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Abstract The ability to model search in a constraint solver can be an essential asset
for solving combinatorial problems. However, existing infrastructure for defining
search heuristics is often inadequate. Either modeling capabilities are extremely
limited or users are faced with a general-purpose programming language whose
features are not tailored towards writing search heuristics. As a result, major im-
provements in performance may remain unexplored. This article introduces search
combinators, a lightweight and solver-independent method that bridges the gap
between a conceptually simple modeling language for search (high-level, functional
and naturally compositional) and an efficient implementation (low-level, imperative
and highly non-modular). By allowing the user to define application-tailored search
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strategies from a small set of primitives, search combinators effectively provide a
rich domain-specif ic language (DSL) for modeling search to the user. Remarkably,
this DSL comes at a low implementation cost to the developer of a constraint
solver. The article discusses two modular implementation approaches and shows, by
empirical evaluation, that search combinators can be implemented without overhead
compared to a native, direct implementation in a constraint solver.

Keywords Search heuristics · Modeling language · Modularity · Implementation

1 Introduction

Search heuristics often make all the difference between effectively solving a com-
binatorial problem and utter failure. Heuristics make a search algorithm efficient
for a variety of reasons, e.g., incorporation of domain knowledge, or randomization
to avoid heavy-tailed runtimes. Hence, the ability to swiftly design search heuristics
that are tailored towards a problem domain is essential for performance. This article
introduces search combinators, a versatile, modular, and efficiently implementable
language for expressing search heuristics.

1.1 Status quo

In CP, much attention has been devoted to facilitating the modeling of combinatorial
problems. A range of high-level modeling languages, such as OPL [31], Comet [29],
or Zinc [14], enable quick development and exploration of problem models. But
there is substantially less support for high-level specification of accompanying search
heuristics. Most languages and systems, e.g. ECLiPSe [20], Gecode [25], Comet [29],
or MiniZinc [15], provide a set of predefined heuristics “off the shelf”. Many
systems also support user-defined search based on a general-purpose programming
language (e.g., all of the above systems except MiniZinc). The former is clearly too
confining, while the latter leaves much to be desired in terms of productivity, since
implementing a search heuristic quickly becomes a non-negligible effort. This also
explains why the set of predefined heuristics is typically small: it takes a lot of time
for CP system developers to implement heuristics, too—time they would much rather
spend otherwise improving their system.

1.2 Contributions

In this article we show how to resolve this stand-off between solver developers
and users, by introducing a domain-specific modular search language based on
combinators, as well as a modular, extensible implementation architecture.

For the user we provide a modeling language for expressing complex search heuris-
tics based on an (extensible) set of primitive combinators. Even if the users are only
provided with a small set of combinators, they can already express a vast range of
combinations. Moreover, using combinators to program application-tailored search
is vastly more productive than resorting to a general-purpose language.
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For the system developer we show how to design and implement modular combina-
tors. The modularity of the language thus carries over directly to modularity of
the implementation. Developers do not have to cater explicitly for all possible
combinator combinations. Small implementation efforts result in providing the user
with a lot of expressive power. Moreover, the cost of adding one more combinator is
small, yet the return in terms of additional expressiveness can be quite large.

We believe that there is potential for an additional group of beneficiaries, although
this still has to be proven in practice.

For the community we propose that search combinators are an ideal starting point
for a standard search language. The reason is that they have a low implementation
complexity, and are not closely tied to the underlying solver architecture. Most CP
systems have the ability to program arbitrary search, but in many cases this is an
endeavour only for experts, and for each new system one must learn a new way to
build a search strategy. Search combinators are expressive yet simple enough to add
to a well-supported modelling language like MiniZinc [15] giving us a basis for a
search language supported by multiple systems.

The technical challenge is to bridge the gap between a conceptually simple search
language and an efficient implementation, which is typically low-level, imperative
and highly non-modular. This is where existing approaches are weak; either the
expressiveness is limited, or the approach to search is tightly tied to the underlying
solver infrastructure.

The contribution is therefore the novel design of an expressive, high-level,
compositional search language with an equally modular, extensible, and efficient
implementation architecture.

1.3 Approach

We overcome the modularity challenge by implementing the primitives of our
search language as mixin components [4]. As in Aspect-Oriented Programming [10],
mixin components neatly encapsulate the cross-cutting behavior of primitive search
concepts, which are highly entangled in conventional approaches. Cross-cutting
means that a mixin component can interfere with the behavior of its sub-components
(in this case, sub-searches). The combination of encapsulation and cross-cutting
behavior is essential for systematic reuse of search combinators. Without this degree
of modularity, minor modifications require rewriting from scratch.

An added advantage of mixin components is extensibility. We can add new
features to the language by adding more mixin components. The cost of adding such
a new component is small, because it does not require changes to the existing ones.
Moreover, experimental evaluation bears out that this modular approach has no
significant overhead compared to the traditional monolithic approach. Finally, our
approach is solver-independent and therefore makes search combinators a potential
standard for designing search.

This article is an extended version of a paper [22] that appeared in the proceedings
of the 17th International Conference on Principles and Practice of Constraint
Programming (CP) 2011. That paper further developed the ideas laid out in our
earlier paper [19], which was presented at ModRef 2010.
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1.4 Plan of the article

The rest of the article is structured as follows. The next section discusses the
motivation and challenges involved in defining search combinators. Section 3 defines
the high-level search language in terms of basic heuristics and combinators. Section 4
shows how the modular language is mapped to a modular design of the combinator
implementations. Section 5 presents two concrete implementation approaches for
combinators and gives an overview of how we integrate search combinators into the
MiniZinc toolchain. Section 6 verifies that combinators can be implemented with low
overhead. Finally, Section 7 discusses related approaches, and Section 8 concludes
the article.

2 Background and motivation

This section motivates the need for a search language, gives an overview of our
approach, the main challenges and contributions, and introduces some terminology
used in this article.

2.1 Problems and importance

Choosing a good search heuristic is an important aspect of solving many combi-
natorial problems, and many works in the literature are devoted to designing and
evaluating search heuristics. Despite this awareness, most CP systems offer relatively
little support for search heuristics. They usually offer one or both of the following two
options.

1. The system offers a small number of predefined search heuristics.
2. The system offers users a general purpose programming language (e.g., C++ or

Prolog) to program their own search heuristics.

Systems that combine both approaches are, for instance, Gecode and many CLP
systems (e.g., ECLiPSe [20] or B-Prolog [33]). The former provides a few search
engines and branchers and allows the user to program new ones in C++. The latter
provide a limited set of search heuristics and enable the programmer to write their
own search from scratch in Prolog.

Both approaches have substantial disadvantages. The first one puts a substantial
implementation burden on the system developer. Implementing and maintaining a
new search heuristic is a non-negligible task. This means that there is often little
incentive for providing more than a handful of the most commonly used search
heuristics. This is of course very confining for the system’s users. Novice and
intermediate users are not aware of potentially better alternatives than what the
system offers and expert users simply do not access them. The second approach fares
little better. It puts the burden on the user. Clearly, implementing their own search
heuristics is beyond novice users, and poses a high threshold for intermediate users
as well. Even for expert users, implementing a new search heuristic can be a time-
consuming activity.

Both approaches hamper widespread adoption and reduce the potential impact of
(even established) research results. Moreover, they prevent a wide range of search
heuristics being considered and evaluated for a particular constraint problem. Hence,
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feasible or better solutions are potentially not found. Moreover, models that rely on
particular search heuristics, are not portable across systems and, based on the current
state-of-the-art, standardization of search support is not to be expected in the near
future. This exacerbates a general issue that users face. If they need two uncommon
system features (e.g., particular global constraints or search heuristics) for solving
their model, they often cannot find a system that provides both and have to make do
with a suboptimal solution.

In summary, the high cost of developing and maintaining search heuristics has
far-reaching consequences for many CP systems and users.

2.2 Approach

The general objective of search combinators is to reduce the effort of developing
implementations of search heuristics. For that purpose, the search combinators
approach applies well-known and widely researched tools from the fields of pro-
gramming languages and software engineering: modularity and reuse. Modularity
means that different aspects of a system can be developed (implemented, compiled,
maintained) independently in software artifacts called modules or components.
Components interact with one another through well-defined interfaces. If interfaces
are sufficiently general and the means to compose components into systems are
sufficiently flexible, the same component can be reused in different configurations
to build different systems.

The above tools are obviously very abstract and apply to software systems in
general. The key challenge is to make them concrete in the setting of the paper,
search heuristics. Obviously, this paper is not the first to have observed the above
problems and applied ideas of modularity and reuse to it. The essential difference
lies in the degrees of granularity and orthogonality of modules. This paper provides
a finer degree of modularity and a higher degree of orthogonality. Finer granularity
means that modules are smaller, which lowers development and maintenance cost,
and they capture more fine-grained concepts, which increases their potential for
reuse and increases the number of meaningful configurations that can be built
from the same number of given modules. Increased orthogonality means that the
dependency on other system aspects is decreased, which lowers the effort of porting
modules between systems and increases again the number of possible configurations
that can be obtained with little effort.

A particularly important form of modularity that search combinators practice is
compositionality. Compositionality means building a new component that imple-
ments a particular interface from other components that implement the same inter-
face. If the logic of such a composition can be encapsulated in a separate component,
that component is called a combinator.1 Search combinators are combinators for
building search heuristics. Combinators are very attractive for two reasons.

1. Theoretically, a system with n different roles and m different components
implementing each role has mn different possible configurations. If we consider
only a single role, then m components yield only m different configurations.

1Combinator is a term from functional programming; in object-oriented programming it is known as
the Composite design pattern.
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However, when components are compositional, we need only a few primitive
components and a few combinators to obtain an infinite number of possible
configurations. While in practice the number of useful combinations is clearly not
infinite, m compositional components are much more cost-effective than non-
compositional ones.

2. By encapsulating the logic of combining components into combinators, the
configuration of components becomes very easy. This means concretely that
users can be gradually exposed to search heuristics: novices only use predefined
configurations, intermediate users construct their own configurations, while
expert users write new components. Note that by leveraging compositionality,
even this last aspect becomes easier: only the missing functionality needs to be
written, while existing functionality can be added by composition.
An interesting result of combinators is that, with a little syntactic support, they
have the look and feel of a special-purpose programming language, also known
as a domain-specif ic programming language (DSL). The notable difference from
traditional approaches to programming language design is the modularity. Tradi-
tional languages are designed and implemented as a whole, while the combinator
approach is inherently extensional. This means that adding a new “language
feature” has a very low cost, as it does not affect the implementations of the
existing ones.

2.3 Technical challenges and contributions

Many previous works (e.g., Perron [16], IBM ILOG CP Optimizer, and Comet [29])
have realized that modularity and compositionality are key features for supporting
CP tree search. In fact, nearly all systems, even the traditional CLP systems, offer
two basic combinators: conjunction and disjunction. However, beyond that, there are
few other combinators provided. Moreover, the general thrust is towards modularity
only: a “textbook” search heuristic is written from scratch in a single module and can
be reused many times. Finally, the design details of existing approaches are closely
tied to a particular implementation platform and CP system, or simply not given
(e.g., for closed-source systems).

The main contribution of this paper is a modular design that factorizes search
heuristics into finer-grained less interdependent components than existing ap-
proaches. Arriving at such a highly compositional design is also the main technical
challenge.

Although it is not always obvious, many search heuristics have common aspects
that have a potential of being factorized out. For instance, iterative deepening,
limited discrepancy search and restarting branch-and-bound and dichotomic search
all share the aspect of repeatedly restarting their search. The reason why such
commonality is not always apparent, and also why it is technically challenging to
factor it out, is that their code is intermixed with that of other aspects of the search
heuristics and not easily disentangled. In software engineering terms, such aspects
are called cross-cutting. Obviously all existing systems can express in some way or
another all search heuristics, the essential question here is whether they do so with
the same degree of factorization. This paper claims that it goes further than existing
work: Section 3 presents a set of search combinator components and shows how they
can be combined into a range of well-known search heuristics, Section 4 explains
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the underlying modular design of the components and Section 7 provides a detailed
comparison with related work.

The degree of orthogonality is another important aspect. The search combinator
approach makes minimal assumptions on the other aspects of the system or the
underlying implementation platform.2 This means that it can be integrated with
relatively little effort in many existing systems and on many different platforms.3

For different systems on the same implementation platform, it is often even possible
to share the same search combinators implementation. Moreover, if multiple systems
implement the search combinator approach on different platforms, it becomes easy
to exchange definitions of search heuristics. In contrast, existing approaches do not
consider the benefits of orthogonality and explicitly target only a single system.
To support these claims, Section 5 summarizes different implementations of the
search combinator approach and Section 6 shows that these implementations have
competitive performance.

2.4 Scope and terminology

The words “search” and “search heuristic” are generally highly overloaded. In this
paper they have a particular meaning.

Firstly, the kind of search that search combinators address is CP tree search. There
are other important forms of CP search like local search and large neighborhood
search. Each kind of search has its own strengths and weaknesses and for that reason
some CP systems, like Comet, offer multiple forms of search.

Secondly, the word search heuristic refers to varying aspects of the dynamic
traversal of a CP tree. Search combinators distinguish three different aspects:

1. The labeling strategy is concerned with splitting a node of the search tree
into child nodes to enable further propagation on a set of constraint variables.
Because it has a significant impact on the efficiency of search, labeling has
already been widely studied in the literature and is often factored into variable
and value selection strategies.
This paper considers labeling strategies as primitive search heuristics, and builds
on established results for them. As such, their particulars are not important for
this paper.

2. The queueing strategy is concerned with the selection of a previously generated
node of the search tree for further expansion. The best known and most widely
applied queueing strategy is depth-first search. Alternatives are breadth-first
search and best-first search.
This paper is not concerned with the choice of a particular queueing strategy.
The main point of interest is that search heuristics are orthogonal to the choice
of queueing strategy. This means that a system is free to choose it or leave that
choice to the user.

2E.g., first-class continuations like those used in Comet are not needed.
3E.g., on top of Comet continuations and Search Controllers.
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3. The search heuristic proper is a controlling entity on top of one or more labeling
strategies. It decides what nodes is processed by what labeling strategy, what
node is processed again in possibly altered circumstances, and what node is not
processed at all (i.e., is pruned). As parts of its business, it keeps track of all
manner of information of the search process.

It is this last notion that is the central topic of interest of this paper.
Note that traditionally known search heuristics are made up of two or three of

the above concepts. For instance, the traditional notion of limited discrepancy search
(LDS) combines a specific queueing strategy with a control aspect that repeatedly
expands a search tree from the root in a particular pattern. Search combinators
enable the control aspect of LDS to be defined as a search heuristic and to be used
with other queueing strategies.

3 High-level search language

This section introduces the syntax of our high-level search language and illustrates
its expressive power and modularity by means of examples. The rest of the article
then presents an architecture that maps the modularity of the language down to the
implementation level.

The search language is used to define a search heuristic, which a search engine
applies to each node of the search tree. For each node, the heuristic determines
whether to continue search by creating child nodes, or to prune the tree at that
node. The queuing strategy, i.e., the strategy by which new nodes are selected for
further search (such as depth-first traversal), is determined separately by the search
engine, it is thus orthogonal to the search language. The search language features a
number of primitives, listed in the catalog of Fig. 1. These are the building blocks
in terms of which more complex heuristics can be defined, and they can be grouped
into basic heuristics (base_search and prune), combinators (ifthenelse, and, or, portfolio,
and restart), and state management (let, assign, post). This section introduces the three
groups of primitives in turn.

For many users, the given primitives will represent a simple and at the same time
sufficiently expressive language that allows them to implement complex, problem-
specific search heuristics. The examples in this section show how versatile this base
language is. However, we emphasize that the catalog of primitives is open-ended.

Fig. 1 Catalog of primitive search heuristics and combinators
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Advanced users may need to add new, problem-specific primitives, and Section 4
explains how the language implementation explicitly supports this.

The concrete syntax we chose for presentation uses simple nested terms, which
makes it compatible with the annotation language of MiniZinc [15]. Section 5.3
discusses our implementation of MiniZinc with combinator support. However, other
concrete syntax forms are easily supported (e.g., we support C++ and Haskell).

3.1 Basic heuristics

Let us first discuss the two basic primitives, base_search and prune.

base_search The most widely used method for specifying a basic heuristic for a
constraint problem is to define it in terms of a variable selection strategy which picks
the next variable to constrain, and a domain splitting strategy which splits the set of
possible values of the selected variable into two (or more) disjoint sets. Common
variable selection strategies are:

– firstfail: select the variable with the smallest current domain,
– smallest: select the variable which can take the smallest possible value,
– domwdeg [2]: select the variable with smallest ratio of size of current domain and

number of failures the variable has been involved in, and
– impact [18]: select the variable that will (based on past experience) reduce the

raw search space of the problem the most.

Common domain splitting strategies are:

– min: set the variable to its minimum value or greater than its minimum,
– max: set the variable to its maximum value or less than its maximum,
– median: set the variable to its median value, or not equal to this value, and
– split: constrain the variable to the lower half of its range of possible values, or its

upper half.

The CP community has spent a considerable amount of work on defining and ex-
ploring the above and many other variable selection and domain splitting heuristics.
The provision of a flexible language for defining new basic searches is an interesting
problem in its own right, but in this article we concentrate on search combinators
that combine and modify basic searches.

To this end, our search language provides the primitive base_search(vars, var-
select, domain-split), which specifies a systematic search. If any of the variables vars
are still not fixed at the current node, it creates child nodes according to var-select
and domain-split as variable selection and domain splitting strategies respectively.

Note that base_search is a CP-specific primitive; other kinds of solvers provide
their own search primitives. The rest of the search language is essentially solver-
independent. While the solver provides few basic heuristics, the search language
adds great expressive power by allowing these to be combined arbitrarily using
combinators.

prune The second basic primitive, prune, simply cuts the search tree below the
current node. Obviously, this primitive is useless on its own, but we will see shortly
how prune can be used together with combinators.
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3.2 Combinators

The expressive power of the search language relies on combinators, which combine
search heuristics (which can be basic or themselves constructed using combinators)
into more complex heuristics.

and/or Probably the most widely used combination of heuristics is sequential com-
position. For instance, it is often useful to first label one set of problem variables
before starting to label a second set. The following heuristic uses the and combinator
to first label all the xs variables using a first-fail strategy, followed by the ys variables
with a different strategy:

and([base_search(xs, firstfail, min),

base_search(ys, smallest, max)])
As you can see in Fig. 1, the and combinator accepts a list of searches s1, . . . , sn,

and performs their and-sequential composition. And-sequential means, intuitively,
that solutions are found by performing all the sub-searches sequentially down one
branch of the search tree, as illustrated in Fig. 2(1).

The dual combinator, or([s1, . . . , sn]), performs a disjunctive combination of its
sub-searches—a solution is found using any of the sub-searches (Fig. 2(2)), trying
them in the given order.

Fig. 2 Primitive combinators
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Statistics and ifthenelse The ifthenelse combinator is centered around a conditional
expression cond. As long as cond is true for the current node, the sub-search s1 is
used. Once cond is false, s2 is used for the complete subtree below the current node
(see Fig. 2(3)).

We do not specify the expression language for conditions in detail, we simply
assume that it comprises the typical arithmetic and comparison operators and literals
that require no further explanation. It is notable though that the language can refer
to the constraint variables and parameters of the underlying model. Additionally, a
condition may refer to one or more statistics variables. Such statistics are collected for
the duration of a subsearch until the condition is met. For instance ifthenelse(depth <

10, s1, s2) maintains the search depth statistic during subsearch s1. At depth 10, the
ifthenelse combinator switches to subsearch s2.

We distinguish two forms of statistics: Local statistics such as depth and discrep-
ancies express properties of individual nodes. Global statistics such as number of
explored nodes, encountered failures, solution, and time are computed for entire
search trees.

It is worthwhile to mention that developers (and advanced users) can also define
their own statistics, just like combinators, to complement any predefined ones.
In fact, Section 4 will show that statistics can be implemented as a subtype of
combinators that can be queried for the statistic’s value.

Abstraction Our search language draws its expressive power from the combination
of primitive heuristics using combinators. An important aspect of the search language
is abstraction: the ability to create new combinators by effectively defining macros in
terms of existing combinators.

For example, we can define the limiting combinator limit(cond, s) to perform s
while condition cond is satisfied, and otherwise cut the search tree using prune:

limit(cond, s) ≡ ifthenelse(cond, s, prune)

The once(s) combinator, well-known in Prolog as once/1, is a special case of the
limiting combinator where the number of solutions is less than one. This is simply
achieved by maintaining and accessing the solutions statistic:

once(s) ≡ limit(solutions < 1, s)

Exhaustiveness and portfolio/restart The behavior of the final two combinators,
portfolio and restart, depends on whether their sub-search was exhaustive. Exhaus-
tiveness simply means that the search has explored the entire subtree without ever
invoking the prune primitive.

The portfolio([s1, . . . , sn]) combinator performs s1 until it has explored the whole
subtree. If s1 was exhaustive, i.e., if it did not call prune during the exploration of the
subtree, the search is finished. Otherwise, it continues with portfolio([s2, . . . , sn]). This
is illustrated in Fig. 2(4), where the subtree of s1 represents a non-exhaustive search,
s2 is exhaustive and therefore s3 is never invoked.

An example for the use of portfolio is the hotstart(cond, s1, s2) combinator. It
performs search heuristic s1 while condition cond holds to initialize global parameters
for a second search s2. This heuristic can for example be used to initialize the widely
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applied Impact heuristic [18]. Note that we assume here that the parameters to be
initialized are maintained by the underlying solver, so we omit an explicit reference
to them.

hotstart(cond, s1, s2) ≡ portfolio([limit(cond, s1), s2])

The restart(cond, s) combinator repeatedly runs s in full. If s was not exhaustive,
it is restarted, until condition cond no longer holds. Figure 2(5) shows the two cases,
on the left terminating with an exhaustive search s, on the right terminating because
cond is no longer true.

The following implements random restarts, where search is stopped after 1000
failures and restarted with a random strategy:

restart(true, limit(failures < 1000, base_search(xs, randomvar, randomval)))

Clearly, this strategy has a flaw: If it takes more than 1000 failures to find the solution,
the search will never finish. We will shortly see how to fix this by introducing user-
defined search variables.

The prune primitive is the only source of non-exhaustiveness. Combinators prop-
agate exhaustiveness in the obvious way:

– and([s1, . . . , sn]) is exhaustive if all si are
– or([s1, . . . , sn]) is exhaustive if all si are
– portfolio([s1, . . . , sn]) is exhaustive if one si is
– restart(cond, s) is exhaustive if the last iteration is
– ifthenelse(cond, s1, s2) is exhaustive if, whenever cond is true, then s1 is, and,

whenever cond is false, then s2 is

3.3 State access and manipulation

The remaining three primitives, let, assign, and post, are used to access and manipu-
late the state of the search:

– let(v, e, s) introduces a new search variable v with initial value of the expression
e and visible in the search s, then continues with s. Note that search variables are
distinct from the decision variables of the model.

– assign(v, e): assigns the value of the expression e to search variable v and
succeeds.

– post(c, s): provides access to the underlying constraint solver, posting a constraint
c at every node during s. If s is omitted, it posts the constraint and immediately
succeeds.

These primitives add a great deal of expressiveness to the language, as the
following examples demonstrate.

Random restarts Let us reconsider the example using random restarts from the
previous section, which suffered from incompleteness because it only ever explored
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1000 failures. A standard way to make this strategy complete is to increase the limit
geometrically with each iteration:

geom_restart(s) ≡ let(maxfails, 100,

restart(true, portfolio([limit(failures < maxfails, s),
and([assign(maxfails, maxfails ∗ 1.5),

prune])]))

The search initializes the search variable maxfails to 100, and then calls search s with
maxfails as the limit. If the search is exhaustive, both the portfolio and the restart
combinators are finished. If the search is not exhaustive, the limit is multiplied by 1.5,
and the search starts over. Note that assign succeeds, so we need to call prune after-
wards in order to propagate the non-exhaustiveness of s to the restart combinator.

Branch-and-bound A slightly more advanced example is the branch-and-bound
optimization strategy:

bab(obj, s) ≡ let(best, ∞, post(obj < best,and([s, assign(best,obj)])))

It introduces a variable best that initially takes value ∞ (for minimization). In every
node, it posts a constraint to bound the objective variable by best. Whenever a new
solution is found, the bound is updated accordingly using assign.

The bab example demonstrates how search variables (like best) and model vari-
ables4 (like obj) can be mixed in expressions. This makes it possible to remember
the state of the search between invocations of a heuristic. All of the following
combinators make use of this feature.

Restarting branch-and-bound This is a twist on regular branch-and-bound that
restarts whenever a solution is found.

restart_bab(obj, s) ≡ let(best, ∞, restart(true, and([post(obj < best), once(s),
assign(best,obj)])))

Radiotherapy treatment planning The following search heuristic can be used to
solve radiotherapy treatment planning problems [1]. The heuristic minimizes a
variable k using branch-and-bound (bab), first searching the variables N, and then
verifying the solution by partitioning the problem along the rowi variables for each
row i one at a time (expressed as a MiniZinc array comprehension). Failure on one
row must be caused by the search on the variables in N, and consequently search
never backtracks into other rows.

This behavior is similar to the once combinator defined above. However, when a
single solution is found, the search should be considered exhaustive. We therefore

4They are typeset in typewrite font to distinguish them from search variables.
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need a committed-choice variant of once that is exhaustive when a solution is found.
This exhaustive variant can be implemented by replacing prune with post(false):

exh_once(s) ≡ ifthenelse(solutions < 1, s, post(false))

This allows us to express the entire search strategy for radiotherapy treatment
planning:5

bab(k, and([base_search(N, . . . )]++
[exh_once(base_search(rowi, . . . )) | i in 1..n]))

For The for loop construct (v ∈ [l, u]) can be defined as:

for(v, l, u, s) ≡ let(v, l, restart(v ≤ u,

portfolio([s, and([assign(v, v + 1), prune])])))

It simply runs u − l + 1 times the search s, which of course is only sensible if s makes
use of side effects or the loop variable v. As in the geom_restart combinator above,
prune propagates the non-exhaustiveness of s to the restart combinator.

Limited discrepancy search [8] with an upper limit of l discrepancies for an under-
lying search s.

lds(l, s) ≡ for(n, 0, l, limit(discrepancies ≤ n, s))

The for construct iterates the maximum number of discrepancies n from 0 to l, while
limit executes s as long as the number of discrepancies is smaller than n. The search
makes use of the discrepancies statistic that is maintained by the search infrastructure.
The original LDS [8] visits the nodes in a specific order. The search described here
visits the same nodes in the same order of discrepancies, but possibly in a different
individual order—as this is determined by the global queuing strategy.

The following is a combination of branch-and-bound and limited discrepancy
search for solving job shop scheduling problems, as described in [8]. The heuristic
searches the Boolean variables prec, which determine the order of all pairs of tasks
on the same machine. As the order completely determines the schedule, we then fix
the start times using exh_once.

bab(makespan, lds(∞, and([base_search(prec, . . . ),

exh_once(base_search(start, . . . ))])))

Fully expanded, this heuristic consists of 17 combinators and is 11 combinators deep.

5++ denotes list concatenation.
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Iterative deepening [11] for an underlying search s is a particular instance of the
more general pattern of restarting with an updated bound, which we have already
seen in the geom_restart example. Here, we generalize this idea:

id(s) ≡ ir(depth, 0,+, 1,∞, s)
ir(p, l,⊕, i, u, s) ≡ let(n, l, restart(n ≤ u, and([assign(n, n ⊕ i),

limit(p ≤ n, s)])))

With let, bound n is initialized to l. Search s is pruned when statistic p exceeds n, but
iteratively restarted by restart with n updated to n ⊕ i. The repetition stops when n
exceeds u or when s has been fully explored. The bound increases geometrically, if
we supply ∗ for ⊕, as in the restart_flip heuristic:

restart_flip(p, l, i, u, s1, s2) ≡ let(f lip, 1, ir(p, l, ∗, i, u, and([assign(f lip, 1 − f lip),

ifthenelse(f lip = 1, s1, s2)])))

The restart_flip search alternates between two search heuristics s1 and s2. Using this
as its default strategy in the free search category, the lazy clause generation solver
Chuf fed scored most points in the 2010, 2011, and 2012 MiniZinc Challenges.6

Probe search Try out two searches s1 and s2 to a limited extent defined by condition
cond. Then, for the remainder, use the search that resulted in the best solution so far.

probe(cond, obj, s1, s2) ≡ let(best1, ∞,

let(best2, ∞,

portfolio([ limit(cond, and([s1, assign(best1, obj)]))
limit(cond, and([s2, assign(best2, obj)]))
ifthenelse(best1 ≤ best2, s1, s2)])))

Dichotomic search [26] solves an optimization problem by repeatedly partitioning
the interval in which the possible optimal solution can lie. It can be implemented by
restarting as long the lower bound has not met the upper bound (line 2), computing
the middle (line 3), and then using an or combinator to try the lower half (line 5). If
it succeeds, obj− 1 is the new upper bound, otherwise, the lower bound is increased
(line 6).

dicho(s,obj, lb, ub) ≡let(l, lb, let(u, ub,

restart(l < u,

let(h, l + �(u − l)/2	,
once(or([

and([post(l ≤ obj ≤ h), s, assign(u,obj− 1)]),
and([assign(l, h + 1), prune])]))

))))

6http://www.g12.csse.unimelb.edu.au/minizinc/

http://www.g12.csse.unimelb.edu.au/minizinc/
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4 Modular combinator design

The previous section caters for the user’s needs, presenting a high-level modular
syntax for our combinator-based search language. To cater for advanced users’ and
system developers’ needs, this section goes beyond modularity of syntax, introducing
modularity of design.

Modularity of design is the one property that makes our approach practical. Each
combinator corresponds to a separate module that has a meaning and an implemen-
tation independent of the other combinators. This enables us to actually realize the
search specifications defined by modular syntax.

Modularity of design also enables growing a system from a small set of combina-
tors (e.g., those listed in Fig. 1), gradually adding more as the need arises. Advanced
users can complement the system’s generic combinators with a few application-
specific ones. Compared to creating new heuristics by just combining primitives,
adding new combinators of course requires a deeper insight into the implementation
details and therefore comes at a higher development cost. We believe that our
architecture strikes the right balance with the split into a simple high-level language
that caters for most users’ needs, and a more complex but still compositional
implementation for advanced users and system developers.

Solver independence is another notable property of our approach. While a few
combinators access solver-specific functionality (e.g., base_search and post), the
approach as such and most combinators listed in Fig. 1 are in fact generic (solver-
and even CP-independent); their design and implementation is reusable.

The solver-independence of our approach is reflected in the minimal interface
that solvers must implement. This interface consists of an abstract type State which
represents a state of the solver (e.g., the variable domains and accumulated constraint
propagators) which supports state restoration. Truly no more is needed for the
approach or all of the primitive combinators in Fig. 1, except for base_search and
post which require CP-aware operations for querying variable domains, solver status
and posting constraints, and possibly interacting with statistics maintained by the
solver. Note that state restoration can be implemented either by means of copying
for copying solvers, or by means of recomputation techniques [16] for trailing-based
solvers. Hence, there need not be a 1-to-1 correspondence between an implementa-
tion of the abstract State type and the solver’s actual state representation. We have
implementations of the interface based on both copying and trailing.

In the following we explain our design in detail by means of code implementations
of most of the primitive combinators we have covered in the previous section.

4.1 The message protocol

To obtain a modular design of search combinators we step away from the idea that
the behavior of a search combinator, like the and combinator, forms an indivisible
whole; this leaves no room for interaction. The key insight here is that we must
identify finer-grained steps, defining how different combinators interact at each node
in the search tree. Interleaving these finer-grained steps of different combinators in
an appropriate manner yields the composite behavior of the overall search heuristic,
where each combinator is able to cross-cut the others’ behavior.
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Considering the diversity of combinators and the fact that not all units of behavior
are explicitly present in all of them, designing this protocol of interaction is non-
trivial. It requires studying the intended behavior and interaction of combinators
to isolate the fine-grained units of behavior and the manner of interaction. The
contribution of this section is an elegant and conceptually uniform design that is
powerful enough to express all the combinators presented in this article.

The messages We present this design in the form of a message protocol. The
protocol specifies a set of messages (i.e., an interface with one procedure for each
fine-grained step) that have to be implemented by all combinators. In pseudo-code,
this protocol for combinators consists of four different messages:

protocol combinator
start(rootNode);
enter(currentNode);
exit(currentNode,status);
init(parentNode,childNode);

The protocol concerns the dynamic behavior of a search combinator. A single
static occurrence of a search combinator in a search heuristic may have zero or more
dynamic life cycles. During a life cycle, the combinator observes and influences the
search of a particular subtree of the overall search tree.

– The message start(rootNode) starts up a new life cycle of a combinator for
the subtree rooted at rootNode. The typical implementation of this message
allocates and initializes data for the life cycle.

– The message enter(currentNode) notifies the combinator that the node
currentNode of its subtree is currently active. At this point the combinator
may for instance decide to prune it.

– The message exit(currentNode,status) informs the combinator that the
currently active node currentNode is a leaf node of its subtree. The node’s
status is one of failure, success or abort which denote respectively an
inconsistent node, a solution and a pruned node.

– The message init(parentNode,childNode) registers with the combinator
the node childNode as a child node of the currently active node parentNode.

Typically, during a life cycle, a combinator sees every node three times. The first time
the node is included in the life cycle, either as a root with start or as the child of
another node with init. The second time the node is processed with enter. The
last time the node processing has determined that the node is either a leaf with exit
or the parent of one or more other nodes with init.

The nodes All of the message signatures specify one or two search tree nodes as
parameters. Each such node keeps track of a solver State and the information
associated by combinators to that State.

We observe three different access patterns of nodes:

1. In keeping with the solver independence stipulated above, we will see that most
combinators only query and update their associated information and do not
access the underlying solver State at all.
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Fig. 3 The modular message
protocol
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2. Restarting-based combinators, like restart and portfolio, copy nodes. This
means copying the solver’s State representation and all associated information
for later restoration.

3. Finally, selected solver-specific combinators like base_search do perform
solver-specific operations on the underlying State, like querying variable do-
mains and posting constraints.

The calling hierarchy In addition to the message signatures, the protocol also
stipulates in what order the messages are sent among the combinators (see Fig. 3).
While in general a combinator composition is tree-shaped, the processing of any
single search tree node p only involves a stack of combinators. For example,
given or([and1([s1, s2]), and2([s3, s4])]),7 p is included in life cycles of [or, and1, s1],
[or, and1, s2], [or, and2, s3] or [or, and2, s4]. We also say that the particular stack is
active at node p. The picture shows this stack of active combinators on the left.

Every combinator in the stack has both a super-combinator above and a sub-
combinator below, except for the top and the bottom combinators. The bottom is
always a basic heuristic (base_search, prune, assign, or post). The important aspect
to take away from the picture is the direction of the four different messages, either
top-down or bottom-up.

The protocol initializes search by sending the start(root) message, where
root is the root of the overall search tree, to the topmost combinator. This topmost
combinator decides what child combinator to forward the message to, that child
combinator propagates it to one of its children and so on, until a full stack of
combinators is initialized.

Next, starting from the root node, nodes are processed in a loop. The
enter(node) message is passed down through the stack of combinator stack to the

7The left and right and are subscripted to distinguish them.
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primitive heuristic at the bottom, which determines whether the node is a leaf or
has children. In the former case, the primitive heuristic passes the exit(node,
status) message up. In the latter case, it passes the init(node,child) message
down from the top for each child. These child nodes are added to the queue that fuels
the loop. At any point, intermediate combinators can decide not to forward messages
literally, but to alter them instead (e.g., to change the status of a leaf from success
to abort), or to initiate a different message flow (e.g. to start a new subtree).

4.2 Basic setup

Before we delve into the interesting search combinators, we first present an example
implementation of the basic setup consisting of a base search (base_search) and a
search engine (dfs). This allows us to express overall search specifications of the form:
dfs(base_search(vars,var-select,domain-split)).

Base search We do not provide full details on a base_search combinator, as it is
not the focus of this article. However, we will point out the aspects relevant to our
protocol.

The first line of base_search’s implementation expresses two facts. Firstly,
base_search implements the combinator protocol. Secondly, its constructor has
three parameters (vars, var-select, domain-select) that can be referred to in
its message implementations.

In the enter message, the node’s solver state is propagated. Subsequently, the
condition isLeaf(c,vars) checks whether the solver state is unsatisfiable or there
are no more variables to assign. If either is the case, the exit status (respectively
failure or success) is sent to the parent combinator. For now, the parent
combinator is just the search engine, but later we will see how how other combinators
can be inserted between the search engine and the base search.

If neither is the case, the search branches depending on the variable selection
and domain splitting strategies. This involves creating a child node for each branch,
determining the variable and value for that child and posting the assignment to the
child’s state. Then, the top combinator (i.e., the engine) is asked to initialize the
child node. Finally the child node is pushed onto the search queue.

combinator base_search(vars,var-select,domain-select)
enter(c):

c.propagate
if isLeaf(c,vars)
parent.exit(c,leafstatus(c))

pos = ... // from vars based on var-select
for each child: // based on domain-select
val = ... // from values of var based on domain-select
child.post(vars[pos]=val)
top.init(c,child)
queue.push(child)

Note that, as the base_search combinator is a base combinator, its exit message
is immaterial (there is no child heuristic of base_search that could ever call it). The
start and init messages are empty. Many variants on and generalizations of the
above implementation are possible.
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Depth-f irst search engine The engine dfs serves as a pseudo-combinator at the top
of a combinator expression heuristic and serves as the heuristic’s immediate
parent as well. It maintains the queue of nodes, a stack in this case. The search
starts from a given root node by starting the heuristic with that node and
then entering it. Each time a node has been processed, new nodes may have been
pushed onto the queue. These are popped and entered successively.

combinator dfs(heuristic)
start(root):
top=this
heuristic.parent=this
queue=new stack()
heuristic.start(root)
heuristic.enter(root)
while not queue.empty

heuristic.enter(queue.pop())

init(n,c):
heuristic.init(n,c)

The engine’s exit message is empty, the enter message is never called and the
init message delegates initialization to the heuristic.

Other engines may be formulated with different queuing strategies.

4.3 Combinator composition

The idea of search combinators is to augment a base_search. We illustrate this with
a very simple print combinator that prints out every solution as it is found. For
simplicity we assume a solution is just a set of constraint variables vars that is supplied
as a parameter. Hence, we obtain the basic search setup with solution printing with:

dfs(print(vars,base_search(vars,strategy)))

Print The print combinator is parametrized by a set of variables vars and a search
combinator child. Implicitly, in a composition, that child’s parent is set to the
print instance. The same holds for all following search combinators with one or more
children.

The only message of interest for print is exit. When the exit status is success,
the combinator prints the variables and propagates the message to its parent.

combinator print (vars,child)
exit(c,status):
if status==success

print c.vars
parent.exit(c,status)

The other messages are omitted. Their behavior is default: they all propagate to the
child. The same holds for the omitted messages of following unary combinators.
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4.4 Binary combinators

Binary combinators are one step up from unary ones. They combine two complete
search heuristics into a composite one. The most basic binary combinator is the
binary version of and. For instance, if we need to label two sets of variables, we can
do so with

and(base_search(vars1,...),base_search(vars2,...))

The principle shown here easily generalizes to n-ary combinators.

And The (binary) and combinator has two children, left and right. In order
to keep track of what child combinator is handling a particular node, the and
combinator associates with every node an inLeft Boolean variable. The local
keyword indicates that every node has its own instance of that variable. We denote
the instance of the inLeft variable associated with node c as c.inLeft.

When entering a node, it is delegated to the left or right combinator based
on inLeft. At the start, the root node is delegated to the left combinator, so
its inLeft variable is set to true. The value of inLeft is inherited in init from
the current node to its children. Upon a successful exit for left, the leaf node
becomes the root of a new subtree that is further handled by the right combinator.

combinator and(left,right) {
local bool inLeft

start(root):
root.inLeft=true
left.start(root)

enter(c):
if c.inLeft

left.enter(c)
else

right.enter(c)

exit(c,status):
if c.inLeft and status==success

c.inLeft=false
right.start(c)
right.enter(c)

else
parent.exit(c,status)

init(p,c):
c.inLeft=p.inLeft
if c.inLeft

left.init(p,c)
else

right.init(p,c)
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Note that the right combinator is started repeatedly, once for each leaf node
of left. In general, each combinator can be managing multiple subtrees of the
search.

Multiple and combinators may be handling a search node at the same time. For
instance in a heuristic of the form and(and(s1, s2), s3), two and combinators are active
at the same time. The scoping of the associated variables works in such a way that
each and has its own instance of inLeft for each node.

4.5 Reusable combinators

Now we show how a monolithic combinator can be decomposed into more primitive
combinators that can be reused for other purposes.

Monolithic combinator We start from the following limitsolutions combinator that
prunes the search after cutoff solutions have been found. One new concept is
the notion of a global variable associated with a (sub)tree: all descendants of root
(implicitly) share the same instance of count. Hence, any update of count by one
node is seen by all other nodes in the (sub)tree.

combinator limitsolutions(cutoff,child)
global int count

start(root):
root.count = 0
child.start(root)

enter(c):
if count == cutoff

parent.exit(abort)
else

child.enter(c)

exit(c,status):
if status==success

c.count++
parent.exit(c,status)

Decomposition We can split up the above limitsolutions combinator into three
different combinators: ifthenelse, solutionslimit and prune. They form a directed acyclic
graph as depicted in Fig. 4 or denoted as an expression with sharing below:

limitsolutions(cutoff,s) = ifthenelse(s’,s’,prune)

where the same heuristic object s’ = solutionslimit(cutoff,s) is shared between
the first and a second parameter of ifthenelse.

Here, s’ is the heuristic s augmented with solutionslimit to monitor how many
solutions are left to find until cutoff is reached. It is in the capacitiy of a heuristic
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Fig. 4 The decomposition of
the limitsolutions combinator if
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that s’ occurs in the second parameter position of ifthenelse: Initially, ifthenelse
makes s’ is active child heuristic. If the cutoff is reached, then ifthenelse switches to
prune as its active child, which discards the remaining nodes in the tree. This involves
s’ in its capacity as the first parameter of ifthenelse, where it tells ifthenelse how to
evaluate its condition, namely by querying the solutionslimit object.

Note that the sharing in this example is somewhat odd at first sight, but perfectly
natural on second thought. It is due to the generality of ifthenelse: its condition
need not be determined by the topmost combinator of its then-child. Instead, the
condition can be derived from a combination of sources in the active combinator
stack. Hence, the condition parameter needs to specify how the condition value
is obtained. In order to facilitate the common case of sharing for end users of
the combinators, the sharing is easily hidden by more convenient syntax such as
ifthenelse(solutions <= cutoff,s,prune) (e.g., see the examples in Section 3).

In the following we discuss the individual primitives in more detail.

Prune The prune combinator is a minimal base combinator that immediately exits
every node with the abort status. The start message is empty, and the exit and
init messages are never called.

combinator prune ()
enter(c):
parent.exit(c,abort)

Solutions count The solutionslimit combinator below illustrates how statistics gath-
ering combinators are implemented. It implements both the combinator protocol
and the additional condition protocol with an extra message eval that queries
the current Boolean value:

protocol condition
eval(currentNode);

In the case of solutionslimit, the returned Boolean value is whether a par-
ticular number (cutoff) of solutions has not yet been reached by its child.
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For this purpose it maintains the number of solutions found so far in a global
variable.

combinator & condition solutionslimit(cutoff,child)
global int count

start(root):
root.count = 0
child.start(root)

exit(c,status):
if status==success

c.count++
parent.exit(c,status)

eval(c):
return c.count <= cutoff

Ifthenelse The ifthenelse combinator is parametrized by one condition and two
child combinators. It associates with every node whether it is handled by the left
child (inLeft); this is the case for the root node. Whenever a node c is entered
that is inLeft, the condition is checked. If the condition fails, c becomes the root of
a subtree that is further handled by right.

combinator ifthenelse(cond,left,right)
local bool inLeft

start(root):
root.inLeft=true
left.start(root)

enter(c):
if not c.inLeft

right.enter(c)
else if cond.eval()

left.enter(c)
else

c.inLeft=false
right.start(c)
right.enter(c)

init(p,c):
c.inLeft=p.inLeft
if c.inLeft

left.init(p,c)
else

right.init(p,c)
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4.6 Restarting combinators

Restarting the search is common to several combinators; the mechanic is illustrated
below in the portfolio combinator.

Portfolio Like the ifthenelse and and combinators, the portfolio combinator switches
between child combinators. Only the logic for switching is more complex. In order to
simplify presentation, we again restrict the code to the binary case; the n-ary variant
is a straightforward generalization.

Firstly, portfolio keeps track of a global “reference” count ref of unprocessed
nodes to be handled by the s1 child. This count is incremented whenever a new
child node is initialized, and decremented whenever a node is entered for actual
processing.

When the last node of s1 exits (witnessed by the reference count being 0) and
the search was not exhaustive, the search starts over from the root, but now with the
s2 child. In order to decide about exhaustiveness, the portfolio combinator registers
whether any exit with status abort occurred. At the same time it converts an
abort inside s1 into a failure, because the s2 combinator may still perform an
exhaustive search and avoid overall non-exhaustiveness. In order to restart from the
root, a copy of the root node is made at the start.

Upon a successful exit, the leaf node becomes the root of a new subtree that is
further handled by the s2 combinator.

combinator portfolio(s1,s2)
global node copy
global bool inLeft
global bool exhaustive
global int ref

start(root):
copy=root.copy()
root.inLeft=true
root.exhaustive=true
root.ref=1
s1.start(root)

enter(c):
if c.inLeft
ref--
s1.enter(c)

else
s2.enter(c)

exit(c,status):
if not c.inLeft
parent.exit(c,status)

else
if status==abort
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status=failure
c.exhaustive=false

if c.ref==0
if c.exhaustive

parent.exit(c,status)
else

copy.inLeft=false
s2.start(copy)
self.enter(copy)

else
parent.exit(c,status)

init(p,c):
ref++;
if c.inLeft
s1.init(p,c)

else
s2.init(p,c)

5 Modular combinator implementation

The message-based combinator approach lends itself well to different implemen-
tation strategies. In the following we briefly discuss two diametrically opposed
approaches we have explored:

Dynamic composition implements combinators as objects that can be combined
arbitrarily at runtime. It therefore acts like an interpreter. This is a lightweight
implementation, it can be ported quickly to different platforms, and it does not
involve a compilation step between the formulation and execution of a search
heuristic.

Static composition uses a code generator to translate an entire combinator expres-
sion into executable code. It is therefore a compiler for search combinators. This
approach lends itself better to various kinds of analysis and optimization.

As both approaches are possible, combinators can be adapted to the implementa-
tion choices of existing solvers. Section 6 shows that both implementation approaches
have competitive performance.

5.1 Dynamic composition

To support dynamic composition, we have implemented our combinators as C++
classes whose objects can be allocated and composed into a search specification
at runtime. The protocol events correspond to virtual method calls between these
objects. For the delegation mechanism from one object to another, we explicitly
encode a form of dynamic inheritance called open recursion or mixin inheritance [4].
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In contrast to the OOP inheritance built into C++ and Java, this mixin inheritance
provides two essential abilities: 1) to determine the inheritance graph at runtime
and 2) to use multiple copies of the same combinator class at different points
in the inheritance graph. In contrast, C++’s built-in static inheritance provides
neither.

The C++ library currently builds on top of the Gecode constraint solver [25].
However, the solver is accessed through a layer of abstraction that is easily adapted
to other solvers (e.g., we have a prototype interface to the Gurobi MIP solver). The
complete library weighs in at around 2500 lines of code, which is even less than
Gecode’s native search and branching components.

5.2 Static composition

In a second approach, also on top of Gecode, we statically compile a search
specification to a tight C++ loop. Again, every combinator is a separate module
independent of other combinator modules. A combinator module now does not di-
rectly implement the combinator’s behavior. Instead it implements a code generator
(in Haskell), which in turn produces the C++ code with the expected behavior.

Hence, our search language compiler parses a search specification, and composes
(in mixin-style) the corresponding code generators. Then it runs the composite
code generator according to the message protocol. The code generators produce
appropriate C++ code fragments for the different messages, which are combined
according to the protocol into the monolithic C++ loop. This C++ code is further post-
processed by the C++ compiler to yield a highly optimized executable.

As for dynamic composition, the mixin approach is crucial, allowing us to add
more combinators without touching the existing ones. At the same time we obtain
with the press of a button several 1000 lines of custom low-level code for the
composition of just a few combinators. In contrast, the development cost of hand
crafted code is prohibitive.

As the experiments in the next section will show, compiling the entire search
specification into an optimised executable achieves better performance than dynamic
composition. However, the dynamic approach has the big advantage of not requiring
a compilation step, which means that search specifications can be constructed at
runtime, as exemplified by the following application.

5.3 MiniZinc with combinators

As a proof of concept and platform for experiments, we have integrated search
combinators into a complete MiniZinc toolchain. It translates a MiniZinc model
together with a search annotation into FlatZinc, which is then interpreted and
executed.

Our toolchain comprises a pre-compiler, which is necessary to support arbitrary
expressions in annotations, such as the condition expressions for an ifthenelse. The
expressions are translated into standard MiniZinc annotations that are understood
by the FlatZinc interpreter. User-defined variables have type-inst svar int and
can be introduced using the standard MiniZinc let construct. The annotation
construct of MiniZinc has been extended to support simple function definitions. The



296 Constraints (2013) 18:269–305

following example shows a MiniZinc version of the restart-based branch-and-bound
heuristic from Section 3.3:

annotation limit(var bool: cond, ann: s) =
ifthenelse(cond,s,prune);

annotation once(ann: s) = limit(solutions < 1, s);

annotation rbab(var int: obj, ann: s) =
let { svar int: best = MAXINT } in
restart(true, and([

post(obj < best),
once(s),
assign(best,obj)]));

solve ::rbab(x,int_search(y,input_order,assign_lb)) satisfy;

The pre-compiler translates this code as follows:

solve :: sh_let(sh_letvar("best"), sh_int(MAXINT),
sh_restart(sh_cond_true, sh_and([
sh_post_succeed(sh_cond_lt(sh_intvar(objective),

sh_letvar("best"))),
sh_let(sh_letvar("solutioncount"), 0,

sh_ifthenelse(sh_cond_lt(sh_letvar("solutioncount"),
sh_int(1)),

sh_solutioncount(sh_letvar("solutioncount"),
sh_int_search(x, sh_var_input_order,

sh_val_assign_lb)),
sh_prune)),

sh_assign(sh_letvar("best"), sh_intvar(objective))])))
satisfy;

All literals are quoted (e.g. sh_int(1)), user-defined search variables are turned
into quoted strings (sh_letvar("best")), expressions like obj < best are
translated into annotation terms (sh_cond_lt . . . ), and statistics are made explicit,
introducing search variables and special combinators (sh_solutioncount). The
result of the pre-compilation is valid, well-typed MiniZinc, which is then passed
through the standard mzn2fzn translator to produce FlatZinc ready for solving. We
intend to incorporate the translations done by the pre-compiler into the standard
mzn2fzn in the future.

We extended the Gecode FlatZinc interpreter to parse the search combinator
annotation and construct the corresponding heuristic using the Dynamic Compo-
sition approach described above. The three tools, pre-compiler, mzn2fzn, and the
modified FlatZinc interpreter thus form a complete toolchain for solving MiniZinc
models using search combinators. The source code including examples can be down-
loaded from http://www.gecode.org/flatzinc.html. If developers for other systems
that support MiniZinc can be persuaded to implement search combinators for their

http://www.gecode.org/flatzinc.html
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system, which we believe is not too difficult, then we can see search combinators as
a basis for standardizing MiniZinc search.

5.4 Further implementations

We are in the process of implementing the search combinators approach on two more
platforms:

Prolog Our Tor library [23] implements a subset of the search message protocol
in Prolog. The library is currently available for SWI-Prolog [32] and B-Prolog [33],
and extends the capabilities of their respective finite domain solver libraries. Among
others, it provides all the search heuristics of ECLiPSe Prolog’s [20] search/6
predicate, but in a fully compositional way. The library implements the dynamic
approach supplemented with load-time program specialization.

Scala Desouter [6] has implemented a preliminary library of search combinators for
Scala [5] on the Java Virtual Machine. His implementation exploits Scala’s built-in
mixin mechanism (called traits) to further factorize the combinator implementations.
The library’s current backend is the JaCoP solver [12].

6 Experiments

This section evaluates the performance of the dynamic and static implementations.
It establishes that a search heuristic specified using combinators is competitive with
a custom implementation of the same heuristic, exploring exactly the same tree.

Section 4.1 introduced a message protocol that defines the communication be-
tween the different combinators for one node of the search tree. Any overhead of a
combinator-based implementation must therefore come from the processing of each
node using this protocol. All combinators discussed earlier process each message of
the protocol in constant time (except for the base_search combinators, of course).
Hence, we expect at most a constant overhead per node compared to a native
implementation of the heuristic.

In the following, two sets of experiments confirm this expectation. The first
set consists of artificial benchmarks designed to expose the overhead per node.
The second set consists of realistic combinatorial problems with complex search
strategies.

The experiments were run on a 2.26 GHz Intel Core 2 Duo running Mac OS X.
The results are the means of 10 runs, with a coefficient of deviation less than 1.5 %.

Stress test The first set of experiments measures the overhead of calling a single
combinator during search. We ran a complete search of a tree generated by 7
variables with domain {0, . . . , 6} and no constraints (1 647 085 nodes). To measure
the overhead, we constructed a basic search heuristic s and a stack of n combinators:

portfolio([portfolio([. . . portfolio([s, prune]) . . . , prune]), prune])
where n ranges from 0 to 20 (realistic combinator stacks, such as those from the
examples in this article, are usually not deeper than 10). The numbers in the following
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table report the runtime with respect to using the plain heuristic s, for both the static
and the dynamic approach:

n 1 2 5 10 20
Static % 106.6 107.7 112.0 148.3 157.5
Dynamic % 107.3 117.6 145.2 192.6 260.9

A single combinator generates an overhead of around 7 %, and 10 combinators
add 50 % for the static and 90 % for the dynamic approach. In absolute runtime,
however, this translates to an overhead of around 17 ms (70 ms) per million nodes
and combinator for the static (dynamic) approach. Note that this is a worst-case
experiment, since there is no constraint propagation and almost all the time is spent
in the combinators.

Benchmarks The second set of experiments shows that in practice, this overhead
is dwarfed by the cost of constraint propagation and backtracking. Note that the
experiments are not supposed to demonstrate the best possible search heuristics for
the given problems, but that a search heuristic implemented using combinators is just
as efficient as a native implementation.

Figure 5 compares Gecode’s optimization search engines with branch-and-bound
implemented using combinators. The column Compiled shows the absolute runtime
of the Static Composition approach. The column Interpreted is the relative runtime of
the Dynamic Composition approach compared to Compiled. The column Gecode is
the relative runtime of the native Gecode search engines (i.e., not using combinators
at all), compared to Compiled. For each problem instance, all three approaches use
exactly the same search strategy and explore the same trees.

Fig. 5 Experimental results
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On the well-known Golomb Rulers problem, both dynamic combinators and
native Gecode are slightly slower than static combinators. Native Gecode uses
dynamically combined search heuristics, but is much less expressive. That is why the
static approach with its specialization yields better results.

On the radiotherapy problem (see Section 3.3), the dynamic combinators show an
overhead of 6–11 %. For native Gecode, exh_once must be implemented as a nested
search, which performs similarly to the dynamic combinators. However, in instances
5 and 6, the compiled combinators lose their advantage over native Gecode. This is
due to the processing of exh_once: As soon as it is finished, the combinator approach
processes all nodes of the exh_once tree that are still in the search queue, which are
now pruned by exh_once. The native Gecode implementation simply discards the
tree. We will investigate how to incorporate this optimization into the combinator
approach.

The job shop scheduling examples, using the combination of branch-and-bound
and discrepancy limit discussed in Section 3.3, show similar behavior. In ABZ1-5
and mt10, the interpreted combinators show much less overhead than in the short-
running instances. This is due to more expensive propagation and backtracking in
these instances, which spend almost 70 % more time per node than the short-running
instances. Therefore, as the absolute time spent per combinator per node is constant,
the relative overhead of executing the combinators is much lower.

In summary, the experiments show that the expressiveness and flexibility of a rich
combinator-based search language can be achieved without any runtime overhead in
the case of the static approach, and little overhead for the dynamic version.

7 Related work

This section explores and discusses previous work that is closely related to search
combinators as presented in this article.

7.1 MCP

This work directly extends our earlier work on Monadic Constraint Programming
(MCP) [21]. MCP introduces stackable search transformers, which are a simple form
of search combinators, but only provide a much more limited and low level form of
search control. In trying to overcome its limitations we arrived at search combinators.

7.2 Constraint logic programming

Constraint logic programming languages such as ECLiPSe [20] and SICStus Prolog
[28] provide programmable search via the built-in search of the paradigm, allowing
the user to define goals in terms of conjunctive or disjunctive sub-goals.

Prolog’s limitation is that it does not permit cross-cutting between goals. For
instance, disjunctions inside goals are too well encapsulated to observe them or
interfere with them from outside that goal. Hence, combinators that inject additional
behavior in disjunctions, i.e. to observe and/or prune the number of branches, cannot
be expressed in a modular way. In contrast, cross-cutting is a crucial feature of
our combinator approach, where a combinator higher up in the stack can interfere
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with a sub-combinator, while remaining fully compositional. In summary, apart
from conjunction and disjunction, Prolog’s goal-based heuristics cannot be combined
arbitrarily.

ECLiPSe copes with this limitation by combining a limited number of search
heuristics into a monolithic search/6 predicate. With various parameters the user
controls which of the heuristics is enabled (e.g., depth-bounded, node-bounded
or limited discrepancy search). A fixed number of compositions are supported,
such as changing strategy when the depth bound finishes. The labeling itself is
user programmable. If a user is not happy with the set of supported heuristics in
search/6, they have to program his own from scratch.

7.3 Node evaluators, search selectors and search limits

Perron [16] describes a compositional approach to search where search heuristics
are called goals. In addition to basic user-defined goals, he proposes five predefined
combinators. These five combinators consist of the conventional binary And and
Or combinators, as well as the unary combinators Apply, SelectSearch and
LimitSearch. The three unary ones are parameterized by respectively a node
evaluator, a search selector and a search limit:

– A node evaluator influences the position of the node in the queue.
– A search selector combines three roles: 1) management of branch-&-bound

minimization, 2) determining whether a node is feasible, and 3) selection of
solutions.

– A search limit (time or failure limit) aborts the remaining search when a global
limit is exceeded.

This design is less uniform than our search combinators approach as it assigns
different tasks to more specialized entities. At the same time, this approach does not
seem intended to support additional combinators, such as our ifthenelse and restart,
which enable random restarting and restarting branch-&-bound among others. The
approach consequently does not cover aspects such as exhaustiveness which allow
distinguishing between or and portfolio, which is necessary for restart. There is very
little detail given about the implementation of the approach, and in particular how
combinators interact.

Finally, this approach [16] caters specifically for depth-first search, based on trail-
ing and recomputation, with a particular priority queue. Our approach is orthogonal
to these choices. Nevertheless, it would be interesting to explore his concept of
interaction between combinator and queue in the search combinator setting.

7.4 IBM ILOG CP optimizer

The CP Optimizer C++ library [9] of IBM ILOG offers support for fully program-
mable search in three different ways.

1. At one level, search heuristics are called IlcGoal. Programmers can write their
own primitive IlcGoals and the library provides two combinators, IlcAnd and
IlcOr, similar to our and and portfolio combinators.
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2. At another level, search heuristics are called IloGoal. Again programmers can
write their own primitive instances. The library also offers a number of primitives
for labelling, including one based on dichotomic search. There are also three
combinators, the counterparts of and, portfolio and limit.

3. Finally, there are search monitors (IlcSearchMonitor), that hook into the
search and are notified of events (somewhat like our protocol messages). These
search monitors are primarily meant to collect statistics about the search.

There are a two notable differences with search combinators. Firstly, by distin-
guishing between goals and search monitors, this approach lacks the uniformity of
search combinators. Hence, the design is more complex than necessary. Secondly, the
system aims at a very limited form of compositionality. Only three combinators are
provided and extension is only promoted at the level of primitive goals. For instance,
dichotomic search is presented as a primitive goal rather than as a combinator—
moreover, it is written as a monolithic entity rather than as a composition.

The fact that the library has not been designed with much compositionality in mind
obviously does not mean that compositionality cannot be achieved. On the contrary,
we believe that all the necessary ingredients are available to implement the search
combinator design.

7.5 The Comet language

The Comet [29] system features fully programmable search [30], built upon the basic
concept of continuations, which make it easy to capture the state of the solver and
write non-deterministic code.

The Comet library provides abstractions like the non-deterministic primitives
try and tryall that split the search specification in two (orthogonal) parts: 1)
the specification of the search tree which corresponds to our to our base_search
heuristics, and 2) the exploration of that search tree by means of a search controller.
In terms of our approach, the search controller determines both the queueing
strategy and the behavior of the search heuristic (minus the base search) within a
single entity. In other words, it defines what to do when starting or ending a search,
failing, or adding a new choice.

Complex heuristics can be constructed as custom controllers, either by inheriting
from existing controllers or implementing them from scratch.

Albeit at a different level of abstraction (e.g., compare the Comet definition of
depth-bounded search in Fig. 6 to the combinator definition dbs(n, s) ≡ limit(depth ≤
n, s)), search controllers are quite similar to combinators as presented in this article.
However, there is one essential difference. Our combinators are meant to be
compositional, whereas search controllers are not. This difference in spirit is clearly
reflected in 1) the design of the interface and its associated protocol, and 2) the
instances:

1. The design of search controllers is simpler than that of search combinators be-
cause it does not take compositionality into account. While many of the messages
in the two approaches are similar in spirit, the search combinator approach also
stipulates the flow of messages within a search combinator composition. Notably,
while most of the messages propagate top-down through a combinator stack,
it is vital to compositionality that the exit message proceeds in a bottom-up
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Fig. 6 Definition of depth-bounded search in Comet

manner. For instance, this bottom-up flow enables the inner and combinator
in the composition and(and(s1, s2), s3) to intercept leaf nodes of s1 and start
s2 before its parent starts s3. The other way around would clearly exhibit an
undesirable semantics.
In Comet, this compositional protocol is entirely absent. All messages are
directed at the single search controller.

2. In terms of instantiation, because of their compositional nature, we promote
many “small” combinator instances that each capture a single primitive feature.
This approach provides us with a high-level modeling language for search, as
the primitive combinators are conveniently assembled into many different search
heuristics. In contrast, all Comet search controller instances we are aware of8 are
essentially monolithic implementations of a particular search heuristic; none of
them takes other search controllers as arguments. Through a common abstract
base class the instances share some basic infrastructure, but to implement a new
search controller one basically starts from scratch.

The fact that search controllers have not been designed with compositionality in
mind obviously does not mean that compositionality cannot be achieved in Comet.
On the contrary, we believe that it is most easily achieved by integrating search
controllers with the compositional design of our search combinators. In fact, because
of Comet’s powerful primitives for non-determinism, this would lead to a particularly
elegant implementation.

8i.e., those published in papers and shipped with the Comet library.
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7.6 Other systems

The Salsa [13] language is an imperative domain-specific language for implementing
search algorithms on top of constraint solvers. Its center of focus is a node in
the search process. Programmers can write custom Choice strategies for generating
next nodes from the current one; Salsa provides a regular-expression-like language
for combining these Choices into more complex ones. In addition, Salsa can run
custom procedures at the exits of each node, right after visiting it. We believe that
Salsa’s Choice construct is orthogonal to our approach and could be incorporated.
Custom exit procedures show similarity to combinators, but no support is provided
for arbitrary composition.

Oz [27] was the first language to truly separate the definition of the constraint
model from the exploration strategy [24]. Computation spaces capture the solver
state and the possible choices. Strategies such as DFS, BFS, LDS, Branch and
Bound and Best First Search are implemented by a combination of copying and
recomputation of computation spaces. The strategies are monolithic, there is no
notion of search combinators.

Choi et al. [3] describe a compositional framework for search that relies on
composing search engines. A search engine is a constraint store transformer which
given an initial constraint store outputs a stream of constraint stores in a demand
driven way. These are composed by plugging one search engine into another. This
allows composition, and also simple filtering such as first solution (once) or last
solution (e.g. in optimization to return only the best solution).

Zinc/MiniZinc [14, 15] lets the user specify search in its annotation language.
There is a proposal for a more expressive search language for MiniZinc [19], but
it is limited to basic variable ordering and domain splitting strategies. For Zinc,
a language extension is available for implementing variable selection and domain
splitting [17] but again it does not address more than basic search.

The original versions of the constraint modeling language OPL [31] provided
programmable search using a try construct that creates the search tree. The tree
could then be explored with a programmed strategy, or a built-in strategy such as
DFS, LDS, BFS or Best First Search. Exploration strategies could be modified by
limit strategies, which were effectively combinators.

7.7 Autonomous search

Autonomous search (AS) [7] addresses the challenge of providing complex
application-tailored search heuristics in a different way. Rather than leaving the
specification and tuning of search heuristics to the programmer, AS promotes sys-
tems that autonomously self-tune their performance while solving problems. Hence,
while search combinators make writing search heuristics easier, AS takes it out of
the hands of the programmer altogether. Well-known instances of this approach are
Impact Based Search [18] or the weighted degree heuristic [2].

AS has advantages for 1) smaller problems where it produces a decent heuristic
without programmer investment, and for 2) novice users who don’t know how to
obtain a decent heuristic. However, loss of programmer control is a liability for hard
problems where AS can be ineffective and often only expert knowledge makes the
difference.
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8 Conclusion

We have shown how combinators provide a powerful high-level language for model-
ing complex search heuristics. To make this approach useful in practice, we devised
an architecture in which the modularity of the language is matched by the modularity
of the implementation. This relieves system developers from a high implementation
cost and yet, as our experiments show, imposes no runtime penalty. Because the
language is high-level and easy to implement, we believe it is an excellent starting
point for standardizing search.

For future work, parallel search on multi-core hardware fits perfectly in our
combinator framework. We have already performed a number of preliminary experi-
ments and will further explore the benefits of search combinators in a parallel setting.
We will also explore potential optimizations (such as the short-circuit of exh_once
from Section 6) and different compilation strategies (e.g., combining the static and
dynamic approaches from Section 5).

In addition we will consider applying search combinators in other problem do-
mains like Mixed Integer Programming (MIP) and A∗ where search strategies have
a major impact on performance and no dominant default search exists. A combinator
approach to local search and/or large area neighbourhood search is also possible, but
since these searches typically require the description of nearly arbitrary functions on
the solver state to specify neighbourhoods and evaluate moves it seems hard to avoid
using a near full programming language

Finally, we note that combinators need not necessarily be heuristics that control
the search. They may also monitor search, e.g., by gathering statistics or visualizing
the search tree.
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