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Abstract The cumulative scheduling constraint, which enforces the sharing of a finite
resource by several tasks, is widely used in constraint-based scheduling applications.
Propagation of the cumulative constraint can be performed by several different filtering
algorithms, often used in combination. One of the most important and successful of these
filtering algorithms is edge-finding. Recent work by Vilı́m has resulted in a O(kn logn)
algorithm for cumulative edge-finding (where n is the number of tasks and k is the number of
distinct capacity requirements), as well as a new related filter, timetable edge-finding, with a
complexity of O(n2). We present a sound O(n2) filtering algorithm for standard cumulative
edge-finding, orthogonal to the work of Vilı́m; we also show how this algorithm’s filter-
ing may be improved by incorporating some reasoning from extended edge-finding, with
no increase in complexity. The complexity of the new algorithm does not strictly dominate
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previous edge-finders for small k, and it sometimes requires more iterations to reach the
same fixpoint; nevertheless, results from Project Scheduling Problem Library benchmarks
show that in practice this algorithm consistently outperforms earlier edge-finding filters, and
remains competitive with timetable edge-finding, despite the latter algorithm’s generally
stronger filtering.

Keywords Constraint-based scheduling · Edge-finding · Global constraints ·
Cumulative resource · Task intervals

1 Introduction

In the cumulative scheduling problem (CuSP), a finite set of tasks or activities must be
scheduled on a resource of limited capacity. Each task requires a fixed and constant amount
of the resource, and takes a fixed amount of time to complete. Each task has an earliest
allowable start time, or release date, and a latest allowable completion time, or deadline. A
CuSP instance is solved by determining a start time for each task, so that both the time and
resource constraints are satisfied. Task scheduling is non-preemptive; that is, once a task
is started, it is processed without interruption. The CuSP may be viewed as a relaxation of
the resource-constrained project scheduling problem (RCPSP), a more general problem in
which tasks may require several resources, and in which valid start times are constrained by
an acyclic network of precedence constraints among the tasks. RCPSP solutions are further
constrained to have a makespan (i.e., the time at which all tasks are completed) less than
some fixed value, often called the horizon.

In constraint programming, a CuSP instance is often modeled with a specialized global
constraint, CUMULATIVE [1]. CuSP is an NP-Complete problem [2], so propagation of
CUMULATIVE is normally based on one or more relaxations of the problem, for which poly-
nomial time filtering algorithms are known. Perhaps the most popular of these filtering
algorithms is edge-finding. Given a set of tasks, T, edge-finding reduces the range of possi-
ble start times for each task i ∈ T by deducing new ordering relations between i and some
set of tasks � ⊂ T , such that i �∈ �. Tightening the release date (i.e., the lower bound of
possible start times) for i requires locating a set � such that if any task in � ends later than
the end time of i, then the resulting schedule will be infeasible. For example, Fig. 1 shows
a CuSP of 6 tasks sharing a resource of capacity 3. Task F has a release date of rF = 0, yet
it is apparent that there is no feasible schedule in which F has a start time of 0, as the set of
tasks � = {A,B,C,D,E} require too much of the available capacity between the times 1
and 8 for F to be scheduled within that time frame as well. In fact, in any feasible schedule,
all tasks in � must end before the end of F.

Based on this previously unknown precedence, a new lower bound for the start time
of F may be deduced. It may be that more than one set could be selected for �; in this
case, the � that justifies the maximum new lower bound should be located. Continuing our
example, we see that the set {B,E} ⊂ � also consists of tasks which must end before
the end of F in all schedules; however, knowing that � precedes F only justifies a new
release date of r ′F = 4, while the knowledge that {B,E} precedes F leads to a stronger
release date of r ′′F = 6. This process is repeated for the deadline (i.e., the upper bound
of possible end times, directly related to the upper bound of possible start times by the
fixed duration of the task) of each task. For the remainder of this paper we focus solely
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Fig. 1 A scheduling problem of 6 tasks sharing a resource of capacity C = 3

on the algorithm for updating release dates, as the deadline algorithm is symmetric and
easily derived.

1.1 Related work

For disjunctive scheduling (i.e., scheduling on a resource that allows the execution of only
one task at a time) on a set of n tasks, there are well-known O(n logn) edge-finding
algorithms [4, 16]. In cumulative scheduling, where tasks may have different capacity
requirements and multiple tasks may execute at the same time, edge-finding is more chal-
lenging. In early work, Nuijten [11] gave a cumulative edge-finding algorithm of O(kn2)

complexity, where k is the number of distinct capacity requirements among the tasks;
Baptiste et al. [3] subsequently refined the complexity to O(n2). In both of these algorithms,
the � that justified the maximal update to the release date of i was identified by considering
the amount of the resource not used by the tasks of � during the interval of time those tasks
would be scheduled. This quantity is often called the slack of a set of tasks; the idea of these
algorithms was that the task set with the minimum slack would yield the maximum update.

Mercier and Van Hentenryck [10] demonstrated that the relationship between minimum
slack and maximum update, while correct for disjunctive edge-finding, does not always
hold for cumulative edge finding. The previous algorithms, while correct in the sense that
they did not perform any unwarranted pruning, were shown to be incomplete: they failed to
deduce some of the pruning justified by the edge-finding rule. Using a dynamic program-
ming approach, they provide a complete algorithm, at the cost of increasing the complexity
to O(kn2).

The next major breakthrough in complexity came from Vilı́m [17]. In prior work, he had
used a customized data structure, called a �-tree, to perform disjunctive edge-finding in
O(n logn) time [16]. Vilı́m [17] generalizes that work to the cumulative case, resulting in an
O(kn logn) algorithm for cumulative edge-finding. More recently, [19] provides an O(n2)

filtering algorithm for a new relaxation of CUMULATIVE called timetable edge-finding. This
relaxation is stronger (although not strictly stronger) than edge-finding; however, the filter-
ing algorithm does not always make all the pruning deductions justified by the relaxation,
leading to a higher complexity in those instances.

1.2 Contribution

In this paper, we present an O(n2) cumulative edge-finding algorithm, orthogonal to the
approach in [19]. Our algorithm is motivated by the observation that the minimum slack
approach of [3, 11] is correct in many cases. For a given task i, there exists some set of
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tasks � that would justify a stronger update to the release date of i than any other set; if the
earliest release date of any task in � is less than or equal to the release date of i, then �

will have a lower slack than any other such task set (see Theorem 2). For task sets where
all tasks in � have a release date greater then the release date of i, instead of slack we
consider density: intuitively, the density is the average resource usage of the tasks over the
time interval. We show that if any of these task sets would justify an update to the bound
of i, then the set with the maximum density will also justify an update (also Theorem 2).
Similar to the algorithm in [19], in the latter case it is possible that the update made in the
first iteration of our algorithm is not the strongest possible update; however, the strongest
update is guaranteed to be found on subsequent iterations, and we argue that in practice the
overall effect on the complexity of the algorithm is minimal (see Section 7).

The paper proceeds as follows. Section 2 defines the cumulative scheduling problem,
and the notations used in the paper. Section 3 defines the standard edge finding rules, and
Section 4 provides dominance properties of these rules. Section 5 presents the new edge-
finding algorithm and a proof of its correctness is given in Section 6. Section 7 discusses the
overall complexity of the algorithm. Section 8 describes further improvement by incorpo-
rating some ideas from the extended edge-finding. Section 9 compares this algorithm with
related edge-finding algorithms. Finally, in Section 10, the performance of this new algo-
rithm is studied on benchmarks from the Project Scheduling Problem Library (PSPLib [12]
and Baptiste and Le Pape BL set [2]).

A preliminary version of this paper appeared in the proceedings of CP 2011 [8]. Here
we extend the presentation as follows: (i) several proofs have been expanded and clarified,
(ii) several additional examples have been provided, (iii) the filtering power of the algorithm
is enhanced by incorporating some filtering of the extended edge-finding rule, (iv) more
complete experimental results are provided, and (v) we make a more explicit comparison
with the timetable edge-finding algorithm [19], including a demonstration that this new rule
does not subsume the traditional edge-finding rule.

2 Cumulative scheduling problem

Definition 1 (CuSP) A Cumulative Scheduling Problem (CuSP) is defined by a set T of
tasks to be performed on a resource of capacity C. Each task i ∈ T must be executed without
interruption over pi units of time between an earliest start time ri (release date) and a latest
end time di (deadline). Moreover, each task requires a constant amount of resource ci . All
times are assumed to be integers. A solution of a CuSP is a schedule that assigns a starting
time si to each task i such that:

∀i ∈ T : ri ≤ si ≤ si + pi ≤ di (1)

∀τ :
∑

i∈T, si≤τ<si+pi

ci ≤ C (2)

The inequalities in (1) ensure that each task is assigned a feasible start and end time, while
(2) enforces the resource constraint. An example of a CuSP is given in Fig. 1.

We define the energy of a task i as ei = ci · pi . This notation, along with that of earliest
start and latest completion time, may be extended to sets of tasks as follows:

r� = min
j∈� rj , d� = max

j∈� dj , e� =
∑

j∈�
ej (3)
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where � is a non-empty set of tasks.
By convention, if � is the empty set, r� = +∞, d� = −∞, and e� = 0. Throughout the

paper, we assume that for any task i ∈ T , ri + pi ≤ di and ci ≤ C, otherwise the problem
has no solution. We let n = |T | denote the number of tasks, and k = |{ci, i ∈ T }| denote
the number of distinct capacity requirements.

Clearly, if there exists a set of tasks � ⊆ T which cannot be scheduled in the window
from r� to d� without exceeding the capacity, then the CuSP has no feasible solution.
Overload checking algorithms typically enforce the following relaxation of this feasibility
condition, which may be computed in O(n logn) time [18, 20]:

Definition 2 (E-Feasibility) [10] A problem is E-feasible if ∀� ⊆ T , � �= ∅
C(d� − r�) ≥ e� . (4)

Clearly a CuSP that fails the E-feasibility condition cannot have a feasible solution. In
sequel, we consider only E-feasible CuSPs.

3 The edge-finding rule

The main idea of edge-finding is to identify a set of tasks � ⊂ T and a task i /∈ � such that,
in any solution, all the tasks in � end before the end of i; following [17], we denote this
relationship �� i. Once an appropriate � and i have been located, the earliest start time of
i can be adjusted using the following rule:

�� i =⇒ ri ≥ r� +
⌈

1

ci
rest(�, ci)

⌉
(5)

for all � ⊆ � such that rest(�, ci) > 0, where

rest (�, ci) =
{
e� − (C − ci )(d� − r�) if � �= ∅
0 otherwise

. (6)

The condition rest(�, ci) > 0 states that the total energy e� that must be scheduled in the
window [r�, d�) is strictly larger than the energy that could be scheduled without making
any start time of i in that window infeasible. The proof of these results can be found in
[3, 11].

It remains to define what tasks and sets of tasks satisfy the condition �� i. Proposition 1
provides conditions under which all tasks of a set � of an E-feasible CuSP end before the
end of a task i.

Proposition 1 Let � be a set of tasks and let i /∈ � be a task of an E-feasible CuSP of
capacity C.

e�∪{i} > C
(
d� − r�∪{i}

) ⇒ �� i , (EF)

ri + pi ≥ d� ⇒ �� i . (EF1)

Proof (EF) is the traditional edge-finding rule; proof can be found in [3, 11]. The addition
of (EF1), proposed in [17], strengthens the edge-finding rule; the proof follows trivially
from the fact that ri + pi ≥ d� implies that task i ends after all tasks in the set �.

Example 1 In the example shown in Fig. 1, the rule (EF) correctly detects �� F for � =
{A,B,C,D,E}. Using the set � = � in formula (5), shows that the release date of F
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may be updated to 5; however, allowing � = {B,E} instead yields an updated bound of
6. A value of � = {B,E} would not meet the edge-finding condition in (EF); the set
{A,B,C,D,E} is needed to detect the precedence condition.

Example 2 Figure 2 illustrates the purpose of rule (EF1). Task I cannot end before rI+pI =
5; since d{G,H } = 4, clearly {G,H } must end before the end of I in any feasible schedule.
Due to (5), {G,H } � I implies that rI can be updated from 0 to 3; however, (EF) fails to
detect {G,H }� I . The rule (EF1), on the other hand, leads to the correct updating of rI .

Combining (EF) and (EF1) with (5) gives us a formal definition of an edge-finding
algorithm as it is studied in [8, 17]:

Definition 3 (Specification of a complete edge-finding algorithm) An edge-finding algo-
rithm receives as input an E-feasible CuSP, and produces as output a vector of updated lower
bounds for the release times of the tasks 〈LB1, . . . , LBn〉, where:

LBi = max

(
ri, max

�⊆T \{i}|α(�,i)
max

�⊆�|rest(�,ci )>0
r� +

⌈
1

ci
rest(�, ci)

⌉)

(7)
with

α(�, i)
def= (

C
(
d� − r�∪{i}

)
< e�∪{i}

) ∨ (ri + pi ≥ d�) (8)

and

rest(�, ci) =
{
e� − (C − ci) (d� − r�) if � �= ∅
0 otherwise

(9)

4 Dominance properties of the rules

Clearly an edge-finder cannot efficiently consider all sets � ⊆ � ⊂ T to update a task i. In
order to reduce the number of sets which must be considered, we first consider the following
definition:

Definition 4 (Task Intervals) (After [5]) Let L,U ∈ T . The task interval �L,U is the set
of tasks

�L,U = {
j ∈ T | rL ≤ rj ∧ dj ≤ dU

}
. (10)

Fig. 2 Three tasks to be scheduled on a resource of capacity C = 3
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It is demonstrated in [10] that an edge-finder that only considers sets � ⊆ T and � ⊆ �

which are also task intervals can be complete. Furthermore, we can reduce the number of
intervals that must be checked according to the following propositions:

Proposition 2 (After [10]) Let i be a task and �, � be two task sets of an E-feasible CuSP
with � ⊆ �. If the edge-finding rule (EF) applied to task i with pair (�,�) allows to
update the earliest start time of i then

(i) there exists four tasks L, U, �, u such that rL ≤ r� < du ≤ dU < di ∧ rL ≤ ri
(ii) the edge-finding rule (EF) applied to task i with the pair

(
�L,U ,��,u

)
allows at least

the same update of the earliest start time of task i.

Proposition 2 only covers edge finding with the rule (EF); we now extend this dominance
property to additionally cover the rule (EF1):

Proposition 3 Let i be a task and �, � be two task sets of an E-feasible CuSP with � ⊆ �.
If the edge-finding rule (EF1) applied to task i with pair (�,�) allows to update the earliest
start time of i then

(i) there exists four tasks L, U, �, u such that rL ≤ r� < du ≤ dU < di
(ii) the edge-finding rule (EF1) applied to task i with the pair

(
�L,U,��,u

)
allows at least

the same update of the earliest start time of task i.

Proof The sets � and � are not empty since � ⊆ � and rest (�, ci) > 0. Therefore, there
exists four tasks L,U, �, u ∈ T , such that rL = r�, dU = d�, r� = r� and du = d� (if
there are more tasks with this property, we choose arbitrarily). We have rL ≤ r� < du ≤ dU
since � ⊆ � and � �= ∅. If di ≤ d� then ri+pi = di (since ri+pi ≤ di and ri+pi ≥ d�),
in which case the bounds of i cannot be updated, contradicting the assumption that (�,�)

updates i; therefore di > d�. The inclusion � ⊆ ��,u implies that rest (��,u, ci) > 0
(since rest (�, ci) > 0) and

r� + 1

ci
rest

(
��,u, ci

) ≥ r� + 1

ci
rest (�, ci) . (11)

Therefore, the rule (EF1) applied to task i with the pair (�L,U,��,u) allows at least the
same update of the earliest start time of task i as (�,�) would.

5 Edge-finding with slack and density

In this section, we present a quadratic edge-finding algorithm that reaches the same fixpoint
as the well known edge-finding algorithm proposed by Vilı́m [17]. Let � be a set of tasks
and i be a task not belong in �. The main idea of the algorithm is that once the relation
�� i is discovered, then it is not necessary to iterate over all subsets � of �. It is enough
to consider only (1) the subset with minimum slack and r� ≤ ri and (2) the subset with
maximum density and r� > ri . If ri can be improved, then one of these two subsets will
always justify an update, although not necessarily the strongest update on the first iteration.
Further iterations of the algorithm must locate the strongest update, however. Proof of these
claims follow in Sections 6 and 7.
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5.1 Minimum slack

We start by considering the incomplete O(n2) edge-finding algorithm [3, Algorithm 8]. In
this algorithm, as in [11], the set � for the inner maximization of Definition 3 is identified
by locating the task intervals with the minimum slack, as given by the following definitions.

Definition 5 Let � be a task set of an E-feasible CuSP. The slack of the task set �, denoted
SL�, is given by:

SL� = C(d� − r�)− e�.

Definition 6 Let i and U be two tasks of an E-feasible CuSP. τ(U, i) is a task depending
on the tasks U and i, where rτ(U,i) ≤ ri and that defines the task interval with the minimum
slack: for all L ∈ T such that rL ≤ ri ,

C(dU − rτ(U,i))− e�τ(U,i),U
≤ C(dU − rL)− e�L,U

.

For a given task i, the algorithm detects ��i by computing SL� < ei for all � = �τ(U,i),U

such that dU < di and rτ(U,i) ≤ ri . Furthermore, if the interval ��,u that yields the strongest
update to ri is such that r� ≤ ri , then ��,u will be the interval of minimum slack. This
is the situation shown in Fig. 3. Rather than determine r�, the new algorithm computes a
potential update to ri using rest(�, ci). However, if the strongest updating interval ��,u

has ri < r�, then ��,u need not be the interval of minimum slack. As shown in [10], the
cumulative edge-finding algorithm in [3] is incomplete because it fails to consider all of the
task intervals ��,u ⊆ � that could result in the strongest update.

5.2 Maximum density

Since slack does not yield a reliable determination of the correct ��,u whenever ri < r�, the
task intervals in this range must be evaluated by another criteria. For this case, we introduce
the notion of interval density. Intuitively, slack is the amount of the resource not used by
the tasks in ��,u in the time from r� to du; in contrast, density is the average resource
requirement over that same time span.

Definition 7 Let � be a task set of an E-feasible CuSP. The density of the task set �,
denoted Dens�, is given by:

Dens� = e�

d� − r�
.

Fig. 3 Three tasks to be scheduled on a resource of capacity C = 3
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Where the most interesting task intervals previously were those with the minimum slack,
here we are interested in the interval with the maximum density.

Definition 8 Let i, u be two tasks of an E-feasible CuSP. ρ(u, i) is a task depending on the
tasks u and i, where ri < rρ(u,i) and that defines the task interval with the maximum density:
for all tasks � ∈ T such that ri < r�,

e��,u

du − r�
≤ e�ρ(u,i),u

du − rρ(u,i)
.

If the strongest updating interval ��,u has ri < r�, then it is always possible to strengthen
ri by considering the interval �ρ(u,i),u; proof of this statement follows in Theorem 2. The
update calculated based on �ρ(u,i),u may not be as strong as the update that would be
justified by ��,u, although in most cases these two intervals will be the same; however,
when �ρ(u,i),u �= ��,u it is always possible to calculate a new bound for ri , and ��,u and
�ρ(u,i),u are guaranteed to converge on a subsequent iteration (see Theorem 3). For a full
discussion, see Section 7.

Example 3 Consider the scheduling problem shown in Fig. 1. We can update rF using a
task interval of maximum density, �ρ(u,i),u where du ≤ d�. For u ∈ {A,C,D}, the interval
of maximum density is �A,D = {A,B,C,D,E}, which has a density of 18/7 ≈ 2.6.



252 Constraints (2014) 19:243–269

Using (5) with �A,D shows that we can strengthen the release date of F to rF ≥ 5. For
u ∈ {B,E}, however, the interval of maximum density is �B,E = {B,E}, which has a
density of 5/2 = 2.5. Using (5) with �B,E yields a new release date for F of rF ≥ 6, which
is in fact the strongest update we can make.

Algorithm 1 computes the intervals of minimum slack and maximum density for all
tasks i ∈ T , in O(n2) time. The outer loop (line 3) selects, in the order of non-decreasing
deadlines, the tasks U ∈ T which form the possible upper bounds of the task intervals.
The next step is to locate the lower bound � for each task i, such that ��,U yields the
strongest correct update. As � is unknown, either the maximum density interval or the mini-
mum slack interval might yield a better update. Consequently, the algorithm calculates both,
as follows:

1. The first inner loop (line 5) selects the tasks i ∈ T that comprise the possible lower
bounds for the task intervals, in non-increasing order by release date. If di ≤ dU ,
then the energy and density of �i,U are calculated; if the new density is higher than
�ρ(U,i),U , ρ(U, i) becomes i. If di > dU , then instead the potential update Dupdi to
the release date of i is calculated, based on the current ρ(U, i). This potential update
is stored only if it is greater than the previous potential update value calculated for this
task using the maximum density.

2. The second inner loop (line 16) selects i in non-decreasing order by release date.
The energies stored in the previous loop are used to compute the slack of the cur-
rent interval �i,U . If the slack is lower than that of �τ(U,i),U , τ(U, i) becomes i.
For any task with a deadline greater than dU a new potential update SLupdi for the
task’s release date is calculated using τ(U, i) and it is checked to see if it meets
either edge-finding criteria (EF) or (EF1). This potential update is stored only if it
is greater than the previous potential update value calculated for this task using the
minimum slack.

At the next iteration of the outer loop, ρ(U, i) and τ(U, i) are re-initialized.

6 Proof of correctness

Before showing that Algorithm 1 is correct, let us prove some properties of its inner loops.

Proposition 4 For each task i, Algorithm 1 calculates a potential update Dupdi to ri based
on the task interval of maximum density such that

Dupdi = max
U : dU < di

rest(�ρ(U,i),U , ci) > 0

(
rρ(U,i) +

⌈
rest(�ρ(U,i),U , ci) · 1

ci

⌉)
. (12)

Proof Let i ∈ T be any task. Each choice of U ∈ T in the outer loop (line 3) starts with the
values rρ = −∞ and maxEnergy = 0. The inner loop at line 5 iterates through all tasks
i′ ∈ T (T sorted in non-increasing order of release date). For any task i′ ∈ T such that ri ′ ≥
ri , if di ′ ≤ dU , then i′ ∈ �i ′,U , so ei ′ is added to Energy (line 7). Hence Energy = e�i′,U
at each iteration. The test on line 8 ensures that rρ and maxEnergy = e�ρ,U

are updated
to reflect ρ(U, i) for the current task interval �i ′,U . Therefore, at the ith iteration of the
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inner loop, if di > dU then line 11 computes rest(i, U) = rest(�ρ(U,i),U , ci ). The potential
update value is computed on line 13:

Dupd ′i =
{
rρ +

⌈
rest(i, U) · 1

ci

⌉
if rest(i, U) > 0

−∞ otherwise.
(13)

Note that on line 13, Dupdi only gets the new value from (13) if Dupd ′i is larger than the
previous value of Dupdi . Since the outer loop selects the task U in non-decreasing order by
dU , we have:

Dupdi = max
U : dU < di

rest(i, U) > 0

rρ +
⌈

rest(i, U) · 1

ci

⌉
. (14)

Hence formula (12) holds and the proposition is correct.

Proposition 5 For each task i, Algorithm 1 calculates a potential update SLupdi to ri
based on the task interval of minimum slack such that

SLupdi = max
U : dU < di
rτ(U,i) ≤ dU

rest(�τ(U,i),U , ci) > 0

(
rτ(U,i) +

⌈
rest(�τ(U,i),U , ci ) · 1

ci

⌉)
. (15)

Proof Let i ∈ T be any task. Each choice of U in the outer loop (line 3) starts with the
values rτ = dU and minSL = +∞ (line 15). The inner loop at line 16 iterates through
all tasks i′ ∈ T (T sorted in non-decreasing order of release dates). For every task i′ ∈ T ,
e�i′,U has already been computed in the first loop and stored as Ei ′ (line 14); this is used
to compute the slack of �i ′,U . If SL�i′,U < minSL, the values rτ = ri ′ and minSL =
C(dU − ri ′) − e�i′,U are updated to reflect τ(U, i) for the current task interval �i ′,U . At
the ith iteration, if di > dU , then line 20 computes rest ′(i, U) = rest(�τ(U,i),U , ci). The
potential update value is computed on line 22:

SLupd ′i =
{
rτ +

⌈
rest′(i, U) · 1

ci

⌉
if rτ ≤ dU ∧ rest′(i, U) > 0

−∞ otherwise .
(16)

Note that on line 22, SLupdi only gets the new value from (16) if SLupd ′i is larger than the
previous value of SLupdi . Since the outer loop selects the task U in non-decreasing order
by dU we have:

SLupdi = max
U : dU≤di∧rτ≤dU

rest′(i,U)>0

rτ +
⌈

rest′(i, U) · 1

ci

⌉
. (17)

Hence formula (15) holds and the proposition is correct.

We now provide a proof that the edge-finding condition (EF) can be checked using
minimum slack.

Theorem 1 For any task i ∈ T and set of tasks � ⊆ T \ {i},
e�∪{i} > C(d� − r�∪{i}) ∨ ri + pi ≥ d� (18)



254 Constraints (2014) 19:243–269

if and only if
ei > C(dU − rτ(U,i))− e�τ(U,i),U

∨ ri + pi ≥ dU (19)

for some task U ∈ T such that dU < di , dU = d� and τ(U, i) as specified in Definition 6.

Proof Let i ∈ T be any task. It is obvious that (EF1) can be checked by ri + pi ≥ dU for
all tasks U ∈ T with di > d�. In the rest of the proof, we focus on the rule (EF). We start
by demonstrating that (18) implies (19). Assume there exists a subset � ⊆ T \ {i} such that
C(d� − r�∪{i}) < e� + ei . By (EF), � � i. By Proposition 2, there exists a task interval
�L,U � i, such that di > dU and rL ≤ ri . By Definition 6 we have

C(dU − rτ(U,i))− e�τ(U,i),U
≤ C(dU − rL)− e�L,U

(20)

C(dU − rτ(U,i)) ≤ e�τ(U,i),U
+ C(dU − rL)− e�L,U

(21)

Using the fact that
C(dU − rL) < e�L,U

+ ei , (22)

it follows that
C(dU − rτ(U,i)) < e�τ(U,i),U

+ (e�L,U
+ ei )− e�L,U

(23)

C(dU − rτ(U,i)) < e�τ(U,i),U
+ ei . (24)

Now we show that (19) implies (18). Let U ∈ T such that dU < di , and τ(U, i) ∈ T , be
tasks that satisfy (19). By the definition of task interval, di > dU implies i /∈ �τ(U,i),U .
Since rτ(U,i) ≤ ri , we have

e�τ(U,i),U
+ ei > C(dU − rτ(U,i)) ≥ C(d�τ(U,i),U

− r�τ(U,i),U∪{i}). (25)

Hence, (18) is satisfied for � = �τ(U,i),U .

Proposition 5 has shown that τ(U, i) and the minimum slack are correctly computed
by the loop at line 16. Combined with Theorem 1 this justifies the use of minSL − ei <

0 on line 23 to check (EF), where the condition (EF1) is also checked. Thus, for every
task i Algorithm 1 correctly detects the sets � ⊆ T \ {i} for which rules (EF) and (EF1)
demonstrate �� i.

A complete edge-finder would always choose the set � for each task i that yielded
the strongest update to the bound of i. In the following theorem, we demonstrate that our
algorithm has the slightly weaker property of soundness; that is, the algorithm updates the
bounds correctly, but might not always make the strongest adjustment to a bound on the first
iteration.

Theorem 2 For every task i ∈ T , and given the strongest lower bound LBi as specified in
Definition 3, Algorithm 1 computes some lower bound LB ′

i , such that ri < LB ′
i ≤ LBi if

ri < LBi , and LB ′
i = ri if ri = LBi .

Proof Let i ∈ T be any task. LB ′
i is initialized to ri . Because the value LB ′

i is only updated
by max(Dupdi, SLupdi, LB

′
i ) (line 24) after each detection, it follows that LB ′

i ≥ ri . If the
equalityLBi = ri holds, then no detection is found by Algorithm 1, and thusLB ′

i = ri holds
from the loop at line 25. In the rest of the proof, we assume that ri < LBi . By Propositions
2 and 3, there exist two task sets ��,u ⊆ �L,U ⊆ T \{i} such that rL ≤ r� < du ≤ dU < di
and rL ≤ ri , for which the following holds:

α(�L,U, i) ∧ LBi = r��,u
+

⌈
1

ci
rest(��,u, ci )

⌉
. (26)
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As demonstrated by Proposition 5 and Theorem 1, Algorithm 1 correctly detects the edge-
finding condition; it remains only to demonstrate the computation of update values. Since
(EF) and (EF1) use the same inner maximization, the following two cases hold for both
rules:

1. ri < r�: Here we prove that the update can be made using the task interval of maximum
density. According to Definition 8, we have

e��,u

du − r�
≤ e�ρ(u,i),u

du − rρ(u,i)
. (27)

Since (�L,U,��,u) allows the update of the release date of task i, we have
rest(��,u, ci) > 0. Therefore,

e��,u

du − r�
> C − ci . (28)

By relations (27) and (28), it follows that rest(�ρ(u,i),u, ci ) > 0; furthermore, ri <

rρ(u,i) implies

rρ(u,i) +
⌈

1

ci
rest

(
�ρ(u,i),u, ci

)⌉
> ri. (29)

According to Proposition 4, line 13 of Algorithm 1 computes

Dupdi = rρ(u,i) +
⌈

1

ci
rest(�ρ(u,i),u, ci)

⌉
> ri. (30)

Therefore, after the detection condition is fulfilled at line 23, the release date of task i
is updated to

LB ′
i = max(Dupdi, SLupdi) ≥ Dupdi > ri. (31)

2. r� ≤ ri : Here we prove that the update can be made using the task interval of minimal
slack. By Definition 6, we have:

C(du − rτ(u,i))− e�τ(u,i),u
≤ C(du − r�)− e�,u. (32)

Adding −ci(du − rτ(u,i))− ci · rτ(u,i) to the left hand side and −ci(du − r�)− ci · r� to
the right hand side of (32) we get

− ci · rτ(u,i) − rest(�τ(u,i),u, ci ) ≤ −ci · r� − rest(��,u, ci). (33)

Therefore,

rτ(u,i) + 1

ci
rest(�τ(u,i),u, ci) ≥ r� + 1

ci
rest(��,u, ci) (34)

and

rτ(u,i) + 1

ci
rest(�τ(u,i),u, ci ) > ri (35)

since r� + 1
ci

rest(��,u, ci ) > ri. From inequality (35), it follows that

rest(�τ(u,i),u, ci) > 0 (36)

since rτ(u,i) ≤ ri . According to Proposition 5, the value

SLupdi = rτ(u,i) + 1

ci
rest(�τ(u,i),u, ci) > ri (37)

is computed by Algorithm 1 at line 22. Therefore, after the detection condition is
fulfilled at line 23, the updated release date of task i satisfies LB ′

i > ri .

Hence, Algorithm 1 is sound.
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7 Overall complexity

According to Theorem 2, Algorithm 1 will always make some update to ri if an update is
justified by the edge-finding rules, although possibly not always the strongest update. As
there are a finite number of updating sets, Algorithm 1 must reach the same fixpoint as
other correct edge-finding algorithms. Theorem 3 illustrates the circumstances under which
Algorithm 1 finds the strongest update immediately; when those circumstances do not apply,
we show that Algorithm 1 requires at most n− 1 propagations.

Theorem 3 Let i ∈ T be any task of an E-feasible CuSP. Let � ⊆ T \ {i} be a set used
to perform the maximum adjustment of ri by the edge-finding rule. Let ρ(u, i) be a task as
given in Definition 8, applied to i, u ∈ T with du = d�. Then Algorithm 1 performs the
strongest update of ri in the following number of iterations:

1. If r� ≤ ri , then on the first iteration,
2. If ri < r� then:

(a) If ri < r� ≤ rρ(u,i), then also on the first iteration,
(b) If ri < rρ(u,i) < r�, then after at most n− 1 iterations.

Proof Given i ∈ T , let � ⊆ T \ {i} be a task set used to perform the maximum adjustment
of ri by the edge-finding rule. Let ρ(u, i) be the task of Definition 8 applied to i and u ∈ T

with du = d�.

1. Assume r� ≤ ri . By Propositions 1 and 2, and the proof of the second item of
Theorem 2, formula (34) holds. By Proposition 5, when Algorithm 1 considers u in the
outer loop and i in the second inner loop, it sets

Dupdi = rτ(u,i) +
⌈

1

ci
rest(�τ(u,i),u, ci)

⌉
≥ r� +

⌈
1

ci
rest(�, ci)

⌉
. (38)

As the adjustment value of � is maximal, ri is updated to r� +
⌈

1
ci

rest(�, ci)
⌉

.

2. Assume ri < r�. We analyze two subcases:

(a) ri < r� ≤ rρ(u,i): According to definition of task ρ(u, i), we have

e�

d� − r�
≤ e�ρ(u,i),u

du − rρ(u,i)
. (39)

Removing
e�ρ(u,i),u

d�−r�
from each side of (39) and multiplying each side by (d� − r�)

(which is positive), we get

e� − e�ρ(u,i),u
≤ e�ρ(u,i),u

du − rρ(u,i)
(rρ(u,i) − r�). (40)

As the problem is E-feasible, we have

e�ρ(u,i),u

du − rρ(u,i)
≤ C. (41)

Combining inequalities (40) and (41) gives

Cr� + e� ≤ Crρ(u,i) + e�ρ(u,i),u
. (42)
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Obviously, inequality (42) is equivalent to

r� +
⌈

1

ci
rest(�, ci)

⌉
≤ rρ(u,i) +

⌈
1

ci
rest(�ρ(u,i),u, ci)

⌉
. (43)

Proposition 4 shows that when Algorithm 1 considers u in the outer loop and i in
the first inner loop, it sets

Dupdi = rρ(u,i) +
⌈

1

ci
rest(�ρ(u,i),u, ci)

⌉
≥ r� +

⌈
1

ci
rest(�, ci)

⌉
. (44)

As the adjustment value of � is maximal, ri is updated to r� +
⌈

1
ci

rest(�, ci)
⌉

.

(b) ri < rρ(u,i) < r�: Let

�k
≤i := {j, j ∈T ∧ rj ≤ ri ∧ dj ≤d�}

�k
>i := {j, j ∈T ∧ rj >ri ∧ dj ≤d�} (45)

be sets of tasks defined at the kth iteration of Algorithm 1. If the maximum
adjustment is not found after this iteration, then at least one task is moved
from �k

>i to �k
≤i . Indeed, if at the kth and k + 1th iteration we have �k

≤i =
�k+1

≤i and �k
>i = �k+1

>i , and the maximum adjustment is not found, then the

tasks τ(u, i) ∈ �k
≤i = �k+1

≤i (Definition 6) and ρ(u, i) ∈ �k
>i = �k+1

>i

(Definition 8) are the same for both iterations. Therefore, at the k+1th iteration, no
new adjustment is found, yet the maximum adjustment of the release date of task i
is not reached, contradicting the soundness of Algorithm 1. Hence, the maximum

adjustment of the release date of task i is reached after at most
∣∣∣�1

>i

∣∣∣ ≤ n − 1

iterations.

Example 4 Figure 4 illustrates case 2(b) of the proof of Theorem 3. The application of the
edge-finding rule to task I and sets � = {A,B,D}, � = {D} allows the update of rI from
0 to 5, since

e� + eI = 17 > C(d� − r�∪{I }) = 15 and rest(�, cI ) = 1 (46)

together imply

rI = r� +
⌈

1

cI
rest(�, ci)

⌉
= 5. (47)

Fig. 4 An example of four tasks to be scheduled on a resource of capacity C = 3: The first run of Algorithm
1 update rI from 0 to 4 and the second run from 4 to 5 which is the maximum adjustment
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Using Algorithm 1, the relation � � I is detected for U ∈ {A,B,D} in the outer loop
(line 3). We have rρ(U,I) = 1 in the first inner loop (line 5) since �ρ(U,I),A = {A,B,C},
and rτ(U,I) = 0 in the second inner loop (line 16). The first update value based on maximum
density is then DupdI = 4 since rest (�ρ(U,I),U , cI ) = 5, and the second potential update
value based on minimum slack is SLupdI = 2 since rest (�τ(U,I),U , cI ) = 4. So after the
first run of Algorithm 1, rI is updated from 0 to 4. It is only on the second run that the
maximum adjustment will be performed using � = � = {D}.

8 Improvement

The conjunction of the edge-finding rules (EF) and (EF1) is not sufficient to detect all cases
where ��i. As edge-finding is a relatively weak relaxation of the CUMULATIVE constraint,
it is worth considering ways of strengthening it. Some of the missing cases can be detected
by a related rule, often called the extended edge-finding rule [2, 10, 11]; however, the addi-
tional filtering power of extended edge-finding over standard edge-finding is limited, and
comes at the cost of higher complexity (Mercier and Van Hentenryck provide an O(n3)

algorithm [10]). With a slight modification, Algorithm 1 may be extended to partially apply
the extended edge-finding rule, with no increase in complexity.

Intuitively, extended edge-finding attempts to update ri if scheduling a task i as early as
possible (i.e., starting at ri ) would cause an overload in some interval [r�, d�). Consider
the example on Fig. 5: it is clear that I cannot be scheduled starting at 0 in any feasible
schedule, and in fact for � = {A,B} we have �� I . The edge-finding rule (EF), however,
considers tasks A and B over the interval [r�∪{I }, d�), giving a slack of 5. Since eI = 4, it
appears to the edge-finding rule that I can be scheduled in this interval without causing an
overload. Over the interval [r�, d�) the tasks in � have a slack of only 2. If I was scheduled
as early as possible, then the portion of I intersecting this interval would have an energy of
cI (rI + pI − r�) = 3, which is greater than the available slack, and therefore indicates an
overload. The only alternative is to schedule I to end after the end of all tasks in �; in other
words, �� i. This reasoning leads to the extended edge-finding rule.

Proposition 6 Let � be a set of tasks and let i /∈ � be a task of an E-feasible CuSP of
capacity C.

⎛

⎝
ri ≤ r� < ri + pi

∧
e� + ci(ri + pi − r�) > C(d� − r�)

⎞

⎠ =⇒ �� i (EEF)

Fig. 5 Three tasks to be scheduled on a resource of capacity C = 3: rI can be updated from 0 to 3
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Proof The proof proceeds by contradiction. Given an E-feasible CuSP of capacity C,
assume we have a set of tasks � and a task i /∈ � such that

ri ≤ r� < ri + pi (48)

and

e� + ci (ri + pi − r�) > C(d� − r�) (49)

Further, assume the negation of the consequence of (EEF); in other words, assume there
exists a feasible solution with a task j ∈ � such that j does not end before the end of i.
Therefore ri ≤ rj , which implies di ≤ d�. From (48) we see that i cannot end before
r�; therefore, some portion of i must occur within the window from r� to d�. The least
portion of ei that might occur in this window is ci (ri + pi − r�), obtained by scheduling
i as early as possible. By definition, all of e� also must be scheduled between r� and d�;
so the minimum required capacity between r� and d� is e� + ci(ri + pi − r�). By (49),
this required capacity must be greater than C(d� − r�); in other words, the solution is not
feasible, which contradicts our assumption.

Returning to Algorithm 1, we observe that ri < rρ(U,i) is an invariant for the loop at
line 5, as i is selected by non-increasing release date. Therefore, whenever di > dU inside
this loop, whenever

maxEnergy + ci(ri + pi − rρ(U,i)) > C(dU − rρ(U,i)) (50)

we must have �ρ(U,i),U � i. Algorithm 2 extends Algorithm 1 to detect this new condition:
(50) is tested at line 13a and when satisfied line 13b updates the bound of i. Note that the
adjustment in this case uses only the potential update based on density, since �ρ(U,i),U ⊂
�τ(U,i),U .

9 Discussion

9.1 Lazy evaluation

According to Theorem 3, there are some cases in which Algorithm 1 will not make the
strongest update justified by the edge-finding rule in a single iteration, although it will



260 Constraints (2014) 19:243–269

always make this update in a subsequent iteration. We argue that, in practice, the possibility
of our algorithm using multiple iterations to find the strongest bound is not significant.

First, filtering algorithms for edge-finding are not idempotent. The pruning of the start
times for any task is dependent on the upper and lower bounds of the start times of the
remaining tasks. An adjustment to the release date or deadline of any task may result in
additional pruning for the remaining tasks; therefore, additional propagations are always
required after any adjustment, if only to recognize when the propagator is at fixpoint. Sec-
ond, in actual cumulative problems, there are typically a relatively small number of task sets
that could be used to update the start time of a given task, so the number of propagations
should not normally approach the worst case. This claim is borne out by the experimental
observations reported in Section 10.4.

Other recent filtering algorithms for cumulative, such as not-first/not-last [7, 14], also
rely on precisely this sort of “lazy” propagation. It should be noted that this is quite a
different situation from the incomplete filtering of the O(n2) edge-finding algorithm in [3];
in the counter-example provided from [10], some pruning justified by edge-finding is simply
not performed by the earlier algorithms. By Theorem 3, we know that this will never be the
case for our algorithm.

Finally, it should be noted that the only other known O(n2) algorithm for edge-finding,
timetable edge-finding, also depends upon “lazy” propagation [19].

9.2 Timetable edge-finding

The pruning performed by the timetable edge-finding algorithm of [19] is similar to the
pruning justified by the conjunction of (EF) and (EF1), but it is not identical; timetable
edge-finding borrows reasoning from both the timetable and energetic reasoning filtering
algorithms in order to make a stronger deduction than standard edge-finding. Nevertheless,
timetable edge-finding is not strictly stronger than edge-finding, as claimed in [19].

Example 5 (Timetable edge-finding counterexample) Consider the CuSP instance of Fig. 6.
When applying the standard edge-finding rule to this instance, the release date of task I can
be adjusted using the set {A,B,C}. For � = {A,B,C}, we have

e�∪{I } = 16 > C(d� − r�∪{I }) = 15 (51)

Fig. 6 Three tasks to be scheduled on a resource of capacity C = 3
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In other words, the standard edge-finding condition detects �� I . Applying the adjustment
rule with � = {C}, we get rest (�, cI ) = 2, and a new release date of:

r� +
⌈
rest (�, cI )

cI

⌉
= 6. (52)

Applying the timetable edge-finding rule on this instance results in no update to rI . The
problem arises from task C, which has no free part, only a required part. The edge-finding
portion of the timetable edge-finding rule considers only the free parts of the tasks; in this
case, � ⊆ T EF \ {I } = {A,B}, where T EF denotes the set of tasks with non-empty free
parts [19]. Clearly no � satisfying this condition justifies an update to rI , so no adjustment
is performed by the timetable edge-finding rule. Nor is this adjustment performed by the
improved version of the timetable edge-finding rule [19].

The timetable edge finding rule only considers task intervals � where time bounds are
tasks with non-empty free parts. This restriction unfortunately reduces the filtering power of
the rule. In practice, edge-finding and related rules must be combined with some other filter
that reasons on required parts, most often a variant of the timetable filtering algorithm [2].
Since a timetable algorithm would perform the pruning missed by the timetable edge-
finding algorithm in the example in Fig. 6, this observation does not invalidate timetable
edge-finding. Nevertheless, this counterexample clearly demonstrates that the claim of [19]
that timetable edge-finding strictly dominates edge-finding is incorrect. The reasoning on
required parts incorporated into timetable edge-finding strengthens the rule, but it is not
complete, and a timetable filter is still required.

10 Experimental results

Experiments were carried out on two benchmark suites of RCPSP instances. The first,
PSPLib [9, 12], comprises the three data sets J30, J60, and J90 of 30, 60, and 90 tasks,
respectively. Each set was generated with 48 combinations of various parameter settings,
making 10 random instances for each combination. The second suite, BL, has 40 instances
of highly cumulative problems (i.e., problems in which many tasks can run concurrently)
each of 20 or 25 tasks, and is due to Baptiste and Le Pape [2].

All tests were performed on a 3.07 GHz Intel Core i7 processor running OpenSUSE
Linux. The code was implemented in C++, using the Gecode constraint programming
toolkit, version 3.7.3 [6], and compiled with GCC 4.5.1. The Gecode library includes a
propagator for the global constraint CUMULATIVE,

We compared several edge-finding algorithms. We implemented Algorithm 1 from this
paper (QUAD); the dynamic programming, O(kn2) algorithm for standard edge-finding
of [10] (MVH); and the O(n2) timetable edge-finding algorithm from [19] (TTEF). Gecode’s
propagator for the global constraint CUMULATIVE is implemented as a sequence of filter-
ing algorithms for timetabling, overload checking, and edge-finding [13], the latter using
the �-tree algorithm from [17]. For our tests, we kept the two other filters in place, substi-
tuting alternate edge-finding algorithms for the built-in. Wherever possible, Gecode utility
functions were used to implement auxiliary functionality (e.g., task sorting), so as to limit
the effect of uneven optimization among the algorithms.

Each instance from the PSPLib sets includes tasks to be scheduled over 4 resources,
while instances from the BL suite share 3 resources; each resource was modeled with a
single CUMULATIVE constraint. Additionally, as these instances are RCPSP problems, the
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start times of the tasks are constrained by a precedence graph; precedence relations between
pairs of tasks were enforced with linear constraints.

To compare the speed of the four algorithms, we analyzed the time required to find the
optimal solution for each instance, where optimality is defined as the solution with the
minimal makespan. Starting with the provided horizon as an upper bound, we used branch
and bound search to minimize the makespan. Each test was run three times, with the best
result reported; any search taking more than 300 seconds was counted as a failure.

Detailed results are available at http://dx.doi.org/10.6084/m9.figshare.736454.

10.1 CPU time

Table 1 provides a comparison of the four algorithms using a dynamic branching strategy:
variable selection was based on a combination of domain size and the number of constraints
each variable occurred in; values were taken from the smallest range for domains with
multiple ranges, or the lesser half of the domain when only one range existed [13].

QUAD was able to find the optimal solution before timeout for the highest number of
instances in each test suite. Additionally, on the J30 suite QUAD had the best runtime in more
instances than the other algorithms. In J60, J90, and the BL tests, however, TTEF performed
the best in general; furthermore, the performance gap between QUAD and TTEF appears to
widen in favor of TTEF as the proportion of more challenging instances increases.

Comparing the runtimes of QUAD and THETA, we find that QUAD was faster in every
instance. Recall that, while the former is independent of k (the number of distinct capac-
ity requirements among the tasks), THETA has a complexity of O(kn logn), so we would
expect the comparative performance of QUAD to increase along with the value of k. Figure 7
demonstrates exactly that; each instance tested had either 3 (BL) or 4 (J30, J60, J90)
resources, each with a different k-value, so the plot compares runtime with the mean k
over all resources for each instance. Furthermore, the BL and PSPLib suites are plotted
separately, as the two suites were generated with different basic parameters, resulting in
somewhat different performance [2].

Comparing the runtime of TTEF and QUAD is less straightforward. TTEF was faster in a
majority of test cases, but a close examination of the distribution of the speedup, shown in
Fig. 8a, reveals that the runtimes were extremely close in almost all instances. Note that the
distribution of speedups is skewed to the left; in a large number of instances, QUAD had a
slightly faster runtime, but when instead TTEF was faster, it tended to be faster by a larger
margin. Given that these two algorithms have different pruning strengths, and therefore gen-
erate differently shaped search trees, it is possible that in some cases a weaker algorithm will

Table 1 Number of instances in which each algorithm found the optimal solution (solve), did so in the
fastest time (time), and generated the smallest search tree (nodes), using dynamic branching

J30 J60 J90 BL

Solve Time Nodes Solve Time Nodes Solve Time Nodes Solve Time Nodes

MVH 377 1 332 334 1 325 322 1 314 38 0 10

THETA 381 0 333 336 0 325 322 0 314 40 0 12

QUAD 386 250 333 336 117 325 324 61 314 40 15 12

TTEF 378 136 364 327 219 316 317 263 310 39 25 29

http://dx.doi.org/10.6084/m9.figshare.736454
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a b

Fig. 7 Proportional speed up of QUAD over THETA for PSPLib instances, as a function of mean k-value over
all resources in the instance. Box widths are proportional to square-root of number of instances for each k-
value; whisker lengths represent highest/lowest datum within 1.5 times the interquartile range, with outliers
individually represented

happen to lead to a faster solution, especially when dynamic branching is used; the effects
of static branching on the comparative runtime of these algorithms is discussed below.

10.2 Nodes

In the preliminary version of this paper [8], we reported a small number of test instances
in which the node count differed between �-tree and quadratic filtering. Specifically, in
approximately 1 % of all test cases, QUAD resulted in a search tree with 1–2 % fewer nodes
than THETA, seemingly in contradiction of our claim that these two algorithms reach the
same fixpoint. Subsequent investigation revealed that the discrepancy was due to the Gecode
implementation of the �-tree algorithm from [17], which (in versions prior to 3.7.2) missed

Fig. 8 Distribution of proportional speed up of QUAD vs. TTEF, with a dynamic, and b static branching.
The grey portion of each bar represents instances pruned at least once by both algorithms; the white portions
compare all other instances
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a small amount of pruning as a result of issues omitted from [17] (for a complete description,
see [15, Section 3.3.1]). Using Gecode 3.7.3, the node counts for QUAD and THETA are
identical for all test cases, exactly as we would expect for two algorithms that perform the
same pruning. A small difference in node counts between these two algorithms and MVH

was observed, as expected; the portion of the rule we refer to as (EF1), implemented in the
latter two algorithms only, accounts for slightly stronger pruning.

For a direct comparison of the number of nodes generated by QUAD and TTEF, it is most
interesting to focus only on those instances where edge-finding results in some pruning
of domains. To this end, we tested an additional propagator, BASE, which consisted solely
of the two invariant filtering algorithms from our earlier tests (i.e., timetable and overlaod
checking, but no edge-finding algorithm). In Fig. 9, we consider only those instances where
either QUAD or TTEF resulted in a different node count than BASE. Note that, for the sake of
space, we group the PSPLib instances by parameter settings number (1–48), and use a box
and whisker plot to show the distribution of node count differences over the 10 instances in
each group.

For the BL instances, both edge-finding filters introduced stronger pruning for almost all
instances, which resulted in smaller search trees. For PSPLib, not only was the proportion
of instances in which there was additional pruning smaller, but the reduction of nodes in
those instances also tended to be smaller. Also, the generally stronger filtering of TTEF is
in evidence here on the PSPLib instances; in some instances this stronger filtering resulted
in a poorer branching decision, as evidenced by those instances where TTEF led to a larger
search tree than BASE.

Fig. 9 Difference in node counts between QUAD and TTEF as compared to BASE. Only instances where
some difference was observed are reported
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10.3 Static branching

In order to minimize the effect of differing pruning strength on the shape of the search
trees, we also tested the algorithms with static branching, selecting the first unassigned
variable and the smallest value in the domain. Results are summarized in Table 2. For
these tests, the slower MVH was discarded. Given that QUAD and THETA perform identical
filtering, the choice of branching heuristic is insignificant when comparing the perfor-
mance of these two algorithms; hence, our analysis focuses on the difference between
QUAD and TTEF.

With static branching, TTEF generally outperformed QUAD, although differences in per-
formance between the two algorithms were, on the whole, minimized. Table 2 shows that
TTEF was able to solve 6 more instances than QUAD; on the J30 set, QUAD was more often
the fastest algorithm, while on the J60, J90, and BL sets TTEF tended to be faster. On 36
instances of PSPLib and 34 instances of BL, TTEF had a search tree with a lower node count,
while there were no instances for which QUAD had a lower count.

Figure 8b, shows the distribution of the comparative running times of QUAD and TTEF.
Similar to the dynamic branching, the distribution of speedups is skewed, with a peak just
above 1 (representing cases where QUAD was slightly faster than TTEF) and a longer tail to
the left (cases where TTEF was faster by a somewhat larger margin). On the whole, TTEF

appears to be faster, but by a relatively narrow margin—in almost every case, the runtime
of the two algorithms differed by no more than a factor of 2, regardless of the branching
strategy selected.

10.4 Number of propagations

In Section 7 we discuss the possibility that QUAD will in some cases require up to n iterations
to accomplish the same pruning as a single iteration of THETA. In Section 9.1 we argue that,
in practice, additional iterations should be rare.

To test the hypothesis that Algorithm 1 generally makes the strongest edge-finding infer-
ence in the first iteration, we used an instrumented version of the Gecode CUMULATIVE

propagator to observe the number of times the propagator was called for finding the optimal
solution to each instance. Figure 10 summarizes the results. Both QUAD and TTEF required
the same number of propagations as THETA in the vast majority of instances. In the small
portion of cases where a different number of propagations was recorded, the difference was
quite small. In fact, the possibility of earlier stopping for the “lazy” propagators than for
THETA appears, in some instances, to be advantageous, allowing simpler, faster propagators
for the remaining constraints in the problem to calculate the fixpoint without reference to

Table 2 Number of instances in which each algorithm found the optimal solution (solve), did so in the
fastest time (time), and generated the smallest search tree (nodes), using static branching

J30 J60 J90 BL

Solve Time Nodes Solve Time Nodes Solve Time Nodes Solve Time Nodes

THETA 340 0 317 311 0 301 316 0 309 33 0 1

QUAD 345 191 319 312 105 301 316 71 309 35 3 1

TTEF 348 157 343 315 211 308 316 245 314 35 32 35
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Fig. 10 Comparison of propagation count for THETA vs. a QUAD, and b TTEF. Only instances with identical
node counts are reported

the CUMULATIVE propagator, as indicated by the small number of instances where THETA

ultimately required the larger number of propagations.
To test this hypothese more directly, we compared the number of edge-finding iterations

required to reach an individual fix point when using QUAD versus THETA, the latter being
a complete edge-finder (i.e., one which always makes the strongest edge-finding inference
in a single iteration). As edge-finding is not idempotent, any edge-finder will sometimes
require multiple iterations before reaching a fix point. Tests were varied by number of tasks
and by the maximum duration of a single task, while resource capacity and horizon were
fixed; for each combination of parameters, 100,000 random E-feasible instances were gen-
erated. Propagation for a single cumulative constraint was carried out only until the first fix
point was reached. To minimize the influence of the baseline filtering algorithms, the edge-
finding algorithm in each case was run repeatedly until it was unable to further strengthen
the domain. Each individual iteration of the edge-finding filter was counted (i.e., rather than
the number of invocations of the cumulative propagator).

Table 3 Comparison for QUAD versus THETA of the number of iterations required to reach fix point of the
cumulative propagator, on randomly generated domains.

n p ≤ 5 p ≤ 10 p ≤ 15 p ≤ 20

Diff (%) Mean iter (#) Diff (%) Mean iter (#) Diff (%) Mean iter (#) Diff (%) Mean iter (#)

10 2.56 1.04 3.19 1.02 3.34 1.01 3.22 1.02

20 11.67 1.05 11.14 1.03 8.86 1.03 6.59 1.02

30 21.06 1.07 15.98 1.04 9.85 1.04 6.20 1.03

40 29.16 1.09 17.14 1.05 8.68 1.05 5.67 1.05

50 34.53 1.10 15.99 1.07 7.35 1.06 5.13 1.07

All resources had a capacity of 10 and a horizon of 200. For each combination of number of tasks (n) and
maximum duration (p) are shown (i) the percentage of instances where any difference (diff) in the number
of required iterations was observed, and (ii) the average number of iterations (mean iter) by which the two
algorithms differed (excluding identical counts)
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Results may be seen in Table 3. The QUAD algorithm required additional iterations most
frequently when both the maximum duration of the tasks was quite low in comparison to
the horizon, and the number of tasks was high. With a large number of short tasks, there
is a greater chance of encountering an arrangement of tasks satisfying Theorem 3, case
2(b). When tasks are generally longer, and therefore have less flexibility in possible start
times, the incidence of additional iterations drops substantially. This is significant as these
instances are harder in the sense that the start times are more tightly constrained. However,
the most substantial result in Table 3 is the number of additional iterations required by
QUAD in those instances where the number differs from THETA. Those instances almost
exclusively required only a single additional iteration (and never, in our observations, more
than 2 additional iterations). This result is far below the theoretical bound on the number of
iterations from Theorem 3 (i.e., n−1). We conclude that, in practice, the need for additional
edge-finding iterations when using QUAD has only a minimal impact on performance.

a b

Fig. 11 Comparison of runtimes of QUAD and TTEF, versus the invariant filtering algorithms (BASE), using
dynamic branching, sorted by instance. Again, PSPLib instances results are averages over the 10 instances in
each parameter setting, while BL instances are reported individually
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10.5 Effectiveness of Edge-Finding

Finally, we wished to evaluate the overall effectiveness of edge-finding on these two bench-
mark sets. Figure 11 shows runtimes for QUAD and TTEF as a proportion of the runtime for
the invariant filters (BASE) on the same instances. Results indicate that edge-finding is of
limited benefit at best on the tested benchmarks. Runtimes with edge-finding were improved
for several J30 instances, and for almost all BL instances (unsurprisingly, given that the BL
set was specifically designed to showcase the strengths of edge-finding [2]). For the J60 and
J90 instances, QUAD made little, if any, difference. TTEF, on the other hand, did slightly
improve runtimes for a few instances; however, it also resulted in significantly increased
runtimes in a handful of instances. This last fact appears to account for those cases where
QUAD outperformed TTEF on the J60 and J90 instances

11 Conclusion

We have presented an edge-finding filtering algorithm for cumulative scheduling which is
quadratic in the number of tasks, improving on the complexity of known standard edge-
finding algorithms. This algorithm reaches the same fix point as previous algorithms,
possibly after more propagations, although we demonstrate that in practice additional prop-
agations are rarely required. While the complexity of this new algorithm does not strictly
dominate that of Vilı́m’s O(kn log n) algorithm, experimental results on a standard bench-
mark suite demonstrate that our algorithm is substantially faster, even in cases with very low
values of k. We provide a counterexample to the claim that the standard edge-finding rule is
subsumed by the timetable edge finding rule [19], and demonstrate empirically that, while
timetable edge-finding is faster in most cases, it was slower on several benchmark instances.

Future work will focus on finding a complete quadratic edge-finder, a similar algorithm
for extended edge-finding, and investigating the use of �-trees to increase the efficiency of
finding maximum density.
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