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Abstract One approach for solving Constraint Satisfaction Problems (CSP) (and related
Constraint Optimization Problems (COP)) involving integer and Boolean variables is reduc-
tion to propositional satisfiability problem (SAT). A number of encodings (e.g., direct, log,
support, order) for this purpose exist as well as specific encodings for some constraints that
are often encountered (e.g., cardinality constraints, global constraints). However, there is
no single encoding that performs well on all classes of problems and there is a need for a
system that supports multiple encodings. We present a system that translates specifications
of finite linear CSP problems into SAT instances using several well-known encodings, and
their combinations. We also present a methodology for selecting a suitable encoding based
on simple syntactic features of the input CSP instance. Thorough evaluation has been per-
formed on large publicly available corpora and our encoding selection method improves
upon the efficiency of existing encodings and state-of-the-art tools used in comparison.

Keywords Encoding CSP to SAT; Algorithm portfolio; CSP; SAT

1 Introduction

Constraint satisfaction problems (CSP) (and related Constraint optimization problems
(COP)) over finite domains are wide classes of problems that include many problems
relevant for real world applications (e.g., scheduling, timetabling, sequencing, routing, ros-
tering, planning). A special class of constraint problems often encountered in applications
are finite linear CSP [34]. Global constraints describe relations between a non-fixed number
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of variables and their purpose is to improve readability and efficiency of CSP solving. In the
rest of this paper only finite linear CSP with global constraints will be considered. Many dif-
ferent approaches for solving CSP problems exist (e.g., constraint propagation, backtracking
search algorithms, local search methods, constraint logic programming, operation research
methods, answer set programming) [30]. In this paper we will consider solving CSP prob-
lems only by reductions to propositional satisfiability problem (SAT) [6]. In this approach
CSP instances are translated to SAT instances (in conjunctive normal form) and modern
efficient SAT solvers are used for finding solutions that are then converted back to solutions
of the original CSP problems. In order to apply SAT solvers, a CSP instance must be first
encoded as a SAT instance. A fundamental design choice when encoding finite domain con-
straints into SAT concerns the representation of integer variables. Several different encoding
schemes have been proposed and successfully used in various applications (e.g., the direct
encoding [41], the support encoding [15], the log encoding [14], the order encoding [35],
the compact-order encoding [36], the log-support encoding [13]). Also, special attention
has been put on encoding Boolean cardinality constraints [6] and specific global constraints
(e.g., global all-different constraint [4]) and many different encoding schemes have been
developed. Apart from these standard encoding methods, many custom, problem-specific
encodings and corresponding tools have been devised for various applications (e.g., solving
resource-constrained project scheduling problem [16]). Also, there are several more general
tools that reduce CSP to SAT (and the related SMT problem [6]) using one of several stan-
dard encodings (e.g., SPEC2SAT [9], FZNTINI [17], fzn2smt [7] Sugar [34], Azucar [37],
URSA [19], URBIVA[22], BEE [23]). In lazy clause generation approach [28], finite domain
propagation engine is combined with SAT solver: propagators are mapped into clauses and
passed to SAT solver, which uses unit propagation and then returns information obtained
back to the engine. In contrary to the eager approach, clauses are not generated a priori but
are constructed and given to the SAT solver during the solving phase. The lazy propaga-
tion approach can be viewed as a special form of Satisfiability Modulo Theories [6] solver,
where each propagator is considered as a separate theory, and theory propagation is used to
learn clauses.

It is known that there is no single encoding scheme suitable for all problems. It should
be possible to formulate hybrid encodings that use and combine good aspects of several
classic SAT encodings and can outperform them. When solving a CSP instance, one should
try several SAT encodings and carefully choose which one to apply on a specific problem.
If a multiprocessor machine is available, one could try to generate different encodings and
process them in parallel until the best one is found. However, a much better approach is to
somehow determine the encoding that would give the best results. The previous observations
can be summarized in the following hypotheses analyzed in this work.

(H1) Different SAT encodings are suitable for different problems.
(H2) It is possible to formulate combinations of several classic SAT encodings so that

these combinations outperform original encodings on many problems.
(H3) It is possible to automatically select a suitable SAT encoding based only on sim-

ple syntactic features of the input CSP instance. If families of syntactically similar
instances are formed, then the selection can be trained only on easy instances.

Currently for solving CSP by reduction to SAT many different tools and, even more
demanding, their different input languages must be used. We offer a single platform that
supports translating finite linear CSP problems using various encodings into SAT. We are
not aware that such a platform exists, although, ideas for it have been already presented in
the literature [13].
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Contributions of this work are the following.

– We describe details of all encodings used within our system and give some correctness
proofs that were missing in the literature (Section 3).

– We present some modifications of existing encodings that improve their performance:
we discuss direct-support (Section 3.1) and direct-order (Section 3.4) encodings and
we present some novel encodings of global constraints (Section 4).

– We present a machine-learning methodology for automated instance-based selection of
suitable encoding for a given CSP instance (Section 5).

– We present a single system meSAT (Multiple Encodings of CSP to SAT) that supports
multiple encodings of Finite Linear CSP [35] into SAT and implements our instance-
based selection methodology (Section 6).

– We present a thorough evaluation on several large publicly available corpora. Experi-
mental results indicate that hypotheses (H1)-(H3) hold and that our implementation of
specific encodings is comparable to state-of-the-art tools and when automated selec-
tion is used it outperforms them (Section 7). We also show that on real CSP corpora,
it is possible to train the automated selection only on very easy instances significantly
reducing the training time and still get good results on the whole corpus.

2 Background

In this section we will give some background notions used by our system and analyze prior
results in this area.

2.1 Finite linear CSP

Definition 1 Linear expressions over the set of integer variables V are algebraic expres-
sions of the form

∑n
k=1 akxk where all xk are variables from V and all ak are integers.

A Finite Linear CSP in CNF is a tuple (V, L,U, B, S) where

1. V is a finite set of integer variables,
2. L : V �→ Z and U : V �→ Z are lower and upper bound of the integer variable x and

these bounds determine the domain D(x) of the variable,
3. B is a set of Boolean variables,
4. S is a finite set of clauses (over V and B). Clauses are formed as disjunctions of literals

where literals are the elements of the union of the sets B , {¬p |p ∈ B} and {e ≤ c | e
is linear expression over V , c ∈ Z}.

A Solution of Finite Linear CSP in CNF is an assignment of Boolean values to Boolean
variables and integer values to integer variables satisfying their domains such that when
variables are replaced by the values, all clauses from S are satisfied.

Example 1 A solution of Finite Linear CSP problem V = {x1, x2, x3}, L = {x1 �→ 1, x2 �→
1, x3 �→ 2}, U = {x1 �→ 2, x2 �→ 4, x3 �→ 3}, B = {p}, C = {p∨ x1 + x3 ≤ 4,¬p∨ x3 +
(−1) · x1 ≤ 0, x1 ≤ 1 ∨ 2 · x2 ≤ 4} is the assignment {p �→ ⊥, x1 �→ 1, x2 �→ 3, x3 �→ 2}.

In applications, the input syntax is usually modified so that it allows non-contiguous
domains, formulae with arbitrary Boolean structure (not only CNF) and with literals formed
by applying other arithmetic relations (e.g., <, ≥, >, =) and other arithmetic operations
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(e.g., integer division, modulo). All these formulae alongside the clauses described in
Definition 1 are called intensional constraints. Another usual modification of the syn-
tax is usage of extensional constraints (sometimes called user-defined relations) that are
defined by a table of allowed/disallowed assignments to the variables they constrain. Both
intensional and extensional constraints can be reduced to finite linear CSP in CNF form
during preprocessing, but usually more efficient procedures are obtained if these are treated
directly.

Example 2 We give here an example of finite linear CSP specification in the Sugar input
language [34] that we also use.
(int x1 1 2) (int x2 1 4) (int x3 2 3)

(imp (>= (+ x1 (* 2 x3)) 3) (and (!= x1 x2) (< x3 (+ x1 x2))))
The example uses only intensional constraints. The first row declares the domains of the

variables and the second row imposes constraint on these variables. One of the solutions to
this problem is the assignment x1=1, x2=2, x3=2.

2.2 Global constraints

A global constraint1 is a constraint that captures a relation between a non-fixed number of
variables. There are two main benefits from using global constraints. Firstly, compared to
encoding using low-level constraints (that can always be done), specifying problems using
global constraints is simpler (this implies better readability of high-level problem specifi-
cations). Secondly, global constraints usually have some structure that can be exploited to
solve problem instances more efficiently than by using low level constraints.

As examples, we will describe three global constraints that are frequently used.

The Alldifferent constraint The all-different constraint [40] requires that all of its argu-
ments (expressions over integer variables and constants) have different values, i.e.,
all-different (e1, . . . , en) specifies that ei 	= ej for any i 	= j .

The nvalue constraint The nvalue constraint [4] requires that expressions e1, . . . , en take
number of distinct values equal to the value of expression e. For example, constraint
nvalue({x1, x2, x3}, 3) (where ei = xi and e = 3) states that all three variables have to take
different values.

The count constraint The count constraint [4] requires that the number of occurrences
of a value of some specific expression e in the set of expressions e1, . . . , en is in spe-
cific arithmetic relation (=, 	=, ≤, <, ≥, >) with some expression n. For example,
count({x1, x2, x3, x4}, 5) > 3 (where e = 5, ei = xi , the relation is >, and n = 3) spec-
ifies that the value 5 occurs more than 3 times in the set of variables {x1, x2, x3, x4}. This
implies that all variables x1, x2, x3 and x4 need to take the value 5.

2.3 Systems for encoding CSP to SAT

NPSPEC [8] is a PROLOG-like declarative modeling language. Each problem specification
consists of a database of facts and specification of constraints. SPEC2SAT is an application

1A catalogue of global constraints [4] is available online: http://www.emn.fr/z-info/sdemasse/gccat

http://www.emn.fr/z-info/sdemasse/gccat
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that allows the compilation of NPSPEC specifications (when given together with input data)
into SAT instances.

MiniZinc [24] is a constraint modeling language which is compiled by a variety of
solvers to the low-level target language FlatZinc for which there exist many solvers. FZN-
TINI [17] introduces a translation for FlatZinc constraint models, such that any satisfaction
or optimization problem written in the language (not involving floating point numbers)
can be automatically Booleanized and solved by one or more calls to a SAT solver. The
related fzn2smt [7] tool is a compiler from FlatZinc to the SMT-LIB language2. Solvers
mzn-g12cpx and mzn-g12lazy implement lazy clause generation and are included in
MiniZinc distribution.

URSA family of tools (URSA, URBIVA, URSA MAJOR) [19, 22] introduce uniform reduc-
tions of C-like language specifications to SAT or different SMT theories. The translation
has a precise semantics, communication with SAT/SMT solvers is done using their APIs
and finding all models is supported.

Sugar is a constraint solver that solves finite linear CSPs by translating them into SAT
by using order encoding method [35] and then solving SAT instances by several supported
SAT solvers.

Azucar [37] is a successor of Sugar that uses the compact-order encoding [36] for trans-
lating finite linear CSP into SAT and is tuned for solving specific large domain sized CSP
instances.

BEE [23] (Ben-Gurion University Equi-propagation Encoder) is a constraint specification
language and a compiler to CNF based on the order-encoding [35], similar to Sugar, but
applying several optimizations.

2.4 Solver selection for SAT and CSP

The instance-based algorithm selection problem has been widely studied in the SAT com-
munity. Based on the characteristics of the input instance, either some parameters of a single
solvers are tuned, or one of several available solvers (so called solver portfolio) is selected
to be applied on an instance. The most successful results are based on machine-learning
techniques (e.g., SATZilla [42], ISAC [21] and ArgoSmArT [26, 27]). Each SAT instance is
characterized by a set of its features (most of them are purely syntactic and extracted from
the CNF representation). Usually, a training corpus is solved by different SAT solvers (or a
single solver configured by different parameters) and a prediction model is formed. When a
new instance is to be solved, the most suitable solver is chosen, based on its input features
and the prediction model.

Algorithm portfolios have recently been applied to constraint satisfaction. CPHYDRA

[29] is an algorithm portfolio for CSP that uses case-based reasoning to determine how to
solve an unseen problem instance by exploiting a case base of problem solving experience.
The superiority of the portfolio over each of its constituent solvers is demonstrated using
challenging benchmark problem instances from the most recent CSP Solver Competition.
Another approach by Kiziltan et al. [20] is to use run-time classifiers (to categories “short”,
“medium”, “long”) to minimize the average completion time of each instance. This portfolio
uses features of CPHYDRA and SATZilla and the combination of two. Very recent work
by Amadini et al. [1] compares efficiency of different portfolio approaches based on SAT
portfolio techniques and machine learning algorithms.

2http://www.smtlib.org

http://www.smtlib.org
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3 Encoding finite linear CSP in CNF into SAT

Encodings of CSP into SAT have been extensively studied and described in the literature
(e.g., [13–15, 35, 36, 41]). Finite Linear CSP can be encoded into SAT using several differ-
ent popular encodings, determined by how integer variables are represented using auxiliary
Boolean variables. In this Section we give descriptions of all encodings used within our
system meSAT . We also describe the log encoding (it is not implemented within meSAT ,
but we describe it because of its significance). Each encoding must handle each type of
constraint (and each arithmetical operation) present in the problem specification, but, for
simplicity, we will only informally describe encodings and give examples of encoding some
basic types of atomic constraints (e.g., those covered by the Finite Linear CSP definition, as
well as those that involve equality or disequality of arithmetic expressions). We try to make
the exposure uniform and to describe all details specific for our implementation. We also
discuss hybrid direct-order and direct-support encodings. These encodings aim at reducing
the generated instance size, as well as improving the propagation power. For the variation
of order encoding that we use, we provide its correctness proof.

Boolean cardinality constraints When encoding CSP into SAT, the following class of
constraints on Boolean variables b1, . . . , bn is often encountered:

b1 + . . .+ bn # k, k ∈ N, # ∈ {≤, <,≥,>,=}.
These are called Boolean cardinality constraints and in recent years, several ways to encode
them efficiently into SAT were proposed (sequential and parallel counters [32], cardinality
networks [2], encoding of at-most-one constraint [10], pairwise cardinality networks [11],
perfect hashing based encodings [5]). As described in Section 3.1, many other types of
constraints can be easily reduced to Boolean cardinality constraints, and then are reduced to
SAT using these efficient encodings.

3.1 Direct and support encodings

Direct encoding For each integer variable xi and every value v ∈ D(xi) (i.e., between li and
ui), a Boolean variable pi,v is created, denoting that xi = v. For example, if x1 is between 3
and 5, the vector of variables [p1,3, p1,4, p1,5] is formed and its valuation [0, 1, 0] denotes
that x1 = 4. Exactly one of the pi,v variables needs to be true, and this mutual exclusion is
achieved by imposing Boolean cardinality constraint pi,li+. . .+pi,ui = 1. A naive approach
to express this is by using one at-least-one clause pi,li ∨ . . .∨pi,ui , and a quadratic number
of at-most-one clauses of the form ¬pi,v′ ∨ ¬pi,v′′ , where v′, v′′ ∈ D(xi) and v′ 	= v′′.
These are the conflict clauses. Note that if two Boolean variables p and q cannot be true at
the same time, ¬p ∨ ¬q is a conflict clause that imposes this constraint.

For all other types of constraints in CSP, the direct encoding also prefers to use conflict
clauses.

If the constraint xi 	= xj is to be encoded, then for every value v ∈ D(xi) ∩ D(xj ) the
clause ¬pi,v ∨ ¬pj,v should hold.

If the constraint xi = xj is to be encoded, then for each v ∈ D(xi),w ∈ D(xj ) and
v 	= w, clause ¬pi,v ∨¬pj,w is imposed. A slightly better performance is achieved if these
binary conflict clauses are imposed only for values v,w ∈ D(xi)∩D(xj), and if unit clauses
¬pi,v and ¬pj,w are imposed for all values v ∈ D(xi) \D(xj ) and w ∈ D(xj ) \D(xi).

If the constraint xi < xj is to be encoded, then for each v ∈ D(xi),w ∈ D(xj ) and
w ≤ v, the clause¬pi,v∨¬pj,w is imposed. Again, a slightly better performance is achieved
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if conflict clauses are imposed only for v,w ∈ D(xi) ∩ D(xj ) (without endpoints) and if
the following unit clauses are imposed: ¬pi,v where v ∈ D(xi) such that w ≤ v for all
w ∈ D(xj ) and ¬pj,w where w ∈ D(xj ) such that w ≤ v for all v ∈ D(xi).

Support encoding The Boolean variables pi,v are the same as in the direct encoding and the
restriction that exactly one pi,v holds still remains. However, the constraints are encoded
differently. For each constraint, instead of conflict clauses, the support encoding uses sup-
port clauses. For example, pi,v1 → pj,v2 ∨ pj,v3 ∨ pj,v4 is a support clause3 stating that if
xi is v1 then xj must be v2, v3 or v4.

If the constraint xi 	= xj is to be encoded, where xi ∈ D(xi) = [li , ui ], and xj ∈
D(xj ) = [lj , uj ], then for each value v ∈ D(xi) ∩ D(xj ), a clause pi,v → pj,lj ∨ . . . ∨
pj,v−1 ∨pj,v+1 ∨ . . .∨pj,uj that states that xi = v supports all values of xj different from
v is imposed. Symmetrically, clauses stating that xj = w supports all values of xi different
from w are also imposed. No clauses are used for values not in D(xi) ∩ D(xj ) as they
support all values from the other variable domain.

If the constraint xi = xj is to be encoded, then for every value v ∈ D(xi)∩D(xj ) clauses
obtained from pi,v ↔ pj,v are imposed. For Boolean variables pi,v and pj,w corresponding
to the values v,w /∈ D(xi) ∩D(xj ), unit clauses ¬pi,v and ¬pj,w are imposed.

If the constraint xi < xj is to be encoded, then for every value v a clause pi,v →
pj,w1 ∨ . . . ∨ pj,wm is imposed, where W = {w1, . . . , wm} is the set of all values in D(xj )

strictly greater than v. If W = D(xj ), the clause does not need to be imposed, and if W = ∅
it becomes unit ¬pi,v. Symmetrically, clauses stating that xj = w supports all values of xi
strictly less than w are imposed.

Direct-support encoding The direct and support encodings have one property in common:
Boolean representation of integer variables is the same. But each of these encodings trans-
lates some of the constraints to clauses containing less literals than the other. Based on the
estimated size of generated encoding we propose combination of these two encodings that
encodes integer variable in the same way as in the direct and support encodings, but for
encoding the constraints, in some cases it uses the direct encoding, in some cases the sup-
port encoding, and in some cases constraints are partly encoded by the direct and partly by
the support encoding. The “nature” of the constraint determines which one is used as part of
the direct-support encoding: the direct encoding is better when encoding conflicts and the
support encoding is better when encoding supports.

If the constraint xi 	= xj is to be encoded, then the number of imposed clauses in the
support encoding is approximately twice as large as the one in the direct encoding. Further,
in the direct encoding, clauses always consist of two literals, while in the support encoding
clauses consist of two or more literals. For these reasons, the direct-support encoding uses
the direct encoding for this constraint.

If the constraint xi = xj is to be encoded, then the direct encoding imposes O(dxi · dxj )
clauses and the support encoding imposes O(max(dxi , dxj )) clauses. All generated clauses
have two literals. The direct-support encoding uses the support encoding of this constraint,
as it is smaller in size.

If the constraint xi < xj is to be encoded, then for each value v ∈ D(xi) direct or support
encoding is chosen so as to minimize the number of literals. If v is in conflict with at most
one third of the values from D(xj ), then clauses used in the direct encoding are imposed.

3Each implication A → B can be translated to clause ¬A ∨ B.



Constraints (2014) 19:380–403 387

Otherwise, v supports at most two thirds of the values from D(xj ) and clauses used in the
support encoding are imposed.

Encoding linear arithmetic For encoding linear arithmetic constraints using the direct, sup-
port and direct-support encodings, we used the following scheme (it is somewhat closer to
the support encoding, but not all clauses are negative Horn clauses, i.e. clauses containing
at most one negative literal [15]).

Assume that xk is a fresh variable and its domain is restricted to the values that can be
taken by the expression xk = axi or xk = xi + xj .

If the constraint xk = axi is to be encoded, for an integer constant a, the clauses pi,v →
pk,av are imposed. Also, the clauses pk,u → pi,u/a could be imposed, where u is in the
domain of xk and that is when u/a is an integer.

If the constraint xk = xi + xj is to be encoded, the clauses pi,v ∧ pj,w → pk,v+w ,
for each v ∈ D(xi),w ∈ D(xj ) are imposed. Also, clauses pk,u ∧ pi,v → pj,u−v and
pk,u ∧ pj,w → pi,u−w could be imposed.

3.2 Order encoding

The order encoding used by Sugar is shown to be the most efficient for many types of
problems, including Open-Shop Scheduling problem [35], two-dimensional strip packing
problems [33], and test case generation [3]. This is since it is compact and has good propa-
gation properties [36]. The original encoding has been described in [35]. Here we describe
its slightly different variant (described only informally on the website of Sugar) and give its
correctness proof.

Integer variable xi with the domain between li and ui is represented with Boolean vari-
ables pi,li , . . .pi,ui−1, where pi,v represents that xi ≤ v. For simplicity, variables pi,li−1
that is always false and pi,ui that is always true are also available. Connection between the
variables is described by the following clauses, imposed for every v ∈ {li + 1, . . . , ui − 1}:
pi,v−1 → pi,v .

We describe one general way to reduce constraints of the form
∑n

k=1 akxk ≤ c, where
ak and c are integers, and all ak 	= 0, to a Boolean combination of constraints of the form
xk ≤ bk , for some integers bk .

procedure order encode
input: constraint

∑n
k=1 akxk ≤ c, such that all ak 	= 0

output: set of clauses over atoms of the form xk ≤ bk , for some integers bk .
if n = 1 then

if a1 > 0 then return {x1 ≤ �c/a1�}
if a1 < 0 then return {¬(x1 ≤ �c/a1� − 1)}

else
select some xi
if ai > 0 then

return
⋃

v∈D(xi )

(
xi ≤ v − 1 ∨© order encode (

∑n
k=1,k 	=i akxk ≤ c − aiv)

)

if ai < 0 then

return
⋃

v∈D(xi )

(
¬(xi ≤ v) ∨© order encode (

∑n
k=1,k 	=i akxk ≤ c − aiv)

)

The operation l ∨© S denotes adding a literal l to all clauses in the set S, i.e., l � S =
{l ∨ c. c ∈ S}.
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The choice of the variable xi in the procedure is arbitrary, but for efficiency it is good
to choose the xi with the smallest domain (and with the smallest absolute value of its coef-
ficient in case of equal-sized domains) as such choice reduces the size of generated SAT
instance.

Example 3 Let us describe how to encode the constraint 3x1 + 5x2 ≤ 14, if D(x1) = [0, 5]
and D(x2) = [0, 3]. We choose the variable x2 since it has a smaller domain. Since x2 ≥ 0,
then 3x1 ≤ 14−5 ·0, so the clause x1 ≤ 4 holds. If x2 ≥ 1, then 3x1 ≤ 14−5 ·1, so x1 ≤ 3.
Therefore, either ¬(x2 ≥ 1) (equivalent to x2 ≤ 0, since x2 is integer) or x1 ≤ 3 holds, so
the clause x2 ≤ 0 ∨ x1 ≤ 3 holds. Similarly, if x2 ≥ 2, then 3x1 ≤ 14 − 5 · 2, so x1 ≤ 1.
Therefore, the clause x2 ≤ 1 ∨ x1 ≤ 1 holds. Finally, if x2 ≥ 3, then 3x1 ≤ 14 − 5 · 3, so
x1 ≤ −1, but this is always false so the clause x2 ≤ 2 holds.

The next theorem establishes the correctness of the order encoding. The final transition
to the Boolean level (introducing Boolean variables pi,v) is trivial and left to the reader.

Theorem 1 Let xi be integer variables with domains D(xi), let C be the constraint∑n
k=1 akxk ≤ c, for integer ak 	= 0 and integer c, and let S = order encode (C) be the set

of first-order clauses obtained by applying the order encoding procedure on C. Then, the
tuple (v1, . . . , vn) satisfying all the domains of xi , satisfies C iff it satisfies all the clauses
in S.

Proof The proof is by induction on n.
If n = 1, then the constraint C is of the form a1x1 ≤ c.
If a1 > 0, then S = {x1 ≤ �c/a1�}. It holds that �c/a1� ≤ c/a1. If v1 satisfies C, then

a1v1 ≤ c, i.e., v1 ≤ c/a1, but since v1 is integer v1 ≤ �c/a1�, so v1 satisfies S. If v1 satisfies
S, then v1 ≤ �c/a1� ≤ c/a1, so a1v1 ≤ c, so v1 satisfies C.

If a1 < 0, then S = {¬(x1 ≤ �c/a1� − 1)} ≡ {x1 > �c/a1� − 1}. If v1 satisfies C,
then a1v1 ≤ c, so v1 ≥ c/a1. Since it holds that �c/a1� − 1 < c/a1 ≤ �c/a1�, it holds that
v1 > �c/a1� − 1, so v1 satisfies S. If v1 satisfies S, then v1 > �c/a1� − 1, and since v1 is
integer then v1 ≥ �c/a1� ≥ c/a1, and v1 satisfies C.

Assume the inductive hypothesis that for all n′ < n, the encoding of all constraints of
the form

∑n′
k=1 a

′
kxk ≤ c′ for integer a′k 	= 0 and integer c′ is valid.

If xi is fixed, for each v in the domain of xi , let Sv denote the set of clauses obtained
from the constraint Cv ≡ ∑

k 	=i akxk ≤ c − aiv (i.e., Sv = order encode (Cv)).
In the first direction we assume that �v = (v1, . . . , vn) satisfies C, and all the domains

of xi and then show that �v satisfies S. It holds that
∑n

k=1 akvk ≤ c. Let xi be the chosen
variable. The value vi is in the domain of xi .

Assume that ai > 0. Then, the set S consists of clauses from Sv , for each v, extended by
the literal xi ≤ v−1. For each v ≥ vi+1, vi ≤ v−1 is true, so all the clauses in S obtained
from Sv are satisfied. If v ≤ vi , then c ≥ ∑

k 	=i akxk + aivi ≥ ∑
k 	=i akxk + aiv, so the

tuple obtained from �v by removing vi satisfies Cv. By the inductive hypothesis it satisfies
all the clauses of Sv , and they remain satisfied when extended by the literal xi ≤ v − 1.

Assume that ai < 0. Then, the set S consists of clauses from Sv , for each v, extended
by the literal ¬(xi ≤ v). For each v < vi , ¬(vi ≤ v) is true, so all the clauses in S

obtained from Sv are satisfied. If v ≥ vi , then c ≥ ∑
k 	=i akxk + aivi ≥ ∑

k 	=i akxk + aiv

(since ai < 0), so the tuple obtained from �v by removing vi satisfies Cv. By the inductive
hypothesis it satisfies all the clauses of Sv , and they remain satisfied when extended by the
literal ¬(xi ≤ v).
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In the opposite direction we assume that the tuple �v satisfies S and all the domains of
variables xk and show that it satisfies C. Let xi be a chosen variable. Then, vi is in the
domain of xi .

Assume that ai > 0. It suffices to consider only clauses obtained from Sv , for v = vi .
These are clauses of Svi , extended by the literal xi ≤ vi − 1. But vi ≤ vi − 1 is false, so
all the clauses of Svi must be satisfied by the tuple obtained from �v by removing vi . By the
inductive hypothesis, the constraint Cv ≡ ∑

k 	=i akxk ≤ c − aivi is satisfied by the same
tuple, so �v also satisfies C.

Assume that ai < 0. Again, it suffices to consider only clauses obtained from Sv , for
v = vi . These are clauses of Svi , extended by the literal ¬(xi ≤ vi). But ¬(vi ≤ vi) is false,
so all the clauses of Svi must be satisfied by the tuple obtained from �v by removing vi . By
the inductive hypothesis, the constraint Cv ≡ ∑

k 	=i akxk ≤ c−aivi is satisfied by the same
tuple, so �v also satisfies C.

The constraint xi 	= xj is equivalent to xi − xj ≤ −1 ∨ xj − xi ≤ −1. These two
linear constraints are encoded separately and their disjunction is encoded by the Tseitin
transformation [39].

The constraint xi = xj is equivalent to xi − xj ≤ 0 ∧ xj − xi ≤ 0. These two linear
constraints are encoded separately and trivially combined.

The constraint xi < xj is equivalent to the linear constraint xi − xj ≤ −1.

3.3 Log encoding

This encoding corresponds to representation of machine integers. Each integer variable is
encoded with the same number n of Boolean variables (i.e., bits). The bit-width n is cho-
sen so that the maximal value in the domain of each variable can be represented (e.g.,
32 which corresponds to standard machine-word width). For each integer variable xi , the
Boolean variable pi,k is true iff the k-th bit of the binary representation of the value assigned
to xi is 1. For variables taking negative values twos complement representation should be
used (note that these are rarely encountered in CSP problems so the description of the
log encoding is usually limited to unsigned variables). If the upper bound of an unsigned
variable is drastically smaller than 2n, then most of the bits of greater significance are set
to false in the beginning. If the upper bound for an unsigned variable is not a power of
two, excess values must be excluded. For each such value v which is not in the domain
of xi , and is represented with binary digits (vn−1, . . . , v0) (v = ∑n−1

k=0 2kvk), the disjunc-

tion
∨n−1

k=0 vk ⊕ pi,k is imposed. Symbol ⊕ denotes exclusive disjunction and vk ⊕ pi,k

evaluates to true if these two bits take different values, and to false if they take same
values.

If the constraint xi 	= xj is to be encoded then the disjunction
∨n−1

k=0 pi,k ⊕ pj,k is
imposed.

If the constraint xi = xj is to be encoded, then the clauses obtained from pi,k ↔ pj,k

are generated for every bit index k.
If the constraint xi < xj is to be encoded, then the variables d0, . . . , dn−1 are intro-

duced, where the value of dk is true if and only if constraint is satisfied concerning only
the bits with indices 0, . . . , k of variables xi and xj . The following clauses are encoded:
d0 ↔ ¬pi,0 ∧ pj,0, dk ↔ (dk−1 ∧ ¬pi,k ∧ ¬pj,k) ∨ (dk−1 ∧ pi,k ∧ pj,k) ∨ (¬pi,k ∧
pj,k), where k is index of bit taking values from 1 to n − 2, and dn−1 ↔ (dn−2 ∧
¬pi,n−1 ∧¬pj,n−1) ∨ (dn−2 ∧ pi,n−1 ∧ pj,n−1)∨ (pi,k ∧¬pj,k). Unit clause dn−1 is also
generated.
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Arithmetical operations are encoded depending on the representation of negative num-
bers (if the encoding uses twos complement representation, then the same encoding of
arithmetic operations can be used as for the unsigned values).

3.4 Direct-order encoding

A drawback of the order encoding is that it is not suitable for encoding some global con-
straints. Recent studies [23, 28] have shown that for some problems the best results are
obtained if the order encoding is combined with the direct encoding of the all-different con-
straint. In this approach, the variables involved in all-different constraints are both encoded
using the direct and the order encoding, and transition clauses are also generated.

We use extension of this approach and describe direct-order4 encoding. It is essentially
the same as that used by Minizinc [24]. This encoding uses direct encoding of special-
ized global constraints described in Section 4 and for all the other types of constraints it
uses the order encoding. Since global constraints are based on the direct encoding, for their
integer variables another set of Boolean variables and Boolean constraints corresponding
to the direct encoding is defined (they are encoded by the Boolean variables and con-
straints corresponding to the order encoding). Assume that for integer variable xi the order
encoding creates Boolean variables pi,v and the direct encoding creates Boolean variables
p′
i,v. Translation clauses connecting these two families of variables are obtained from:

p′
i,v ↔ ¬pi,v−1 ∧ pi,v, for each v ∈ D(xi). Note that mutual exclusions on the direct

encoding need not be imposed, as the order literals do this.

4 Encoding global constraints

In this section we will describe how to encode the global constraints. As suggested in the
system BEE [23], the all-different constraint can be much better encoded using the direct
(and support) than using the order encoding. We build upon this idea and describe specific
encodings for several global constraints (based on the direct and support integer repre-
sentations). For some global constraints (e.g., the count constraint) in some special cases
efficient encoding can be defined but in other cases it is hard to define an efficient encoding.
The former occurrences will be called specialized global constraint occurrences (e.g., spe-
cial case of the count constraint), and the latter occurrences will be called non-specialized
global constraints occurrences (e.g., non-special case of the count constraint). Occurrences
of other global constraints will be called general global constraints (e.g., all occurrences of
constraints like lex less, element, etc.).

The count constraint The constraint count (e1, . . . , en, v) op c, described in Section 2.2 is
usually encoded by reducing to simpler constraints:

(if e1 = v then 1 else 0)+ . . .+ (if en = v then 1 else 0) op c,

and this constraint is translated to constraints s1 + . . . + sn op c and ((ei = v) → (si =
1))∧ ((ei 	= v) → (si = 0)), i ∈ {1, . . . , n}, where s1, . . . , sn are fresh variables.

4This encoding could be called support-order of direct-support-order as well, as constraints encoded by the
direct encoding are the same for the support encoding
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Specialized occurrences of the count constraint When modeling CSP problems usually the
special case of this constraint is used: both v and c are constants (and not expressions as
it is permitted in general case) and e1, . . . , en are variables. This special case of constraint
can be translated to SAT by the direct/support encoding5 in a special way. For simplicity,
let us assume that the domain of all variables is [l, u]. These variables are represented with
Boolean variables (each row represents one integer variable):

p1,l . . . p1,u
...

. . .
...

pn,l . . . pn,u

The special case of count constraint can be simply encoded to SAT by imposing the Boolean
cardinality constraint p1,v + p2,v + . . .+ pn,v op c (if the domains of the variables are not
the same, then for every integer variable xi such that v is not in its domain, the Boolean
variable pi,v is excluded from the sum).

The order encoding does not use Boolean cardinality constraints and therefore can not
use this special translation (even if it used Boolean cardinality constraints translation would
not be as straightforward as in the case of the direct/support encoding).

Other global constraints Other global constraints also have special cases that are usu-
ally used for modeling CSP. From 11 global constraints supported by the Sugar input
language, both the general case of all-different constraint and special cases of 4 other
constraints (global cardinality, global cardinality with costs, nvalue, cumulative) can be
handled efficiently by the direct/support encoding. Many other global constraints from
global constraints catalogue can also be handled in a special way by the direct/support
encoding. Generally, the direct/support encoding can implement global constraints more
efficiently whenever it can be encoded by imposing cardinality constraints on Boolean
variables representing the same value taken by different integer variables.

Many of these global constraints can be reduced to the special case of the count con-
straint, so by improving its encoding, other constraints are improved as well. For example,
note that the encoding of the all-different constraint can be reduced to encoding of the spe-
cial case of the count constraint. Namely, for each value from the union of the domains of
the all-different arguments, a count constraint can be introduced specifying that the number
of occurrences of that value in the set of expressions that are arguments of all-different is
less than or equal to 1.

5 Instance-based encoding selection

In this section, we describe a portfolio approach that automatically selects SAT encoding to
be used, based on the features of the constraints used in CSP input instance.

Our approach is a modification of the portfolio approach introduced by Nikolić et al. [27].
In the original formulation, first, a training set of instances is fixed, and for each instance
from the training set different SAT solving methods (different SAT solvers, or a single SAT
solver with different setups) are applied with a given time limit. For each such instance its
PAR10 score (penalty) [18] is calculated — solving time if the instance is solved within the
time limit, or the time limit multiplied by 10, otherwise. When all training data is gathered

5The same translation is used for both of these encodings for all global constraints
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and a new instance is to be solved, its features are extracted and k-nearest neighbors (k-NN)
from the training set are found (with respect to the extracted features of training instances
and a fixed distance function). The PAR10 score of each SAT solving method is calculated
as a sum of scores for each neighboring instance, and the encoding with the minimal score
is selected. If the same (minimal) scores are obtained for several SAT solving methods then
the one of them is selected, based on some fixed priority.

We modify the original approach, consider CSP instances, and instead of choosing a
SAT solving method we choose a SAT encoding that should be applied. Unlike some other
approaches (e.g., [20]) that use features of the generated SAT instances, we use only features
extracted from the original CSP formulation. We considered 70 different features divided in
several groups: features related to the number and the percentage of constraints of different
types — intensional, extensional, global, as well as for each specific type of constraint (e.g.,
arithmetic, all-different), features related to the sizes of the domains of integer variables
for all variables in the instance, and for the variables included in each different type of
constraint, features related to the number of all variables and variables with non-contiguous
domains, etc.

Example 4 We give here a simple CSP instance and calculate some of its features.
(int x1 0 3)(int x2 0 4)(int x3 1 5)

(alldifferent x1 x2 x3)

(<= 6 (+ x1 x2))
Sum of the sizes of the domains of variables involved in addition or subtraction is 9

(x1 can take 4 and x2 can take 5 values). Number of occurrences of global constraints is
1 (the occurrence of all-different constraint). Number of occurrences of intensional con-
straints is 2 (one addition and one comparison). The average arity of global constraints is 3
(the only global constraint has 3 operands). Percentage of global constraints considering all
constraints is 33 % (all constraints are the all-different constraint, comparison and addition).

6 System description

The system meSAT6 is implemented in C++. The system has a flexible architecture (illus-
trated on Fig. 1). There are several different input languages for CSP problems that have
recently became popular (e.g., MiniZinc [24], XCSP [31], Sugar [34]). Therefore, we
decided not to invent another input format, and meSAT currently supports input format of
the tool Sugar. This syntax was selected since it is rather low-level and all its constructs
can be translated to SAT. Furthermore, there exists a tool that converts CSP specifications
written in XCSP 2.1 format [31] used in Fourth International CSP solver competition7 into
the Sugar syntax. An input specification is parsed into an abstract syntax tree (AST). The
abstract syntax tree is traversed by different SAT encoders (forming a class hierarchy). Dur-
ing the traversal either SAT encodings are generated or features of instance are collected.
Ways of encoding each kind of constraint can be defined for all encodings simultaneously,
for groups of similar encodings and for some specific encodings.

6The source code with examples and instances used in experiments (but without third-party solvers, due to
specific licensing) is available online from: http://argo.matf.bg.ac.rs
7http://www.cril.univ-artois.fr/CPAI09

http://argo.matf.bg.ac.rs
http://www.cril.univ-artois.fr/CPAI09
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Fig. 1 meSAT overview

When reducing to SAT, either only the output DIMACS8 file can be generated or one of
the supported SAT solvers (minisat, clasp) can be automatically invoked and a satisfiable
valuation, if exists, is translated back to the solution of the problem. If COP is solved,
the solver is repeatedly invoked for different values of integer variable that needs to be
maximized/minimized until an optimal value is found. The next value is selected by simple
binary search algorithm. The instance is considered solved only if the optimum value is
proved within the time limit.

The following encodings are supported: direct, support, direct-support, order, direct-
order. Boolean cardinality constraints can be encoded to SAT either by using sequential
unary counters [32] or cardinality networks [2] and for at-most-one constraints the encoding
proposed by Chen [10] is used.

7 Experimental results

In order to show the advantages of supporting multiple encodings as well as automated
encoding selection, we have conducted an experimental evaluation and tested our hypothe-
ses given in Section 1. We have used all encodings available in meSAT , sequential unary
counters for Boolean cardinality constraints [32], and Chen’s encoding of the at-most-one
constraints [10].

8ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/satformat.dvi

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/satformat.dvi
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Instances We used three corpora of CSP problems: (i) CPAI09 containing all problems used
in Fourth International CSP Solver Competition9 that use global constraints, (ii) MiniZinc
containing 29 problems from MiniZinc corpus10 also encoded to use global constraints, and
(iii) instances of the Dominating Queens problem, described in the global constraints cat-
alogue11. The reason for including only instances that use global constraints is that in all
preliminary experiments the order encoding proved to be the best encoding for instances that
do not use global constraints: propagations are faster and generated instances are smaller.
For each problem, these corpora include several instances that differ in the size of the prob-
lem and specific input data. We used two formats of input files: MiniZinc language [24] and
Sugar input language [34].

Instances from the first corpus were automatically converted from the original input lan-
guage to MiniZinc by the converter xcsp2zinc available on MiniZinc page12 and to Sugar
input format by the converter included in the Sugar distribution. Ten instances of problem
nengfa could not be converted by xcsp2zinc and they are omitted from the experiments.

Instances from the second corpus are already in MiniZinc input format and use original
input data (specified in .dzn files from MiniZinc corpora). New problem descriptions in
Sugar input language were made (.mzn files were not directly used due to different types of
constraints supported by these tools).

The third corpus contains only instances of the Dominating Queens problem. A lot of
focus in meSAT has been put on efficient encoding of global constraints. For example, the
nvalue constraint can be very efficiently encoded when the direct or support encodings
are used. However, no problems in first two corpora include this constraint, so to test the
efficiency of meSAT on this kind of constraint we included the Dominating Queens problem.
Specification of the problem is the same for MiniZinc and Sugar input language.

Interesting instances In our preliminary experiments we noticed that many instances are
easy for most of the solvers, and that there are instances too hard for all solvers. So in most of
the experiments we focus on “interesting” instances, the ones that are solved within a given
600 seconds timeout by at least one, but not all three solving methods: direct-support, order
and direct-order encoding implemented within meSAT system. Choosing the best encoding
for them is very important, since these are the only instances that affect the total number of
solved instances in the instance-based encoding selection. In order to increase their num-
ber, we generated instances of greater size for problems of the second corpus where most of
the instances were too easy. To make the distribution of interesting instances among prob-
lems slightly more uniform than in original corpora, for problems that had more than 30
interesting instances we randomly selected 30 instances that were used in experiments.

Experimental environment All tests were performed on a multiprocessor machine with
AMD Opteron(tm) CPU 6168 on 1.9Ghz with 2GB of RAM per CPU, running Linux. In
all experiments and tools, SAT solver Minisat 2.2 [12] was used for solving generated CNF
instances. Timeout was 600 seconds for each instance (for total time including selecting the
encoding where needed, encoding, and solving). In all tables, # denotes the total number
of instances. In each cell the number of instances solved is given. In most tables separate

9http://www.cril.univ-artois.fr/CPAI09
10http://www.minizinc.org
11http://www.emn.fr/z-info/sdemasse/gccat/Cnvalue.html#uid22241
12http://www.minizinc.org

http://www.cril.univ-artois.fr/CPAI09
http://www.minizinc.org
http://www.emn.fr/z-info/sdemasse/gccat/Cnvalue.html#uid22241
http://www.minizinc.org
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results for different corpora are not shown, but only aggregate results. The total solving time
(in minutes) is shown in parentheses (for each unsolved instance 600 seconds are added to
the total time). Mean time spent on a instance is directly computable from the total time and
the number of instances. Since in some cases less than 50 % of instances are solved, median
time is not shown. In each row, cell entry corresponding to the best solver is printed bold.

Table 1 shows experimental results for all instances.13 Table 2 shows experimental results
for interesting instances. These results are discussed in the following subsections.

7.1 Comparison of meSAT with other state-of-the-art tools

We compare the results of our meSAT system with the results of some other state-of-the-art
tools. We compare it with system Sugar-v2-0-0, its successor Azucar-v0.2.3 [37] (used in
two different configurations; Azucar-m2 that implements the compact-order encoding for
m = 2 and is default configuration and Azucar-log that implements the log encoding), and
two lazy clause generation solvers included in MiniZinc 1.6 distribution: mzn-g12cpx
and mzn-g12lazy.

Results given in Tables 1 and 2 indicate that our system meSAT significantly outperforms
other solvers used in comparison. The exception is Sugar (the winning solver on several CSP
competitions), where meSAT was better only when the direct-order encoding is used. Since
the difference is not so big, this might be attributed to random variations in SAT solving
time14. The efficiency of meSAT can be significantly improved if instance-based encoding
selection is used, as described in Section 7.3, and then it clearly outperforms even Sugar.

7.2 Comparison of different encodings within meSAT

Next, we analyze the efficiency of different encodings implemented within meSAT: direct
(d), support (s), direct-support (ds), order (o), and the direct-order (do). The aim is to ana-
lyze the performance of our hybrid encodings (direct-support and direct-order) and compare
them to their constituent encodings (direct, support, direct-support and order) on the inter-
esting instances. Due to the lack of space we did not show results of direct and support
encoding in Table 2, therefore we give these results (only total numbers) in Table 3.

Results indicate that the direct-support encoding slightly outperforms both the direct
and the support encoding, although this could be attributed to random variations in SAT
solving time. As differences are minor, the separate results for the direct and the support
encoding will not be further considered. Results also indicate that the direct-order encoding
outperforms both the order and the direct-support encoding. All this supports our hypothesis
(H2) to some extent.

The cumulative results given in Table 3 might indicate that the order-based encodings
(the direct-order encoding can be considered to be order-based since in many cases it
exactly matches with the order encoding) significantly outperform the direct-support based
encodings. However, results for separate problems (given in Table 2) show that there are
problems that are much better suited for the direct-support encoding (e.g., M/cars, M/carseq,
M/knights, D/dominatingQueens). Table 4 shows the number of interesting instances for

13More detailed results are available online from: http://argo.matf.bg.ac.rs
14 SAT solving time always has some amount of unpredictability and can be affected by trivial changes of
the input instances (e.g., changes to the order of clauses), so there is a small amount of randomness in all
experimental results that include SAT solving. A statistical approach to comparing SAT solvers is given by
Nikolić [25].

http://argo.matf.bg.ac.rs
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Table 3 Summary results of experimental evaluation of different encodings within meSAT system on
interesting instances

corpus # d s ds o do

Total 208 61 (1608) 71 (1528) 76 (1507) 131 (945) 164 (763)

each encoding where it was the best and it shows that for each encoding there are many
instances for which it is the best. This clearly supports our hypothesis (H1) that different
encodings are suitable for different problems.

7.3 Evaluation of instance-based encoding selection

As different encodings are suitable for different problems, there is a good motivation to use
some instance-based encoding selection scheme, and we applied the approach described in
Section 5. We compare our instance based selection scheme to the (i) oracle (or virtual best)
method that would select the best encoding for each instance (this method is not feasible
in practice since it makes perfect decisions and for each instance it must guess the optimal
encoding before trying to solve it, which is impossible to implement) and (ii) the best fixed
method – one encoding that gives the best overall performance.

Currently, selection is done among three types of encodings: direct-support, order, and
direct-order. As already noted, the direct-support encoding is slightly more efficient than
both the direct and the support encoding so these two are not used. The log-based encod-
ings (e.g., log, compact-order) are not currently supported by our system, but we plan to
incorporate them in our future work.

We used 70 features, all extracted only from instance input files (e.g., average domain
size, number of multiplications, sum of domains of variables involved in multiplications,
average arity of specialized occurrences of global constraints, percentage of intensional
constraints among all the constraints). The time used for the feature extraction is small
(about 0.05 seconds in average on all instances).

Given a training set, all its instances are solved using each of the three included encodings
in a given timeout, and then the optimal parameters (the number of neighbors k and the
distance measure d) are selected in the following way. For each fixed k and d the total score
is determined by the leave-one-out procedure (the total score is the sum of individual scores
of all instances, where the individual score for each instance is its score when using the
encoding selected by applying the k-NN selection procedure with parameters k and d and
looking at the rest of the training set). All combinations of k (ranging from 1 to 20) and 4
different distance measures ([38]) are tried on the training set and the ones generating the
best score are declared optimal.

Training phase results (solving times of individual training instances, optimal value of
parameter k, and optimal distance function d) are used to select the encoding for a given test
instance. If the same (best) scores are obtained for more encodings, then the direct-order
encoding has maximum priority of being selected and the direct-support encoding has the

Table 4 Numbers of interesting
instances where each encoding
achieved the best result

# ds o do

208 59 64 85
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lowest priority. When the encoding is selected, meSAT is invoked for that test instance using
the selected encoding, given a timeout of 600 seconds.

We have considered two different approaches for choosing training and testing sets —
training on random portions of the corpus and testing on the rest (so called cross-validation)
and training only on the easy instances and testing on the rest.

Cross validation In the first approach we have used 5-fold cross-validation, dividing the
corpus in 5 equal parts, testing on each part after training on other 4 parts, and reporting the
total results for all 5 folds. This method (autocv) enables meSAT to solve 33 instances more
than when using single fixed encoding. Although this does not seem much considering all
1379 instances, this is only due to a very high number of instances solved by all methods
(889) and the number of hard instances not solved by any method (295). Considering only
interesting instances (the only ones that can affect the total number of solved instances),
gives more clear picture. Table 2 shows that the best-fixed method (the direct-order encod-
ing) solves 164 instances, that autocv solves 197 and that the theoretical optimum oracle
solves 208 instances. Further, the total solving time is almost halved (from 763 to 419
minutes). We consider this to be a significant improvement. The biggest improvement was
achieved on MiniZinc corpus, while on the CPAI09 corpus, improvement is small (as the
autocv solved the same number of instances as the best-fixed method, but in slightly shorter
time).

Training on easy instances In the second approach, we wanted to test the possibility to
reduce the overall training time (that is measured in CPU days when training on all kinds of
instances) by training only on the easy instances and testing on the whole corpus.

As the easy instances are not known a priori, a preparation phase had to be conducted
and it consisted of running meSAT with the time limit of 5 seconds on all instances using
each of the 3 encodings. From 1379 instances, 543 were solved by all encodings within the
time limit — these were considered to be easy instances and were used for training. Since
the time limit is low, the maximal time for preparation is only 1379 × 3 × 5s i.e., only
about 6 hours and it could be performed on a standard PC (in fact, it took only 3.5 hours, as
many instances are solved under these 5s). Solving 543 easy instances is done in less than
13 minutes, but, as these are not known a priori, the whole time including preparation must
be considered.

After the training phase the testing phase was conducted on the whole corpus. In
the tables, this method is denoted by autoeasy . Note that, in order to have uniform lay-
out for Tables 1 and 2, the reported totals are given for the whole corpus (so there is
an overlap between the training and the test set). However, the training instances are so
easy that they are all solved by each method and the best and the worst encoding on
all of them together differ by less than 5 minutes and this time is negligible for the
total results (where the encodings differ by hundreds of minutes). Moreover, when con-
sidering only interesting instances, there is no overlap between the training and the test
set.

Although not as effective as when training on both easy and hard instances, training only
on easy instances also managed to improve upon the best fixed encoding. This is due to the
nature of considered corpora where instances are grouped into families (each coming from
a single problem) and each family contains very similar instances differing only in their
size, for which the optimal encoding does not depend on the size, but on the structure of
the instance. Looking carefully at Table 2, it can be seen that the main difference between
autoeasy and autocv can be attributed to a single problem (M/latin squares where autocv
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solved 10 instances more). The reason for this is that the best encoding when solving with
smaller timeout (180s) is the direct-order encoding, while the best encoding when solving
with bigger timeout (600s) is the order encoding. This was the only problem with such
behavior in our corpus, so we suppose that these kinds of problems (where training only on
the easy instances fails) are rare. We have tried to increase the timeout in the preparation
phase (5s) and to include a bit harder instances, but this prolonged the preparation and the
training phase (what we wanted to avoid in the first place), and did not improve the results
significantly.

All these results supports our hypothesis (H3).

8 Conclusions and further work

In this paper we have presented the system meSAT that supports encoding finite linear
CSP using various SAT encodings. We have evaluated the direct-support and the direct-
order encoding that combine existing encodings and slightly outperform them. We have
described all these encodings in a uniform manner discussing their correctness where nec-
essary. Experimental evaluation given in this paper supports the claim that there is no single
encoding suitable for all types of problems and that one could benefit from trying different
encodings and solvers.

We have developed a simple instance-based selection scheme that chooses one among
different encodings and shows improvement over the fixed encodings used. The scheme
is based on machine-learning and follows the ArgoSmArT-knn approach [27]. The main
difference with the other portfolio approaches is that instead of selecting the tool that should
be applied on the already encoded SAT instance, we select the encoding that would give the
best results. We have demonstrated that it is possible to train only on the very easy instances
(thus to have a very fast training phase), to achieve some generalization and get better results
on the whole corpus including larger and harder instances than by using any fixed encoding.
Including harder instances in the training set further improves the results, as there could be
some problems where the optimal encodings for easy and hard instances differ (still, there
were not many problems of this kind in our corpus).

Many instances are relatively easy for our system, so the margin between the best-
fixed and the oracle solver is rather tight (only 44 instances). However, if only interesting
instances are considered the same margin does not look that tight. Our selection scheme
manages to make a good selection for most of these instances and the overall total solving
time decreases.

Our future plans are to extend our system by incorporating other state-of-the-art SAT
encodings (e.g., [13, 14, 36]) and by enabling translations to other satisfiability problems
(e.g, pseudo-boolean constraints, SMT). As new encodings of Boolean cardinality con-
straints were invented in recent years (e.g. [5, 11]), we plan to implement and evaluate them.
We also plan to investigate how the set of encodings can be expanded to handle nonlin-
ear arithmetic (e.g., multiplication, division). Currently, optimization problems are solved
using a naive binary search and we plan to implement more advanced methods (e.g. branch-
and-bound or unsatisfiable-core based). All these possible parameters should be included in
instance-based selection.

Out of 1379 instances, 62 of them were solved by other solvers but not solved by meSAT
(Sugar solved 12 instances that meSAT did not, Azucar-m2 13, Azucar-log 9, mzn-g12cpx
25, and mzn-g12lazy 43). This shows how much improvement could theoretically be
possible if these tools were included in the selection. Therefore, we also plan to apply
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our instance based selection methodology outside the system meSAT and to select between
different tools and implementations of SAT encodings.
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