
Constraints (2013) 18:434–469
DOI 10.1007/s10601-013-9142-6

APPLICATION

Balancing and scheduling of flexible mixed model
assembly lines

Cemalettin Öztürk · Semra Tunalı · Brahim Hnich ·
M. Arslan Örnek

Published online: 19 February 2013
© Springer Science+Business Media New York 2013

Abstract Mixed model assembly line literature involves two problems: balancing and
model sequencing. The general tendency in current studies is to deal with these
problems in different time frames. However, in today’s competitive market, the
mixed model assembly line balancing problem has been turned into an operational
problem. In this paper, we propose mixed integer programming (MIP) and constraint
programming (CP) models which consider both balancing and model sequencing
within the same formulation along with the optimal schedule of tasks at a station.
Furthermore, we also compare the proposed exact models with decomposition
schemes developed for solving different instances of varying sizes. This is the first
paper in the literature which takes into account the network type precedence dia-
grams and limited buffer capacities between stations. Besides, it is the first study that
CP method is applied to balancing and scheduling of mixed model assembly lines.
Our empirical study shows that the CP approach outperforms the MIP approach as
well as the decomposition schemes.

Keywords Mixed model assembly lines · Balancing · Sequencing · Scheduling ·
Mixed integer programming · Constraint programming · Decomposition

C. Öztürk · M. A. Örnek
Department of Industrial Systems Engineering, İzmir University of Economics,
İzmir, Turkey

S. Tunalı
Department of Business Administration, İzmir University of Economics,
İzmir, Turkey

B. Hnich (B)
Department of Computer Engineering, İzmir University of Economics,
İzmir, Turkey
e-mail: hnich.brahim@gmail.com

Constraints (2013) 18:434–469 435

1 Introduction

Assembly lines are flow-line production systems and consist of serially connected
stations where single or mixed model products are manufactured in large amounts.
A material handling system like conveyor belt is used to transfer the products from
upstream to the downstream stations.

In general, managing a mixed model assembly line involves two dimensions; as-
signment of tasks to stations and the determination of the production order of models
at each station. These two problems have been tackled so far in a sequential manner
under the assumption of stable customer demands. Once the tasks are assigned to
stations, it remains in effect for the upcoming mid-term (i.e., following weeks or
months) and the model sequence only is revised just due to fluctuations changes in
short term customer demands. The manufacturers nowadays are forced to respond
very quickly to changes in the market conditions. Thus, adopting flexible produc-
tion systems may provide many advantages for better competition. Hence, there
is a tendency in assembly line literature to simultaneously consider both problems
in the same time frame by exploiting the advantages of flexible production systems.

In this study, first, a mixed integer programming (MIP) model is developed for
a flexible mixed model assembly line environment which considers task assign-
ment and model sequencing problems within the same formulation along with task
scheduling at stations. Because of the weakness of MIP approach for solving large
scale problems, next, we formulate the same problem as a constraint programming
(CP) model which is another exact method with well known success in combina-
torial optimization problems by utilizing power of artificial intelligence methods.
Moreover, on a wide range of problems including small, medium and large size with
varying difficulty, we compare the performances of the proposed MIP and CP models
to those found by using new and existing decomposition schemes.

The contributions of this study may be summarized as follows:

1. Unlike the current literature that considers chain-type precedence relations and
assumes unlimited buffer capacities between the stations, we consider general
type precedence relations and assume limited buffer capacities between the
stations while exploiting the permutation schedule nature of the problem (i.e.
processing of products at each station in the same order).

2. Besides extending the problem to a more realistic one, we propose a MIP model,
a constraint programming (CP) model and also new decomposition schemes to
solve this extended problem.

3. We provide an extensive survey of the current literature on simultaneous balanc-
ing and scheduling of flexible mixed model assembly lines.

The rest of the paper is structured as follows. In Section 2, we define the problem
with an illustrative example. Section 3, summarizes the related literature about
simultaneous approaches on balancing and scheduling of assembly lines. The MIP
model, the CP model and the new decomposition schemes proposed to solve the
SBSFMMAL problem are presented in Sections 4, 5 and 6, respectively. Robustness
of the developed models and decomposition schemes are discussed in Section 7.
The results of our experimental studies comparing the performance of the proposed
models and decomposition schemes are given in Section 8. Finally, the concluding
remarks and future research directions are provided in Section 9.

436 Constraints (2013) 18:434–469

2 Problem definition

We define the problem environment with an illustrative example. Figure 1 shows the
layout of a serial assembly line with three stations connected via a conveyor belt.

Each station on the assembly line is capable of performing certain assembly tasks.
Each assembly task must be assigned to at least one station where alternative assign-
ments are possible. Hence, there may be more than one station which can perform
the same task. This property allows the assembly line to be flexible, which is a desired
feature that results in the reduction of production (or cycle) time by increasing the
number of eligible stations to perform any assembly task. Furthermore, each station
on the assembly line has a limited working space area (as shown in Table 1) and each
assembly task uses a portion of this available working space. Table 2 lists the working
space requirements for ten assembly tasks on three stations shown in Fig. 1. Note that
the entry such as “–” in Table 2 indicates that station cannot perform a given task.

Each product requires a subset of the assembly tasks. These products are also
referred to as mixed models which are products that generally have similar physical
properties, e.g., TV sets of the same brand with different options. For instance, given
in Table 3 are 5 products to be manufactured on the assembly line of Fig. 1 that
require a subset of these 10 tasks. For example, product 1 requires tasks 1, 2, 3, 4,
6, and 8 to be produced whereas product 4 requires tasks 1, 3, 5, 6, 7, 8, 9, and 10
instead. These two products may be two TV sets with different options.

Throughout this study, we refer to each task t of any product p as a job < t,p > or
simply job j. These jobs are classical operations in assembly line literature. Since we
also focus on the scheduling of assembly operations of mixed models in stations, we
introduce the following job scheduling constraints.

• Each product involves different number of jobs. For instance, product 1 involves
6 jobs whereas product 4 involves 8 jobs.

• Each job must be performed on exactly one station.
• The jobs of any product are not allowed to revisit earlier stations since the

workflow is unidirectional. In other words, backtracking is disallowed.
• Jobs are transferred from one station to another following the precedence

relations given in Table 4. The precedence graphs can be any directed acyclic
graph and not restricted to chains as in Sawik [52, 53].

Note that the illustrative example shown here is mainly based on Sawik [52, 53] with
a modified precedence diagram removing the restriction to chains.

In addition, the processing of any product in any given station cannot finish unless
all jobs of the product currently being processed at that station are completed. Since
we assume limited buffers between stations, a product cannot leave its current station

Fig. 1 Example of an assembly line with three stations

Constraints (2013) 18:434–469 437

Table 1 Total available working space of each station m (in m2) (b m)

Stations (m) 1 2 3

b m 8 10 9

Table 2 Working space
required (amt) for each task t
on each station m (in m2)

Stations (m)
Tasks (t) 1 2 3

1 1 – 1
2 2 – 2
3 3 – 3
4 1 1 –
5 2 2 –
6 3 3 –
7 – 1 1
8 – 2 2
9 – 3 3
10 – 5 5

Table 3 Product-task
requirement matrix

Products (p)
Tasks (t) 1 2 3 4 5

1 · · · ·
2 · · ·
3 · · · ·
4 · · ·
5 · · · ·
6 · · · ·
7 · · · ·
8 · · · ·
9 · · · ·
10 · · · ·

Table 4 Job precedence relations

Products (p) Precedence relations

1 < 1, 1 >→<2,1>; <1,1>→<3,1>; <2,1>→<4,1>; <3,1>→<6,1>;
<4,1>→<8,1>; and <6,1>→<8,1>

2 < 1, 2 >→<2,2>; <1,2>→<4,2>; <2,2>→<5,2>; <4,2>→<6,2>;
<5,2>→<7,2>; <6,2>→<9,2>; <7,2>→<9,2>; and <9,2>→<10,2>;

3 < 2, 3 >→<3,3>; <2,3>→<4,3>; <3,3>→<5,3>; <4,3>→<7,3>;
<5,3>→<8,3>; <7,3>→<8,3>; <8,3>→<9,3>; and <9,3>→<10,3>;

4 < 1, 4 >→<3,4>; <1,4>→<5,4>; <3,4>→<6,4>; <5,4>→<7,4>;
<6,4>→<8,4>; <7,4>→<8,4>; <8,4>→<9,4>; and <9,4>→<10,4>;

5 < 1, 5 >→<3,5>; <1,5>→<5,5>; <3,5>→<6,5>; <5,5>→<7,5>;
<6,5>→<8,5>; <7,5>→<8,5>; <8,5>→<9,5>; and <9,5>→<10,5>;

438 Constraints (2013) 18:434–469

Table 5 Assembly time on
station m for each task t in
minutes

Tasks (t) Stations (m)

1 2 3
1 4 – 4
2 2 – 2
3 2 – 2
4 2 2 –
5 4 4 –
6 2 2 –
7 – 3 3
8 – 5 5
9 – 2 2
10 – 4 4

unless the next station becomes available and it is ready to accept a new product. In
other words, blocking of upstream stations is possible. As stated in Pinedo [48], any
assembly line with positive (but finite) intermediate storages between stages can be
modelled as an assembly line with zero intermediate storage. This follows from the
fact that a storage space capable of containing one product may be regarded as a
station at which the processing times of all jobs are equal to zero. Because of limiting
the number of products in a station at any given time to at most one, the maximum
number of products on the line is equal to the number of stations. Because of limited
buffers, products visit each station in the same order, i.e., product permutation
scheduling. Products move between the stations via an asynchronous conveyor belt.
Once a product is transferred to a station, it can be picked by the operator in that
station or the assembly operations can be performed on the conveyor belt. Upon the
completion of the jobs at that station, the product is loaded to conveyor belt (if it was
unloaded) and is transferred to the next station. Since the conveyor belt is assumed
to be asynchronous, and mixed models generally have similar physical properties,
the unloading/loading times of products from/to conveyor belt and transfer times
between stations are assumed to be negligible. Finally, each job has a processing
time and an earliest completion time as shown in Tables 5 and 6 respectively for our
illustrative example. Note that the processing time of a job on a particular station
is the same as the assembly time of its corresponding task on the same station.
As in previous tables, the entry “–” in Table 5 denote incapability of a station in
processing any job requiring the corresponding task. Furthermore, it is also possible
that a certain task will have different assembly times on different stations (it is not
the case in our illustrative example though).

Table 6 Earliest completion time of each job j in minutes (e j) (see Section 4 for calculations)

Job (j) e j Job (j) e j Job (j) e j Job (j) e j Job (j) e j

1,1 4 4,2 6 4,3 4 5,4 8 5,5 8
2,1 6 5,2 10 5,3 8 6,4 8 6,5 8
3,1 6 6,2 8 7,3 7 7,4 11 7,5 11
4,1 8 7,2 13 8,3 13 8,4 16 8,5 16
6,1 8 9,2 15 9,3 15 9,4 18 9,5 18
8,1 13 10,2 19 10,3 19 10,4 22 10,5 22
1,2 4 2,3 2 1,4 4 1,5 4
2,2 6 3,3 4 3,4 6 3,5 6

Constraints (2013) 18:434–469 439

The decisions to be made to solve this problem are threefold: (1) Job assignment
and scheduling: assign each job of every product to exactly one station and schedule
it, (2) Task assignment: assign each task to at least one station, (3) Product per-
mutation scheduling: find a permutation of products and schedule each product on
every station. The following constraints are taken into consideration in making these
decisions:

• Each station can perform at most one task at any given time;
• The total tooling space required for the tasks assigned to each station must not

exceed the station’s finite work space available;
• If a job that involves task t is assigned to a station m, then task t must be assigned

to station m;
• The processing of a product in a given station cannot finish unless all jobs of that

product currently being processed at that station are completed;
• Since there are limited buffers between stations, a product cannot leave its

current station unless the next station becomes available hence blocking is
possible;

• It is possible for a product to visit a station without having any assigned jobs in
that station. In that case, that station is used as a temporary buffer by that product
to await for the next station. But of course, that station becomes unavailable for
other products during this awaiting period;

• The revisiting of stations (or backward movement of the conveyor belt) is not
allowed;

• The objective function is to minimize the latest completion time of the last job in
the assembly line.

The optimal schedule to our illustrative example is shown in Fig. 2 with 53 minutes
of latest completion time. As seen in Fig. 2, this assembly line is flexible as it allows
the processing of the same task at different stations. For instance, while task 5 is
processed at station 1 for products 3, 4 and 5 (see the jobs <5,3>, <5,4> and <5.5>

in Fig. 2), the same task is processed at station 2 for product 2 (see the job <5,2> in
Fig. 2). The permutation schedule suggests processing the products in the sequence
of 2, 3, 4, 5, and 1 at each station. Also note that, although the jobs of product 1 are
completed at the first station in 42 minutes, the product 1 waits at the first station for
availability of the second station until the 44th minute. In this case station 1 is used as
a buffer for product 1 between 42.nd and 44.th minutes. Note that if a station is used
only as a buffer, it is introduced as a regular station which is not eligible to process
any job.

Fig. 2 Optimal schedule for the illustrative example

440 Constraints (2013) 18:434–469

3 Related works

Balancing and scheduling are among the most important short-term planning issues
in mixed model assembly lines (MMAL). While the balancing problem deals with
how to allocate assembly tasks for a mix of products among the assembly stations
with limited work space and/or limited time so as to balance the station workloads,
the scheduling problem involves determining the detailed sequencing and timing of
all assembly tasks and products or models at each station, so as to maximize the
performance of the line.

In almost all studies on MMAL, balancing and scheduling problems have been
considered separately (see [10–12] for comprehensive surveys for balancing and
scheduling of MMAL literature). The common justification for this decomposition
is the different time frames of balancing and scheduling problems [3]. The bal-
ancing decision has a typical planning horizon of several months, and naturally
the frequently changing model mix is not known within this time frame. Hence,
Scholl [55] and Merengo et al. [40] suggest anticipating the sequencing decisions at
the higher planning level as a part of a hierarchical planning approach. However,
various uncertainties often make readjustments to the predetermined line balance
inevitable. For instance, unforeseeable changes in demand or the availability of new
technologies might continuously necessitate a rebalancing of the line [11]. These
issues become even more important in the design and scheduling of mixed model
assembly lines which involve different models that require different tasks and the
same task may have different processing times for different models. Whenever
the demand structure shifts to another model-mix, it is required to reconsider the
balancing and sequencing decisions. Karabatı and Sayin [30] show that the total
assembly time in each station (or station loads) is a function of model sequence for
mixed model assembly lines and hence, the best task assignments (i.e, line balance)
can be obtained by incorporating model sequence decisions into the line balancing
problem. However, Karabatı and Sayın [30] find the allocation of tasks to stations
which is the best compatible with given model sequence. On the other hand, authors
note that the best approach to the problem is considering balancing and scheduling
problems together. That is why some authors have proposed a simultaneous
consideration of these two problems within the same time frame [29, 32–34, 43, 52–
54].

It should be noted that even if the line is a single model assembly line, how
to sequence the tasks within a station so that workstation time is reduced is an
important issue in designing assembly lines [2, 5, 39, 45, 46, 56, 60]. The common
approach to this issue is to deal with task sequencing problem after the line
balancing problem is solved. The task sequencing problem at each workstation
can be solved as a Traveling Salesman Problem (TSP). But solving the problem
in two separate steps may yield only suboptimal solutions. Hence, an optimal
task assignment plan should also consider the sequencing of tasks simultaneously.
When mixed models are in case, it is possible to reduce the problem into a single
model one (i.e., the assembly time of each task is equal to the weighted sum
of the assembly times over the models in the minimum part set) and applying
the same procedure as explained. However, Karabatı and Sayin (30) show that
this simplification -which is widely used in MMAL literature- provides only sub-
optimal solutions for the original problem. Therefore, the best schedule of the

Constraints (2013) 18:434–469 441

operations of mixed models can be obtained with considering model operations as
distinct jobs.

Table 7 chronologically lists the current literature on simultaneous consideration
of balancing sequencing of assembly lines. As shown in Table 7, while the most widely
studied area is balancing and sequencing of mixed model assembly lines with straight
line layout, the task sequencing problem in mixed model assembly lines has received
less attention.

The further insight gained as a result of surveying the current relevant literature
can be summarized as follows:

• Flexible mixed model assembly lines that allow the assignment of tasks to more
than single dedicated station simultaneously are rarely studied in the literature.

• Previous works on the task sequencing problem have concentrated on single
model lines.

• Only one study [2] has been noted to study task sequencing with comb shape
precedence graph in mixed model assembly lines.

Hence, to fill the perceived research gap in these areas, as indicated in the last line of
Table 7, this study focuses particularly on the design and scheduling of flexible mixed
model assembly lines with the following characteristics:

• Flexible and straight serial lines;
• Mixed models;
• General precedence diagrams;
• Limited buffers;
• Simultaneous consideration of the balancing, model sequencing, and task

scheduling problems.

Simultaneous approach to assembly line balancing and scheduling problems brings
new computational challenges, especially as the problem instance grows. Besides,
using decomposition schemes may result in suboptimal solutions. Therefore, there is
a need for a scalable approach to seek optimality. As an exact method, constraint
programming (CP) has shown its success in combinatorial optimization problems
including scheduling problems [7, 8]. However, there are only few studies which
apply CP to assembly line planning issues.

Bockmayr and Pisaruk [9] make the first attempt on solving simple assembly line
balancing problem (SALBP) with a CP approach. The authors present a combined
integer and CP model for single model lines. In a recent study, Pastor et al. [47] carry
out an extensive computational experiment to compare the performance of CP and
integer programming formulations to solve SALBP. Results of those experiments
show that the CP model formulation performs better and solves problems faster
than the MIP formulation even for large size instances. Valle et al. [59] present
the application of CP to the problem of selecting and sequencing of assembly tasks
so as to minimize assembly time (makespan) of a single product. They use the CP
approach to model And/Or alternative assembly plans for a single product and show
the applicability of the method to real-life problems. In the case of mixed models,
model sequencing becomes a critical issue. The car sequencing problem which is a sub
problem of mixed model sequencing problem has been studied using CP approach
in the literature [15]. However, the car sequencing problem does not require the
assignment of tasks to stations. As a result, to the best of our knowledge, there

442 Constraints (2013) 18:434–469

T
ab

le
7

O
ve

rv
ie

w
of

cu
rr

en
tl

it
er

at
ur

e

P
ap

er
L

in
e

la
yo

ut
M

od
el

P
re

ce
de

nc
e

di
ag

ra
m

P
ro

bl
em

ty
pe

So
lu

ti
on

m
et

ho
do

lo
gy

St
ra

ig
ht

U
-s

ha
pe

F
le

xi
bl

e
Si

ng
le

M
ix

ed
Sp

ec
ia

l
G

en
er

al
B

al
an

ci
ng

Se
qu

en
ci

ng
E

xa
ct

H
eu

ri
st

ic
M

et
a

lin
e

M
od

el
s

T
as

ks
he

ur
is

ti
c

A
gn

et
is

an
d

A
rb

ib
[2

]
•

•
•

•
•

•
W

ilh
el

m
[6

0]
•

•
•

•
•

•
K

im
et

al
.[

32
]

•
•

•
•

•
•

K
im

et
al

.[
33

]
•

•
•

•
•

•
Sa

w
ik

[5
2]

•
•

•
•

•
•

•
Sa

w
ik

[5
3]

•
•

•
•

•
•

•
M

ilt
en

bu
rg

[4
3]

•
•

•
•

•
•

Sa
w

ik
[5

4]
•

•
•

•
•

•
•

Ö
zd

em
ir

et
al

.[
46

]
•

•
•

•
•

•
K

im
et

al
.[

34
]

•
•

•
•

•
•

K
ar

a
[2

9]
•

•
•

•
•

•
Sc

ho
ll

et
al

.[
56

]
•

•
•

•
•

•
A

nd
re

s
et

al
.[

5]
•

•
•

•
•

•
Ö

zc
an

an
d

T
ok

lu
[4

5]
•

•
•

•
•

•
M

ar
ti

no
an

d
P

as
to

r
[3

9]
•

•
•

•
•

•
Sc

ho
ll

et
al

.[
57

]
•

•
•

•
•

•
O

ur
pa

pe
r

•
•

•
•

•
•

•
•

•

Constraints (2013) 18:434–469 443

is no study in the literature which that simultaneously considers balancing, model
sequencing and task scheduling using a CP approach.

4 MIP model development: SBSFMMAL-MIP

In this section, we propose a MIP formulation for our problem. Recall that our
problem consists of three sub problems; (1) the assignment and scheduling of each
job of every product to exactly one station (job assignment and scheduling); (2) the
assignment of each task to at least one station (task assignment); and (3) scheduling
of each product at every station (product permutation scheduling).

In what follows, a MIP model is proposed to tackle each sub problem separately
and then a complete MIP model is proposed by tying these three models through
channeling constraints. The overall objective of the combined model is to minimize
the latest completion time of jobs.

Before we embark on modeling our problem we introduce the following:

Sets and indices:

• i, m ∈ Stations,i, m ∈ Stations = {1, ..., |Stations|};
• t: Assembly tasks, t ∈ Tasks = {1, ..., |Tasks|},
• p, q, v: Products (models), p, q, v ∈ Products = {1, ..., |Products|},
• j, r: Designed (task, product) pairs or jobs indicate which product requires which

task, j, r ∈ Jobs ⊆Tasks x Products where j.task,r.task and j.product,r.product
refer to the corresponding task and product of job j and r respectively,

• Precedence: The set of immediate predecessor-successor pairs of jobs (j, j′)
indicates that job j must be performed before job j′, (j, j′) in Precedence ⊆ Jobs
X Jobs,

• Pred j: The set of all predecessors of job j,
• Stations j : The set of stations capable of performing job j,
• Stationst: The set of stations capable of performing task t. Note that although

Stations j and Stationst can be thought as the same sets, in some circumstances,a
job may not be assigned to a station while its referring task can be assigned and
performed for other products.

• Tasksm: The set of assignable tasks to station m.

Parameters:
• amt: Working space requirement of task t on station m, in m2

• b m: Total working space of station m, in m2

• dmj: Assembly processing duration for job j on station m,in minutes
• e j: Earliest completion time for job j which is calculated iteratively as follows,

e j = max
r∈Pred j

{er} + min
m∈Stations j

{
dmj

}

• M = ∑

j∈Jobs
max

m∈Stations j

{
dmj

}

4.1 Job assignment and scheduling problem

To model the job assignment and scheduling problem, the following decision vari-
ables are introduced:

Xmj =
{

1 i f job j is assigned to station m
0 otherwise

444 Constraints (2013) 18:434–469

Cmj: Completion time of job j on station m

Zmjr =
{

1 i f on station m job j precedes job r
0 otherwise

Cmax: Makespan of the schedule
The model of the job assignment and scheduling problem is as follows:

Minimize Cmax (1)

subject to:
∑

m∈Stations j

Xmj = 1 ∀ j ∈ Jobs (2)

Cmj ≥ e jXmj ∀ j ∈ Jobs,∀m ∈ Stations j (3)

Cmj ≤ MXmj ∀ j ∈ Jobs,∀m ∈ Stations j (4)

Cmj + dmr Xmr ≤ Cmr + M
(
1 − Zmjr

)∀ j, r

∈ Jobs,∀m ∈ Stations j ∩ Stationsr| j.product < r.product (5)

Xmj + Xmr − 2
(
Zmjr + Zmrj

) ≥ 0 ∀ j, r ∈ Jobs,∀m ∈ Stations j

∩ Stationsr| j.product < r.product (6)

Xmj + Xmr ≤ Zmjr + Zmrj + 1 ∀ j, r ∈ Jobs,∀m

∈ Stations j ∩ Stationsr| j.product < r.product (7)

Cmj + dmr Xmr ≤ Cmr + M
(
1 − Zmjr

)∀ j, r ∈ Jobs,∀m

∈ Stations j ∩ Stationsr| (j.product = r.product) ∧ (j.task �= r.task)

(8)

Xmj + Xmr − 2
(
Zmjr + Zmrj

) ≥ 0 ∀ j, r ∈ Jobs,∀m ∈ Stations j

∩ Stationsr| (j.product = r.product) ∧ (j.task �= r.task)

(9)

Xmj + Xmr ≤ Zmjr + Zmrj + 1 ∀ j, r ∈ Jobs,∀m ∈ Stations j

∩ Stationsr| (j.product = r.product) ∧ (j.task �= r.task) (10)

Cmj ≤ Cmax ∀ j ∈ Jobs,∀m ∈ Stations j (11)

Constraints (2013) 18:434–469 445

Cmj ≤ 0, Xmj ≤ 0 ∀ j ∈ Jobs,∀m /∈ Stations j (12)

Cmj′ ≥ Cij + dmj′ − M
(
1 − Xmj′

)∀ (
j, j′

)

∈ Precedence,∀i ∈ Stations j,∀m ∈ Stations j′ (13)

∑

i∈Stations j

iXij ≤ ∑

m∈Stations j′
mXmj′ ∀ (

j, j′
) ∈ Precedence (14)

Cmj, Cmax ≥ 0, Xmj ∈ {0, 1} ∀ j ∈ Jobs,∀m ∈ Stations j (15)

Zmjr ∈ {0, 1} ∀ j, r ∈ Jobs,∀m ∈ Stations (16)

Objective function (1) minimizes the latest completion time. Constraints (2) guaran-
tee that each job is assigned to exactly one station. Constraints (3) give lower bounds
of job completion times. Constraints (4) state if a job is not assigned to one of its
eligible stations, then that job cannot be processed on that station. Constraints (5) are
the disjunctive constraints for the jobs of the different products. Due to constraints
(5) two distinct jobs of different products cannot be processed simultaneously at
the same station. Constraints (6) and (7) enforce that the disjunctive variable Zmjr

orZmrj) takes value 1 if and only if both jobs s and r are assigned to the same
station m. Constraints (5)–(7) are formulated for jobs of different products and
this differentiation is ensured by quantifier j.product < r.product. Once jobs of
different products are scheduled according to their corresponding product indexes
in increasing order (j.product < r.product), since the schedule will be the same,
formulating the same constraints for (j.product < r.product) will be redundant. As
stated in problem definition, precedence diagram of a product may be general -or
network- type, which implies the possibility of processing some jobs of a product
having no precedence relations on the same station. Since stations are disjunctive
resources, a disjunctive constraint must prevent simultaneous processing of such jobs
on disjunctive stations. Hence, constraints (8), (9), and (10) extend the MIP model
given in Sawik [53] to general precedence graphs. Note that constraints (8)–(10)
are similar to (5)–(7), but they, instead, enforce disjunctive constraints among the
jobs of the same product (i.e., corresponding product of distinct jobs j and r is the
same, j.product < r.product). As an example, while constraints (5)–(7) handle the
scheduling of jobs, <5,3> and <1,4> in the first station, constraints (8)–(10) deal with
scheduling all jobs of product 4 in the first station (i.e., jobs <1,4>, <5,4>, <3,4>)
as shown in the Fig. 2 for the illustrative example explained at Section 2. Constraints
(11) give the makespan of the schedule. Constraints (12) tighten the bounds of the
job completion (C’s) and job assignment (X’s) variables for non-eligible stations.
Constraints (13) maintain the precedence restriction for each product among its jobs.
Due to unidirectional flow, constraints (14) avoid the revisiting of a station for each
product. Finally, constraints (15) and (16) give domains of variables.

446 Constraints (2013) 18:434–469

4.2 Task assignment problem

Since the task assignment problem involves assigning each task to at least one eligible
station, the following binary variables Ymt are introduced.

Ymt =
{

1 i f task t is assigned to station m
0 otherwise

The task assignment problem is then modeled as follows:

∑

m∈Stationst

Ymt ≥ 1 ∀t ∈ Tasks (17)

∑

t∈Tasksm

amtYmt ≤ b m ∀m ∈ Stations (18)

Ymt = 0 ∀t ∈ Tasks, ∀m /∈ Stationst (19)

Ymt ∈ {0, 1} ∀m ∈ Stations, ∀t ∈ Tasks (20)

Constraints (17) ensure that each task is assigned to at least one station. Note that
these constraints make assembly line flexible as they allow alternative assignments
of tasks to stations. In other words, a task can be performed in different alternative
stations for different products as explained in Section 2. Constraints (18) ensure that
the working space capacity of each station is not exceeded. Constraints (19) forbid
assignment of tasks to noneligible stations. Finally, constraints (20) give domains of
the task assignment variables.

4.3 Product permutation scheduling problem

To model the product scheduling problem, we define the following decision
variables.

Amp: Arrival time of product p to station m,

Dmp: Departure time of product p from station m

Uvp =
{

1 i f product p is the vth product processed
0 otherwise

}

The product scheduling problem is formulated as follows:

∑

p∈Products
Uvp = 1 ∀v ∈ Products (21)

∑

v∈Products
Uvp = 1 ∀p ∈ Products (22)

Dmp − Amq ≤ M
(
2 − Uv,p − Uv+1,q

)∀p, q, v

∈ Products,∀m ∈ Stations|p �= q, v = 1 (23)

Constraints (2013) 18:434–469 447

Dmp − Amq ≤ M
(
2 − Uv−1,p − Uv,q

)∀p, q, v

∈ Products,∀m ∈ Stations|p �= q, v > 1 (24)

Am+1,p = Dm,p ∀p ∈ Products, ∀m ∈ Stations|m < |Stations| (25)

Am,p = Dm−1,p ∀p ∈ Products, ∀m ∈ Stations|m = |Stations| (26)

Uvp ∈ {0, 1} ∀v, p ∈ Products (27)

Amp, Dmp ≥ 0 ∀p ∈ Products, ∀m ∈ Stations (28)

Constraints (21)–(24) express the permutation schedule constraints which imply that
the sequence of products is the same for all stations. Constraints (21) and (22)
ensure that each product is assigned to exactly one position in the sequence and
vice versa. For any two adjacent products on any station, constraints (23) and (24)
guarantee that the arrival time of the next product is greater than or equal to the
departure time of the previous product. In other words, due to disjunctive nature of
the stations, the departure and arrival of two products do not overlap. Constraints
(25) and (26) ensure that the arrival time of a product to a station is equal to the
departure time from the previous station due to disallowing unlimited intermediate
buffers between stations. Note that, if a buffer of unlimited capacity is considered
between the stations, then the sign “=” in constraints (25) and (26) is changed to
“≥”. Finally, constraints (27) and (28) give variable domains.

4.4 The complete MIP model

The channeling constraints combining the job assignment and scheduling and the
task assignment problems are as follows:

Xmj ≤ Ym, j.task ∀ j ∈ Jobs,∀m ∈ Stations j (29)

Ymt ≤ ∑

j∈Jobs| j.task=t
Xmj ∀m ∈ Stations ∀t ∈ Tasks (30)

Constraints (29) ensure that jobs are assigned to the stations where the required tasks
are performed and logically equivalent to:X j = m ⇒ Ym, j.task = 1 ∀ j ∈ Jobs,∀m ∈
Stations j Constraints (30) give a valid upper bound for task assignment variables and
are formulated to reduce unnecessary alternative solutions. If (30) is not formulated,
a task t would be assigned to a station although none of the jobs that include the task
t were not assigned to that station. In other words, a task can be assigned to a station
if and only if at least one of the jobs that require that task is assigned to that station.

The channeling constraints combining the job assignment and scheduling and the
product permutation scheduling problems are as follows:

Am, j.product ≤ Cmj − dmjXmj + M
(
1 − Xmj

) ∀ j ∈ Jobs,∀m ∈ Stations j (31)

448 Constraints (2013) 18:434–469

Dm, j.product ≥ Cmj ∀ j ∈ Jobs, ∀m ∈ Stations j (32)

Dmp ≥ Amp + ∑

j∈Jobs| j.product=p
dmjXmj ∀p ∈ Products,∀m ∈ Stations (33)

Dmp ≤ Cmax ∀p ∈ Products, ∀m ∈ Stations (34)

Since a product can not leave its current station before its jobs are completed on that
station, the station arrival and departure times of products are made consistent with
the corresponding job activities’ starting and completion times through constraints
(31) and (32). To start assembly jobs for any product in any station, that product
must arrive to that station first, hence constraints (31) enforce that the arrival time
of a product to a station is earlier than the starting times of all its jobs on that station.
A product cannot leave any station before all jobs of the product are completed on
that station, hence constraints (32) ensure that the departure time for each product
from any station is greater than or equal to the completion time of all its jobs
on that station. Recall that j.product refers to the corresponding product of job
j. Constraints (33) channel product arrival and departure times by enforcing that
departure time of any product in any station is later than arrival time of that product
to that station and the total assembly time on that station. Constraints (33) are not
formulated as equality since unlimited buffers are disallowed; a product may stay in
its current station and may wait the availability of the next station. The makespan of
the schedule is enforced to be greater than or equal to all departure times of products
by constraints (34).

The complete model that involves the constraints of each sub-problem as well as
all channeling constraints is shown in Fig. 3.

4.5 Novel features of the MIP model

The MIP model proposed here to solve the SBSFMMAL problem contributes to the
current relevant literature in the following ways:

Fig. 3 The complete MIP
model

Constraints (2013) 18:434–469 449

1. In contrast to the literature, our model can be used for any type of precedence
relations and it determines the schedule of assembly operations at each station
due to constraints (5)–(10).

2. Unlike most of the existing literature that assume unlimited intermediate buffers
between the stations, in this study, a buffer of limited capacity is considered
between the stations. Note that blocking of stations by completed products never
happens with the assumption of unlimited intermediate buffers. However, this
is not realistic and/or common in industry. Depending on the type of material
transfer systems used in the assembly line, the maximum number of products to
store temporarily between the stations changes. If an accumulated conveyor is
used, there can be products between the downstream and the upstream stations
and the number of products between these stations depends on the length of the
line. But if the conveyor is non-accumulated, any product awaits in its current
station for the availability of the downstream station. If unlimited or considerably
large buffer space is available in the facility, after completion of the all assembly
processes, the products may be moved from the assembly line and the station
becomes available for the product in the upstream station. When the downstream
station becomes ready to accept the new products, products in the unlimited
buffer can be loaded back to the transfer line. As explained in constraints (25)
and (26), our model can be used tackle this problem both under the assumption
of limited and also unlimited buffer capacities.

3. Sawik [53] formulates |Products| × (|Products| − 1) × |Tasks|2 × |Stations| con-
straints in the worst case to handle the non-overlapping of products in each
station and omits the permutation scheduling nature of the problem. In fact,
product non-overlapping can be ensured with less number of constraints
by exploiting the permutation scheduling constraints. Indeed, in our model,
the total number of constraints (21)–(24), (31)–(33) that enforce the non-
overlapping of products in each station is equal to 2 × |Products| + |Stations| ×[
|Products|2 × (|Products| − 1) + 2 × |Jobs| + |Products|

]
in the worst case.

For the illustrative example given in Section 2 where |Products| = 5, |Stations| =
3, |Tasks| = 10 and in the worst case, it can be assumed that all products require
all tasks hence |Jobs| = |Tasks| × |Products| = 10 × 5 = 50,(i.e., regarding the
illustrative example it is equal to 38.). Therefore, while the required number of
constraints to model the product non-overlapping constraints is 6000 in Sawik
[53], it is only 625 in our formulation. This result shows that our formulation is
more compact and it may be used to solve larger size problem instances.

5 CP model formulation: SBSFMMAL-CP

Although mathematical programming techniques are successful to solve and find
good solutions for some basic scheduling problems, an increase in the instance size
and adding side constraints prevent using these techniques for larger instances [7].
CP, on the other hand, has been proven to be a powerful technique in effectively
modeling and efficiently solving scheduling problems (see [31, 35, 62]) for recent
applications of CP in scheduling domain). Existing tools such as CHIP [24] with its
“cumulative constraint” [1] or ILOG Solver [27] with its scheduling extension ILOG
Scheduler [27], embed several constraint propagation algorithms for non-preemptive

450 Constraints (2013) 18:434–469

scheduling. For a more general comparison between MIP and CP, the reader may
refer to Hentenryck [22], Brailsfard et al. [13], Puget and Lustig [50], Milano and
Wallace [41], and Focacci et al. [17] for a detailed comparison.

CP models can be represented either using the constructs of the software used for
coding [19, 28] or they can be formalized mathematically [7, 18, 42]. Due to clarity of
the model, the latter approach has been adapted in this paper.

Before giving the details of the CP formulation, we introduce the global con-
straints that we use in our model. A global constraint is a constraint that states
relations between an unfixed numbers of variables. Although it is possible to
formulate the same relations with using traditional constraints, global constraints
help in two ways: expressing the same relations between decision variables more
declaratively and increasing the efficiency of the solution process by exploiting the
structure of the problem to implement specialized filtering algorithms (e.g., [26, 58]).

We use the following global constraints in our CP formulation:

• disjunctive(α): All the activities of the collection α should not overlap with each
other, [6].

• element(I,Table,V): V is equal to the Ith item of Table or in short we use the
notation TableI = V [25].

• alldif ferent(x1,..., xn): values assigned to the variables x1,..., xn must be pairwise
distinct, [51].

In the following, each sub problem and channeling constraints are formulated
separately as in the MIP formulation.

5.1 Job assignment and scheduling problem

The jobs are defined as activities and each activity, δ j, j ∈ Jobs is associated with
three variables start (δ j), end (δ j) and duration (δ j) ranging in {0, . . ., M}. These three
variables represent the start time, the end time and the duration of each activity δ j,
respectively. Each activity δ j has to be processed on a station m ∈ Stations j. Stations
are disjunctive resources which can process at most one job at a time. It should be
noted that since jobs are non-preemptive, duration (δ) is also equal to dmj for assigned
station m ∈ Stations j.

In addition to the activity variables, two types of decision variables are introduced.
The first set of variables is used to model the job station assignment. That is, for
each job j, a variable X j is defined whose domain is the set of stations capable
of performing job j (Stations j), i.e., X j = m if and only if job j is assigned to the
station m. X j variables are a reformulation of binary variables Xmj introduced in
Section 4. The declarative efficiency of CP approach is obvious since it prevents to
use binary decision variables and constraints (2) in MIP model. The second decision
variable is the makespan of the schedule and it is defined as a non-preemptive
activity with variables start (makespan) and end (makespan). Since start(makespan) =
end(makespan), duration (makespan) is set to 0. The model of the job assignment and
scheduling problem is as follows:

Minimize end (makespan) (35)

subject to:

duration
(
δ j

)
=dX j, j ∀ j ∈ Jobs (36)

Constraints (2013) 18:434–469 451

end
(
δ j

) ≥ e j ∀ j ∈ Jobs (37)

disjunctive
(
δ j, ∀ j ∈ Jobs

∣∣X j = m
) ∀m ∈ Stations (38)

end
(
δ j

) ≤ start (makespan) ∀ j ∈ Jobs (39)

end
(
δ j

) ≤ start
(
δ j′

) ∀ (
j, j′

) ∈ Precedence (40)

X j ≤ X j′ ∀ (
j, j′

) ∈ Precedence (41)

The objective function (35) minimizes the makespan as (1) in the MIP model.
Constraints (36) ensure that duration of each job is equal to the processing time of
that job on its assigned station and logically equivalent to X j = m ⇒ duration

(
δ j

) =
dm, j ∀ j ∈ Jobs,∀m ∈ Stations j. However, through the use of the global element
constraint [25], the above constraints are expressed in CP by using variable indexing
in a more compact way and achieving more effective propagation. Constraints
(37) guarantee that each activity’s end time is larger than its earliest completion
time as (3) in the MIP model. Since stations of the assembly line are disjunctive
resources, jobs assigned to the same station cannot be processed simultaneously
(38). We can effectively and efficiently enforce these constraints by employing the
disjunctive global constraint which employs the edge finding algorithm [6]. As Smith
[58] mentions, using disjunctive global constraint avoids to formulate constraints (5)–
(10) in the MIP model. Constraints (39)–(41) are CP formulation of the MIP model
constraints (11), (13) and (14) in a more compact and efficient way. Constraints (39)
enforce that each job is completed before the makespan activity. Constraints (40)
enforce the precedence relations among the jobs of each product. Finally, due to the
unidirectional flow (see Fig. 1), constraints (41) ensure that a product does not revisit
any station by forcing to assign a successor job (j′) to the same or a later station than
its predecessor (j).

5.2 Task assignment problem

Constraints (17)–(20) formulated in the CP model are the same as in the MIP.

5.3 Product permutation scheduling problem

Since products are also associated with stations through their corresponding jobs on
these stations, we introduce an activity for every product on each station. We declare
a two dimensional array of activities for each product-station pairs as βpm,∀p ∈
Products, ∀m ∈ Stations. start(βpm), end(βpm) and duration(βpm) ranging in {0, . . ., M}
to represent the start time, the end time and the duration of each product on each
station, respectively. Defined as disjunctive resources, stations can process at most
one product at any given time. In other words, products occupy the stations for two
reasons, to await for the completion of the corresponding jobs on the same station

452 Constraints (2013) 18:434–469

and/or to await for the availability of the next station. During this time, any other
product cannot use the occupied station. Therefore, the occupation of stations by
products is modeled with disjunctive global constraints.

The last set of variables formulates the product sequence. For each product p and
for each position v, Uv = p if and only if product p is the vth product processed.
These variables are reformulation of binary variables Uvp in the MIP model.

The product permutation scheduling model formulation is given below:

alldi ff erent
(
U1, U2, ..., U|Products|

)
(42)

end
(
βUv ,m

) ≤ start
(
βUv+1,m

) ∀v ∈ Products,∀m ∈ Stations|v = 1 (43)

end
(
βUv−1,m

) ≤ start
(
βUv ,m

) ∀v ∈ Products,∀m ∈ Stations|v > 1 (44)

end
(
βp,m

) = start
(
βp,m+1

) ∀p ∈ Products, ∀m ∈ Stations|m < |Stations| (45)

end
(
βp,m−1

)= start
(
βp,m

) ∀p ∈ Products, ∀m ∈ Stations|m = |Stations| (46)

disjunctive
(
βpm,∀p ∈ Products

) ∀m ∈ Stations (47)

Constraints (42)–(46) are the CP reformulation of the MIP constraints (21)–(26). The
permutation schedule requires a unique position in the product sequence for each
product on the assembly line. Hence, in constraints (42), we use the alldif ferent global
constraint [51] to effectively (with less number of constraints) and efficiently (faster
than other consistency techniques) model the permutation of products on stations.
Constraints (42) are the reformulation of the linear assignment type constraints (21)–
(22) in the MIP model and enforce that products are assigned to different positions
in the product sequence. For any two adjacent products in the product sequence
(Uv, Uv+1) on any station, constraints (43) and (44) guarantee that the arrival time of
the next product (Uv+1) is greater than or equal to the departure time of the previous
product (Uv) and are equivalent to the MIP constraints (23) and (24). Note that
we also employ the element global constraint for variable indexing in constraints
(43) and (44). Due to the assumption of limited buffer space between the stations,
constraints (45) and (46) ensure that each product awaits at the current station until
the next station becomes available as in the MIP constraints (25) and (26). Finally,
due to disjunctive nature of the stations, constraints (47) ensure that any two products
cannot exist on the same station at the same time and a product is launched to a
station after the previous one departs. Since our model has constraints (42)–(46) that
are equivalent to the MIP constraints (21)–(26), constraints (47) can be considered
as redundant. However, they help to reduce the search effort by exploiting the
disjunctive nature of the problem.

Constraints (2013) 18:434–469 453

5.4 The complete CP model

The channeling constraints between CP formulation of the job assignment and
scheduling problem and the task assignment problem are as follows:

YX j, j.task = 1 ∀ j ∈ Jobs (48)

Ymt ≤ ∑

j in Jobs| j.task=t

(
X j = m

)∀m ∈ Stations, ∀t ∈ Tasks (49)

Constraints (48) and (49) are equivalent to the MIP constraints (29) and (30), respec-
tively. In constraints (48) we use the variable indexing feature of CP to express that
jobs are assigned to the stations where the required tasks are performed. Constraints
(49) can be expressed logically as: X j = m ⇒ Ym, j.task = 1 ∀ j ∈ Jobs,∀m ∈ Stations j.

The channeling constraints between the CP formulation of the job assignment and
scheduling problem and the product permutation scheduling problem are as follows:

(
X j = m

) ⇒ (
start

(
β j.product,m

) ≤ start
(
δ j

)) ∀ j ∈ Jobs, ∀m ∈ Stations (50)

(
X j = m

) ⇒ (
end

(
β j.product,m

) ≥ end
(
δ j

)) ∀ j ∈ Jobs,∀m ∈ Stations (51)

duration
(
βpm

)≥
∑

j∈Jobs| j.product=p

(
X j = m

)×duration
(
δ j

)∀p∈Products,∀m∈Stations

(52)

end
(
βpm

) ≤ start (makespan) ∀p ∈ Products,∀m ∈ Stations (53)

Constraints (50)–(53) are equivalent of the MIP constraints (31)–(34), respectively.
The start and end times of product activities are made consistent with the start and
end times of their corresponding job activities’ start and end times in constraints
(50) and (51) as (31) and (32) in the MIP model. Constraints (51) restrict the start
times of the product activities and ensure that the product must launch to the station
before its job activities are started. Constraints (52) ensure that on each station,
ending time of a product activity is greater than or equal to the ending time of each
corresponding job assigned to that station, if any. Otherwise, an upper bound for the
completion time of the product activity is expressed in (53). Finally, the time spent
by any product activity at any station includes the processing time and the waiting
time for availability of the next station. Hence, the duration of each product activity
is greater than or equal to the sum of the durations of the corresponding job activities
on that station as expressed in constraints (52). The complete CP model is shown in
Fig. 4.

6 Decomposition methods

Decomposition methods are widely used to solve large size instances of the SBSFM-
MAL type MIP models in the literature [53] because of their more computational

454 Constraints (2013) 18:434–469

Fig. 4 The complete CP
model

tractability. While decomposition methods are myopic approaches (i.e., does not
seek optimality), simultaneous models aim to find optimal solutions. Therefore,
we call simultaneous models and decomposition methods as exact and inexact
methods respectively. Although decomposition approaches are capable of finding
near optimal solutions in much shorter time than the exact MIP models [53] there
is a need to test the performance of the proposed new exact models with inexact
decomposition methods in terms of solution time and quality.

In this section, we propose decomposition schemes and use them to carry out com-
parative performance evaluation of proposed SBSFMMAL-MIP and SBSFMMAL
-CP models.

Decomposition methods used in this paper are based on a combination of solving
the three sub problems; assignment of tasks and jobs to stations (A), product
permutation scheduling (P) and scheduling of jobs (J).

Classification of the decomposition schemes used in this paper is presented in
Fig. 4. There are three main schemes:

• In the first scheme, each sub problem is solved independently. Sub problem
A is solved using the MIP model and is denoted by A(MIP). Sub problem
P is solved using a dispatching rules based method and is denoted by P(D).
Finally, sub problem J is solved using either a CP or MIP model and is denoted
by J(MOD). Thus, we denote the whole class as A(MIP)+P(D)+J(MOD).
As dispatching rule based methods we use either the shortest processing time
(SPT) method or the longest processing time (LPT). In this class we have four
possible decomposition schemes. For instance, A(MIP)+P(SPT)+J(CP) denotes
the decomposition scheme in which A is solved using MIP, P is solved suing the
SPT dispatching rule and J is solved using CP.

• In the second scheme, A(MIP)+P&J(MOD), sub problems P and J and solved
together in a single optimization model. Since P&J can either be solved using CP
or MIP, we end up with two possible decomposition methods in this class.

• Finally, in the third decomposition scheme P(D)+A&J(MOD), sub problems
A&J are instead combined in a single model. The resulting number of decom-
position methods in this class is four. For instance, P(LPT)+A&J(MIP) solve P
using the dispatching rule LPT and the sub problems A and J using MIP.

Constraints (2013) 18:434–469 455

Note that only the reasoning of method A(MIP)+P&J(MOD) is taken from the
literature. All other decomposition methods are developed during this study (Fig. 5).

6.1 Decomposition method A(MIP)+P(D)+J(MOD)

We start with the most naive and myopic decomposition method
A(MIP)+P(D)+J(MOD). This method is a three phase decomposition scheme
which separates the problem into three interconnected sub problems. First, a MIP
model (A) assigns tasks and jobs to the stations so as to minimize the total workload
on the bottleneck station. Next, priority based dispatched rules (D) are used to
determine the permutation schedule of products (P). Finally in the third step, using
predetermined assignment and permutation scheduling decisions as inputs, jobs
are scheduled to find the best possible makespan under given conditions using an
optimization model (J). In the following subsections, we give details of each step.

6.1.1 A(MIP) model

In the first step, the tasks and jobs are assigned to the stations so as to minimize
the total workload (W) on the bottleneck station to achieve a balanced workload
between stations. The assignment problem is formulated as a MIP model (see
Appendix 1) due to its success in similar type problem domain.

6.1.2 Procedure P(D)

As stated in Pinedo [48], the dispatching rules (D) are useful when one attempts
to find a reasonably good schedules with regard to a single objective such as the
makespan. In this section, we use the permutation schedule nature of our model
formulation and propose a dispatching rule based procedure. We employ well the

Fig. 5 Classification of decomposition methods used in this study

456 Constraints (2013) 18:434–469

known Longest Processing Time first (LPT) and Shortest Processing Time first
(SPT) dispatching rules in our procedure. Recall that we formulate the permutation
schedule in constraints (21)–(22) in the MIP model and (42) in the CP model by
using Uvp and Uv variables respectively. We expect to improve the solution effort by
removing these variables and constraints from the model.

In classical flowshop scheduling problems where jobs are not related and al-
ternative machines for jobs are not considered, it is easy to define the processing
times of jobs and the ordering the jobs according to the their processing times.
However, this reasoning cannot be implemented directly to our problem because:
(1) the permutation schedule is defined for products; and (2) since which jobs are
assigned to which station is not known before solving the problem, the processing
times of the products are also not known in advance. Fortunately, However, the
earliest completion times of products are known and they give good lower bounds
globally for the processing time of products on the line. Earliest completion time of
each product (ECp) is equal to the completion time of its last job and formulized as
ECp = max

∀ j∈Jobs| j.product=p

{
e j

}
, ∀p ∈ Products.

In summary, since the permutation schedule enforces that the processing order of
products are the same for each station in the line, we apply priority based scheduling
rules. Furthermore, we assume that the processing time of each product is equal to
its ECp and we order the products according to SPT and LPT rules. Details of the
procedure are explained are as follows.

Procedure P(D)

Step 1: ECp = max
∀ j∈Jobs| j.product=p

{
e j

} ∀p ∈ Products

Step 2: Sort the products according to their ECpvalues in increasing order (SPT)
or in decreasing order (LPT) and determine the permutation schedule as
Uv = vth product in the sorted product list ∀v ∈ Products .
Note that if the succeeding scheduling model is a MIP model the following
additional step is used to convert Uv information in Step 2 to Uv,p

Step 3: Uv,p =
{

1 i f Uv = p
0 otherwise

}

6.1.3 Model J(MOD)

In this section, we propose two alternative optimization models J(MIP) and J(CP)
to schedule jobs with respect to task and job assignment decisions and product
permutation scheduling decision predetermined in A(MIP) and P(D) steps.

J(MIP) model Using the total workload (W) as a lower bound on the makespan
and considering job assignments

(
Xmj,∀m ∈ Stations,∀ j ∈ Jobs

)
and product per-

mutation scheduling
(
Uvp, ∀v ∈ Products,∀p ∈ Products

)
decisions, the scheduling

model determines the best schedule of jobs and products to minimize the makespan
as formulated in Appendix 2.

Model J(CP) In an intermediate pre-processing phase, we translate the job as-
signment decisions

(
Xmj, ∀m ∈ Stations, ∀ j ∈ Jobs

)
in A(MIP) to X j,∀ j ∈ Jobs

variables of the CP model by using logical expression, Xmj = 1 ⇒ X j = m ∀m ∈
Stations,∀ j ∈ Jobs. Next, as in J(MIP), we use the total workload on the bottleneck
station (W) as a lower bound on the makespan; the scheduling model determines the

Constraints (2013) 18:434–469 457

best schedule of jobs and products to minimize the makespan. The scheduling model
is presented in Appendix 3.

6.2 Decomposition method A(MIP)+P&J(MOD)

The main reasoning of this decomposition scheme is to combine P(D) and J(MOD)
and to decide the schedule of the jobs and the products together via a single optimiza-
tion model [53]. This approach is less myopic than method A(MIP)+P(D)+J(MOD)
because it allows changing the product permutation schedule to find better job
schedules but it also makes the problem more difficult to solve. While A(MIP) model
presented in 6.1.1 is used to assign tasks and jobs to stations, MIP and CP alternatives
of the P&J(MOD) are as follows.

6.2.1 Model P&J(MIP)

Model P&J(MIP) is formulated by adding product permutation scheduling con-
straints (21) and (22) to the model presented in J(MIP) with their domain definitions
(27). The resulting P&J(MIP) model is given in Appendix 4.

6.2.2 Model P&J(CP)

As in MIP version, model P&J(CP) is formulated by adding the product permutation
scheduling constraint (42) to the model presented in J(CP). The resulting P&J(MIP)
model is presented in Appendix 5.

6.3 Decomposition method P(D)+A&J(MOD)

The last combination of the decomposition approach is P(D)+A&J(MOD) which
solves the product permutation scheduling problem with the dispatching rule based
methods SPT or LPT, then solves the assignment of tasks and jobs problem with
the scheduling of jobs using a MIP or CP model. This approach is also less myopic
than method A(MIP)+P(D)+J(MOD) because sub problem A&J(MOD) allows to
change assignment of tasks and jobs to find better job schedules. But this flexibility
also makes it computationally more costly.

Since procedure P(D) is the same as previously presented methods, we give details
of the A&J(MOD) only.

6.3.1 Model A&J(MIP)

Model A&J(MIP) is formulated by removing the product permutation scheduling
consraints (21), (22) and (27) from the SBSFMMAL-MIP model as shown in
Appendix 6.

6.3.2 Model A&J(CP)

Model is A&J(CP) formulated by just removing the alldif ferent global constraint
from the SBSFMMAL-CP model as shown in Appendix 7.

458 Constraints (2013) 18:434–469

7 Robustness of the exact models and decomposition methods

In practice, many unexpected circumstances may arise in manufacturing systems
like machine failures, change in customer demand (i.e., product mix changes and/or
changes in the product structure like new tasks). These uncertain situations cause
deviations in the production schedules. Including estimation of uncertain events (i.e.,
pro-active) and/or repairing a disturbed schedule quickly with minimum changes
(i.e., reactive) are two techniques to maintain stability in scheduling problems.
Robustness of a schedule is measured with its ability to absorb uncertain and/or
unpredictable events [49].

Davenport et al. [14] discuss slack-based pro-active methods which are based
on providing extra time (i.e., slack) to each activity to absorb uncertainty and to
achieve robust schedules. Authors show that the most robust schedules are obtained
with temporal protection method [20] which suggests estimating the probability of
a machine failure during execution of an activity and extending the actual activity
duration as the expected machine downtime. The authors’ simulation studies reveal
that the temporal protection method results in more robust schedules than not taking
uncertainty into account but produces worse quality solutions because of adding the
expected machine stoppage time to each activity before the scheduling decision is
made. Hence, they claim that the quality of a pro-active solution can be increased
by including the decision on the amount of slack to the scheduling method. For
this reason, Davenport et al. [14] propose two new methods; time window slack
and focused time window slack. In the time window slack approach, based on the
statistics on machine failures and downtimes, the minimum amount of slack is set for
each activity. However, the position of the activities in the schedule may affect the
possibility of having an uncertain event during the execution. For example, assume
that the machine is recently fixed at the beginning of the schedule. In that case, if
there were no machine failures until the last activity in the schedule, the probability
of such a failure is more likely to occur during the execution of the last activity.
Therefore, the focused time window method first calculates the probability that a
breakdown event will occur at or before time t in the schedule. Then, it gives the
lower bound for the amount of slack for each activity which executes at a particular
time point tto absorb machine downtimes.

The pro-active methods mentioned above assume the availability of statistical
information and predictability of uncertain events. However, there may be many
unpredictable circumstances in the manufacturing system like adding an urgent
order, cancelling some of the scheduled activities and/or changes in the product
structure because of changes in customer requirements. In this case, the reactive
scheduling methods [49] become important to maintain robustness.

Note that when the exact and decomposition methods proposed in this study
are used in practical applications, they can be easily integrated with the pro-active
methods for robust schedules. Once the statistics on machine failures (i.e., mean
time between failures and mean downtime) are collected, new sets of constraints
can be formulated into the model to apply proactive robust scheduling methods
[14]. In addition, the models and decomposition methods proposed in this study
enforces the robustness of the generated schedules against machine failures by
allowing flexible task assignment. In case unpredictable events occur, these models
and methods can quickly react and produce high quality schedules. As stated in

Constraints (2013) 18:434–469 459

Boysen et al. [11], building resequencing buffers between stations can be considered
to empower reactive schedules. Resequencing buffers can help to produce robust
schedules by preventing stoppages/delays caused from the cancellation/addition of
customer orders and/or the changes in the product structure.

8 Experiments

In this section, the performance of the proposed SBSFMMAL-MIP and
SBSFMMAL-CP models are compared to those found by using the proposed de-
composition over various test instances of different sizes.

The number of jobs in a scheduling problem is the most important factor which
affects the size of the problem [48]. In our problem, as explained in Section 2, the jobs
refer to (task, product) pairs. Since for any mixed model assembly lines |Tasks| >

|Products|, the most important factor which determines the number of jobs and the
tractability of the problem instance is the number of tasks. Hence, the number of
products and stations are secondary important characteristics.

Therefore, we generate our test instances by using three factors with three levels;
10, 20 and 30 tasks, 5, 6 and 7 products and 3, 4 and 5 stations. Hence, the total
number of test instances is 3×3×3 =27. To clarify the performance of each method
when the problem size increases, we classify them as small (10 tasks), medium (20
tasks) and large (30 tasks). All test instances are available from http://homes.ieu.
edu.tr/∼cozturk/SBSFMMAL.rar.

The test instances are run on a personal computer with AMD Phenom II X4 955
3.21 GHz Processor, 4 GB RAM and Microsoft Windows 7 operating system. OPL
Studio 3.7 (2003) which includes ILOG CPLEX 9.0, ILOG Solver 6.0 and ILOG
Scheduler 6.0 libraries is used to model and solve the models and decomposition
methods. The runtime of each method is limited to 3600 seconds.

As stated in Van Hentenryck et al. [23], one of the original and most important
features of constraint programming is the ability to program search procedures. A
well developed search procedure may dramatically affect the quality and perfor-
mance of the solution process. Hence, we develop a search strategy for our CP
models. Our search strategy proceeds by first generating a product sequence by
branching on U variables and assigning products sequentially to the most constrained
variable that has the smallest domain. This is basically known as a fail-first principle
[21]. We then select a station for each job activity from their alternative resource
pool and assign sequentially the earliest start times to these jobs. As we solve the
permutation scheduling problem by using SPT and LPT dispatching rules, we omit
the first step of the search strategy –generating values for U- in J(CP) and A&J(CP)
models of the decomposition methods.

Table 8 presents the solutions found to each problem instance by using the
proposed methods and decomposition schemes. The symbol “∗” in this table is used
to denote that the solution found is optimal, i.e., solver terminates before time limit
is reached. Table 8 also shows the total number of jobs and the best method as bold
for each instance.

Results of the experimental study are analyzed in Table 9. In this table “–“ means
that the average percentage gap with the best solution and solution time is not calcu-
lated since some of the instances cannot be solved with the corresponding method. S,

http://homes.ieu.edu.tr/$sim $cozturk/SBSFMMAL.rar
http://homes.ieu.edu.tr/$sim $cozturk/SBSFMMAL.rar

460 Constraints (2013) 18:434–469

T
ab

le
8

C
om

pu
ta

ti
on

al
re

su
lt

s
fo

r
ex

ac
tm

od
el

s
an

d
de

co
m

po
si

ti
on

m
et

ho
ds

In
st

an
ce

ch
ar

ac
te

ri
st

ic
s

E
xa

ct
m

et
ho

ds
D

ec
om

po
si

ti
on

m
et

ho
ds

In
st

an
ce

|T
as

ks
|

|P
ro

du
ct

s|
|S

ta
tio

ns
|

|J
ob

s|
SB

SF
M

M
A

L
-M

IP
SB

SF
M

M
A

L
-C

P
A

(M
IP

)+
P

(D
)+

J(
M

O
D

)

si
ze

P
(S

P
T

)
P

(L
P

T
)

J(
M

IP
)

J(
C

P
)

J(
M

IP
)

J(
C

P
)

M
ak

es
pa

n
So

lu
ti

on
M

ak
es

pa
n

So
lu

ti
on

M
ak

es
pa

n
So

lu
ti

on
M

ak
es

pa
n

So
lu

ti
on

M
ak

es
pa

n
So

lu
ti

on
M

ak
es

pa
n

So
lu

ti
on

(m
in

.)
ti

m
e

(s
ec

.)
ti

m
e

(s
ec

.)
(m

in
.)

ti
m

e
(s

ec
.)

(m
in

.)
ti

m
e

(s
ec

.)
(m

in
.)

ti
m

e
(s

ec
.)

(m
in

.)
ti

m
e

(s
ec

.)

Sm
al

l
10

5
3

38
53

∗
3,

88
53

∗
0,

67
62

0,
64

62
0,

67
57

0,
78

57
0,

98
10

5
4

38
44

∗
56

,2
5

44
∗

0,
89

58
0,

67
58

0,
67

49
0,

71
49

0,
65

10
5

5
38

41
∗

37
4,

03
41

∗
1,

81
52

0,
74

52
0,

73
44

0,
74

44
0,

71
10

6
3

44
62

∗
33

,9
7

62
∗

1,
03

71
0,

68
71

0,
73

66
0,

7
66

0,
67

10
6

4
44

49
∗

19
4,

47
49

∗
3,

92
66

0,
71

66
0,

68
53

0,
73

53
0,

68
10

6
5

44
47

36
00

47
∗

4,
97

69
0,

92
69

0,
89

61
0,

95
61

0,
85

10
7

3
52

72
∗

34
43

,3
9

72
∗

3,
13

81
0,

7
81

0,
7

76
0,

71
76

0,
67

10
7

4
52

56
36

00
56

∗
19

,7
8

74
0,

76
74

0,
68

61
0,

77
61

0,
75

10
7

5
52

53
36

00
51

∗
71

,7
7

66
1,

06
66

0,
98

56
1,

06
56

0,
99

M
ed

iu
m

20
5

3
76

10
8∗

11
32

,5
9

10
8∗

3,
25

12
5

0,
88

12
5

0,
85

11
4

1,
17

11
4

1,
09

20
5

4
76

10
9∗

17
12

,4
7

10
9∗

1,
39

12
1

0,
98

12
1

0,
84

11
6

0,
96

11
6

0,
84

20
5

5
76

93
36

00
92

30
7,

83
11

4
1,

74
11

4
1,

56
10

0
1,

73
10

0
1,

59
20

6
3

88
12

3
36

00
11

9∗
59

,2
13

7
0,

9
13

7
0,

82
12

5
0,

99
12

5
0,

81
20

6
4

88
11

5
36

00
11

5∗
15

,3
6

12
9

1,
03

12
9

0,
93

12
5

1,
06

12
5

0,
89

20
6

5
88

99
36

00
97

15
8,

44
11

1
1,

59
11

1
1,

4
10

6
1,

6
10

6
1,

37
20

7
3

10
4

14
4

36
00

14
3∗

63
,2

4
16

1
0,

99
16

1
0,

84
14

9
1,

01
14

9
0,

89
20

7
4

10
4

13
9

36
00

13
5∗

24
3,

58
15

1
1,

15
15

1
0,

95
14

6
1,

17
14

6
0,

9
20

7
5

10
4

14
3

36
00

12
7

33
82

,4
5

15
2

5,
07

15
2

4,
83

13
4

5,
08

13
4

4,
83

L
ar

ge
30

5
3

11
4

17
2

36
00

16
0∗

13
45

,1
6

17
2

1,
21

17
2

1,
2

16
4

1,
34

16
4

1,
06

30
5

4
11

4
N

/A
36

00
14

7
21

61
,2

15
8

8,
7

15
8

8,
48

15
7

8,
73

15
7

8,
47

30
5

5
11

4
N

/A
36

00
10

7
26

63
16

5
24

1,
09

16
5

24
1,

14
13

7
24

1,
11

13
7

24
1,

12
30

6
3

13
2

19
6

36
00

17
6

12
98

,3
3

19
2

1,
37

19
2

1,
07

18
6

1,
46

18
6

1,
13

30
6

4
13

2
N

/A
36

00
15

7
34

5,
88

17
5

24
,3

3
17

5
24

,0
5

17
5

24
,3

5
17

5
24

,0
3

30
6

5
13

2
N

/A
36

00
13

3
15

29
,0

5
14

5
60

8,
83

14
5

60
6,

93
15

3
60

8,
8

15
3

60
7,

02
30

7
3

15
6

N
/A

36
00

20
1

30
42

,5
21

9
1,

6
21

9
1,

2
21

3
1,

59
21

3
1,

2
30

7
4

15
6

N
/A

36
00

16
9

31
32

,9
1

20
6

53
,6

8
20

6
53

,1
9

19
2

53
,6

8
19

2
53

,1
9

30
7

5
15

6
N

/A
36

00
15

0
29

2,
48

18
5

45
,2

8
18

5
44

,6
9

16
8

45
,3

3
16

8
44

,7

Constraints (2013) 18:434–469 461

T
ab

le
8

(c
on

ti
nu

ed
)

In
st

an
ce

ch
ar

ac
te

ri
st

ic
s

D
ec

om
po

si
ti

on
m

et
ho

ds

In
st

an
ce

|T
as

ks
|

|P
ro

du
ct

s|
|S

ta
tio

ns
|

|J
ob

s|
A

(M
IP

)+
P

&
J

(M
O

D
)

P
(D

)+
A

&
J

(M
O

D
)

si
ze

P
&

J(
M

IP
)

P
&

J(
C

P
)

P
(S

P
T

)
P

(L
P

T
)

M
ak

es
pa

n
So

lu
ti

on
M

ak
es

pa
n

So
lu

ti
on

A
&

J
(M

IP
)

A
&

J
(C

P
)

A
&

J(
M

IP
)

A
&

J
(C

P
)

(m
in

.)
ti

m
e

(m
in

.)
ti

m
e

M
ak

es
pa

n
So

lu
ti

on
M

ak
es

pa
n

So
lu

ti
on

M
ak

es
pa

n
So

lu
ti

on
M

ak
es

pa
n

So
lu

ti
on

(s
ec

.)
(s

ec
.)

(m
in

.)
ti

m
e

(s
ec

.)
(m

in
.)

ti
m

e
(s

ec
.)

(m
in

.)
ti

m
e

(s
ec

.)
(m

in
.)

ti
m

e
(s

ec
.)

Sm
al

l
10

5
3

38
55

1,
12

5
55

1,
03

2
61

0,
68

61
0,

56
2

57
0,

84
57

0,
54

6
10

5
4

38
47

11
72

47
1,

10
9

56
1,

4
56

0,
75

46
1,

1
46

0,
62

5
10

5
5

38
42

1,
42

1
42

1,
17

1
50

5,
66

50
0,

70
3

44
10

,3
9

44
0,

76
6

10
6

3
44

64
1,

43
7

64
1,

06
3

70
0,

9
70

0,
64

1
66

1,
13

66
0,

62
5

10
6

4
44

51
1,

64
51

1,
21

8
64

1,
77

64
0,

57
8

51
1,

38
51

0,
56

3
10

6
5

44
57

1,
93

8
57

1,
79

7
58

12
,4

6
58

0,
90

6
48

13
,3

2
48

1,
10

9
10

7
3

52
74

5,
60

9
74

1,
61

80
1,

06
80

0,
67

2
76

1,
18

76
0,

70
4

10
7

4
52

59
5,

71
9

59
2,

62
5

72
2,

44
72

0,
70

3
59

2,
73

59
0,

73
4

10
7

5
52

52
6,

42
2

52
2,

06
2

64
29

,0
9

64
0,

79
7

55
32

,7
6

55
0,

84
4

M
ed

iu
m

20
5

3
76

11
4

1,
34

3
11

4
1,

36
1

12
0

8,
93

12
0

0,
75

10
8

21
,4

9
10

8
0,

75
20

5
4

76
11

3
1,

45
3

11
3

1,
28

1
11

1
33

,8
11

1
1,

10
9

11
6

24
,4

4
11

6
0,

81
3

20
5

5
76

97
2,

17
3

97
2,

03
1

92
48

1,
92

92
36

00
99

23
9,

43
99

36
00

20
6

3
88

12
4

1,
95

4
12

4
1,

65
6

13
2

18
,4

8
13

2
0,

90
7

11
9

23
,5

8
11

9
0,

89
1

20
6

4
88

12
1

2,
04

6
12

1
1,

75
12

1
83

,8
9

12
1

24
,6

25
12

5
47

,3
3

12
5

1,
18

7
20

6
5

88
98

2,
45

3
98

2,
07

8
10

5
13

02
,2

5
10

5
36

00
99

95
0,

49
99

36
00

20
7

3
10

4
14

8
6,

87
4

14
8

5
15

6
27

,4
5

15
6

0,
90

6
14

3
30

,4
9

14
3

0,
82

8
20

7
4

10
4

14
2

7,
29

7
14

2
4,

43
8

14
2

15
5,

45
14

2
20

2,
17

2
14

6
16

9,
38

14
6

1,
81

3
20

7
5

10
4

12
3

11
,7

03
12

3
9,

29
7

11
0

36
00

13
4

36
00

11
6

36
00

11
9

36
00

L
ar

ge
30

5
3

11
4

16
2

1,
79

7
16

2
1,

51
6

16
5

15
9,

3
16

5
39

,7
66

16
3

68
4,

58
16

3
47

,7
5

30
5

4
11

4
14

9
8,

78
1

14
9

8,
40

7
15

6
23

49
,8

6
15

6
17

8,
62

5
N

/A
36

00
14

7
20

8,
07

8
30

5
5

11
4

11
9

22
3,

87
5

11
9

22
3,

81
2

N
/A

36
00

10
7

36
00

N
/A

36
00

15
6

36
00

30
6

3
13

2
18

1
3,

28
2

18
1

1,
60

8
18

8
79

1,
87

18
8

32
,1

41
18

4
14

25
,7

5
18

4
24

,9
37

30
6

4
13

2
16

3
24

,1
87

16
3

23
,8

13
N

/A
36

00
16

2
66

7,
12

5
N

/A
36

00
15

2
57

0,
48

5
30

6
5

13
2

14
0

57
1,

91
14

0
56

7,
78

1
N

/A
36

00
16

6
36

00
N

/A
36

00
12

1
36

00
30

7
3

15
6

20
9

11
,8

6
20

9
8,

34
4

22
3

36
00

21
2

42
,1

09
N

/A
36

00
21

0
24

,0
93

30
7

4
15

6
18

1
60

,2
19

18
1

58
,6

72
N

/A
36

00
18

4
36

2,
62

5
N

/A
36

00
17

2
14

9,
53

2
30

7
5

15
6

16
4

52
,3

91
16

4
51

,2
34

N
/A

36
00

14
6

58
7,

89
N

/A
36

00
14

8
16

6,
82

8

462 Constraints (2013) 18:434–469

T
ab

le
9

A
na

ly
si

s
of

co
m

pu
ta

ti
on

al
re

su
lt

s

In
st

an
ce

E
xa

ct
m

et
ho

ds
D

ec
om

po
si

ti
on

m
et

ho
ds

ch
ar

ac
te

ri
st

ic
s

SB
SF

M
M

A
L

-M
IP

SB
SF

M
M

A
L

-C
P

A
(M

IP
)+

P
(D

)+
J(

M
O

D
)

P
(S

P
T

)
P

(L
P

T
)

J
(M

IP
)

J
(C

P
)

J
(M

IP
)

J
(C

P
)

In
st

an
ce

si
ze

cl
as

s
In

st
an

ce
si

ze
In

st
an

ce
si

ze
In

st
an

ce
si

ze
In

st
an

ce
si

ze
In

st
an

ce
si

ze

S
M

L
S

M
L

S
M

L
S

M
L

S
M

L
S

M
L

N
um

be
r

of
so

lu
ti

on
s

9
9

2
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

fo
un

d
N

um
be

r
of

op
ti

m
al

8
3

0
9

6
1

0
0

0
0

0
0

0
0

0
0

0
0

so
lu

ti
on

s
N

um
be

r
of

op
ti

m
al

it
y

6
2

0
9

6
1

0
0

0
0

0
0

0
0

0
0

0
0

pr
ov

en
so

lu
ti

on
s

N
um

be
r

of
so

lu
ti

on
s

0
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

be
tt

er
th

an
ot

he
r

m
et

ho
ds

%
ga

p
w

it
h

th
e

0.
44

4.
44

6
–

0.
00

1.
72

1.
77

27
.3

0
17

.2
2

19
.0

5
27

.3
0

17
.2

2
19

.0
5

10
.5

5
8.

65
13

.2
5

10
.5

5
8.

65
13

.2
5

be
st

so
lu

ti
on

G
en

er
al

av
er

ag
e

–
1.

16
21

.1
9

21
.1

9
10

.8
2

A
ve

ra
ge

so
lu

ti
on

16
56

31
16

–
11

.9
9

13
33

35
56

0.
76

1.
59

10
9.

6
0.

75
1.

45
10

9.
1

0.
79

1.
64

10
9.

6
0.

77
1.

47
10

9.
1

ti
m

e
(s

ec
.)

G
en

er
al

av
er

ag
e

–
16

39
.8

1
37

.3
1

37
.1

37
.3

4
37

.1
1

Constraints (2013) 18:434–469 463

T
ab

le
9

(c
on

ti
nu

ed
)

In
st

an
ce

D
ec

om
po

si
ti

on
m

et
ho

ds
ch

ar
ac

te
ri

st
ic

s
A

(M
IP

)+
P

&
J(

M
O

D
)

P
(D

)+
A

&
J(

M
O

D
)

P
(S

P
T

)
P

(L
P

T
)

P
&

J
(M

IP
)

P
&

J
(C

P
)

A
&

J
(M

IP
)

A
&

J
(C

P
)

A
&

J
(M

IP
)

A
&

J
(C

P
)

In
st

an
ce

si
ze

In
st

an
ce

si
ze

In
st

an
ce

si
ze

In
st

an
ce

si
ze

In
st

an
ce

si
ze

In
st

an
ce

si
ze

S
M

L
S

M
L

S
M

L
S

M
L

S
M

L
S

M
L

N
um

be
r

of
so

lu
ti

on
s

9
9

9
9

9
9

9
9

4
9

9
9

9
9

2
9

9
9

fo
un

d
N

um
be

r
of

op
ti

m
al

0
0

0
0

0
0

0
0

0
0

0
0

0
3

0
0

3
0

so
lu

ti
on

s
N

um
be

r
of

op
ti

m
al

it
y

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

pr
ov

en
so

lu
ti

on
s

N
um

be
r

of
so

lu
ti

on
s

0
0

0
0

0
0

0
1

0
0

0
1

0
0

0
0

0
2

be
tt

er
th

an
ot

he
r

m
et

ho
ds

%
ga

p
w

it
h

th
e

5.
75

5.
07

7.
00

5.
75

5.
07

7.
00

21
.8

2
5.

73
–

21
.8

2
8.

16
8.

24
5.

65
4.

27
–

5.
65

4.
57

6.
65

be
st

so
lu

ti
on

G
en

er
al

av
er

ag
e

5.
94

5.
94

–
12

.7
4

–
5.

62
A

ve
ra

ge
so

lu
ti

on
2.

94
4.

14
10

6.
5

1.
52

3.
21

10
5

6.
16

63
4.

7
–

0.
7

12
26

10
12

7.
2

56
7.

4
–

0.
72

12
01

93
2.

4
ti

m
e

(s
ec

.)
G

en
er

al
av

er
ag

e
37

.8
5

36
.5

8
–

74
6.

19
–

71
1.

28

464 Constraints (2013) 18:434–469

M and L refer to small, medium and large size instance classes. Based on these results,
we can state that although the SBSFMMAL-MIP model suggested in this study fully
considers all the novel aspects that are pertinent to our problem, it does not seem to
be computationally efficient to tackle with large-size real-world problems. Moreover,
the proposed decomposition schemes are observed to be performing well with
respect to solution time, but their solution quality is rather poor in comparison to the
proposed SBSFMMAL-CP model in general. Among the MIP based decomposition
methods the once using A&J(MIP) model are able to use only a small number of
large size instances. However, having the smallest gap, P(LPT)+A&J(CP) is the best
decomposition method studied. Results of the experiments also show that LPT based
priority rules outperforms SPT one in terms of makespan values with slightly worse
solution times. As a result, the proposed SBSFMMAL-CP model outperforms all
other approaches over all instances from the small to large-size real-world problems
with acceptable and usable solution times. Hence, we can state that the proposed
SBSFMMAL-CP model is the best approach to simultaneously solve the flexible
mixed model assembly line balancing and scheduling problem in our experiments.
Furthermore, success of the SBSFMMAL-CP model in varying size of instances in
terms of number of products, stations, tasks and product structure (i.e., number of
precedence relations) shows its ability to produce robust schedules.

To generalize the results of this comparative experimental study so that the
practitioners can be motivated to use these models to study the real-world problems,
lastly a large-scale test instance involving 50 common tasks which are to be scheduled
for 5 products on 20 stations is generated. In total, this large-scale test instance
involves 190 jobs (task, product pairs) to be assigned and scheduled. At the end of
the one hour run time only SBSFMMAL-CP is able to solve this large-scale instance.

9 Conclusions

Today’s competitive market requires more flexible production systems that respond
rapidly to changes in the market conditions. Therefore, balancing assembly lines,
regarded as a tactical level problem, becomes an operational problem. As stated
in Karabatı and Sayın [30] workload in a station is affected by the mixed model
operations schedule. Hence, for an effective line management, task assignment and
operations scheduling problems must be considered simultaneously. As mentioned
in the survey of relevant literature, there are a scarce number of papers dealing with
this topical problem.

In real-world problems, task sequencing at each station is usually dealt with only
after the tasks have been assigned to that station and this problem is solved as a
TSP problem in which the setup times correspond to distances between the cities.
However, this approach is myopic since it could yield suboptimal solutions for the
whole problem. Hence, new procedures and models are needed for simultaneously
solving both the task assignment and scheduling problems.

In this paper, we suggest a novel MIP model which includes task assignment
and model sequencing along with task scheduling within the same framework to
solve balancing and scheduling of flexible mixed model assembly lines problem
(SBSFMMAL-MIP). Unlike previous studies, our study considers general type
precedence diagrams and limited buffer spaces between the stations. Furthermore,
our model considers the permutation scheduling structure of the problem which

Constraints (2013) 18:434–469 465

allows us to formulate more useful model with less number of constraints. Although
all the aspects of the problem studied are fully included within a single MIP model,
its applicability to large-scale real world problems is found to be computationally
inefficient. Hence, to address this problem, we propose a CP model (SBSFMMAL-
CP) in this paper which is shown to be both efficient (in terms of modeling with
more compact and flexible formulation) and effective (in terms of solution effort)
method for solving simultaneous balancing and scheduling of flexible mixed model
assembly lines. Furthermore, to evaluate the performance of the proposed CP model,
we compare it with various decomposition methods and also complete MIP model.
According to the computational studies, SBSFMMAL-CP outperforms all other
approaches over all size of test instances.

In a future research, the proposed approaches can be used to solve the SBSFM-
MAL problem with some extensions such as parallel stations and/or lines. Proposed
methods in this paper assumes fixed number of stations and try to minimize the latest
completion time of a given set of mixed models. These methods can be modified
and used to determine the minimum number of stations which ensures a given cycle
time. Besides minimizing the latest completion time, leveling stations loads or other
objective functions could be considered [16, 61].

Although the CP model is observed to perform well for big instances, another
future research issue could be to further improve its performance by develop-
ing symmetry breaking constraints [58] or by hybridizing with local and/or large
neighborhood search algorithms [4, 36, 44]. Furthermore, facilities available in the
new solvers like optional interval variables (see [37, 38]) can be tested for better
quality and/or faster solutions. Lastly, the SBSFMMAL problem can be studied and
analyzed under a cyclic scheduling policy [48].

Acknowledgements The authors thank the referees for their valuable and constructive comments
which greatly improved organization of the paper.

Appendices

Appendix 1: A (MIP) model

Minimize W (54)

subject to :
W ≥ ∑

j∈Jobs
dmjXmj ∀m ∈ Stations (55)

W ≥ 0
and (2),(14),(15),(17),. . . ,(20),(29),(30)

(56)

The A(MIP) model minimizes the maximum workload in the line (54) which is
greater than or equal to the total workload of each station (55).

466 Constraints (2013) 18:434–469

Appendix 2: J(MIP) model

Minimize (1)

subject to :
Cmax ≥ W

and (3),. . . ,(13),(15),(16),(23),. . . ,(26),(28),(31),. . . ,(34)
(57)

(57) formulates the lower bound on the makespan.

Appendix 3: model J(CP)

Minimize (35)

subject to :
end (makespan) ≥ W

and (36),. . . ,(40),(43),. . . ,(47),(50),. . . ,(53)
(58)

(58) gives a lower bound on the completion time of the makespan activity as in (57).

Appendix 4: model P&J(MIP)

Minimize (1)

subject to :
(3),. . . ,(13),(15),(16),(21),. . . ,(28),(31),. . . ,(34),(57)

Appendix 5: model P&J(CP)

Minimize (35)

subject to :
(36),. . . ,(40),(42),. . . (47),(50),. . . ,(53),(58)

Appendix 6: model A&J(MIP)

Minimize (1)

subject to :
(2),. . . ,(20),(23),. . . ,(26),(28),. . . ,(34)

Constraints (2013) 18:434–469 467

Appendix 7: model A&J(CP)

Minimize (35)

subject to :
(36),. . . ,(41),(43),. . . ,(53)

References

1. Aggoun, A., & Beldiceanu, N. (1993). Extending CHIP in order to solve complex scheduling and
placement problems (Mathl. Comput. Modelling) (vol. 17, no. 7, pp. 57–73). Pergamon Press Ltd.

2. Agnetis, A., & Arbib, C. (1997). Concurrent operations assignment and sequencing for particular
assembly problems in flow lines. Annals of Operation Research, 69, 1–31.

3. Akgündüz, O.S., & Tunalı, S. (2009). An adaptive genetic algorithm approach for the mixed-
model assembly line sequencing problem. International Journal of Production Research, 48(17),
5157–5179.

4. Appa, G., Mourtos, I., Magos, D. (2002). Integrating constraint and integers programming for the
orthogonal latin squares problem, principles and practice of constraint programming - CP 2002
(pp. 79–90). Springer.

5. Andres, C., Miralles, C., Pastor, R. (2008). Balancing and scheduling tasks in assembly lines with
sequenc-dependent setup times. European Journal of Operational Research, 187, 1212–1223.

6. Baptiste, P., & Le Pape, C. (1996). Edge-finding constraint propagation algorithms for disjunctive
and cumulative scheduling. In Proceedings of the fifteenth workshop of the UK planning special
interest group. Liverpool.

7. Baptiste, P., Le Pape, C., Nuijten, W. (2001). Constraint-Based Scheduling. Kluwer Academic
Publishers, Boston.

8. Bartak, R. (2003). Constraint-based scheduling: An introduction for newcomers. Intelligent man-
ufacturing systems 2003 (pp. 69–75).

9. Bockmayr, A., & Pisaruk, N. (2001). Solving an assembly line balancing problem by combining
IP and CP. In Proceedings of the 6th annual workshop of ERCIM working droup on constraints.
Prague, Czech Republic.

10. Boysen, N., Fliedner, M., Scholl, A. (2008). Assembly line balancing: Which model to use when.
International Journal of Production Economics, 111, 509–528.

11. Boysen, N., Fliedner, M., Scholl, A. (2009). Sequencing mixed-model assembly lines: Survey,
classification and model crituqe. European Journal of Operational Research, 192, 349–773.

12. Boysen, N., Fliedner, M., Scholl, A. (2009). Production planning of mixed-model assembly lines:
overview and extensions. Production Planning & Control, 20(5), 455–471.

13. Brailsfard, S.C., Potts, C.N., Smith, B.M. (1999). Constraint satisfaction problems: algorithms
and applications. European Journal of Operational Research, 119, 557–581.

14. Davenport, A., Gefflot, C., Beck, J. (2001). Slack-based techniques for robust schedules. In
Proceedings of 6th European conference on planning (ECP-01).

15. Dincbas, M., Simonis, H., van Hentenryck, P. (1988). Solving the car-sequencing problem in
constraint logic programming. In Proceedings of the European conference on artif icial intelligence
(ECAI-88) (pp. 290–295). München.

16. Drexl A., & Kimms, A. (2001). Sequencing JIT mixed-model assembly lines under station-load
and part-usage constraints. Management Science, 47(3), 480–491.

17. Focacci, F., Lodi, A., Milano, M. (2002). Mathematical programming techniques in constraint
programming: A short overview. Journal of Heuristics, 8, 7–17.

18. Focacci, F., Laborie, P., Nuijten, W. (2000). Solving scheduling problems with setup times and
alternative resources. AIPS 2000 Proceedings (pp. 92–101).

19. Fourer, R., & Gay, D.M. (2002). Extending an algebraic modeling language to support constraint
programming. INFORMS Journal on Computing, 14(4), 322–344.

20. Gao, H. (1995). Building robust schedules using temporal protection protection-an empirical study
of constraint based scheduling under machine failure uncertainty. Master’s thesis, Department of
Industrial Engineering, University of Toronto.

468 Constraints (2013) 18:434–469

21. Haralick, R.M., & Elliott, G.L. (1980). Increasing tree search efficiency for constraint satisfaction
problems, Artif icial Intelligence, 14, 263–314.

22. Hentenryck, P. (2002). Constraint and integer programming in OPL. INFORMS Journal on
Computing, 14(4), 345–372.

23. Hentenryck, P., Perron, L., Puget, J.F. (2000). Search and strategies in OPL. ACM Transactions
on Computational Logic, 1(2), 285–320.

24. Hentenryck, P. (1989). Constraint satisfaction in logic programming. MIT Press, Cambridge.
25. Hentenryck, P., Carillon, J.P. (1988). Generality versus specif icity: An experience with AI and OR

techniques (AAAI-88, 1988) (pp. 660–664). Minnesota.
26. Hoeve, W., Katriel, I. (2006). Global Constraints. In Rossi, F., van Beek, P., Walsh, T. (Ed.),

Handbook of constraint programming (pp. 169–208). Elsevier Science, Amsterdam.
27. ILOG (2003). OPL Studio 3.7. Language Manual.
28. Jain, V., & Grossmann, I.E. (2001). Algorithms for Hybrid MILP/CP Models for a Class of

Optimization Problems. INFORMS Journal on Computing, 13(4), 258–276.
29. Kara, Y. (2008). Line balancing and model sequencing to reduce work overload in mixed-model

U-line production environments. Engineering Optimization, 40(7), 669–684.
30. Karabatı, S., & Sayın, S. (2003). Assembly line balancing in a mixed-model sequencing environ-

ment with synchronous transfers. European Journal of Operational Research, 149, 417–429.
31. Khayat, G.E., Langevin, A., Riopel, D. (2006). Integrated production and material handling

scheduling using mathematical programming and constraint programming. European Journal of
Operations Research, 175, 1818–1832.

32. Kim, Y.K., Kim, J.Y., Kim, Y. (2000a). A coevolutionary algorithm for balancing and sequencing
in mixed model assembly lines. Applied Intelligence, 13, 247–258.

33. Kim, Y.K., Kim, S.J., Kim, J.Y. (2000b). Balancing and sequencing mixed-model U-lines with a
co-evolutionary algorithm. Production Planning & Control, 11, 754–764.

34. Kim, Y.K., Kim, J.Y., Kim, Y. (2006). An endosymbiotic evolutionary algorithm for the inte-
gration of balancing and sequencing in mixed-model U-lines. European Journal of Operational
Research, 168, 838–852.

35. Krogt R., Geraghty J., Salman M.R., Little J. (2010). On supporting Lean methodologies using
constraint-based scheduling. Journal of Scheduling, 13, 301–314.

36. Laborie, P., & Godard, D. (2007). Self-adapting large neighbourhood search: Application to
single-mode scheduling problems. In Proc. of the 3rd multidisciplinary international conference
on scheduling: Theory and applications (MISTA) (pp. 276–284).

37. Laborie, P., & Rogerie, J. (2008). Reasoning with conditional time-intervals. In Proc. 21th
international FLAIRS conference (FLAIRS 2008) (pp. 555–560).

38. Laborie, P., Rogerie, J., Shaw, P., Vilím, P. (2009). Reasoning with conditional time-intervals,
Part II: An algebraical model for resources. In Proc. 22th international FLAIRS conference
(FLAIRS 2009) (pp. 201–206).

39. Martino, L. & Pastor, R. (2010). Heuristic procedures for solving the general assembly line
balancing problem with setups. International Journal of Production Research, 48(6), 1787–1804.

40. Merengo, C., Nava, F., Pozzetti, A. (1999). Balancing and sequencing manual mixed-model
assembly lines. International Journal of Production Research, 37(12), 2835–2860.

41. Milano, M., & Wallace, M. (2006). Integrating operations research in constraint programming.
OR, 4, 175–219.

42. Milano, M., Ottosson, G., Refalo, P., Thorsteinsson, E.S. (2002). The role of integer program-
ming techniques in constraint programming’s global constraints. INFORMS Journal on Comput-
ing, 14(4), 387–402.

43. Miltenburg, J. (2002). Balancing and scheduling mixed-model U-shaped production lines. Inter-
national Journal of Flexible Manufacturing Systems, 14, 119–151.

44. Ottosson, G., Thorsteinsson, E.S., Hooker, J.N. (2002). Mixed global constraints and inference
in hybrid CLP-IP solvers. Annals of Mathematics and Artif icial Intelligence, 34(4), 271–290.

45. Özcan, U., & Toklu, B. (2009). Balancing two-sided assembly lines with sequence-dependent
setup times. International Journal of Production Research, 48(18), 5363–5383.

46. Özdemir, R.G., Ayaǧ, Z., Çakır, D. (2004). Hazırlık sürelerinin azaltılması için bir hat dengeleme
modeli (YA/EM 2004). Kocaeli.

47. Pastor, R., Ferrer, L., Garcia, A. (2007). Evaluating optimization models to solve SALBP.
Lecture Notes in Computer Science, 2007(4705), 791–803.

48. Pinedo, M.L. (2008). Scheduling theory, algorithms, and systems, 3rd edn. Springer, New York.
49. Policella, N., Cesta, A., Oddi, A., Smith, S. (2004). Generating robust schedules through temporal

flexibility. In Proc. ICAPS 04.

Constraints (2013) 18:434–469 469

50. Puget, J.F., & Lustig, I. (2001). Constraint programming and maths programming. Knowledge
Engineering Review, 16(1), 5–23.

51. Regin, J.C. (1994). A f iltering algorithm for constraints of dif ference in CSPs (AAAI-94) (pp. 362–
367). Washington.

52. Sawik, T. (2000). Simultaneous vs. sequential loading and scheduling of flexible assembly sys-
tems. International Journal of Production Research, 38, 3267–3282.

53. Sawik, T. (2002). Monolithic vs. hierarchical balancing and scheduling of a flexible assembly line.
European Journal of Operational Research, 143, 115–124.

54. Sawik, T. (2004). Loading and Scheculing of a flexible assembly system by mixed integer pro-
gramming. European Journal of Operational Research, 154, 1–19.

55. Scholl, A. (1999). Balancing and sequencing assembly lines, 2nd edn. Physica, Heidelberg.
56. Scholl, A., Boysen N., Fliedner M. (2008). The sequence-dependent assembly line balancing

problem. OR Spectrum, 30(3), 579–609.
57. Scholl, A., Boysen, N., Fliedner, M. (2011). The assembly line balancing and scheduling prob-

lem with sequence-dependent setup times: problem extension, model formulation and efficient
heuristics. OR Spectrum. doi:10.1007/s00291–011–0265–0.

58. Smith, B. (2006). Modelling. In Rossi, F., van Beek, P., Walsh, T. (Eds.), Handbook of constraint
programming (pp. 377–406). Elsevier Science, Amsterdam.

59. Valle, C.D., Marquez, A.A., Gasca, R.M., Toro, M. (2003). On selecting and scheduling assembly
plans using constraint programming. Lecture notes in computer science, 2003(2774), 1329–1336.

60. Wilhelm, W.E. (1999). A column-generation approach for the assembly system design problem
with tool changes. International Journal of Flexible Manufacturing Systems, 11, 177–205.

61. Yavuz, M., & Akcali, E. (2007). Production smoothing in just-in-time manufacturing systems:
a review of the models and solution approaches. International Journal of Production Research,
45(16), 3579–3597.

62. Zeballos, L.J., Quiroga, O.D., Henning, G.P. (2010). A constraint programming model for the
scheduling of flexible manufacturing systems with machine and tool limitations. Engineering
Applications of Artif icial Intelligence, 23, 229–248.

http://dx.doi.org/10.1007/s00291--011--0265--0

	Balancing and scheduling of flexible mixed model assembly lines
	Abstract
	Introduction
	Problem definition
	Related works
	MIP model development: SBSFMMAL-MIP
	Job assignment and scheduling problem
	Task assignment problem
	Product permutation scheduling problem
	The complete MIP model
	Novel features of the MIP model

	CP model formulation: SBSFMMAL-CP
	Job assignment and scheduling problem
	Task assignment problem
	Product permutation scheduling problem
	The complete CP model

	Decomposition methods
	Decomposition method A(MIP)+P(D)+J(MOD)
	A(MIP) model
	Procedure P(D)
	Model J(MOD)

	Decomposition method A(MIP)+P&J(MOD)
	Model P&J(MIP)
	Model P&J(CP)

	Decomposition method P(D)+A&J(MOD)
	Model A&J(MIP)
	Model A&J(CP)

	Robustness of the exact models and decomposition methods
	Experiments
	Conclusions
	Appendices
	Appendix 1: A (MIP) model
	Appendix 2: J(MIP) model
	Appendix 3: model J(CP)
	Appendix 4: model P&J(MIP)
	Appendix 5: model P&J(CP)
	Appendix 6: model A&J(MIP)
	Appendix 7: model A&J(CP)
	References

