26, it was more than 10 %
slower than the best. The number of varcided variables was tuned close to 0 in the problems
where HC4 was sufficient, and more than the number of variables in the problems where
3BCID-fp appeared to be the best method.

In the left part of Table 2, we summarize the results obtained by the three variants of
ACID and their competitors. It appears that only ACID1 could solve the 26 problems in 1
hour, while HC4 could solve only 21 problems in 10,000s. The gains in cpu time obtained
by ACID1 w.r.t. competitors are sometimes significant (see the line max gain), while its
losses remain weak. ACID0 with its two parameters was more difficult to tune, and it was
not interesting to run the more complex algorithm ACID2. ACID1 obtains better gains w.r.t

1www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html

www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html


460 Constraints (2015) 20:452–467

Table 1 Continuous CSP solving: ACID1 results

#var ACID1 ACID1 ACID1 best worst Speedup Speedup

time #nodes #varcids ACID1
best

ACID1
worst

Bellido 9 3.45 518 5 ACID1 HC4 1 0.89

Brown-7 7 396 540,730 4.5 ACID1 HC4 1 0.82

Brent-10 10 17.63 3,104 9 ACID1 HC4 1 0.14

Butcher8a 8 981 204,632 9 3BCID-n HC4 1.03 0.49

Butcher8b 8 388 93,600 10.8 ACID1 HC4 1 0.31

Design 9 29.22 5,330 11 3BCID-n HC4 1.07 0.37

Dietmaier 12 926 82,364 26.3 ACID1 HC4 1 0.19

Directkin 11 32.73 2,322 7 ACID1 3BCID-fp 1 0.84

Disc.integralf2-16 32 592 58464 0.4 HC4 3BCID-fp 1.02 0.52

Eco-12 11 3156 297,116 12 ACID1 HC4 1 0.32

Fredtest 6 25.17 11,480 0.8 HC4 3BCID-fp 1.04 0.91

Fourbar 4 437 183,848 0.1 ACID1 3BCID-n 1 0.85

Geneig 6 178.2 83,958 2.9 HC4 3BCID-fp 1.02 0.82

Hayes 7 3.96 1,532 7.5 3BCID-n HC4 1.14 0.77

I5 10 15.93 3,168 11.5 ACID1 HC4 1 0.13

Katsura-25 26 691 5396 10.4 ACID1 3BCID-fp 1 0.67

Pramanik 3 23.1 23,696 0.2 ACID1 HC4 1 0.69

Reactors-42 42 1,285 23,966 134 3BCID-fp HC4 1.07 0.13

Reactors2-30 30 1,220 38,136 90 3BCID-n HC4 1.14 0.12

Synthesis 33 356 7,256 53.8 3BCID-fp HC4 1.15 0.25

Trigexp2-23 23 2,530 227,136 39.4 3BCID-fp HC4 1.26 0.25

Trigo1-18 18 2,625 37,756 6.1 ACID1 3BCID-fp 1 0.80

Trigo1sp-35 36 2,657 70,524 2.4 ACID1 3BCID-fp 1 0.41

Virasoro 8 1,592 266,394 0.6 3BCID-n 3BCID-fp 1.08 0.28

Yamamura1-16 16 2,008 68,284 0.37 3BCID-n HC4 1.02 0.86

Yamamura1sp-500 501 1,401 146 144 ACID1 HC4 1 0.14

For each instance, we present its number of variables and the results obtained by ACID1: the CPU time,
the number of branching nodes in the search tree, the average number of varcided variables (tuned by
ACID1 dynamically). We also report the best and the worst methods among ACID1, HC4, 3BCID-fp, and
3BCID-n, the cpu time ratio of ACID1 over the best method and over the worst method

3BCID-n in total time than on average because the best gains were obtained on difficult
instances with more variables. In the right part of the table, we report the solving time
ratios obtained when X-Newton is removed (¬ XN) from the contractor sequence (4 prob-
lems could not be solved in 10,000s). The only ACID variant studied was ACID1. ACID1
and 3BCID-n obtain globally similar results, better than 3BCID-fp, but with a greater
dispersion (i.e., standard deviation) than with X-Newton since the shaving takes a more
important part in the contraction.



Constraints (2015) 20:452–467 461

Table 2 Numerical CSP: Solving time gain ratios

ACID1 HC4 3BCID-fp 3BCID-n ACID0 ACID2 ACID1 3BCID-fp 3BCID-n

¬ XN ¬ XN ¬ XN

#solved 26 20 23 24 25 24 20 16 20

< 3,600

#solved 26 21 26 26 26 26 22 21 22

<10,000

Average gain 1 0.7 0.83 0.92 0.96 0.91 1 0.78 1.02

Maximum gain 1 0.13 0.26 0.58 0.45 0.48 1 0.18 0.38

Maximum loss 1 1.04 1.26 1.14 1.23 1.05 1 2.00 1.78

Stand. dev. 0 0.32 0.23 0.15 0.15 0.19 0 0.34 0.28

gain

Total time 23,594 >72,192 37,494 27,996 26,380 30,428 29,075 50,181 31,273

Total gain 1 <0.33 0.63 0.84 0.89 0.78 1 0.58 0.93

We report the number of problems solved before 3,600 s and before 10,000 s, and different statistics on the
CPU time gain ratio of ACID1 over each competitor Ci (one per column): the average, maximum, minimum
and standard deviation values of this ratio acid1 t ime

Ci time

5.2 Experiments in constrained global optimization

We selected in the series 1 of the Coconut constrained global optimization benchmark2 all
the 40 instances that ACID or a competitor could solve in a CPU time comprised between
2 s and 3,600 s. The time out was fixed to 3,600s. We used the IbexOpt strategy of Ibex
that performs a Best First Branch & Bound. The experimental protocol is the same as the
numerical CSP experimental protocol, except that we do not use Interval-Newton that
is only implemented for square systems.

For each instance, we use the best bisection heuristics (the same for all methods)
among largestFirst, roundRobin and variants of the Smear function. The preci-
sion required on the objective is 10−8. Each equation is relaxed by two inequalities with a
precision 10−8.

Table 3 reports the same columns as Table 1, plus a column indicating the number of
constraints in the instance. For the constraint programming part of IbexOpt, HC4 is state
of the art and 3BCID is rarely needed in optimization. Therefore, we report in the penul-
timate column a comparison between ACID1 and HC4. The number of varcided variables
was indeed tuned by ACID1 to a value comprised between 0 and the number of variables.
Again, we can see that ACID1 is robust and is the best, or at most 10 % worse than the
best, for 34 among 40 instances. Table 4 shows that we obtained an average gain of 10 %
over HC4. It is significant because the CP contraction is only a part of the IbexOpt algo-
rithm [22] (linear relaxation and the search of feasible points are other important parts, not
studied in this paper and set to their default algorithms in IbexOpt). ACID0 shaves a min-
imum of 3 variables, which is often too much. ACID2 obtains results slightly worse than
ACID1, rendering this refinement not promising in practice.

2www.mat.univie.ac.at/∼neum/glopt/coconut/Benchmark/Benchmark.html

www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html


462 Constraints (2015) 20:452–467

Table 3 Optimization problems: ACID1 results

#var #ctr ACID1 ACID1 ACID1 best worst Speedup Speedup Speedup

time #nodes #varcids ACID1
best

ACID1
HC4

ACID1
worst

Ex2 1 7 20 10 8.75 465 3 HC4 3BCID-fp 1.03 1.03 0.7

Ex2 1 8 24 10 6.18 200 0 HC4 3BCID-fp 1.06 1.06 0.91

Ex2 1 9 10 1 10.09 1,922 0.75 HC4 3BCID-fp 1.04 1.04 0.9

Ex5 4 4 27 19 915 23,213 0.8 ACID1 3BCID-n 1 0.96 0.91

Ex6 1 1 8 6 60.85 13,071 8.9 HC4 3BCID-fp 1.21 1.21 0.73

Ex6 1 3 12 9 297 29,154 11.7 HC4 3BCID-fp 1.19 1.19 0.63

Ex6 1 4 6 4 1.99 505 6 ACID1 3BCID-fp 1 0.97 0.8

Ex6 2 6 3 1 106.8 46,687 0 HC4 3BCID-fp 1.02 1.02 0.74

Ex6 2 8 3 1 48.21 21,793 0.1 HC4 3BCID-fp 1.01 1.01 0.72

Ex6 2 9 4 2 51.92 19,517 0.1 HC4 3BCID-fp 1.02 1.02 0.72

Ex6 2 10 6 3 2248 569,816 0 ACID1 3BCID-fp 1 0.99 0.64

Ex6 2 11 3 1 29.32 13,853 0.3 HC4 3BCID-fp 1.05 1.05 0.73

Ex6 2 12 4 2 21.57 7,855 0.1 HC4 3BCID-fp 1.02 1.02 0.8

Ex7 2 3 8 6 19.41 4,596 4.4 3BCID-n HC4 1.07 0.17 0.17

Ex7 2 4 8 4 36.79 5,606 4.2 3BCID-fp HC4 1.04 0.66 0.66

Ex7 2 8 8 4 37.98 6,792 4.1 3BCID-n HC4 1.09 0.71 0.71

Ex7 2 9 10 7 78.02 14,280 9.3 3BCID-n HC4 1.07 0.48 0.48

Ex7 3 4 12 17 2.95 366 3 3BCID-n 3BCID-fp 1.23 0.99 0.89

Ex7 3 5 13 15 4.59 894 6 3BCID-n HC4 1.05 0.38 0.38

Ex8 4 4 17 12 1738 46,082 0.9 ACID1 3BCID-fp 1 0.99 0.87

Ex8 4 5 15 11 772 25,454 4.8 HC4 3BCID-fp 1.03 1.03 0.75

Ex8 5 1 6 5 9.67 2,138 2.75 ACID1 3BCID-fp 1 0.84 0.82

Ex8 5 2 6 4 32.46 5,693 0.8 ACID1 3BCID-fp 1 0.9 0.87

Ex8 5 6 6 4 32.38 10,790 1.8 HC4 3BCID-fp 1.02 1.02 0.76

Ex14 1 7 10 17 665 95,891 3.3 3BCID-n HC4 1.03 0.61 0.61

Ex14 2 3 6 9 2.01 360 2 HC4 3BCID-fp 1.17 1.17 0.69

Ex14 2 7 6 9 49.88 5,527 0 HC4 3BCID-n 1.47 1.47 0.48

alkyl 14 7 3.95 714 4 HC4 3BCID-fp 1.2 1.2 0.91

bearing 13 12 11.58 1,098 13 3BCID-n HC4 1.01 0.53 0.53

hhfair 28 25 26.59 3,151 10 3BCID-n HC4 1.12 0.58 0.58

himmel16 18 21 188 21,227 15.5 3BCID-n 3BCID-fp 1.1 0.94 0.88

house 8 8 62.8 27,195 3.25 HC4 3BCID-fp 1.09 1.09 0.79

hydro 30 24 609 32,933 0 ACID1 3BCID-fp 1 0.88 0.78

immun 21 7 4.17 1,317 2.5 ACID1 3BCID-fp 1 0.55 0.28

launch 38 28 107 2,516 21 ACID1 3BCID-n 1 0.79 0.43

linear 24 20 751 27,665 0.25 ACID1 3BCID-n 1 0.98 0.65

meanvar 7 2 2.43 370 2 HC4 3BCID-fp 1.04 1.04 0.84

process 10 7 2.61 611 8 HC4 3BCID-fp 1.08 1.08 0.77

ramsey 31 22 164.1 4,658 4.3 ACID1 3BCID-fp 1 0.85 0.68

srcpm 38 27 160 6,908 0.5 ACID1 3BCID-fp 1 0.62 0.33



Constraints (2015) 20:452–467 463

Table 4 Optimization problems: gain ratio in solving time: time ACID1/time xxx

ACID1 HC4 3BCID-fp 3BCID-n ACID0 ACID2

#solved instances 40 40 40 40 40 40

Average gain 1 0.9 0.77 0.88 0.91 0.97

Maximum gain 1 0.17 0.28 0.35 0.62 0.28

Maximum loss 1 1.47 1.04 1.23 1.18 1.19

Stand. dev. gain 0 0.25 0.16 0.18 0.12 0.14

Total time 9,380 10,289 12,950 11,884 11,201 9,646

Total gain 1 0.91 0.72 0.79 0.84 0.97

6 Experiments with Ibex 2.1

We have extended our sample of instances in constrained global optimization to the series 2
of the Coconut benchmark. Among the 266 instances belonging to the series 1 (studied in the
previous section) and the 727 instances of the series 2, we first discarded the unconstrained
ones and the linear ones. We also discarded too difficult instances (having more than 50
variables or reaching a timeout of one hour – about 20 instances for the series 1 and 30
instances for series 2). Finally, we discarded the 70 “easy” instances from the series 1 (less
than 0.5 second for all the competitors) and easy instances from the series 2 (having less
than 6 variables or solved in less than 0.5 second). Overall, are remaining 43 instances in
the series 1 and 32 instances in the series 2.

The sample was proceeded with the latest version of Ibex (2.1). This version is endowed
with the same implementation of ACID1, but offers several other features. Let us men-
tion an improvement of the polyhedral convex relaxation component. Instead of relaxing
each inequality constraint with only a specific convex interval Taylor expanded at a ver-
tex/corner of the box [3], as done in Ibex 2.0, a constraint is also relaxed using affine
arithmetic that recursively applies on every operator in the expression [18, 19]. Both
relaxed polyhedral forms are introduced in the same polytope. As a result, the part of
the pure constraint programming in the total strategy is even lowered, although about the
same gain of the strategy using ACID1(HC4) is observed w.r.t. that using only HC4
(see Section 6.1). Another significant feature is the state-of-the-art Mohc constraint prop-
agation algorithm [1, 9] that was developed in Ibex 1 but not yet reimplemented in
Ibex 2.0.

6.1 Performance on series 1 and 2 of the Coconut benchmark

Table 5 shows the results obtained by the IbexOpt strategy 2.1 using ACID1(HC4)
(instead of HC4) on the new sample of 75 hard instances.

Although the version 2.1 of the optimization strategy takes more time on polyhedral
relaxation, the gains of ACID1 w.r.t. HC4 remain similar. The average gain is an average of
the gains in time or number of nodes obtained on each instance while the total gain is a ratio
between the two total times spent for the whole benchmark.

The gain in number of nodes is very important in global optimization where the Branch
and Bound process performs a best first search and thus may require an exponential
memory.



464 Constraints (2015) 20:452–467

Table 5 Results on the series 1
and 2 of Coconut ACID1 HC4 Remark

#solved instances 75 75

Average time gain 1 0.95

Average node gain 1 0.81

Maximum time gain 1 0.15 obtained on ex 7 2 3

Maximum time loss 1 1.31 obtained on ex 6 1 1

Total time gain 1 0.91

Total node gain 1 0.59
Gains and losses are expressed as
ratios ACID1 time/HC4 time and
ACID1 #nodes/HC4 #nodes

6.2 Results obtained with Mohc

The main parameter of ACID1 is of course the constraint propagation algorithm used to
refute or filter a given sub-box. HC4 is a constraint propagation algorithm often used in con-
tinuous constraint programming solvers [13] and even in global optimizers mainly based on
mathematical programming algorithms like Baron [21]. However, other constraint propa-
gation algorithms have been designed, like Box [5, 25] and Mohc [1, 9] (MOnotonic Hull
Consistency). Mohc is an efficient constraint propagation algorithm exploiting the mono-
tonicity of functions. Roughly, for a given constraint, the Mohc-Revise procedure brings
an optimal reduction of the domain when all the corresponding functions are monotonic
w.r.t. every involved variable. The contraction is also interesting as soon as one variable
becomes monotonic. Note that monotonicity of functions increases with the decrease in
domain size and thus more likely occurs lower in the search tree.

We have compared the performances obtained with ACID1(Mohc) and Mohc. It
appears that the gain brought by ACID1 w.r.t. Mohc is about as interesting as w.r.t. HC4:
0.86 in total time and 0.79 in total number of nodes.

These results make ACID1(Mohc) a good candidate to belong to the default optimiza-
tion strategy available in Ibex.

7 Justification of the parameters of ACID

This section gives a brief justification of important choices made in the implementation
of ACID1: some alternative measures of the domain size used to capture the last drop in
filtering as long as variables are varcided, and the way of aggregating in numVarCID the
different numbers kVarCID of varcided variables at the different nodes of the learning phase.

7.1 Capturing the last drop in filtering

Determining the last drop in filtering requires one to measure the difference between two
successive domain sizes as long as variables are varcided. Section 4 describes this contrac-
tion measure as an average of the size gains in all dimensions, i.e. a type of normalized
perimeter ratio. However, two other ratios can be used instead:

– a ratio of box volumes (the volume being defined as the multiplication of the different
interval sizes), as tested on discrete CSP [4],

– a ratio of the maximum interval sizes of the compared boxes.



Constraints (2015) 20:452–467 465

Experimental results performed on our sample of 75 instances in global optimization
showed no significant difference between the different policies.3

Of course, the best value chosen for ctratio (the value of the drop) depends on the
size measure. The best value of ctratio was set to 0.002 in ACID1, while it is 1 % for
the volume criterion and 5 % for the maximum dimension size criterion.

7.2 Aggregation of the learned numVarCID value with percentile?

As proposed in [4], we tried to aggregate with a percentile p %, and not a mean value,
the different numbers kVarCID of varcided variables computed at the different nodes of the
learning phase. Therefore the aggregated rank r is chosen such that p % of the different
ranks are less than r .

Again, our experiments with percentiles equal to 40 %, 50 % (i.e., median), 60 %, 70 %
show no difference with a simple averaged value.

8 Learning a set of variables to varcid?

In this section, we study an important question. The auto-adaptive policy of ACID1 mainly
adapts a number (numVarCID) of variables varcided at each search node. However, the
specific set of variables that is varcided is given by a heuristic, namely the smearSumRel
branching heuristic. So it is important to know whether a better heuristic could identify a
better set of variables to varcid. Two experiments lead to a surprising conclusion.

8.1 Success-based impact heuristic

We have designed a new heuristic learning the (CID) impact of each variable. The impact
of a variable xi is computed by the (relative) number of times in which the shaving of
xi reaches a significant gain in contraction (see the function lastSignificantGain
called in Algorithm 2).

The success-based impact (sImpacti) of a variable xi is updated after every call to
var3BCID(xi ): The formula below is a weighted mean value depending on the previous
mean value and on the current “success” (1 if a significant contraction gain is obtained, 0
otherwise).

sImpacti = (1 − w) ∗ sImpacti + w ∗ success

with w = 0.02 = (1/learnLength).
The initial value of the sImpacti’s is set to 1.0.
Although this simple type of learning process gave good results on an adaptive ver-

sion of Mohc [2], it led here to performance results similar to that of the SmearSumRel
heuristic.

We then tried more exhaustively the standard branching heuristics for ordering the vari-
ables varcided by ACID1: the different smear-based variants, largest domain, round-robin.
This shows a slight advantage of SmearSumRel over its competitors (except compared to
round-robin). This slight advantage led us to an informative and last experiment.

3Differences of less than 2 % between the three strategies have been measured, which is not representative.



466 Constraints (2015) 20:452–467

8.2 Random heuristic

A random heuristic used to order the variables varcided by ACID1 gave results very similar
to SmearSumRel. Its average gain w.r.t. SmearSumRel in number of nodes is 0.99 while
the average time gain is 0.95. The advantage in CPU time could be explained by the relative
expensive cost of SmearSumRel that must compute a Jacobian matrix.

A conclusion suggested by these two experiments is that the number of variables varcided
accounts more than the specific set of variables handled. A reason could be related to the fact
that the variables are in a sense interchangeable. The removal of a sub-interval of [xi] during
a shaving of [xi] (leading to an empty domain in [xj ]) could also be caused by the varCID
operation on [xj ]. This could explain that [xi] or [xj ] could be varcided indifferently.

9 Conclusion

We have presented in this paper an adaptive version of the 3BCID contraction operator used
by interval methods and close to partition-1-AC for the finite domain CSP. The best
variant of this Adaptive CID operator (ACID1 in the paper) interleaves learning phases and
exploitation phases to auto-adapt the number of variables handled. All the parameters used
for the adaptation are fixed and robust to modifications.

Overall, ACID1 adds no parameter to the solving or optimization strategies. It offers the
best results on average and is the best or close to the best on every tested instance, even in
presence of the best Ibex devices (Interval-Newton, X-Newton). Therefore ACID1
has been added to the Ibex default solving and optimization strategies.

Acknowledgments Ignacio Araya is supported by the Fondecyt Project 11121366.

,

References

1. Araya, I., Trombettoni, G., Neveu, B. (2010). Exploiting monotonicity in interval constraint propagation.
In Proceeding of AAAI (pp. 9–14).

2. Araya, I., Trombettoni, G., Neveu, B. (2010). Making adaptive an interval constraint propagation algo-
rithm exploiting monotonicity. In Proceedings of CP, Constraint Programming, LNCS 6308 (pp. 61–68).
Springer.

3. Araya, I., Trombettoni, G., Neveu, B. (2012). A Contractor based on convex interval Taylor. In CPAIOR
2012, no. 7298 in LNCS (pp. 1–16).

4. Balafrej, A., Bessiere, C., Bouyakhf, E., Trombettoni, G. (2014). Adaptive singleton-based consistencies.
In AAAI (pp. 2601–2607). AAAI Press.

5. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F. (1999). Revising hull and box consistency. In
Proceedings of ICLP (pp. 230–244).

6. Bennaceur, H., & Affane, M.S. (2001). Partition-k-AC: an efficient filtering technique combining
domain partition and arc consistency. In Proceedings of CP (pp. 560–564).

7. Bessiere, C., & Debruyne, R. (2005). Optimal and suboptimal singleton arc consistency algorithms. In
Proceedings of IJCAI (pp. 54–59).

8. Chabert, G., & Jaulin, L. (2009). Contractor programming. Artificial Intelligence, 173, 1079–1100.
9. Chabert, G., & Jaulin, L. (2009). Hull consistency under monotonicity. In Proceedings of CP, LNCS

5732 (pp. 188–195).
10. Debruyne, R., & Bessiere, C. (1997). Some practicable filtering techniques for the constraint satisfaction

problem. In Proceedings of IJCAI (pp. 412–417).
11. Hansen, E. (1992). Global optimization using interval analysis. Marcel Dekker Inc.
12. Kieffer, M., Jaulin, L., Walter, E., Meizel, D. (2000). Robust autonomous robot localization using

interval analysis. Reliable Computing, 3(6), 337–361.



Constraints (2015) 20:452–467 467

13. Lebbah, Y., Michel, C., Rueher, M., Daney, D., Merlet, J. (2005). Efficient and safe global constraints
for handling numerical constraint systems. SIAM Journal on Numerical Analysis, 42(5), 2076–2097.

14. Lhomme, O. (1993). Consistency techniques for numeric CSPs. In IJCAI (pp. 232–238).
15. Mackworth, A. (1977). Consistency in networks of relations. Artificial Intelligence, 8, 99–118.
16. Merlet, J.P. (2007). Interval analysis and robotics. In Symposium of Robotics Research.
17. Messine, F. (1997). Méthodes d’optimisation globale basées sur l’analyse d’intervalle pour la résolution

des problèmes avec contraintes. Ph.D. thesis, LIMA-IRIT-ENSEEIHT-INPT, Toulouse.
18. Messine, F. (2002). Extensions of affine arithmetic: application to global optimization. Journal of

Universal Computer Science, 8(11), 992–1015.
19. Messine, F., & Laganouelle, J.L. (1998). Enclosure methods for multivariate differentiable functions and

application to global optimization. Journal of Universal Computer Science, 4(6), 589–603.
20. Min Li, C. (1997). Anbulagan: Heuristics based on unit propagation for satisfiability problems. In

Proceedings IJCAI (pp. 366–371).
21. Tawarmalani, M., & Sahinidis, N.V. (2005). A polyhedral branch-and-cut approach to global optimiza-

tion. Mathematical Programming, 103(2), 225–249.
22. Trombettoni, G., Araya, I., Neveu, B., Chabert, G. (2011). Inner regions and interval linearizations for

global optimization. In AAAI (pp. 99–104).
23. Trombettoni, G., & Chabert, G. (2007). Constructive interval disjunction. In Proceedings of CP, LNCS

4741 (pp. 635–650).
24. Tucker, W. (2002). A rigorous ODE solver and smale’s 14th problem. Foundations of Computational

Mathematics, 2, 53–117.
25. Van Hentenryck, P., Michel, L., Deville, Y. (1997). Numerica : a modeling language for global

optimization: MIT Press.


	Adaptive constructive interval disjunction: algorithms and experiments
	Abstract
	Introduction
	Numerical CSP
	Shaving algorithms for numerical CSP
	3B algorithm
	CID
	3BCID

	Adaptive CID: learning the number of handled variables
	ACID0: auto-adapting numVarCID during search
	ACID1: interleaving learning and exploitation phases
	ACID2: taking into account the level in the search tree

	Experiments
	Experiments in constraint satisfaction
	Experiments in constrained global optimization

	Experiments with Ibex 2.1
	Performance on series 1 and 2 of the Coconut benchmark
	Results obtained with Mohc

	Justification of the parameters of ACID
	Capturing the last drop in filtering
	Aggregation of the learned numVarCID value with percentile?

	Learning a set of variables to varcid?
	Success-based impact heuristic
	Random heuristic

	Conclusion
	Acknowledgments
	References


