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Abstract One of the most well-known and widely used local search techniques for solv-
ing optimization problems in Constraint Programming is the Large Neighborhood Search
(LNS) algorithm. Such a technique is, by nature, very flexible and can be easily integrated
within standard backtracking procedures. One of its drawbacks is that the relaxation pro-
cess is quite often problem dependent. Several works have been dedicated to overcome this
issue through problem independent parameters. Nevertheless, such generic approaches need
to be carefully parameterized at the instance level. In this paper, we demonstrate that the
issue of finding a problem independent neighborhood generation technique for LNS can be
addressed using explanation-based neighborhoods. An explanation is a subset of constraints
and decisions which justifies a solver event such as a domain modification or a conflict.
We evaluate our proposal for a set of optimization problems. We show that our approach
is at least competitive with or even better than state-of-the-art algorithms and can be easily
combined with state-of-the-art neighborhoods. Such results pave the way to a new use of
explanation-based approaches for improving search.
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1 Introduction

Local search techniques are very effective to solve hard optimization problems. Most of
them are, by nature, incomplete. In the context of constraint programming (CP) for opti-
mization problems, one of the most well-known and widely used local search techniques is
the Large Neighborhood Search (LNS) algorithm [25, 31]. The basic idea is to iteratively
relax a part of the problem, then to use constraint programming to evaluate and bound the
new solution. A generic and common way to reinforce diversification of LNS is to intro-
duce restart during the search process. This technique has proven to be very flexible and
to be easily integrated within standard backtracking procedures [22]. Various generic tech-
niques have been studied in [23], but only one of them appear to be efficient in practice,
which was defined by the authors as “accepting equivalent intermediate solutions in a search
iteration instead of requiring a strictly better one”. One drawback of LNS is that the relax-
ation process is quite often problem dependent. Some works have been dedicated to the
selection of variables to relax through general concept not related to the class of the prob-
lem treated [5, 24]. However, in conjunction with CP, only one generic approach, namely
Propagation-Guided LNS [24], has been shown to be very competitive with dedicated ones
on a variation of the Car Sequencing Problem. Nevertheless, such generic approaches have
been evaluated on a single class of problem and need to be thoroughly parametrized at the
instance level, which may be a tedious task to do. It must, in a way, automatically detect the
problem structure in order to be efficient.

During the last decade, explanation-based techniques have regained attention in CP.
Explanations, in a nutshell, can be seen as an explicit trace of the propagation mechanism
making it possible to identify a set of constraints and decisions (variable assignments, cuts)
responsible for the current state of the domain of a variable [21, 33]. Explanations have been
used to identify hidden structures in problem instances [2] and to improve search [12, 14].
However, explanations are quite intrusive when computed and quite space consuming when
explicitly maintained during search.

In this paper, we show that the issue of finding a problem independent neighborhood
generation technique for LNS can be addressed using explanations. A first contribution
relies on generic, configuration-free approaches to choose variables to relax. One is based
on an explanation of the inability to repair a solution, the other is based on an explanation
of the non-optimal nature of the current solution. For this purpose we will show how clas-
sical explanation-based search techniques can be modified and simplified to be efficiently
integrated within a standard backtrack-based algorithm. A second contribution is the oper-
ational implementation of those neighborhoods for further selecting variables to fix in a
partial solution. We suggest three combinations of neighborhoods based on explanations and
evaluate them on a set of optimization problems extracted from the MiniZinc distribution.1

We show that our approach is at least competitive with or even better than state-of-the-art
generic neighborhoods and can be easily combined with them. Finally, we evaluate an ulti-
mate combination made of explanation-based neighborhoods and propagation-guided ones.
This last combination performs slightly better than the individual approaches.

The paper is organized as follows: First, Section 2 introduces the required concepts to
present our approach; Next, Section 3 details the explanation-based neighborhoods for LNS;

1http://www.minizinc.org/

http://www.minizinc.org/
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Finally, Section 4 shows the improvements brought by our proposal with respect to the
state-of-the-art CP approaches for LNS.

2 Background

Constraint programming is based on relations between variables, which are stated by con-
straints. A Constraint Satisfaction Problem (CSP) is defined by a triplet 〈V,D, C〉 and
consists in a set of n variables V , their associated domains D, and a collection of s con-
straints C. The domain domv ∈ D associated with a variable v ∈ V defines a finite set
of integer values v can be assigned to. lowv (respectively, uppv) denotes the lower bound
(respectively, upper bound) of domv. The initial domain of v, its lower bound and its upper
bound are denoted respectively Domv, Lowv and Uppv . An assignment, or instantiation,
of a variable v to a value x is the reduction of its domain to a singleton, domv = {x}; v∗
denotes the value assigned to a variable v.

A constraint c ∈ C on k variables (v1, . . . , vk) is a logic formula that defines allowed
combinations of values for the variables (v1, . . . , vk). A constraint c is equipped with a (set
of) filtering algorithm(s), named propagator(s). A propagator removes, from the domains
of (v1, . . . , vk), values that cannot correspond to a valid combination of values. A solution
of a CSP is an assignment of all its variables simultaneously verifying the constraints in C.

Solving a CSP is usually performed with a tree-based search, basically, a depth first
search algorithm. A branching decision for a CSP (a decision in the following) δ is a triplet
〈v, o, x〉 composed of a variable v ∈ V (not yet assigned), an operator o (most of the time
“=”) and a value x ∈ domv. This triplet can be considered as a unary constraint over domv.

Each time a decision is applied or negated, its impact is propagated through the constraint
network of the CSP. After the propagation step, if the domain of a variable becomes empty
(domain wipe out) or if no valid combination of values can be got for at least one constraint
(inconsistency), there is no feasible solution within the current branch of the search tree. A
classical search algorithm backtracks to a previous decision to negate it, if any, or eventually
stops. If all the domains are reduced to singletons, a solution of a constraint network is
found. Finally, if at least one domain is not reduced to a singleton, another decision is
selected and applied. A decision path is a chronologically ordered sequence of decisions.

A Constraint Optimization Problem (COP) is a CSP augmented with a cost function over
an objective variable o. The aim of a COP is to find a solution for which o is maximized
or minimized. When a solution S is found for a COP, a cut CS is posted on the objective
variable. A cut states that the next solution should be better than the current one until the
optimal value of the objective is reached. Most of the time, the initial domain of the objective
variable is unbounded. Nevertheless, a convenient way to represent it is to store its bounds.

2.1 Large neighborhood search

The Large Neighborhood Search metaheuristic was proposed in [25, 31]. It was initially
designed to compute moves for the Vehicle Routing Problem whose evaluation and valida-
tion were made thanks to a tree-based search [31]. LNS is a two-phase algorithm which
partially relaxes a given solution and repairs it. Given a solution as input, the relaxation
phase builds a partial solution (or neighborhood) by choosing a set of variables to reset
to their initial domain; The remaining ones are assigned to their value in the solution.



342 Constraints (2014) 19:339–379

This phase is directly inspired from the classical Local Search techniques [25]. Even though
there are various ways to repair the partial solution, we focus on the original technique, pro-
posed by [31], in which Constraint Programming is used to bound the objective variable
and to assign a value to variables not yet instantiated. These two phases are repeated until
the search stops (optimality proven or limit reached). While the implementation of LNS is
straightforward, the main difficulty lies in the design of neighborhoods able to move the
search further. Indeed, the balance between diversification (i.e., evaluating unexplored sub-
tree) and intensification (i.e., exploring them exhaustively) should be well-distributed. The
general behavior of LNS is described by Algorithm 1.

Algorithm 1 Large Neighborhood Search

Require: an initial solution S

1: procedure LNS
2: while Optimal solution not found and a stop criterion is not encountered do
3: RELAX(S)
4: S′ ← FINDSOLUTION() � The cut CS is automatically posted
5: if S′ 	= NULL then � An improving solution has been found
6: S = S′
7: end if
8: end while
9: end procedure

Starting from an initial solution S, LNS selects and relaxes a subset of variables (RELAX,
line 3). The current partial solution is then repaired in order to improve the current solution
S (line 4). If such a solution S′ is found (line 5), it is stored (line 6). These operations are
executed until the optimal solution is found or a stopping criterion (for instance a time limit)
is encountered (line 2). Note that proving the optimality of a solution is not what LNS is
designed for.

Selecting the variables to relax is the tricky part of the algorithm. A random selec-
tion of the variables to unfix may be considered first [10, 31]. But, problem dedicated
neighborhoods tend to be more efficient in practice. In [31], the authors solved Vehicle
Routing Problems by selecting the set of customer visits to remove and re-insert. On the
Network Design Problem, the structure of the problem is exploited to define accurate neigh-
borhoods [3]. On the Job Shop Scheduling Problem, a neighborhood that deals with the
objective function has been studied [5]; the sub-problems were solved with MIP. Another
approach relies on a portfolio of neighborhoods and Machine Learning techniques to con-
verge on the most efficient neighborhoods: it has been successfully evaluated on scheduling
problems with specific neighborhoods [17]. In [23], the authors have tested several tech-
niques to improve the global behavior of their LNS solver while solving the Car Sequencing
Problem. The most remarkable technique, named walking, consists in accepting equiva-
lent intermediate solutions. In [18], the authors use Reinforcement Learning to dynamically
configure the size of the partial solution, the search limit and the selection of the neighbor-
hoods. They compare various configuration and conclude on the selection of the two former
parameters but the dedicated neighborhood of [23] still betters the class of problem treated
(the Modified Car Sequencing Problem). Other classes of problem have been tackled using
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LNS in the last decade: the Service Technician Routing and Scheduling Problems [16], the
Pollution-Routing Problem [7], the Founder Sequence Reconstruction Problem [29], Strate-
gic Supply Chain Management Problem [4], the Machine Reassignment Problem [20], to
name the most recent ones.

Another approach is to design generic neighborhoods. In [24], sophisticated neighbor-
hoods, based on the graph of variable dependencies, have been proposed. The authors
introduced propagation-guided neighborhoods in which the volume of domain reduced,
thanks to the propagation, helps to link variables together inside or outside partial solutions.
Hence, they suggest three neighborhoods which, combined together, tackle a modified ver-
sion of the Car Sequencing Problem. Even though it is not problem-dedicated, such an
approach relies on an accurate parametrization of the heuristics: the initial size of the partial
solution, its evolution during the resolution, number of variables “close” to the selected one.
However, this approach is the reference while dealing with generic neighborhoods design.
Most recently, a generic calculations of neighborhoods has been published in a workshop
on Local Search Techniques [19]. The authors suggest generic approaches to automatically
choose the subset of variables to fix, they obtain interesting results in comparison with the
standard random choice. But no comparison with [24] has been done and there has been no
further action on this preliminary work.

Another point to consider while designing neighborhoods is the size of the partial solu-
tion. If the relaxed part of the solution is very large, LNS relies too much on the tree-based
search: finding a new solution depends more on the search strategy than on the neighbor-
hoods, and finally suffers from poor diversification. On the contrary, if the size is too small,
the tree-based search may not have enough space to explore and may have trouble finding
solutions. Thus, in [31], the authors proposed to gradually increase the part of the solution
to reconsider: it reinforces the diversification (it may also bring completeness to the search
process).

In order to improve the robustness of LNS, the authors of [22] have shown that it is
worth imposing a small search limit (for instance, a fail limit) during the reparation phase.
If the search reaches the limit with no solution, a new neighborhood is generated and the
search is launched again. Indeed, it is worth diversifying search by quickly computing a
new neighborhood instead of trying to repair a unique one, without limitation nor guarantee
of success. This method limits the trashing and reduces the tradeoff between diversification
and intensification. Evaluations have shown that it helps finding better quality solutions.

In summary, the issues in LNS are twofold. The first one is to maintain a fair tradeoff
between diversification and intensification in neighborhoods computation. This is com-
monly addressed by introducing randomization in the neighborhoods or alternating random
neighborhoods with more sophisticated ones, combined with a fast restart policy.

2.2 Explanations

Nogoods and explanations have long been used in various paradigms for improving search
[9, 12, 27, 30, 33]. An explanation records some sufficient information to justify an infer-
ence made by the solver (domain reduction, contradiction, etc.). It is made of a subset of the
original propagators of the problem and a subset of decisions applied during search. Expla-
nations represent the logical chain of inferences made by the solver during propagation in
an efficient and usable manner. In a way, they provide some kind of a trace of the behavior
of the solver as any operation needs to be explained [6].



344 Constraints (2014) 19:339–379

Explanations have been successfully used for improving constraint programming
search process. Both complete (as the mac-dbt algorithm [14]) and incomplete (as
the decision-repair algorithm [12, 26]) techniques have been proposed. Those
techniques follow a similar pattern: learning from failures by recording each domain modi-
fication with its associated explanation (provided by the solver) and taking advantage of the
information gathered to be able to react upon failure by directly pointing to relevant deci-
sions to be undone. Complete techniques, in this context, follow a most-recent based pattern
while incomplete technique design heuristics to be used to focus on decisions more prone
to allow a fast recovery upon failure.

Example 1 Let consider the following COP = 〈V,D,C〉:
– V = 〈x1, x2, x3, x4, x5, x6, o〉,
– D = 〈[0, 4], [0, 4], [−1, 3], [−1, 3], [0, 4], [0, 4], [0, 10]〉 and
– C = 〈C1 ≡ ∑6

i=1 xi = o, C2 ≡ x1 ≥ x2, C3 ≡ x3 ≥ x4 and C4 ≡ x5 + x6 > 3〉.
– where the objective is to minimize o.

The initial solution S1 = 〈0, 0, 2, 0, 2, 2, 6〉 is found by applying the following decision
path PS1 = (δ1, δ2, δ3, δ4, δ5), where δ1 : 〈x1,=, 0〉, δ2 : 〈x4,=, 0〉, δ3 : 〈x3,=, 2〉, δ4 :
〈x5,=, 2〉 and δ5 : 〈x6,=, 2〉. Table 1 depicts the search trace.

The first step (Step 1.a) describes the effect of the application of δ1: x1 is instantiated
to 0, and thanks to C2, x2 is also instantiated to 0 (Step 1.b). Then, the application of δ2

instantiates x4 to 0 (Step 2.a); It triggers the execution of the propagator ofC3 which updates
the lower bound of x3 to 0 (Step 2.b). The application of δ3 instantiates x3 to 2 (Step 3.a),
the lower bound of o is then updated to 2 because of C1 (Step 3.b). The application of δ4
instantiates x5 to 2 (Step 4.a), it triggers the execution of the propagator ofC4 which updates
the lower bound of x6 to 2 (Step 4.b); Then, the update of the domain of o stems from
those two previous modifications (Step 4.c). Finally, the application of δ5 instantiates x6 to
2 (Step 5.a). This events instantiates o to 6 by executing the propagator of C1 (Step 5.b).

Table 2 shows the explanations per value removals computed during the resolution of
the COP when reaching solution S1. A line separates the explanations of each variable, and
a dash line separates groups of explanations, i.e., equivalent explanations for various value
removals from the same variable. In that example, some variables are uniformly explained,
e.g., every value removal from x1 is explained by δ1. That is also the case for x2, x4 and

Table 1 The trace of the search
of the COP defined in Example 1 Step Cause Consequences

1.a δ1 x1 = [0, 0]
1.b x1 ∧ C2 x2 = [0, 0]
2.a δ2 x4 = [0, 0]
2.b x4 ∧ C3 x3 = [0, 3]
3.a δ3 x3 = [2, 2]
3.b x3 ∧ C1 o = [2, 10]
4.a δ4 x5 = [2, 2]
4.b x5 ∧ C4 x6 = [2, 4]
4.c x5 ∧ x6 ∧ C1 o = [6, 8]
5.a δ5 x6 = [2, 2]
5.b x6 ∧ C1 o = [6, 6]Bold values highlight direct

Consequences
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Table 2 Explanations per value
removals for all variables of the
COP

Variable {removed value} ← Explanation

x1 {1} ← δ1,

{2} ← δ1,

{3} ← δ1,

{4} ← δ1;

x2 {1} ← (δ1 ∧ C2),

{2} ← (δ1 ∧ C2),

{3} ← (δ1 ∧ C2),

{4} ← (δ1 ∧ C2);

x3 {-1} ← (δ2 ∧ C3),

{0} ← δ3,

{1} ← δ3,

{3} ← δ3,

{4} ← δ3;

x4 {-1} ← δ2,

{1} ← δ2,

{2} ← δ2,

{3} ← δ2,

{4} ← δ2;

x5 {0} ← δ4,

{1} ← δ4,

{3} ← δ4,

{4} ← δ4;

x6 {0} ← (δ4 ∧ C4),

{1} ← (δ4 ∧ C4),

{3} ← δ5,

{4} ← δ5;

o {0} ← (δ3 ∧ C1),

{1} ← (δ3 ∧ C1),

{2} ← (δ2 ∧ δ3 ∧ δ4 ∧ C1 ∧ C3 ∧ C4),

{3} ← (δ2 ∧ δ3 ∧ δ4 ∧ C1 ∧ C3 ∧ C4),

{4} ← (δ2 ∧ δ3 ∧ δ4 ∧ C1 ∧ C3 ∧ C4),

{5} ← (δ2 ∧ δ3 ∧ δ4 ∧ C1 ∧ C3 ∧ C4),

{7} ← (δ1 ∧ δ2 ∧ δ3 ∧ δ4 ∧ δ5 ∧ C1 ∧ C2),

{8} ← (δ1 ∧ δ2 ∧ δ3 ∧ δ4 ∧ δ5 ∧ C1 ∧ C2),

{9} ← (δ1 ∧ δ2 ∧ δ3 ∧ δ4 ∧ C1 ∧ C2),

{10} ← (δ1 ∧ δ2 ∧ δ3 ∧ δ4 ∧ C1 ∧ C2);
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x5. Explanations may not be as obvious. Concerning o, all value removals are implied by
propagation (e.g., 0 is explained by δ3 ∧ C1), some of them are explained by a several
decisions and constraints. For instance, the explanation of the removal of 2 from o is not
trivial to recover. Retrospectively, the increase of the lower bound of o is related to the sum
constraint (C1) and the lower bounds of the variables involved, more precisely the lower
bounds of x3, x5 and x6. The lower bounds of x5 and x6 depends on the application of δ4

through C4 and C1. The lower bound of x3 depends on the application of δ2, C3 and δ3.

Key components of an explanation system Adding explanations capabilities to a constraint
solver requires addressing several aspects:

– computing explanations: domain reductions are usually associated with a cause: the
propagator that actually performed the modification. This information can be used to
compute an explanation. This can be done synchronously during propagation (by intru-
sive modification of the propagation algorithm) or asynchronously post propagation (by
accessing an explanation service provided by propagators).

– storing explanations: a data structure needs to be defined to be able to store deci-
sions made by the solver, domain reductions and their associated explanations. There
exist several ways for storing explanations: a flattened storage of the domain modifica-
tions and their explanations composed of propagators and previously made decisions,
or a unflattened storage of the domain modifications and their explanations expressed
through previous domain modifications [6]. The data structure is referred to as
explanation store in the following.

– accessing explanations: the data structure used to store explanations needs to provide
access not only to domain modification explanations but also to current upper and lower
bounds of the domains, current domain as a whole, etc.

In [13], the authors give an overview of techniques used to compute explanations and to
handle them in a constraint solver. Despite being possibly very efficient, explanations suffer
from several drawbacks:

– memory: storing explanations requires storing a way or another, variable modifications;
– cpu: computing explanations usually comes with a cost even though the propagation

algorithm can be partially used for that;
– software engineering: implementing explanations can be quite intrusive within a

constraint solver.

Finally, explanations were initially designed to deal with satisfaction problems. Gen-
erally, an optimization problem is processed as a sequence of satisfaction problems,
in which cuts are added along with resolution to handle the optimization criterion.
Regarding the explanation store, addition of cuts renders some explanations obsolete.
Indeed, cuts cause modifications over domains that were previously achieved thanks to
propagators.

3 Explanation-based LNS

In this section we introduce two new neighborhood computation techniques based on
explanations for LNS. Those neighborhoods are referred to as exp-cft and exp-obj.
Basically, we introduce implementations of the RELAX(S) method of Algorithm 1. For
sake of simplicity, the following descriptions are stated in a minimization context; but,
straightforward modifications adapt them to a maximization context.
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3.1 Explaining the cut: exp-cft

Historically, explanations have been used to explicate and repair a conflict. It is therefore
only natural that we suggest a first neighborhood based on conflicts. But, instead of explain-
ing each conflict occurring during the resolution process, we will force a conflict to be
thrown when a solution is found. Indeed, we assume that there are far less solutions than
failures and, thus, such a choice limits the overhead induces by plugging explanations in. A
solution never leads to a conflict, though, so it needs to be prompted. When solving a COP,
every new solution should be better than the previous one, until the optimum is reached.
This is dynamically achieved by posting cuts. Given a solution S, PS the decision path that
leads to S and CS the cut induces by S, it is not pertinent to entirely impose PS together
with the CS in a standard resolution, because it necessarily leads to a useless and trivial
conflict. However, provoking the generation of such a conflict with explanations plugged-
in will enable to point out which decisions of PS cannot be applied together with the cut.
And then, the variables associated with these decisions may be helpful to compute partial
solutions more able to be repaired. This serves as a basis for the first neighborhood, named
exp-cft. Figure 1 depicts the main operations driven by exp-cft.

First, the conflict is provoked by imposing anew the decisions of P together with the
cut. Once the conflict occurs, conflict-related decisions are retrieved from the explanation
store. Second, neighborhoods are built on the basis of variables associated with the decisions
explaining the cut. Since the application of the entire decision path led to build a solution
e.g., an assignment of all its variables, a relaxation of the decision path will necessarily leave
some variables uninstantiated, thereby building a partial solution. The complete method is
described in Algorithm 2; The entry method is RELAX EXP-CFT.

Each time a new solution is found (line 3), the method EXPLAINCUT (lines 4) is called.
It returns the explanation of the conflict from which conflict-related decisions are extracted
(line 5). Then, some of these decisions are randomly selected (line 7) and removed from the
original decision path P . Finally, the relaxed path is imposed (line 8).

The EXPLAINCUT method (line 10-19) works as follow: first the decision path P of a
solution S is retrieved (line 11), and the cut is posted (line 12). Then, all decisions of P are
imposed and propagated one by one, with respect to the original (i.e., chronological) order
(line 14-17). When the problem becomes unsatisfiable (line 17), the loop ends and the set

Fig. 1 Illustration of exp-cft
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Algorithm 2 Cut-guided neighborhood (in a minimization context)

Require: o: the objective variable
Require: k: an integer
Require: Dc: set of decisions related to the conflict provoked by the cut

1: procedure RELAX EXP-CFT(S)
2: P ←PATHTO(S) � Retrieves the decision path to S

3: if a new solution has been found then
4: E ← EXPLAINCUT(S,o)
5: Dc ←EXTRACTDECISION(E) � Extracts decisions from explanations
6: end if
7: R ←RANDOM(Dc) � Randomly selects decisions in Dc

8: APPLY(P \ R) � Applies P minus R
9: end procedure

10: procedure EXPLAINCUT(S,o)
11: P ← PATHTO(S)

12: Domo \ o∗ � Posts the cut
13: F ← ∅ � Propagation return status
14: repeat
15: δ ←POLLFIRST(P)
16: F ← APPLY(δ) � δ is applied and propagated
17: until F 	= ∅ � A conflict is thrown by propagation
18: return EXPLAINCONFLICT(F )
19: end procedure

20: procedure EXPLAINCONFLICT(F )
21: E ← ∅ � Explanation of the conflict
22: if F is domain wipe out then
23: for x ∈ d do
24: E ← E ⋃

EXPLAINREMOVAL(d,x) � Explains the removal of x from d .
25: end for
26: else if F is constraint inconsistency then
27: E ←EXPLAINCONSTRAINT(c) � Constraint-specific method
28: end if
29: return E
30: end procedure

of decisions related to the conflict is queried from the explanation store (line 18) by a call
to the EXPLAINCONFLICT method.

The EXPLAINCONFLICT method (line 20-30) queries the explanation store and returns
the set of decisions and constraints that explains the conflict. The type of conflict thrown
conditions the way the explanation is built. If a domain wipe out occurs (line 22), the result-
ing explanation is the conjunction of the explanation of each value removal (a call to the
EXPLAINREMOVAL method, line 24). If a constraint inconstency is detected (line 26), the
EXPLAINCONSTRAINT method is called to retrieve an explanation (line 27). The default
implementation calls the EXPLAINREMOVAL method for all values removed from the
variables of the constraint; but constraint-specific implementations of the EXPLAINCON-
STRAINT method provide more accurate explanations. At the end, both EXPLAINREMOVAL

and EXPLAINCONSTRAINT query the explanation store .
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Let Dc be the set of decisions related to the conflict provoked by the cut , there are 2|Dc|−1

subsets of Dc , each of them corresponding to a possible relaxation of P . Enumerating all
the subsets of Dc is not polynomial, and there is no guarantee that small neighborhoods are
more able to build better solutions than bigger ones. Hence, to enforce the diversification
of exp-cft and to test neighborhoods of various sizes, we choose to randomly select α
decisions to relax, where α is also randomly chosen in [1, |Dc| − 1].

Example 2 On a call to EXPLAINCUT of the exp-cft neighborhood (Algorithm 2,
Line 4), the first instruction is to post the cut (here, CS1 ≡ o < 6), then PS1 is imposed. The
trace of the execution is reported in Table 3.

The application of the cut removes values greater than 5 from the domain of o (Line 1’).
The application of δ1 (Line 2’.a and Line 2’.b) and δ2 (Line 3’.a and Line 3’.b) have the
same effect with or without the cut. However, the application of δ3 (step 4’.a), together with
CS1 , triggers more reductions and a conflict is detected by the propagator of C1 (Line 4’.f).
The domains of xi and o are such that it is impossible to find a valid assignment for o.
Indeed, in [11], the authors established that if

∑n
i=1 uppxi − lowo > 0 then the constraint is

unsatisfiable. In our case,
∑n

i=1 uppxi − lowo = 2, hence, the inconsistency is explained by
the current upper bounds of xi and the lower bound of o which, themselves, are explained
by the decisions δ1, δ2 and δ3. The conflict-related decisions are: Dc = {δ1, δ2, δ3}. The
decisions δ4 and δ5 have not been applied before the conflict occurs. Thus, those decisions
cannot be part of the conflict-related decisions set.

On a call to RELAX EXP-CFT, δ4 and δ5 will be imposed by default, together with two
or less randomly selected decisions from Dc .

The explanation of a conflict may not be unique nor minimal [13]. There may be no
neighborhood of exp-cft that leads to a new solution. However, when the application of
the cut directly throws a conflict, then Dc is empty and the resolution can be interrupted:
the optimal solution has been found and proven (Algorithm 2, Line 2). This explains why
such a method can be complete [12, 26].

Table 3 The trace of the search of the COP defined in Example 1 with the exp-cft neighborhood

Step Cause Consequences

1’ CS1 o = [0, 5]
2’.a δ1 x1 = [0, 0]
2’.b x1 ∧ C2 x2 = [0, 0]

3’.a δ2 x4 = [0, 0]
3’.b x4 ∧ C3 x3 = [0, 3]
4’.a δ3 x3 = [2, 2]
4’.b x3 ∧ C1 x5 = [0, 3], x6 = [0, 3], o = [2, 5]
4’.c x5 ∧ x6 ∧ C4 x5 = [1, 3], x6 = [1, 3]
4’.d x5 ∧ x6 ∧ C1 x5 = [1, 2], x6 = [1, 2], o = [4, 5]
4’.e x5 ∧ x6 ∧ C4 x5 = [2, 2], x6 = [2, 2]
4’.f x5 ∧ x6 ∧ C1 inconsistency

Bold values highlight direct Consequences
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3.2 Explaining the domain of the objective variable: exp-obj

The previous method defines neighborhoods based on conflicts, which is a common way to
exploit explanations. We now present an alternative based on the non optimal nature of the
best solution found so far. At a certain point of a COP resolution, one may wonder what
prevents the solver from finding a better solution than a given one. The explanation store
helps to determine which decisions prevent the objective variable from taking better values
(in a minimization context, values strictly smaller than the current one, o∗). The variables
involved in these decisions may be helpful to compute partial solutions more able to improve
the best solution known so far. This serves as a basis for the second neighborhood, named
exp-obj. Figure 2 depicts the main operations driven by exp-obj.

First, the explanation store is queried to retrieve decisions which are related to the
removals of values below o∗. Second, neighborhoods are built on the basis of the variables
associated with those decisions. Since, we aim at finding the optimal solution, it starts by
relaxing decisions related to the smallest values first. The complete method is described in
Algorithm 3; The entry point is the RELAX EXP-OBJ method.

Each time a new solution is found (line 3), the method EXPLAINDOMAIN (line 4) is
called. It returns the set of decisions related to the removal of values smaller than o∗ from
the objective variable. Then, some decisions are removed from the decision path P (lines 8-
13), and the relaxed decision path is imposed (line 14). The way decisions are selected to
be relaxed is conditioned by the number of relaxation tries. First of all, some decisions
are selected to be relaxed according to the removal order (lines 9-10): those implying the
removal of i from o are relaxed prior to the ones implying the removal of i + 1. When there
is no more decisions to remove (line 11), the decisions are randomly selected (line 12). The
RANDOM method is the same method as the one called in Algorithm 2 (line 6).

The method EXPLAINDOMAIN (lines 16-24) works as follows: first, the total number
of removed values is computed (line 17). Then, an iteration over the values, from Lowo to
o∗ − 1, is achieved in order to explain each value removal (lines 19-23). Explanations of the
value removals are queried from the explanation store (call to EXPLAINREMOVAL, line 20),
and the decisions are extracted (line 21). Each value removal is explained by one or more
decisions thanks to Dd and I (lines 19-22). Dd is an ordered set of decisions; On a value

Fig. 2 Illustration of exp-obj
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Algorithm 3 Domain-guided neighborhood (in a minimization context)

Require: o: the objective variable
Require: k: an integer
Require: Dd : ordered set of decisions related to the domain of o
Require: I : array of integers

1: procedure RELAX EXP-OBJ(S)
2: P ←PATHTO(S) � Retrieves the decision path to S

3: if a new solution has been found then
4: EXPLAINDOMAIN(S,o)
5: k ← 0
6: end if
7: k ← k + 1
8: R ← ∅
9: if k ≤ length(I) then

10: R ←
I [k]⋃

j=1
Dd [j ]

11: else
12: R ←RANDOM(Dd ) � Randomly selects decisions in Dd

13: end if
14: APPLY(P \ R) � Applies P minus R
15: end procedure

16: procedure EXPLAINDOMAIN(S,o)
17: n ← (o∗ − Lowo) � Gets the number of removed values
18: Dd ← []; I ← [];
19: for k ∈ [1, n] do
20: E ← EXPLAINREMOVAL(do, Lowo + k − 1)
21: Dd ← Dd

⋃
EXTRACTDECISION(E) � Queries the explanation store

22: I [k] ← |Dd |
23: end for
24: end procedure

removal, decisions not already related to previous value removals are added into it. I is an
array of indices; When the kth value removed from o is explained, the size of Dd is stored in
I . The relaxation operations (line 10) state that, as long as k is less than length(I) (line 9),
only decisions related to the removal of values less or equal to Lowo + k are removed from
the decision path. Such a guarantee is afforded by the way Dd and I are computed. In [15],
it has been shown that, for a given variable, the explanations related to a value removal
depends on, by construction, the explanations of previously removed values. In our context,
this observation provides the following property on the objective variable.

Property 1 Given a solution S of cost o∗ ∈ [Lowo,Uppo] and a decision path P associated
with S. For all x, x ′ ∈ [Lowo, o

∗[, x ≤ x ′, let D{x} be the set of decisions that explains the
removal of x from o, we have:

D{x} ⊆ D{x ′}

The for-loop depicted in Algorithm 3, line 19-23, relies on Property 1; It incrementally
builds the set of decisions candidate for relaxation together with the array of indices, by
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iterating over removed values from Lowo to o∗ − 1. Hence, when decisions related to the
removals of the k first values of o have to be relaxed (line 10), one only has to remove the
I [k] first decisions of the ordered set Dd from P . Note that the novelty of the approach
remains on the fact that explanation are accessed not on a conflict, as it is commonly done,
but on a solution.

Example 3 In the Example 1, the objective variable o is instantiated to 6 in the solution. The
explanations of each value removed from o during the resolution of the COP are reported
in Table 2. On the one hand, values below o∗ are explained by δ2, δ3 and δ4. The removal
of the values 0 and 1 from the domain of o are explained by the application of δ3, through
the propagation of C1 (Table 1, line 3.b). The removal of values from 2 to 5 is related to
the execution of the constraint C1: the lower bound of the variables x3, x5 and x6 enable to
deduce that o cannot take a value lower than 6 (Table 1, line 4.c). The decisions δ2 and δ3

are related to the current lower bound of x3; The decision δ4 is related to the current lower
bounds of x5 and x6.

On the other hand, removed values above o∗ are explained by δ4 and δ5. The removal of
the values 9 and 10 from the domain of o stems from the application of δ4. The application
of δ5 triggers the removal of values 7 and 8, which reduce the domain of o to a singleton.
As we are interested in improving the value of the best solution found so far, we only care
about removal of values below o∗ = 6. Hence, δ5 will not considered as being part of
Dd , and the execution of the EXPLAINDOMAIN method ends with Dd = {δ3, δ2, δ4} and
I = {1, 1, 3, 3, 3, 3}. Actually, I can be more compact, this is discussed after.

On a call to RELAX EXP-OBJ, δ1 and δ5 have to be imposed, because they do not
explained any removal of value below o∗ from the domain of o. Then, the two first neigh-
borhoods impose δ3 and relax δ2 and δ4; the four following ones relax all decisions from
Dd . Finally, any new call to RELAX EXP-OBJ will randomly select decisions from Dd to
be imposed with δ1 and δ5, until a new solution is found.

In the Example 3, δ3 (respectively, δ2 ∧ δ4) manages to remove two (respectively, four)
consecutive values from o. As a consequence, even though Dd is properly sized, 1 appears
twice in I , and 3 appears four times, and some of the first neighborhoods of exp-obj
will be redundant. By considering removals of consecutive values (intervals), instead of
value removals, we can easily reduce the size of I and get a more efficient relaxation of
the decisions path. In the previous example, the loop will consider the removal of two
intervals, [0, 1] and [2, 5], instead of six value removals; The resulting decisions array and
indices array will be Dd = {δ3, δ2, δ4} and I = {1, 3}; The two first neighborhoods will
be: {δ1, δ3; δ5} and {δ1, δ5}, and then it switches to the random selection. Managing interval
removals is used in our implementation.

These neighborhoods could be seen as an unnecessary complicated version of the round-
robin process in which one or more top-level decisions would be questioned from the
decision path. As shown in Example 3, not all (top-)decisions are related to (lower) value
removals from the objective variable, some of them do not question the quality of the best
solution found so far. Moreover, the choice of decisions to relax is not made aimlessly and
is directed by the objective variable though explanations.

3.3 Additional information and further improvements

This section details the method to relax the decision path and techniques adopted to improve
the efficiency of the approaches described in this paper.
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Relaxing the decision path In this paragraph, we describe how the decision path is effec-
tively updated (Algorithm 2, line 7 and Algorithm 3, line 14). The method APPLY(P \ R)
aims at removing a set of decisions R from a decision path P . First, all decisions from R

are removed from P . Then, negated decisions must be considered too, even though they do
not appear in R. Indeed, a decision δ is negated when the search process closes the sub-tree
induced by δ, i.e., the entire sub-tree has been explored. A decision which becomes negated
is explained by higher decisions in the search tree. So, if one decision which explains the
negation of another one is removed, then keeping the negated decision is not justified any-
more, and it should be removed too. For example, let P = {δ1, δ2, δ3,¬δ4} be a decision
path and R = {δ2} be the set of decisions to remove from P ; The relaxed decision path P ′
is equal to {δ1, δ3}. ¬δ4 is automatically removed because it is explained by δ1 ∧ δ2 ∧ δ3.
More details about the explanation of negated decisions are given in [13].

Lazy explanation recording Conflict-based searches access to explanations on each con-
flict [9, 12, 27]. Our approaches, on the contrary, only requires access on solutions.
Consequently, it is not worth computing and storing explanations while solving. To avoid
computing and storing useless information related to domain reduction, we implement a lazy
and asynchronous fashion way to compute and store domain modifications, like described
in [8]. Minimal data related to events generated during the resolution (i.e., the variable, the
modification and the cause) is stored into a queue all resolution long. This queue is back-
trackable to store relevant information and to reduce non relevant one upon backtracking.
When a solution is found, the explanation store have to be queried, but is empty at that point.
A computation routine is then executed: datas stored in the queue are popped one by one
(w.r.t. the chronological order), the explanations are computed and stored. Once the queue
is empty, the explanation store is up to date and ready for queries. Even though storing min-
imal data in the queue comes with a cost, it is negligible in comparison with maintaining
the explanation store during the search and it significantly reduces both memory and cpu
consumptions. Plugging lazy and asynchronous explanations in without querying the expla-
nation store (nor computing explanations) only slows down the resolution process by less
than 10 %.

Explaining interval removals Most of the time, domain reduction is treated as a sequence
of value removals. For instance, a lower bound modification from i to k− 1 is explained by
the removal of all the values j from i to k − 1. Such behavior becomes pathological when
variables have large domains, which is often the case for the objective variable. Thus, it is
mandatory to explain interval removals instead of value removals: it prevents from storing
and computing a large amount of information and saves both and memory consumption. Our
approach adapts the technique described in [15], originally proposed for numeric CSP, to
integer domains represented as intervals. Note that Lazy Clause Generation solvers handle
interval removals natively [32]. In LCG solvers, every value of the domain of an integer
variable is represented using boolean variables [[v = x]] and [[v ≤ x]]. For instance, the
variable [[v = x]] is true if v takes the value x and false if v takes a value different from x.

Dealing with enumerated domain objective variables Generally, the objective variable is
bounded, that is, its domain is an interval of integers. An alternative is to define the domain
as on ordered set of integers, the domain is said to be enumerated. Due to the size of the
objective variable domain, which is generally very large, a bounded domain is often pre-
ferred to an enumerated one. In some cases, it is worth representing all values, though.
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Such a choice does not call into question the validity of the Property 1 nor the behavior of
exp-obj. But, it may build different neighborhoods.

Example 4 Given a COP with an objective variable o, its enumerated domain domo =
{0, 1, 2, 3, 4}, a solution S with o∗ = 4 and PS = (δ1, δ2, δ3, δ4), a decision path to S;
Table 4 reports explanations for objective variable domain modifications.

An enumerated domain not only enables to update bounds but also to make holes
(i.e., to remove a value in the middle of the domain). On S, the application of the method
RELAX EXP-OBJ will compute Dd = {δ4, δ2, δ3, δ1}, I = {2, 3, 4, 4, 4}. Then, the first
partial solution will relax δ4 and δ2, which will restore the values 0 and 4 from domo. If this
partial solution cannot lead to a new solution, a second partial solution will relax δ4, δ2 and
δ3, which restore the values 0, 1, 3 and 4 from domo.

When dealing with an objective variable with an enumerated domain, the execution of
RELAX EXP-OBJ may end with a weaker relaxed decision path, that is, values from o will
be relaxed without necessarily respecting the lexical ordering of the domain.

Reconsidering the number of selected decisions In Section 3.1, we explained how the ran-
dom selection of decisions to relax works: we select randomly α decisions to relax, where
α is also randomly selected. However, the parameter α is not computed on each call to the
RANDOM method, but every θ = minimum(

(|D|−1
α

)
, 200) calls, where D is either equal

to Dc or Dd . This gives the opportunity to test a wide range of the possible combinations
when

(|D|−1
α

)
is small enough, and to test only a small subpart of them when the number is

big. Various neighborhoods of the same size are tested before a new value for α is picked.
We evaluate other approaches, and this one brings more robustness and improves the overall
resolution process.

4 Evaluation

The central objective of the exp-cft and exp-obj algorithms are to build better neigh-
borhoods in order to explore more appropriate parts of the search space and to speed
up the LNS process. This section demonstrates the benefits of combining exp-obj and
exp-cft together.

4.1 Implementation of LNS

Propagation-guided large neighborhood search Neither instance dependent but relying on
global parameters, this combination of three neighborhoods has been proven to be very
efficient on a modified version of the Car Sequencing Problem [23]. On each call to the

Table 4 Explanations of an
enumerated domain objective
variable

Variable {removed value} ← Explanation

o {0} ← (δ4 ∧ δ2),

{1} ← δ3,

{2} ← δ1,

{3} ← (δ2 ∧ δ3),

{4} ← δ2
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propagation-guided neighborhood (or pgn), a first variable is selected randomly to be part
of the partial solution and is assigned to its value in the previous solution. This assignment is
propagated through the constraint network and the graph of dependencies is build: variables
modified by propagation are marked. Every marked variable not instantiated is then stored
in priority list, where variables are sorted by the domain reduction that occurred on their
domain. The top priority variable in the list is selected to be fixed. The selection stops
when the sum of the logarithm of the domain of all variables is below a given constant.
The desired partial solution size is updated by adding a multiplicative correction factor
epsilon. Two alternatives have been defined: The reverse propagation-guided neighborhood
(or repgn) is built by expansion instead of by reduction; The random propagation-guided
neighborhood (or rapgn) is implemented with a list of size 0. Hence, the first contender is
made of a sequential application of pgn, repgn and rapgn. We use the default parameters
defined in [23]: the size of the list is set to 10, the constant is valued to 30 and the way
epsilon evolves is dynamic. As we consider LNS as a black-box strategy here, we do not
try to adapt the parameters to the problem treated and we focus on the genericity of the
approach. This contender is called PGLNS.

Explanation-based LNS We evaluate various combinations of the explanation-based neigh-
borhoods presented in Section 3. The first combination is made of exp-obj and a random
neighborhood, named ran. The latter will have to bring diversification by providing neigh-
borhoods which are not related to the problem structure. Indeed, in [23], the authors
“obtained better results by interleaving purely random neighborhoods with more advanced
ones”. Thus, ran relaxes ζ variables randomly selected on each call to the RELAX method;
the remaining ones are obviously instantiated to their value in the best solution known so
far. ζ is set to |V |

3 on a solution; and is incremented once every 200 calls to the neighbor-
hood computation. Such parameters enable a strong diversification. The first contender is
named objLNS. A second combination, named cftLNS, groups together exp-cft and ran.
As exp-obj and exp-cft exploit explanations in two different ways, we suggest a third
combination, named EBLNS, made of exp-obj, exp-cft and ran. We hope EBLNS
will improve the overall behavior of each neighborhood used individually.

In every contenders, each neighborhood is then applied fairly, in sequence, until a new
solution is found.

Fast restarts All contenders are evaluated with a fast restart strategy [22] plugged in: we
limit the reparation step to 30 fails. Such a strategy is commonly associated with LNS and
has been proven to improve its efficiency.

Random LNS A purely random neighborhood, made exclusively of ran, easy to implement
and configuration-free has been evaluated too. Due to its poor efficiency in practice (it was
never competitive with any other approaches evaluated here), the results are not reported
here, though.2

4.2 Benchmark protocol

Propagation-Guided LNS and Explanation-based LNS were implemented in Choco-
3.1.0 [28], a Java library for constraint programming. All the experiments were done on a

2The complete results of purely random contender are available on request.
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Macbook Pro with a 6–core Intel Xeon at 2.93Ghz running on MacOS 10.6.8, and Java 1.7.
Each run had one core and a 15 minutes time limit. Due to randomness, the evaluations
were run ten times and the arithmetic mean of the objective value (obj), its range3 (rng) and
the standard deviation (stddev) are reported. The range gives indication about the stability
of an approach. Note that the first solution of each run of the same problem is always the
same one, whatever versions of LNS is plugged in.

4.3 Benchmark description

The evaluation proposed here is based on ten problems composed of 49 instances. There
are nine optimization problems extracted from the MiniZinc distribution and one addi-
tional problem, the Optimized Car Sequencing Problem.4 The latter one has been added to
facilitate the comparison with PGLNS.

We kept instances for which classic backtrack algorithm finds at least one solution within
a 15 minutes time limit: LNS needs an initial solution to be activated.

There are five minimization problems: the Modified Car Sequencing Problem
(car cars), the Restaurant Assignment Problem (fastfood), the League Model
Problem (league model), the Resource-Constrained Project Scheduling Problem
(rcpsp) and the Vehicle Routing Problem (vrp). There are five maximization prob-
lems: the Maximum Profit Subpath Problem (mario), the Itemset Mining Problem
(pattern set mining), the Prize Collecting Problem (pc), the Ship Scheduling Prob-
lem (ship schedule) and the Still Life Problem (still life). Thereafter, the results
will be presented by type. Obviously, there is no fundamental differences between the two
classes of problems, and we did not except the behavior of LNS to be different. The details
of the models are reported in Table 5.

As global constraints require implementation of specific explanation schemas, whose
evaluation is not the purpose of the paper, the problems are modeled with built-in con-
straints, which are natively explained. The following problems were initially modeled with
global constraints: the Modified Car Sequencing Problem, the League Model Problem, the
Resource-Constrained Project Scheduling Problem, the Maximum Profit Subpath Problem
and the Itemset Mining Problem. Moreover, in half of the classes of problem, the search
strategies are static: input order.

4.4 Evaluation of objLNS, cftLNS and EBLNS

The main motivation of this paper is twofold. First, we suggest two generic neighborhoods
based on explanations for the LNS framework. They require neither accurate parameteri-
zation nor need to be adapted to the instance treated. Second, we show that they define
neighborhoods more able to build new solutions, and thus improve the resolution of opti-
mization problems. In this section, we compare various contenders based on explanations,
objLNS, cftLNS and EBLNS, with the propagation-guided one, PGLNS. Various pairwise
comparisons between contenders are done. The results are presented in tables which report
the arithmetic mean of the objective variable and its range of the approaches evaluated.

3The range: 100 ∗ highest−lowest
mean

.
4The Optimized Car Sequencing Problem (5 instances) is a modified version of the Car Sequencing Problem
in which an additional option-free configuration has been added (as described in [23]). The objective is
to schedule the cars requiring this configuration at the end, in such a way that a solution to the original
satisfaction problem is found.
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Table 5 Descriptions of the problems treated

Problem Constraints Search

car cars array int element, bool2int, {input order,

int eq, int eq reif, int lin eq, indomain max}
int lin le

fastfood int abs, int lin eq, int lt, {input order,

int min, set in indomain min}
league model array bool or, bool2int, {first fail,

bool le, int eq reif, int le, indomain max} ∧
{first fail,

indomain min}
rcpsp array bool and, bool2int, {smallest,

bool eq reif, bool le, int le reif, indomain min} ∧
int lin le, int lin le reif {input order,

indomain min}
vrp int le, int lin eq, int lin le {first fail,

indomain min}
mario array bool and, array bool or, {first fail,

array int element, indomain min} ∧
array var bool element, {input order,

array var int element, bool2int, indomain max}
bool eq reif, bool le,

bool le reif, int eq,

int eq reif, int lin eq,

int lt reif, int min,

int ne reif

pattern set mining bool2int, bool eq, int lin eq, {input order,

int lin le reif indomain max}
pc array bool and, array int element, {largest,

array var int element, bool2int, indomain max} ∧
bool le, int eq, int eq reif, {largest,

int lin eq, int lin le, int lt reif indomain max} ∧
{input order,

indomain max}
ship schedule array bool and, array bool or, {input order,

array int element, bool2int, indomain max} ∧
bool le, int eq, int eq reif, {input order,

int le reif, int lin eq, indomain min}
int lin le, int lin le reif,

int lt reif, int times

still life array bool and, bool le, {input order,

int eq, int eq reif, int le reif, indomain max}
int lin eq, int lin le,

int lin le reif,

int lin ne reif, int times
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Bold number highlights the best objective value per instances; Italic numbers denote equal-
ity. We also use plots to display the multiplying factor over the objective value obtained by
using one approach instead of the other. The horizontal axis represents the instances treated,
sorted with respect of the difference between the solution found using the first approach
h1 and the one using the second one h2, in increasing order. The vertical axis reports the
multiplying factors, ρ(hi, hj ) = max(

hi
hj
, 1). A mark on the left side of the plot (light gray

area) reports ρ(h1, h2) for an instance better solved with h1, it measures the loss of using h2

instead of h1. A mark on the right side of the plot (dark gray area) reports ρ(h2, h1) for an
instance better solved with h2, it measures the gain of using h2 instead of h1. The plots also
report the approximated area A5 of the gain and loss. The larger the dark gray (respectively
light gray) area is, the bigger the improvement (respectively, the loss) related to EBLNS.

4.4.1 Comparative evaluation of PGLNS and objLNS

Table 6 reports the results obtained with PGLNS and objLNS on the ten problems.
On 19 out of 49 instances, PGLNS is the best approach, whereas, on 26 instances objLNS

is the more efficient. In about one-third of the cases (6 out of 9 for PGLNS and 8 out of 26
for objLNS) the range is almost 0. That means all resolutions treated by the same contender
lead to in the same last solution. Besides, there are four instances where the two approaches
are equivalent.

On the one hand, objLNS finds the best solutions for the Restaurant Assignment prob-
lem (fastfood), the League Model problem (league), the Prize Collecting problem
(pc) and the Still Life problem (still life). objLNS is more stable than PGLNS on
instances of the Restaurant Assignment problem and the Prize Collecting problem. That is
not true for the other instances. This contender seems also appropriate to solve the Vehicle
Routing problem (vrp), but the two approaches provide unstable results on these instances.
One can suppose that random neighborhoods play an important role in the resolution of
those instances. On the other hand, PGLNS is the best approach to solve the Resouce-
Constrained Project Scheduling problem (rcpsp), it also more stable than objLNS on these
instances. This contender is also appropriate to treat the Modified Car Sequencing prob-
lem (car cars), the Itemset Mining problem (pattern set mining) and the Ship
Scheduling problem (ship schedule), where it is also more stable. More generally,
PGLNS is more stable (16.4 %), in average, than objLNS (24.54 %).

Every approach seems more adapted to solve some kinds of problems, but objLNS
appears to be the one with the broadest range of resolutions. Besides, the contribution of
one approach over the other is quite hard to evaluate exactly just by reading the table. That
is why we also plot the results, in Fig. 3.

On minimization problems (Fig. 3a), objLNS is more interesting: the dark gray area (A ≈
8.3743) is larger than the light gray one (A ≈ 0.3451). This means that objLNS enables
to find better solutions than PGLNS, up to 6.34 times. Such a gap is due to the instances
of the Restaurant Assignment problem (fastfood) where objLNS find far superior
results.

On maximization problems (Fig. 3b), PGLNS is more interesting. The light gray area
(A ≈ 2.1993) is larger than the dark gray one (A ≈ 0.8617). The gap is less impor-
tant than on minimization problems, and comes from the results in favor of PGLNS

5The approximation is computed with the Trapezoidal rule [1].
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Fig. 3 Multiplying factor between PGLNS and objLNS, per instance

on the Ship Scheduling problem (ship schedule) and the Itemset Mining problem
(pattern set mining).

In conclusion, objLNS is more attractive in average, its contribution to good quality
solutions is valuable concerning minimization problems. On maximization problems, the
gain does not seem to be interesting, but objLNS better solves more instances than PGLNS
(15 out of 24).

4.4.2 Comparative evaluation of PGLNS and cftLNS

Table 7 reports results obtained with PGLNS and cftLNS on the 49 instances.
In comparison with PGLNS, cftLNS better treats 29 out of 49 instances, whereas PGLNS

is the most efficient on 15 cases. There are 6 equalities. In about one-third of the cases (5
out of 15 for PGLNS, 8 out of 29 for cftLNS), the range is equal to 0, which indicates a
good stability of the approaches.

The distribution is very similar to the one observed with objLNS: cftLNS is suitable for
the Restaurant Assignment problem (fastfood), the League Model problem (league),
the Prize Collecting problem (pc) and the Still Life problem (still life). cftLNS does
not bring more stability in comparison with objLNS, though. Besides, cftLNS seems to
be appropriate to deal with the Vehicle Routing problem (vrp), the Maximum Profit Sub-
path (mario) and the Itemset Mining problem (pattern set mining) with respect
to PGLNS. But, it is less obvious to conclude regarding its stability. We observe larger
gaps, in particular on instances of the Itemset Mining problem (pattern set mining).
PGLNS remains the best approach to solve efficiently instances of the Ship Scheduling
problem (ship schedule) and the Modified Car Sequencing problem (car cars).
On this last problem, one may see that one instance is better solved with cftLNS. In
general, PGLNS is a little more stable than cftLNS (16.4 % for PGLNS, 17.94 % for
cftLNS).
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Fig. 4 Multiplying factor between PGLNS and cftLNS, per instance

Figure 4 reports the loss and gain of using cftLNS instead of PGLNS.On minimiza-
tion problems (Fig. 4a), the plot is comparable with one about objLNS: the dark gray area
(A ≈ 8.5131) is larger than the light gray one (A ≈ 0.2373). cftLNS brings few loss and
significant gain on those instances. Once again, the instances of the Restaurant Assignment
problem (fastfood) are much better treated with cftLNS (corresponding to left peak). On
maximization problems (Fig. 4b), the trend continues: cftLNS seems to be more efficient.
One may note that not only the dark gray area (A ≈ 2.31.51) is larger than the light gray
one (A ≈ 1.6263), which means that cftLNS builds better quality solutions in average, but
also that it betters more instances (16 out 24 for cftLNS, 7 for PGLNS).

In conclusion, cftLNS appears to be a good alternative to PGLNS, not only in term of
the number of instances better solved, but also in term of gain regarding the neighborhoods
guided by propagation.

4.4.3 Comparative evaluation of objLNS and cftLNS

Results of cftLNS and objLNS seem to be very similar, in comparison with PGLNS.
Now, we compare these two approaches and report the results in the Table 8. The cftLNS
approach dominates: it betters 28 out of 49 instances, whereas objLNS finds better solu-
tion in 13 cases. There are eight equalities. In addition, cftLNS is more stable in average
(17.94 % for cftLNS, 24.54 % for objLNS). objLNS is the best approach to solve instances
of the Modified Car Sequencing problem (car cars) and the League Model problem
(league model), though. Regarding cftLNS, it is more suitable to solve instances of the
Restaurant Assignment problem (fastfood), the Resource-Constrained Project Schedul-
ing problem (rcpsp), and, even less so, the Vehicle Routing problem (vrp), the Itemset
Mining (pattern set mining) and the Still Life problem (still life). Only a few
instances of the Maximum Profit Subpath problem (mario) are hard to decide between the
two contenders.
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Nevertheless, this must be balanced with the gain cftLNS brings. Figure 5 reports this
information.

On minimization problems (Fig. 5a), the gain and loss are equivalent, both approaches
are comparable. The light gray area (A ≈ 0.5316) is smaller than the dark gray one (A ≈
0.7126), but the latter is wider than it is tall. This confirms that cftLNS better solves more
instances than objLNS but that the gain is low. By contrast, objLNS brings more gain but
on fewer instances. On maximization problems (Fig. 5b), the results are clearly in favor of
cftLNS.

4.4.4 Comparative evaluation of EBLNS and PGLNS

One strength of LNS is the capacity it offers to combine various neighborhoods together.
We now evaluate PGLNS and EBLNS, a contender which combines the two explanation-
based neighborhoods together with a purely random one (Fig. 6). The results are reported
in Table 9.

The results are well distributed among PGLNS and EBLNS: in 22 out of 49 examples,
PGLNS found the best solutions, whereas EBLNS found the best solutions on 24 examples.
In about one third of the cases (7 out of 22 for PGLNS, 7 out of 24 for EBLNS), the range
is equal to 0, which means that all runs meet the same last solution.

On the one hand, EBLNS finds the best results for the Still Life Problem (still life),
and is more stable than PGLNS, on these instances. It is also very appropriate to treat the
Vehicle Routing Problem (vrp), the Itemset Mining Problem (pattern set minning)
and the Price Collecting Problem (pc). However, the two approaches provide unstable
results on theses instances, particularly on the Itemset Mining Problem ones where we
can observe the largest ranges. On the Resource-Constrained Project Scheduling Problem
(rcpsp), the results are very comparable, even though they are mildly in favor of PGLNS,
and both approaches are very stable. On the Restaurant Assignment Problem (fast food)
and the League Model Problem (league model), EBLNS finds equivalent or better solu-
tions in more cases (7 out of 11 instances), and it tends to be more stable on average (27.3 %
for PGLNS vs. 19.5 % for EBLNS).

Fig. 5 Multiplying factor between cftLNS and objLNS, per instance
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Fig. 6 Multiplying factor between PGLNS and EBLNS, per instances

On the other hand, PGLNS finds the best results for the Ship Scheduling Problem
(ship schedule), and is more stable than EBLNS, on these instances. PGLNS is also a
good approach to solve the Maximum Profit Subpath Problem (mario) and the Modified
Car Sequencing Problem (car cars), the problem it has originally been designed for. On
those instances, the stability is again in favor of PGLNS; EBLNS is not stable at all on the
Maximum Profit Subpath Problem instances.

Generally, each approach seems to be appropriate to some classes of problems. Such a
trend is questioned by the stability: it varies from one instance to the other of the same
class of problems. From now on, it is almost impossible to conclude on the quality of the
neighborhoods build per approach. Because EBLNS relies on explanations, the overall pro-
cess is slowed down, and this approach certainly suffers from that point of view, even if
explanations help building good neighborhoods.

We now measure the gain of using EBLNS instead of PGLNS. The plots on Fig. 7 dis-
plays the multiplying factor over the objective value by using one approach instead of the
other.

On minimization instances, each approach beats the other one in almost half of the
instances treated, but the gain of using EBLNS instead of PGLNS is considerable. The dark
gray area (A ≈ 7.6719) is clearly greater than the light gray one (A ≈ 1.8011). EBLNS sig-
nificantly improves the objective value, and degrades it in a lesser extent. On maximization
instances, the gain is less marked and is mildly in favor of EBLNS. The area are compara-
ble, but EBLNS betters objective values, sometimes by a short head, on more instances than
PGLNS: the dark gray area (A ≈ 3.6728) is wider than it is tall.

By combining explanation-based neighborhoods together in EBLNS we were expecting
to get the most from each of them and to globally improve the results and the stability.
But, the results are mixed. On the one hand, we observe a poor gain regarding PGLNS on
minimization problems: the dark gray area is smaller than the ones observed previously
with objLNS and cftLNS. We even observe a bigger loss. On maximization problems, we
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Fig. 7 Multiplying factor between PGLNS and PaEGLNS, per instance

observe a significant improvement concerning the gain, though. One may conclude that
there might be too many explanation-based neighborhoods with respect to the total number
of neighborhoods, which certainly slows down the overall process.

Thus, the two techniques are not comparable but they certainly are compatible. It is there-
fore natural to combine the neighborhoods of PGLNS and EBLNS together to address the
defects of both approaches, and to improve the overall stability: we evaluate such approach
in the next section.

4.5 Combining EBLNS and PGLNS

One of the strength of LNS is its ability to combine various neighborhoods together. In this
Section, we combine the neighborhoods of EBLNS and PGLNS in a new contender and
evaluate their efficiency.

Propagation and explanation guided LNS This contender is a combination of (1)
exp-obj, (2) exp-cft, (3) pgn, (4) repgn and (5) rapgn. We simply concatenate
the approaches and rapgn is preferred to ran because it brings robustness [23]. Each of
the neighborhood is applied sequentially until a new solution is found. This contender is
called PaEGLNS. We have also evaluated an adaptive version of PaEGLNS, which applies
a neighborhood with respect to its ability to build new solution, but we have not reported its
evaluation here as it was not competitive with the sequential approach.

Table 10 shows the evaluation of PaEGLNS. It reports the arithmetic mean of the objec-
tive value (obj), its range (rng) and the standard deviation (stddev) for PaEGLNS, PGLNS
and EBLNS. PaEGLNS finds equivalent or better solutions in 69.4 % of the problems
treated (34 out of 49). On the 16 other problems, PaEGLNS is always ranked second and
EBLNS is almost always ranked first. Moreover, PaEGLNS overcomes PGLNS in about
77.5 % of the instances treated, and outperforms EBLNS in about 65.3 % of the instances
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treated. In general, combining the neighborhoods of PGLNS and EBLNS is profitable in
term of quality of the solutions but also in stability. In 58,8 % of the instances better solved
with PaEGLNS the range is less than 5 %, which means that almost all runs find the same
last solution.

We now measure the gains and losses of using PaEGLNS instead of PGLNS or EBLNS.
Figure 7 reports multiplying factor between PGLNS and PaEGLNS. The findings are
unquestionable: PaEGLNS is clearly the most interesting approach with respect to PGLNS.
There is almost no degradation, only those linked to rcpsp 12 and car cars 26 82,
reflected in the plot by the non-zero light gray area (Fig. 7a). The comparison with EBLNS
(Fig. 8) is mildly less advantageous, even though always widely in favor of PaEGLNS.
There is no question that PaEGLNS is the best choice.

These two generic approaches are complementary: on the one hand, PGLNS builds
the graph of dependencies between variables and detects closely linked subparts of
the problem treated. On the other hand, EBLNS helps to focus on easy-to-repair and
easy-to-improve neighborhoods by revealing the relationships existing between the objec-
tive variable and the decision variables. Combining PGLNS and EBLNS benefits from
the advantages of the two approaches: exploiting the structure of the problems solved
thank to both propagation and explanations, and bring more stability in the solutions
found.

4.6 A deeper analysis

In the Section, we highlight some results that corroborate the previous ones found so far. A
figure is made of a plot and an histogram. The plot depicts the evolution of the objective
value along with the resolution time (in log scale) for the ten runs of the same approach
(PGLNS, objLNS, cftLNS, EBLNS and PaEGLNS). The histogram reports the average

Fig. 8 Multiplying factor between EBLNS and PaEGLNS, per instance
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repartition of the neighborhoods used to solve a given instance. The color coding is the fol-
lowing: exp-obj is in cross-patterned style, exp-cft is in slash-patterned style, ran is
in plain white, pgn is in light gray, repgn is in dark gray and rapgn is in black.

On the Vehicle Routing Problem (Fig. 9), the histograms indicate that a great part of
the intermediary solutions are found with the help of a pure random neighborhood. Its
proportion varies from 54 % up to 83 %. Regarding PaEGLNS, which finds the better solu-
tion, we observe the same phenomenon: even if its contribution is reduced, the random
neighborhood helps finding almost half of the new solutions. A comment is that random
neighborhoods bring strong diversification and help solving the Vehicle Routing Problem
but other neighborhoods play also a role, such as exp-obj and pgn.

On the Restaurant Assignment Problem (Fig. 10), where EBLNS works fine, the por-
tion of ran (< 1 %) is negligible in comparison with exp-obj (34.2 %) and exp-cft
(65.7 %). The stability of EBLNS on this instance is visible on the plot (Fig. 10d). We
roughly observe a similar phenomenon about cftLNS. objLNS, on the other hand, relies
much more on randomness (54.7 %). PaEGLNS not only betters the objective in compar-
ison with PGLNS and EBLNS but also finds it quickly (see Tables 9 and 10), and the
distribution of neighborhoods is well balanced. Surprisingly, the contribution of exp-cft
is significantly reduced in PaEGLNS in comparison with EBLNS, which is not the case for
exp-obj whose portion remains stable (about 35 %). Another comment is that the best
solutions are found faster when combining various neighborhoods.

On the Prize Collecting Problem (Fig. 11), we observe that the resolution relies only on
rapgn for PGLNS. Concerning the other combinations, on the contrary, the contribution of
purely random neighborhoods to the solution discovery is lower. Another remarkable point
is the proportion of exp-obj and exp-cft in EBLNS and PaEGLNS: more than 60 %
of the solutions found by the two contenders relies on these neighborhoods. However, the
combination of different neighborhoods of PaEGLNS overcomes both EBLNS and PGLNS,
and confirms the importance of combining various neighborhoods in the same contender.
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Fig. 9 Solving vrp P-n60-k15.vrp instance with the five approaches
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Fig. 10 Solving fastfood ff58 instance with the five approaches

Finally, on the Still Life Problem (Fig. 12), using exp-obj and exp-cft is the key
to success. However, an alteration of the performances can be observed when other neigh-
borhoods are added (Fig. 12e). This shows the risk of combining various and different
neighborhoods together, it may also break the semantic of each of them. Such a result
appears to be marginal in our evaluation, though, and does not enable to disconfirm the
benefit of combining neighborhoods together.
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Fig. 11 Solving pc 30-5-6-7 instance with the five approaches
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All the plots are given in the online Appendix. One can see that, on the Restaurant
Assignment Problem and the Itemset Mining Problem and, albeit to a lesser extent, on the
Price Collecting Problem and the Still Life Problem, EBLNS is very stable. Moreover, these
are problems that are well solved with our approach. Except the Vehicle Routing Problem,
the portion of RLNS in EBLNS is marginal.

In this Section, we evaluated the exp-obj and exp-cft, two neighborhoods for LNS
based on explanations. We limited the evaluation to models without global constraints, and
none of the approaches evaluated here have benefited from possibly better filtering rules
and explanations schemas. We show that objLNS, cftLNS and EBLNS are competitive with
PGLNS on a wide range of optimization problems. Even if they are globally less stable
and mildly slower, they enable to tackle some class of problems PGLNS poorly solved. In
general, those combinations bring more gain than loss. In addition, we confront those first
results with a combination of the propagation-guided neighborhoods and explanation-based
ones, and show that such a combination improves the results, brings more stability and
exploits advantageous every neighborhoods. Such a conclusion confirms previous studies: a
strong diversification contributes to LNS and combining different neighborhoods is the key
to efficiency.

5 Conclusion and future work

In this paper, we show that the issue of finding a problem independent neighborhood
generation technique for LNS can be addressed using a lazy variation of explanations.
The contributions are twofold. Firstly, we propose generic, configuration-free approaches
to compute neighborhoods in a LNS, based on explanations. The first neighborhood is
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378 Constraints (2014) 19:339–379

based on the conflict implied by the application of the cut, the second one is based
on the non optimal nature of the current solution. We address the diversification issues
thanks to a set of heuristics for further selecting variables mixing random approaches and
explanation-based ones and show that our approach is competitive with or even better
than state-of-the-art generic neighborhoods, on a set of optimization problems. Secondly,
we scheme explanation-based neighborhoods and propagation-guided ones, hoping that
their behavior would be complementary. Finally, we assess the new contender on the
same range of problems, and validate the combination to be very efficient and more
stable.

Our results are encouraging and should be validated on a larger set of problems. More-
over, we have to put things in perspective and analyze the influence of the model on the
results, specifically on the Modified Car Sequencing Problem, where the results of PGLNS
are quite surprising. Both the search strategy (how decisions are selected) and the propaga-
tion engine (how events are relayed in the constraint network) influence explanation-based
neighborhoods and propagation-guided-ones. But, since the explanation of a domain reduc-
tion is not unique, our approach would benefit from more concise explanations, e.g., by
enabling global constraints. Future works should focus on the diversification procedure,
more particularly plugging NoGoods in should be the key combination to speed up the
exploration of nested search spaces. Finally, the lazy and asynchronous way to store and
compute explanations may be improved using incrementallity. It would also be interesting
to implement and evaluate such neighborhoods within a LCG solver.
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