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Abstract We introduce WSimply, a new framework for modelling and solving
Weighted Constraint Satisfaction Problems (WCSP) using Satisfiability Modulo
Theories (SMT) technology. In contrast to other well-known approaches designed
for extensional representation of goods or no-goods, and with few declarative facili-
ties, our approach aims to follow an intensional and declarative syntax style. In addi-
tion, our language has built-in support for some meta-constraints, such as priority and
homogeneity, which allows the user to easily specify rich requirements on the desired
solutions, such as preferences and fairness. We propose two alternative strategies
for solving these WCSP instances using SMT. The first is the reformulation into
Weighted SMT (WSMT) and the application of satisfiability test based algorithms
from recent contributions in the Weighted Maximum Satisfiability field. The second
one is the reformulation into an operation research-like style which involves an
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optimisation variable or objective function and the application of optimisation SMT
solvers. We present experimental results of two well-known problems: the Nurse
Rostering Problem (NRP) and a variant of the Balanced Academic Curriculum
Problem (BACP), and provide some insights into the impact of the addition of
meta-constraints on the quality of the solutions and the solving time.

Keywords Weighted CSP · Modelling languages · Reformulation ·
Meta-constraints · SMT · Weighted MaxSAT

1 Introduction

A Constraint Satisfaction Problem (CSP) is a decision problem where the objective
is to determine whether an assignment of values to a set of variables exists which
satisfies a given set of constraints. However, many real-world instances of CSPs
are over-constrained and therefore have no solution. In this case, we can relax the
CSP specification so that a number of constraints can be violated, and ask for a
solution that maximises the number of satisfied constraints. This optimisation variant
is known as Maximum CSP (MaxCSP) [16, 20, 21].

In some problems there can be a degree of preference on which constraints to
violate. This is usually modelled by attaching a weight to each constraint, which
denotes the cost of violating it. We refer to the constraints that can be violated
as soft, while we refer to those constraints that must be satisfied as hard (their
associated weight is considered to be infinite). In this case, the objective is to find
an assignment which satisfies all the hard constraints and minimises the aggregated
cost of the violated soft constraints [22]. This problem is known as the Weighted CSP
(WCSP) [25] or, alternatively, as a Cost Function Network (CFN) [11, 12]. In a CFN,
constraints are replaced by cost functions. Cost functions associate a cost with each
combination of values which a set of variables can take, and the objective is to find
an assignment of values for the variables that minimises the sum of all costs.

We may wish to go further at the specification level by allowing the user to
express their preferences more easily, or even to express more complex preferences.
In [32], a set of constraints on soft constraints, called meta-constraints, is introduced.
Meta-constraints can be very helpful in the modelling process, since they allow
us to abstract to a higher level, expressing, e.g., priorities between a set of soft
constraints, different levels of preference (multi-objective optimisation), etc. For
example, in the well-known Nurse Rostering Problem (NRP) [9], it is preferable to
violate the constraint about the number of consecutive days that a nurse can work
than the constraint about the minimum number of nurses per shift. We could also
wish to impose certain homogeneity on the amount of violation of different sets of
constraints. Continuing with the example of the NRP, this could be useful in order
to obtain “fair” solutions with respect to the preferences of the nurses. Additionally,
we may wish to consider dependencies between constraints (for instance, if a soft
constraint is violated then some other constraint must become mandatory) or we
may wish to define the weight of a soft constraint not as a constant value but as a
function denoting its degree of violation.

Several soft constraint frameworks have been proposed. XCSP 2.1 [33] is an
XML format which has been adopted recently in the CSP, MaxCSP and WCSP
competitions. CSP instances, as well as WCSP instances, can be represented either in
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extension or in intension with XCSP. WCSP instances are represented in intension
by introducing cost functions. Unfortunately, up to now the competition has been
restricted to extensional instances in the case of WCSP. For this reason, all available
WCSP benchmarks written in XCSP are described in extension, and we are not aware
of any WCSP solver supporting intensional cost functions at this moment.

Some tools supporting higher-level and less verbose languages, such as
MiniZinc [28], can output to XCSP. There are also tools like TAILOR [18], which
translate from XCSP to other declarative, solver-independent modelling languages
such as ESSENCE’ (a subset of ESSENCE [17]). However, to our knowledge, none of
these higher-level languages includes direct support for WCSP or meta-constraints.
Comet [27] is a constraint programming system based on local search, with support
for weighted constraints. The weights in a Comet specification can be either static or
dynamic (i.e., they can vary during execution) in order to guide the local search.

In this work we follow a purely declarative approach, i.e., we focus on the
intensional specification of WCSPs in a declarative high-level language, and on
its resolution by means of general purpose, off-the-shelf decision procedures. We
introduce a new framework, called WSimply, which includes a new language for
modelling WCSPs with built-in support for meta-constraints, covering all the kinds
described in [32], and a solving system for WCSPs with Satisfiability Modulo
Theories (SMT) technology. In particular, we extend the medium-level constraint
modelling language of Simply [7] to deal with weights associated with the violation
of constraints.
Simply is able to solve decision and optimisation CSP instances by reformulating

them into SMT and calling an external SMT solver. There are existing works which
show the efficiency of SMT when dealing with particular CSPs [2, 29] and also when
dealing with CSPs in general [7, 8]. With the proposed WSimply extension, the user
will be able to model WCSP instances with meta-constraints easily, and choose to
solve them either by reformulation into SMT following an operation research-like
style and using binary search optimisation or, alternatively, by reformulation into
WSMT and using satisfiability test based algorithms from recent contributions in
Weighted MaxSAT.

We conduct extensive experimental evaluation on two well-known problems, the
aforementioned NRP and a variant of the Balanced Academic Curriculum Problem
(BACP). We show how to model these problems with the help of meta-constraints
and discuss the performance of different solving techniques.

The rest of the paper is structured as follows. In Section 2 we recall some basic
concepts on WCSP. In Section 3 we introduce SMT and WSMT. Section 4 is devoted
to our framework and its language. In Section 5 we give an example of an over-
constrained problem modelled using our language. In Section 6 we discuss several
ways of solving WCSP instances with SMT. Results of the experimental evaluation
are given in Section 7. We conclude in Section 8.

2 Weighted CSP (WCSP)

Next we formally define CSP and WCSP.

Definition 1 A Constraint Satisfaction Problem (CSP) instance is defined as a triple
〈X, D, C〉, where X = {x1, . . . , xn} is a set of variables, D = {d(x1), . . . , d(xn)} is a
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set of domains containing the values the variables may take, and C = {C1, . . . , Cm}
is a set of constraints. Each constraint Ci = 〈Si, Ri〉 is defined as a relation Ri over a
subset of variables Si = {xi1 , . . . , xik}, called the constraint scope. A relation Ri may
be represented intensionally in terms of an expression which defines the relationship
that must hold amongst the assignments to the variables it constrains or it may be
represented extensionally as a subset of the Cartesian product d(xi1) × · · · × d(xik)

(tuples) which represents the allowed assignments (good tuples) or the disallowed
assignments (no-good tuples).

An assignment v for a CSP instance 〈X, D, C〉 is a mapping that assigns to every
variable xi ∈ X an element v(xi) ∈ d(xi).

An assignment v satisfies a constraint 〈{xi1 , . . . , xik}, Ri〉 in C if and only if
〈v(xi1), . . . , v(xik)〉 ∈ Ri.

A solution to a CSP instance is an assignment that satisfies all the constraints. The
Constraint Satisfaction Problem for a CSP instance consists of finding a solution for
that instance.

Definition 2 A weighted CSP (WCSP) instance is a triple 〈X, D, C〉, where X and D
are variables and domains, respectively, as in a CSP. A constraint Ci is now defined
as a pair 〈Si, fi〉, where Si = {xi1 , . . . , xik} is the constraint scope and fi : d(xi1) × · · · ×
d(xik) → N ∪ {∞} is a cost (weight) function that maps tuples to its associated weight
(a natural number or infinity). We call those constraints whose associated cost is
infinity hard, if otherwise soft. The cost (weight) of a constraint Ci induced by an
assignment v in which the variables of Si = {xi1 , . . . , xik} takes values bi1 , . . . , bik is
fi(bi1 , . . . , bik).

A solution to a WCSP instance is an assignment in which the sum of the costs
of the constraints is minimal. The Weighted Constraint Satisfaction Problem for a
WCSP instance consists of finding a solution for that instance.

In the literature a WCSP is also referred to as a constraint optimisation problem
which is a regular CSP whose constraints are weighted and the goal is to find a
solution while minimising the cost of the constraints. Nevertheless, in this paper we
refer to a Constraint Optimization Problem (COP) in a more operation research-like
style. This allows us to stress the difference between instances explicitly containing
soft constraints and instances just containing an optimisation variable.

Definition 3 A Constraint Optimisation Problem (COP) instance consists of an
optimisation variable O to be minimised (or maximised) subject to the constraints
of a CSP instance 〈X, D, C〉 where O ∈ X.

A solution to a COP instance is a solution to the CSP instance that minimises
(or maximises) the value of the optimisation variable.

3 Weighted SMT (WSMT)

In recent decades SAT solvers have progressed spectacularly in performance
thanks to better implementation techniques and conceptual enhancements, such
as non-chronological backtracking and conflict-driven lemma learning, which in
many instances of real problems are able to reduce the size of the search space
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significantly [6, 15, 23]. Thanks to those advances, nowadays the best SAT solvers
can tackle problems with hundreds of thousands of variables and millions of clauses.

An SMT instance is a generalisation of a Boolean formula in which some proposi-
tional variables have been replaced by predicates with predefined interpretations
from background theories such as, e.g., linear integer arithmetic. For example, a
formula can contain clauses like p ∨ q ∨ (x + 2 ≤ y) ∨ (x > y + z), where p and q are
Boolean variables and x, y and z are integer variables. Predicates over non-Boolean
variables, such as linear integer inequalities, are evaluated according to the rules of
a background theory [30, 34].

Leveraging the advances made in SAT solvers in the last decade, SMT solvers
have proved to be competitive with classical decision methods in many areas. Most
modern SMT solvers integrate a SAT solver with decision procedures (theory
solvers) for sets of literals belonging to each theory. It is worth noting that most
state-of-the-art SMT solvers use the simplex method for dealing with linear integer
arithmetic predicates. This way, we can hopefully get the best of both worlds: in
particular, the efficiency of the SAT solver for the Boolean reasoning and the
efficiency of special-purpose algorithms for the theory reasoning.

As in the CSP case, we can extend SMT to WSMT as follows:

Definition 4 A weighted SMT clause is a pair (C, w), where C is an SMT clause1 and
w is a natural number or infinity (indicating the penalty for violating C). A weighted
SMT formula is a multiset of weighted SMT clauses

ϕ = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}
where the first m clauses are soft and the last m′ clauses are hard.

The optimal cost of a formula is the minimal cost of all its assignments. An optimal
assignment is an assignment with optimal cost.

Definition 5 The WSMT problem2 for a WSMT formula is the problem of finding
an optimal assignment for that formula.

The WSMT problem can be reformulated in a operation research-like style, i.e.,
the maximisation of a linear function subject to a set of constraints, as follows:

maximise o1 · w1 + · · · + om · wm (1)

subject to:

m∧

i=1

oi ↔ Ci (2)

m+m′∧

j=m+1

C j (3)

1In fact these can be general SMT formulas, not necessarily disjunctions of literals.
2In the literature the weighted SMT problem is also referred to as Weighted MaxSMT, same as in
the SAT formalism. We prefer to use WSMT because it is closer to WCSP.
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where oi are Boolean variables, (1) is the linear function to be maximised, (3) is the
original set of hard constraints and (2) ensures that oi is true iff Ci is evaluated to
true. In order to convert this maximisation problem into an equivalent minimisation
problem we just need to replace (1) by:

minimize
m∑

i=1

wi − (o1 · w1 + · · · + om · wm) (4)

It can be easily seen that the implication Ci → oi is unnecessary (as we are
optimising).

4 Weighted Simply (WSimply)

Simply 3 [7] was developed as a declarative programming system for easy modelling
and solving of CSPs. Simply essentially translates a CSP instance intensionally
described in its own language into an SMT instance, which is fed into an SMT solver.
If the SMT solver is able to find a solution, then this solution is translated back
to a solution of the original CSP instance. Moreover, to deal with COP instances
(Definition 3) optimisation algorithms can be run on top of an SMT solver [31].
Currently, Simply is integrated with the Yices SMT solver [14], using its built-in
API. However, it could be easily adapted to work with other SMT solvers, either by
using external files or any other API.

The language of Simply is similar to other high-level languages such as those of
ESSENCE and MiniZinc. The model and the data can be specified in separate files,
and the decision variables can be either Boolean or finite domain integer variables.
The language has the useful declarative facility of list comprehensions, which allows
for concise and elegant modellings.

Example 1 shows how to model an instance of the NRP with Simply, and the
resulting SMT formula. As we can see, the SMT formula has no solution due to the
preferences of the nurses which we have defined. The typical approach is to declare
these preferences as soft constraints.

Example 1 Consider a simple instance of the NRP (details on the NRP are given
in Section 5) with two shifts per day and two available nurses. Each shift must be
covered with exactly one nurse. We also want to satisfy the preferences of the nurses.
Say nurse 1 wants to work both days on shift 1, while nurse 2 wants to work the first
day on shift 2 and the second day on shift 1.

This particular instance can be modelled with Simply as shown in Fig. 1. We can
identify four sections in the Simply model: data, domains, variables and constraints.
The data section allows us to define a particular instance of the problem. This section
can also defined in a separate file. The variables section declares a bidimensional
array of integer variables nd, where the size of the first dimension corresponds to
the number of nurses, and the size of the second dimension to the number of days.
The domain of the integer variables of this array is restricted to the range specified
by dshifts_types, i.e., the possible shifts. In the constraints section, we first

3Simply and WSimply are available at http://ima.udg.edu/recerca/lap/simply/.

http://ima.udg.edu/recerca/lap/simply/
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Fig. 1 A Simply instance

introduce the cover constraints: for each day and shift, we have to meet the cover
requirements (one nurse in this case). To post this constraint we generate the list of
nurses working every day d and shift st with a list comprehension [nd[n, d] | n
in [1..nurses]], and we use the global constraint Count to restrict the number
of nurses working that day and shift to one. Finally, we add the nurse preference
constraints for each day, specifying which shift they prefer.
Simply translates the previous instance into the standard SMT-LIB v2 lan-

guage [5] as shown in Fig. 2. First of all we need to specify the background theory
to be used. In this example we use Linear Integer Arithmetic (LIA). Then, we define
the variables of the problem as integer. Next, we use the assert operator to post
the constraints, which are described in prefix notation. The first set of constraints
bounds the domain of the variables. The second set corresponds to the translation

Fig. 2 SMT instance obtained
from the Simply instance
in Fig. 1
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of the cover constraints. Here, we use the operator ite (if-then-else, or conditional
expression). For example, the expression (ite (= nd_1_1 1) 1 0) evaluates to
1 when nd_1_1 is equal to 1, and to 0 otherwise. Each of the four lines with the ite
operator guarantees that there is exactly one nurse per shift. Finally, we add the
translation of the preference constraints.

4.1 Soft constraints in WSimply

Here we detail the extensions introduced to Simply in order to allow for soft
constraints. The new language and system is called WSimply. The basic type of soft
constraint in WSimply is of the form:

(constraint) @ {expression};
where the value of expression is the weight (cost) of falsifying the associated
constraint. The parentheses around the constraint and the curly brackets around the
weight expression are optional. The expression must be a linear integer arithmetic
expression.4 It can either be evaluable at compile time, or contain decision variables.
Weight expressions should always evaluate to a non-negative integer, as they amount
to a cost. When negative they will be considered as zero.

Example 2 The instance in Example 1 has no solution. Hence, we could wish to
model the preferences as soft constraints (and give, e.g., double importance to
the preferences of nurse 1). This could be modelled in WSimply by replacing the
preference constraints with the following:

% Preferences
(nd[1,1] = 1) @ 2; (nd[1,2] = 1) @ 2;
(nd[2,1] = 2) @ 1; (nd[2,2] = 1) @ 1;

Most (if not all) existing WCSP solving systems consider an extensional approach,
i.e., they deal with instances consisting of an enumeration of good/no-good tuples for
hard constraints, and no-good tuples with an associated cost for soft constraints.

Our proposal follows the other direction and aims to allow the user to model
soft constraints in intension. Consider, for instance, two variables x and y, with
domain {1, 2}, and the soft constraint x < y with falsification cost 1. In an extensional
approach, we would model this problem with the following soft no-good tuples:
(x = 1, y = 1, 1), (x = 2, y = 1, 1) and (x = 2, y = 2, 1). In WSimply we would
express this with the soft constraint (x < y) @ {1};.

4.1.1 Degree of violation

An interesting detail worth remarking on is that by allowing the use of decision
variables in the cost expression we can encode the degree of violation of a constraint.

4We are restricted to linear expressions, since we rely on SMT solvers and only a few of them
incorporate (some limited) support for non-linear expressions.
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For instance, for a nurse working more than five shifts in a week, the violation cost
could be increased by one unit for each extra shift worked:

(worked_shifts < 6) @ {base_cost+ worked_shifts− 5};

4.1.2 Labelled constraints

Soft constraints can be labelled as follows (again, the parentheses around the
constraint and the curly brackets around the weight expression are optional):

#label : (constraint) @ {expression};
The labels can be used to refer to the respective constraints in other (either soft or
hard) constraints. For example:

#A: (a > b) @ 1;
#B: (a > c) @ 2;
#C: (a > d) @ 1;
(Not A And Not B) Implies C;

Labels are also used in meta-constraints, which we introduce in the next section.
Moreover, indexed labels are supported, as we show in Section 5.2. This allows for
convenient modellings in many cases.

4.2 Meta-constraints in WSimply

In order to provide a higher level of abstraction in the modelling of over-constrained
problems, in [32] several meta-constraints are proposed. By meta-constraint we refer
to a constraint on constraints. Meta-constraints allow us to go one step further in the
specification of the preferences on the soft constraint violations. WSimply covers
all meta-constraints introduced in [32], plus several variants and alternative meta-
constraints, that we have grouped in the following three families:

1. Priority. The user may have some preferences about which soft constraints to
violate. For instance, if there is an activity to perform and worker 1 does not want
to perform it while worker 2 should not perform it, then it is better to violate the
first constraint than the second. It would be useful to free the user of deciding
the exact value of the weight of each constraint. To this end, we allow the use of
undefined weights, denoted by “_”:

#label : (constraint) @ {_};
The value of this undefined weight is computed at compile time according to
the priority meta-constraints that refer to the label. This simplifies the modelling
of the problem, since the user does not need to compute any concrete weight.
WSimply provides the following meta-constraints related to priority:

– samePriority(List), where List is a list of labels of soft constraints.
This meta-constraint gives the same priority, i.e., the same weight, to the
constraints denoted by the labels in List.

– priority(List), where List is a list of labels of soft constraints. This
constraint orders the constraints denoted by the labels in List by decreasing
priority. In other words, it imposes decreasing weights.
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– priority(label1,label2,n), with n > 1, defines how many times it is
worse to violate the constraint corresponding to label1 than to violate the
constraint corresponding to label2. That is, if weight1 and weight2 denote
the weights associated with label1 and label2 respectively, it states weight1 ≥
weight2 ∗ n.

– multiLevel(ListOfLists), where ListOfLists is a list of lists of labels.
This meta-constraint states that the weight of each one of the constraints
(denoted by the labels) in each list is greater than the aggregated weight of
the constraints in the following lists. For example,

multiLevel([[A,B,C],[D,E,F],[G,H,I]]);

states that the cost of falsifying each of the constraints (denoted by) A, B and
C is greater than the cost of falsifying D, E, F, G, H, and I together and, at the
same time, the cost of falsifying each of the constraints D, E and F is greater
than the cost of falsifying G, H, and I together.

2. Homogeneity. The user may wish there to be some homogeneity in the amount
of violation of disjoint groups of constraints. For instance, for the sake of fairness,
the number of violated preferences of nurses should be as homogeneous as
possible.
WSimply provides the following meta-constraints related to homogeneity:

– atLeast(List,p), where List is a list of labels of soft constraints and p is
a positive integer in 1..100. This meta-constraint ensures that the percentage
of constraints denoted by the labels in List that are satisfied is at least p.

– homogeneousAbsoluteWeight(ListOfLists,v), where ListOfLists is a
list of lists of labels of soft constraints and v is a positive integer. This meta-
constraint ensures that, for each pair of lists in ListOfLists, the difference
between the cost of the violated constraints in the two lists is at most v. For
example, given

homogeneousAbsoluteWeight([[A,B,C],[D,E,F,G]],10);

if the weights of constraints A, B and C are 5, 10 and 15 respectively, and
constraints A and B are violated and constraint C is satisfied, then the cost of
the violated constraints in [D,E,F,G] must be between 5 and 25.

– homogeneousAbsoluteNumber(ListOfLists,v). Same as above, but where
the maximum difference v is between the number of violated constraints.

– homogeneousPercentWeight(ListOfLists,p), where ListOfLists is a
list of lists of labels of soft constraints and p is a positive integer in 1..100.
This meta-constraint is analogous to homogeneousAbsoluteWeight, but
where the maximum difference p is between the percentage in the cost of
the violated constraints (with respect to the cost of all the constraints) in
each list.

– homogeneousPercentNumber(ListOfLists,p). Same as above, but
where the maximum difference p is between the percentage in the number
of violated constraints.

We remark that the homogeneousAbsoluteWeight and homogeneous-
PercentWeight meta-constraints are not allowed to refer to any constraint
with undefined weight. This is because, as aforementioned, constraints with
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undefined weight are referenced by priority meta-constraints, and their weight
is determined at compile time accordingly to those priority meta-constraints,
independently from other constraints.
Hence, since the homogeneousAbsoluteWeight and homogeneous-
PercentWeight meta-constraints also constrain the weight of the refer-
enced constraints, if they were allowed to reference constraints with un-
defined weights, this could lead to incompleteness. We also remark that
these two meta-constraints cannot refer to constraints whose weights con-
tain decision variables (see Section 6.1.2). Nevertheless, note that we can
homogenise constraint violations using homogeneousAbsoluteNumber and
homogeneousPercentNumber meta-constraints, without worrying about the
weights.

3. Dependence. Particular configurations of violations may entail the necessity of
satisfying other constraints, that is, if a soft constraint is violated then another
soft constraint must not be violated, or a new constraint must be satisfied. For
instance, in the context of the NRP, we can imagine that working the first or the
last shift of the day is penalised and, if somebody works in the last shift of one
day, then they cannot work in the first shift the next day. This could be succinctly
stated as follows:

#A: not_last_shift_day_1 @ w1;
#B: not_first_shift_day_2 @ w2;
(Not A) Implies B;

stating that, if constraint A is violated, then constraint B becomes mandatory.

Although the priority meta-constraints are discussed in [32], they are not really
developed in detail, and the multilevel meta-constraint is not considered. Our
atLeast homogeneity meta-constraint subsumes the homogeneity meta-constraint
defined in [32], while the homogeneousAbsoluteWeight, homogeneous-
homogeneousAbsoluteNumber, homogeneousPercentWeight and homo-
geneousPercentNumber meta-constraints are new. The dependence meta-
constraints are the same as in [32].

4.3 Related work

XCSP [33] is another WCSP specification language that accepts weights for in-
tensional constraints. In particular, cost functions can be described intensionally.
Although cost functions (see Definition 2) described intensionally in XCSP may
seem more general than what WSimply can allow, we can easily emulate them. Given
a cost function f , a naive translation in WSimply corresponds to the soft constraint
False @ w, where w is the translation of f into the Simply language. Since the soft
constraint is trivially false, we always add the cost represented by w. Notice that
cost functions from Definition 2 range from 0 to ∞, where 0 corresponds to a soft
constraint that is satisfied while ∞ corresponds to a hard constraint that is falsified.
However, as we have discussed earlier, w is restricted to being a linear integer
arithmetic expression since the current WSimply SMT-based solving methods only
use the LIA theory. This can be circumvented by extending our SMT-based solving
methods with additional theories or including other solving approaches with richer
input languages.
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There is a subtle detail in XCSP which we currently do not address in WSimply:
the explicit definition of the top weight. We implicitly assume the top weight is
infinite since we work with hard clauses. On the other hand, WSimply incorporates
a set of meta-constraints and undefined weights, while XCSP does not.

Finally, XCSP is XML-based and therefore the description of the constraints is
more bizarre than in WSimply. In WSimply, we provide list comprehensions and
iterative constructs.

5 Modelling example

In this section we illustrate the use of WSimply meta-constraints on a paradigmatic
example of over-constrained CSP: the Nurse Rostering Problem (NRP). In a NRP
we have to generate a roster assigning shifts to nurses over a period of time subject
to a number of constraints. These constraints, which can be hard or soft, are usually
defined by regulations, working practices and nurse preferences [26].

We have chosen a simplified variant of the GPost NRP instance.5 In this example
we consider 4 weeks (28 days), 8 nurses (4 full-timers and 4 part-timers) and two
shift types (day and night). We define an array variable sh[8,28] with domain
[0..2], where sh[i,d] = 0 means that the i-th nurse does not work on day
d, sh[i,d] = 1 means that the nurse works on the day shift of day d, and
sh[i,d] = 2 means that the nurse works on the night shift of day d. Nurses
numbered from 1 to 4 are full-timers, and from 5 to 8 are part-timers.

5.1 Hard constraints

Full-timers work exactly 18 shifts in 4 weeks, while part-timers work only 10. We can
encode this as follows:

Forall(i in [1..8]) {
If (i < 5) Then { Count( [sh[i,d] > 0 | d in [1..28]],

True, 18 ); }
Else { Count( [sh[i,d] > 0 | d in [1..28]],

True, 10 ); };
};

Each nurse works at most 4 night shifts, of which at most 3 are consecutive. In
order to refer to the number of night shifts per worker we have to introduce another
array variable tns[8] with domain [0..4]:

Forall(i in [1..8]) {
Count( [sh[i,d] | d in [1..28]], 2, tns[i] );

};
% restrict the number of consecutive night shifts
Forall(i in [1..8], d in [1..25]) {

((sh[i,d] > 1) And (sh[i,d+1] > 1) And (sh[i,d+2] > 1))
Implies Not(sh[i,d+3] > 1);

};

5http://www.cs.nott.ac.uk/~tec/NRP/

http://www.cs.nott.ac.uk/~tec/NRP/
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Note that the maximum number of night shifts is bounded by the domain of the
array tns. Moreover, since the domain of the integers in array sh is [0..2], we
could alternatively write, e.g., sh[i,d] = 2 instead of sh[i,d] > 1. However,
we have observed that using strict inequalities often results in better performance,
possibly due to the special treatment given to them by the linear integer arithmetic
solver integrated with Yices [13].6

5.2 Soft constraints

There is a penalty for a single night shift (for the sake of simplicity, we ignore the
first and last days of the roster):

Forall(i in [1..8], d in [1..26]) {
#NSP[i,d]: Not((sh[i,d]<2) And (sh[i,d+1]>1) And

(sh[i,d+2]<2)) @ {_};
};

Note that we can introduce arrays of labels in the Forall statement, which are
indexed according to the Forall variables. We leave the weights undefined, since
we just want all of them to be the same. To this end, we only need to post the
following meta-constraint (which uses the indexed labels introduced in the Forall
statement):

samePriority([NSP[i,d] | i in [1..8], d in [1..26]]);

Similarly, we want to penalise isolated free days (again, the first and last days of
the roster are ignored for the sake of simplicity):

Forall(i in [1..8], d in [1..26] {
#AFD[i,d]: Not((sh[i,d]>0) And (sh[i,d+1]<1) And

(sh[i,d+2]>0)) @ {_};
};
samePriority([AFD[i,d] | i in [1..8], d in [1..26]]);

Since we consider that violating the AFD constraints is 10 times preferable to
violating the NSP constraints, we use the following meta-constraint:

priority(NSP[1,1], AFD[1,1], 10);

Note that it is enough to state this priority between the first constraints of each group,
since all constraints of each group have the same priority.

A full-timer has to work 4 or 5 days per week. We want to consider the deviation
from this number as the violation degree of the constraint. This can be expressed

6Note that WSimply is using the Yices SMT solver as its default core solving engine.
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as follows: by introducing an array variable tw[4,4], where tw[i,j] denotes the
number of working days for nurse i on week j:

Forall(i in [1..4]) {
Count( [sh[i,d] > 0 | d in [1..7]], True, tw[i,1] );
Count( [sh[i,d] > 0 | d in [8..14]], True, tw[i,2] );
...

};
Forall(i in [1..4], w in [1..4]) {

Not(tw[i,w] > 5) @ {tw[i,w] - 5};
Not(tw[i,w] < 4) @ {4 - tw[i,w]};

};

Finally, we can use homogeneity meta-constraints in order to guarantee a mini-
mum satisfaction on the free days assigned to each nurse. This can be achieved as
follows: we first state, as a soft constraint of weight 1, each free day requested by
each nurse being free. We assume that each nurse has asked for five preferred free
days, which are stored in an input data array free[8,5].

Forall(i in [1..8], f in [1..5]) {
#PFD[i,f]: (sh[i,free[i,f]] < 1) @ 1;

};

Then, the following meta-constraints can be used in order to guarantee that, globally,
40 % of the preferences of the nurses are satisfied and, at the same time, to homo-
geneously satisfy the preferences among nurses (the difference in the percentage of
violated preferences for the different nurses is no more than 50):

atLeast([PFD[i,f] | i in [1..8], f in [1..5]], 40);
homogeneousPercentNumber([[PFD[1,f] | f in [1..5]],

[PFD[2,f] | f in [1..5]], ...], 50);

Finally, we assert that it is ten times better not to have an isolated free day than to
rest one of the preferred days. This is also a requirement of the GPost instance:

priority(AFD[1,1], PFD[1,1], 10);

It is worth noting that, at this point, the system is able to determine a concrete
value for the undefined weights of the AFD and NSP constraints.

6 Solving process

Figure 3 shows the basic architecture and solving process of WSimply. WSimply
reformulates the input instance into the suitable format for the solving procedures.
We have four reformulations: (R1) from a WCSP instance with meta-constraints into
a WCSP instance (without meta-constraints), (R2) from a WCSP instance into a COP
instance, (R3) from a WCSP instance into a WSMT instance and (R4) from a COP
instance into a WSMT instance. Let us recall that the constraints in the WCSP and
COP instances are expressed in the WSimply language as described in Section 4.

Once the problem has been properly reformulated, we can apply two different
solving approaches: WSMT Solving (S1) or Optimisation SMT Solving (S2).
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Fig. 3 Basic architecture and solving process of WSimply

In the following sections we describe the different reformulations and solving
procedures.

6.1 Reformulating WCSP with meta-constraints into WCSP (R1)

We remove all the meta-constraints by reformulating them into hard and soft
WSimply constraints.

As we have shown in Section 4, meta-constraints use labels. Therefore, first of all,
we introduce a new reification variable for each labelled soft constraint of the form:

#label : (constraint) @ {expression};

and we replace the constraint by:

b label ⇔ constraint;
b label @ {expression};

where b label is the fresh (Boolean) reification variable introduced for this constraint.
In the following we show how WSimply reformulates the priority, homogeneity

and dependence meta-constraints.

6.1.1 Reformulation of priority meta-constraints

To deal with the priority meta-constraints, we create a system of linear inequations on
the (probably undefined) weights of the referenced soft constraints. The inequations
are of the form w = w′, w > w′ or w ≥ n · w′, where w is a variable, w′ is either a
variable or a non-negative integer constant, and n is a positive integer constant. For
example, given

#A:(a>b)@{3}; #B:(a>c)@{_}; #C:(a>d)@{_};
#D:(c=2-x)@{_};
priority([A,B,C]);
priority(D,B,2);
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the following set of inequations is generated:

wA = 3, wB > 0, wC > 0, wD > 0,

wA > wB, wB > wC,

wD ≥ 2 · wB

This set of inequations is fed into an SMT solver7 which acts as an oracle at
compile time, so that a model, i.e., a value for the undefined weights satisfying the
inequations, can be found. Following the previous example, the SMT solver would
return a model such as, e.g.:

wA = 3, wB = 2, wC = 1, wD = 4

This allows the reformulation of the original problem into an equivalent WCSP
without undefined weights:

#A:(a>b)@{3}; #B:(a>c)@{2}; #C:(a>d)@{1};
#D:(c=2-x)@{4};

Hence, with the meta-language, and thanks to this simple use of a solver as an
oracle at compile time, we free the user of the tedious task of thinking about concrete
weights for encoding priorities.

Since satisfiability test based algorithms (see Section 6.5) usually behave better
with low weights, we ask not only for a solution of the inequations system, but for a
solution minimising the sum of undefined weights.

In the case of the multiLevel meta-constraint, given for example

#A:(a>b)@{_}; #B:(a>c)@{_}; #C:(a>d)@{_}; #D:(c=2-x)@{_};
multiLevel([[A,B][C,D]]);

the following set of inequations would be generated:

wA > 0, wB > 0, wC > 0, wD > 0,

wA > (wC + wD),

wB > (wC + wD),

and the SMT solver would return a model such as, e.g.:

wA = 3, wB = 3, wC = 1, wD = 1

We remark that the weight expressions of the constraints referenced by a priority
meta-constraint must either be undefined or evaluable at compile time, i.e., they
cannot use any decision variable, since our aim is to compute all undefined weights
at compile time. Moreover, if the set of inequations turns out to be unsatisfiable, the
user will be warned about this fact during compilation.

7In fact, the set of inequations could be fed into any linear integer arithmetic solver.



252 Constraints (2013) 18:236–268

6.1.2 Reformulation of homogeneity meta-constraints

We reformulate the homogeneity meta-constraints by reifying the referenced con-
straints and constraining the number of satisfied constraints. For example, the meta-
constraint atLeast(List,p) is reformulated into:

Count(ListReif, True, n);
n >= val;

where ListReif is the list of Boolean variables resulting from reifying the con-
straints referenced in List, and val is computed in compile time and is equal to
�length(List) ∗ p/100�. Count(l,e,n) is a Simply global constraint that is satisfied
if and only if there are exactly n occurrences of the element e in the list l.

The meta-constraint homogeneousPercentWeight(ListOfLists,p), is refor-
mulated into:

Sum([ weight_label[1][j] | j in [1..len[1] ],
total_wei[1]);

Sum([ If_Then_Else (ListOfLists[1][j]) (0)
(weight_label[1][j])

| j in [1..len[1]] ], vio_wei[1]);
(vio_wei[1] * 100 Div total_wei[1]) >= min_homogen;
(vio_wei[1] * 100 Div total_wei[1]) =< max_homogen;

...

Sum([ weight_label[n][j] | j in [1..len[n] ],
total_wei[n]);

Sum([ If_Then_Else (ListOfLists[n][j]) (0)
(weight_label[n][j])

| j in [1..len[n]] ], vio_wei[n]);
(vio_wei[n] * 100) Div total_wei[n]) >= min_homogen;
(vio_wei[n] * 100) Div total_wei[n]) =< max_homogen;
(max_homogen - min_homogen) < p;

where len[i] is the length of the i-th list in ListOfLists, weight_label[i][j]
is the weight associated with the j-th label of the i-th list, total_wei[i] is the
aggregated weight of the labels in the i-th list and n is the length of ListOfLists. Note
that according to the Sum constraints, vio_wei[i] denotes the aggregated weight
of the violated constraints in the i-th list. Finally, min_homogen and max_homogen
are fresh new variables.

Since we are restricted to linear integer arithmetic, the total_wei[i] expres-
sions must be evaluable at compile time. This requires the weights of the constraints
referenced by this meta-constraint to be evaluable at compile time.

The reformulation of homogeneousAbsoluteWeight(ListOfLists,v) is anal-
ogous to the previous one, but where, instead of computing the percentage on
vio_wei[i], we can directly state:

...
vio_wei[1] >= min_homogen;
vio_wei[1] =< max_homogen;
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...
vio_wei[n] >= min_homogen;
vio_wei[n] =< max_homogen;
(max_homogen - min_homogen) =< v;

Technically, our reformulation could allow the homogeneousAbsoluteWeight
meta-constraint to reference constraints whose weight expression uses decision vari-
ables (and hence is not evaluable at compile time) without falling out of linear integer
arithmetic. However, this is not the case for homogeneousAbsolutePercent, for
which we must be able to compute the aggregated weight of the labels. Thus, for
coherence reasons, we have forbidden both constraints to reference constraints with
decision variables in their weight, in addition to constraints with undefined (“_”)
weight, as pointed out in Section 4.2.

The reformulations of homogeneousAbsoluteNumber and homogeneous-
PercentNumber are similar to the previous ones, but where we count the number
of violated constraints instead of summing their weights.

6.1.3 Reformulation of dependence meta-constraints

The dependence meta-constraints are straightforwardly reformulated by applying
the logical operators between constraints directly supported by Simply on the
corresponding reification variables.

6.2 Reformulating WCSP into COP (R2)

In order to convert our WCSP instance into a COP instance, we first replace each soft
constraint Ci @ wi with the following constraints where we introduce a fresh integer
variable oi:

¬(wi > 0 ∧ ¬Ci) → oi = 0 (5)

(wi > 0 ∧ ¬Ci) → oi = wi (6)

If the weight expression, wi, evaluates to a value less or equal than 0, then the cost
of falsifying Ci is 0, otherwise it is wi. Since we are defining a minimisation problem
we could actually replace (5) with oi ≥ 0.

Secondly, we introduce another fresh integer variable O, which represents the
sum of the oi variables, i.e., the optimisation variable of the COP to be minimised,
and the following constraint:

O =
m∑

i=1

oi (7)

Finally, we keep the original hard constraints with no modification.

6.3 Reformulating WCSP into WSMT (R3)

To the best of our knowledge, existing WSMT solvers only accept WSMT clauses
whose weights are constants. Therefore, we need to convert the WCSP instance into
a WSMT instance where all the WSMT clauses have a constant weight.

We apply the same strategy as in R2, i.e., we first replace each soft constraint
Ci @ wi, where wi is not a constant (involves variables), with the constraints (5)
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and (6) introducing a fresh integer variable oi. Secondly, we add the following set
of soft constraints over each possible value of each oi variable:

⋃

v j∈V(oi)

oi �= v j @ v j (8)

where V(oi) is the set of all possible positive values of oi. These values are determined
by evaluating the expression for all the possible values of the variables, and keeping
only the positive results. Note that at this point we do have a WCSP instance where
all the soft constraints have a constant weight.

Finally, we replace each soft constraint Ci @ wi, with the WSMT clause (C′
i, wi)

where C′
i is the translation of Ci into SMT as described in [7]. We also replace each

hard constraint with its equivalent hard SMT clause.

6.4 Reformulating COP into WSMT (R4)

Taking into account that the optimisation variable O of the COP instance is the
integer variable that represents the objective function, we only need to add the
following set of WSMT clauses:

⋃i=W
i=1 (O < i, 1), where W is the greatest value

the objective variable can be evaluated to. A more concise alternative could result
from using the binary representation of W, i.e., adding the set of WSMT clauses⋃i<�log2(W+1)�

i=0 (¬bi, 2i), and the hard clause (
∑i<�log2(W+1)�

i=0 2i · bi = O, ∞).
We finally replace all the constraints of the COP instance with the equivalent hard

SMT clauses as described in [7].

6.5 Solving with SMT

From Fig. 3 we see that we can currently apply two solving methods in WSimply:
WSMT solving which receives as input a WSMT instance and Optimisation SMT
solving which receives as input a COP instance.

6.5.1 WSMT solving (S1)

The Yices SMT solver [14] offers a non-exact algorithm8 to solve WSMT instances.
We refer to this solving method as yices. Since this is still an immature research
topic in SMT, we have extended the Yices framework by incorporating other
exact algorithms from the MaxSAT field. There, we can find two main classes of
algorithms: branch and bound based and satisfiability test based algorithms. The
solvers that implement the latter clearly outperform branch and bound based solvers
on industrial, and some crafted instances, and constitute an emerging technology.

In the following we describe the basic scheme of satisfiability test based algo-
rithms. A WSMT problem ϕ can be solved through the resolution of a sequence
of SMT instances as follows. Let ϕk be an SMT formula that is satisfiable if, and only
if, ϕ has an assignment with a cost smaller than or equal to k (k plays the role of
the bound which we impose on the objective function). If the cost of the optimal
assignment to ϕ is kopt, then the SMT problems ϕk, for k ≥ kopt, are satisfiable, while

8Non-exact algorithms do not guarantee optimality.
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for k < kopt are unsatisfiable. Note that k may range from 0 to
∑m

i=1 wi (the sum
of the weights of the soft clauses). When the weights are expressions rather than
constants, we estimate an upper-bound. This is done by evaluating the expression for
all the possible values of the variables. The search for the value kopt can be done
following different strategies; searching from k = 0 to kopt (increasing k while ϕk

is unsatisfiable); from k = ∑m
i=1 wi to a value smaller than kopt (decreasing k while

ϕk is satisfiable); or alternating unsatisfiable and satisfiable ϕk until the algorithm
converges to kopt (for instance, using a binary search scheme). The key point to
boosting the efficiency of these approaches is to know whether we can exploit any
additional information from the execution of the SMT solver for the subsequent runs.

Since WSimply is designed to use SMT solvers as a black box, satisfiability test
based algorithms can be easily integrated into WSimply.

In particular, we have implemented the WPM1 algorithm from [4, 24], which
is based on the detection of unsatisfiable cores. These are satisfiability test based
algorithms, where the parameter k ranges from 0 to kopt. Then, for every UNSAT
answer, they analyse the core of unsatisfiability of the formula returned by the SMT
solver. This information is incorporated in the form of redundant clauses into the
next call to the SMT solver which help to boost the propagation. In our experiments,
we refer to the method which uses the WPM1 algorithm as core.

The pseudo-code of the WPM1 algorithm based on calls to an SMT solver is
described in Algorithm 1. This algorithm is the weighted version of the FuMalik
algorithm [4, 24] for partial MaxSAT. In those works, the underlying solver was
a SAT solver. This is the first time SMT technology has been incorporated in the
implementation of Algorithm 1.

In Algorithm 1, we iteratively call an SMT solver with a weighted working formula
ϕ, but excluding the weights. This corresponds to line 4. The SMT solver will say
whether the formula is satisfiable or not (variable st) and in case the formula is
unsatisfiable, it will give an unsatisfiable core (ϕc). When the SMT solver returns
an unsatisfiable core, we compute the minimum weight of the clauses of the core
(wmin in the algorithm). Then, we transform the working formula by duplicating
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the clauses in the core. Then, in one of the copies we give to the clauses their
original weight minus the minimum weight. On the other copy, we extend the
clauses with the blocking variables (BV in the code) and we give them the minimum
weight. Finally, we add the cardinality constraint on the blocking variables using the
standard encoding of the exactly_one Boolean constraint. Note that we could assert
this cardinality constraint using the Linear Integer Arithmetic theory, however, the
Boolean encoding has shown a better performance in our experiments. We finally
add wmin to the cost.

6.5.2 Optimisation SMT solving (S2)

This method is also based on calling an SMT solver incrementally. We first translate
all the constraints of the COP instance into SMT clauses and send them to the SMT
solver. Then, before every call we bound the domain of the optimisation variable
O by adding the SMT clause O ≤ k, where k is an integer constant. If the SMT
solvers returns unsat, we replace the clause O ≤ k by O > k. The strategy we use to
determine the next k is a binary search. In the following, we will refer to this solving
method as dico.

7 Benchmarking

In order to show the usefulness of meta-constraints we have conducted several
experiments on a set of instances of the Nurse Rostering Problem (NRP) and on a
variant of the Balanced Academic Curriculum Problem (BACP).

7.1 Nurse Rostering Problem

There exist many formalisations of the NRP [9]. In our experiments we have
considered the (complete) GPost instance (of which we have modelled a variant in
Section 5) as well as many instances from the Nurse Scheduling Problem Library
(NSPLib) [35], by conducting a precise study of the effects of the homogeneity meta-
constraints on them.

7.1.1 GPost NRP

In Section 5 we have already presented how to model a variant of the GPost NRP
with WSimply including several meta-constraints. WSimply shows a reasonably
good performance when solving the original GPost instance, compared to the results
of the same problem reported in [26]. The authors report 8 s (2.83 GHz Intel®

Core™ 2 Duo) for finding the optimal solution (cost 3) with an ad hoc search
with CPLEX over a previously computed enumeration of all possible schedules for
each nurse. They also report 234 s (2.8 GHz Pentium IV) for finding a non-optimal
solution (cost 8) with their generic local search method (VNS/LDS+CP) based on
neighbourhoods plus an exploration of the search space with CP and soft global
constraints.
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With WSimply, we have been able to find the optimal solution with the three
solving approaches9 (using a 2.6 GHz Intel® Core™ i5) taking 12.27 s with the yices
solving approach, 31.21 s with the core solving approach, and 126.00 s with the dico
solving approach.

7.1.2 NSPLib instances

In order to evaluate the effects of the homogeneity meta-constraints on the quality
of the solutions and the solving times, we have conducted an empirical study of
some instances from the NSPLib. The NSPLib is a repository of thousands of
NRP instances, grouped in different sets and generated using different complexity
indicators: size of the problem (number of nurses, days or shift types), shifts coverage
(distributions of the number of nurses needed) and nurse preferences (distributions
of the preferences over the shifts and days). Details can be found in [35].

In order to reduce the number of instances to work with, we have focused on the
N25 set, which contains 7920 instances. Since the addition of homogeneity meta-
constraints in these particular instances significantly increases their solving time,
we have ruled out the instances taking more than 60 s to be solved with WSimply
without the meta-constraints. The final chosen set consists of 5113 instances. The
N25 set has the following settings:

– Number of nurses: 25
– Number of days: 7
– Number of shift types: 4 (including the free shift)
– Shift covers: minimum number of nurses required for each shift and day.
– Nurse preferences: a value between 1 and 4 (from most desirable to least

desirable) for each shift and day, for each nurse.

The NSPLib also has several complementary files with more precise information
like minimum and maximum number of days that a nurse should work, minimum and
maximum number of consecutive days, etc. We have considered the most basic case
(case 1) which only constrains that

– the number of working days of each nurse must be exactly 5.

With the previous information we propose the NRP modelling of Fig. 4, where we
have as hard constraints the shift covers and the number of nurse working days, and
as soft constraints the nurse preferences.

In the following we report the results of several experiments performed with
WSimply over the set of 5113 chosen instances of the NRP, using a cluster with
nodes with CPU speed 1 GHz and 500 MB of RAM, and with a timeout of 600 s.
We tested the three solving approaches (dico, yices and core). The times appearing
in the tables are for the core approach, which was the one giving best results for this
problem.

Table 1 shows the results of the chosen 5113 instances from the N25 set without
homogeneity meta-constraints.

We can observe that if we only focus on minimising the cost of the violated
constraints, we can penalise some nurses much more than others. For instance, we

9See Section 6.5.
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Fig. 4 WSimply model for the NRP

could assign the least preferred shifts to one nurse while assigning the most preferred
shifts to others. From the results in Table 1, we observe that the mean of absolute
differences is 7.71 while the mean cost per nurse is around 9.67, which shows that the
assignments are not really fair. In order to enforce fairness, we can extend the model
of Fig. 4 by adding homogeneity meta-constraints over the soft constraints on nurse
preferences, as shown in Fig. 5.

Table 1 Results of 5113 instances from the N25 set, with soft constraints on nurse preferences
(without meta-constaints)

μ σ Time Cost Abs. diff. Rel. diff.

Normal 9.67 1.83 6.46 241.63 7.71 9.42

μ: mean of means of costs of violated constraints per nurse; σ : standard deviation of means of costs
of violated constraints per nurse; Time: mean solving time (in seconds); Cost: mean optimal cost;
Abs. dif f.: mean of differences between maximal and minimal costs; Rel. dif f.: mean of differences
between relative percentual maximal and minimal costs
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Fig. 5 WSimply constraints to add to the NRP model in order to ask for homogeneity with factor F
in the solutions

Table 2 shows the results after adding to the model of Fig. 4 the meta-constraint of
Fig. 5, with factor F = 5, while Table 3 shows the results for the same meta-constraint
with factor F = 10. Note that this factor represents the maximal allowed difference
between the penalisation of the most penalized nurse and the least penalised nurse.
From Table 1 we know that the mean of these differences among the chosen NRP
instances is 7.71. The first row (Absolute 5) shows the results for the solved instances
(2478 out of 5113) within the timeout. The second row shows the results without the
meta-constraint, for the solved instances (i.e., it is like Table 1 but restricted to these
2478 instances).

As we can observe, we reduce the absolute difference average from 4.81 to 4.32,
which is a bit more than 10 %. In particular, we reduce the absolute difference
between the most penalised nurse and the least penalised nurse in 892 instances out
of 2478. In contrast, the average penalisation per nurse increases from 8.80 to 8.92,
but this is just 1.36 %. The average global cost also increases, but only from 220.03 to
222.89. Hence, it seems reasonable to argue that it pays off to enforce homogeneity in
this setting, at least for some instances. However, when homogeneity is enforced the
solving time increases, since the instances become harder (there are 2635 instances
which could not be solved within the timeout).

The conclusion is that an homogeneity factor F = 5 may be too restrictive.
Therefore, we repeated the experiment but with a factor F = 10. The results are
shown in Table 3.

In this case only 946 out of 5113 could not be solved within the timeout. Although
fewer instances are improved (377) the difference in the solving time really decreases
and the mean of the best lower bounds for the unsolved instances is closer to the
optimal value of the original instances. This suggests that it is possible to find a
reasonable balance between the quality of the solutions and the required solving
time with respect to the original problem.

Depending on the preferences of the nurses, the absolute difference may not be
a good measure for enforcing homogeneity. Nurse preferences are weighted with

Table 2 Results when adding the homogeneousAbsoluteWeight meta-constraint with factor 5

μ σ Time Cost Cost (TO) Abs. diff. #improved

Absolute 5 8.92 0.96 43.28 222.89 272.93 4.32 892
Normal 8.80 1.07 5.98 220.03 261.94 4.81 −
Statistics for the 2478 solved instances with a timeout of 600 s. μ: mean of means of costs of violated
constraints per nurse; σ : standard deviation of means of costs of violated constraints per nurse; Time:
mean solving time (in seconds); Cost: mean optimal cost; Cost (TO): mean of best lower bounds
for those instances that exceeded the timeout; Abs. dif f.: mean of differences between maximal and
minimal costs; #improved: number of instances with improved absolute difference
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Table 3 Results when adding the homogeneousAbsoluteWeight meta-constraint with factor 10

μ σ Time Cost Cost (TO) Abs. diff. #improved

Absolute 10 9.32 1.46 13.86 233.01 285.83 6.29 377
Normal 9.31 1.47 6.16 232.83 280.40 6.35 −
Statistics for the 4167 solved instances with a timeout of 600 s. μ: mean of means of costs of violated
constraints per nurse; σ : standard deviation of means of costs of violated constraints per nurse; Time:
mean solving time (in seconds); Cost: mean optimal cost; Cost (TO): mean of best lower bounds
for those instances that exceeded the timeout; Abs. dif f.: mean of differences between maximal and
minimal costs; #improved: number of instances with improved absolute difference

a value between 1 and 4 (from most desirable to least desirable shifts). Imagine a
nurse who tends to weight with lower values than another. Then, even if this nurse
has many unsatisfied preferences, her total penalisation could be lower than that
of one of the other nurses with fewer unsatisfied preferences. Therefore, it seems
more reasonable to compute the relative difference, as it allows the relative degree
of unsatisfied preferences to be compared.

Table 4 shows the results for the meta-constraint homogeneous
PercentWeight with factor 6, which means that the relative percent difference
between the most penalised nurse and the least penalised nurse must be less than
or equal to 6. The first row (Percent 6) shows the results for the solved instances
(2109 out of 5113) within the timeout. The second row shows the results without the
meta-constraint for those solved instances.

The mean of the percent differences is reduced from 7.76 to 5.26, which is almost
32 %. In particular, we reduce the percent difference between the most penalised
nurse and the least penalized nurse in 1875 instances out of 2109. The average
penalisation per nurse increases from 9.14 to 9.39, just 2.74 %, and the average
global cost only increases from 228.56 to 234.72. However, the average solving time
increases from 5.27 to 89.47 s for the solved instances. In fact, the solving time
increases, no doubt, by much more than this on average if considering the timed-out
instances.

As with the experiments for the absolute difference, we have conducted more
experiments, in this case increasing the factor from 6 to 11. The results are reported
in Table 5. In this case, only 492 out of 5113 could not be solved within the
timeout. The number of improved instances decreases but the solving time improves.
Therefore, with the homogeneousPercentWeight meta-constraint we can also
find a reasonable balance between the quality of the solutions and the required
solving time with respect to the original problem.

Table 4 Results when adding the homogeneousPercentWeight meta-constraint with factor 6

μ σ Time Cost Cost (TO) Rel. diff. #improved

Percent 6 9.39 1.10 89.47 234.72 263.06 5.26 1875
Normal 9.14 1.30 5.27 228.56 250.81 7.72 −
Statistics for the 2109 solved instances with a timeout of 600 s. μ: mean of means of costs of violated
constraints per nurse; σ : standard deviation of means of costs of violated constraints per nurse; Time:
mean solving time (in seconds); Cost: mean optimal cost; Cost (TO): mean of best lower bounds for
those instances that exceeded the timeout; Rel. dif f.: mean of differences between relative percentual
maximal and minimal costs; #improved: number of instances with improved relative difference
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Table 5 Results when adding the homogeneousPercentWeight meta-constraint with factor 11

μ σ Time Cost Cost (TO) Rel. diff. #improved

Percent 11 9.62 1.67 33.28 240.38 269.14 8.42 1592
Normal 9.57 1.71 5.51 239.23 264.20 9.04 −
Statistics for the 4621 solved instances with a timeout of 600 s. μ: mean of means of costs of violated
constraints per nurse; σ : standard deviation of means of costs of violated constraints per nurse; Time:
mean solving time (in seconds); Cost: mean optimal cost; Cost (TO): mean of best lower bounds for
those instances that exceeded the timeout; Rel. dif f.: mean of differences between relative percentual
maximal and minimal costs; #improved: number of instances with improved relative difference

7.2 Soft balanced academic curriculum problem

The Balanced Academic Curriculum Problem (BACP) consists of assigning courses
to academic periods while satisfying prerequisite constraints between courses and
balancing the workload (in terms of credits) and the number of courses in each
period [10, 19]. In particular, given

– a set of courses, each of them with an associated number of credits representing
the academic effort required to successfully follow it,

– a set of periods, with a minimum and maximum bound both on the number of
courses and number of credits assigned to each period,

– and a set of prerequisites between courses stating that, if a course c has as
prerequisite a course d, then d must be taught in a period previous to the one
of c,

the goal of the BACP is to assign a period to every course which satisfies the
constraints on the bounds of credits and courses per period, and the prerequisites
between courses. In the optimisation version of the problem, the objective is to
improve the balance of the workload (amount of credits) assigned to each period.
This is achieved by minimising the maximum workload of the periods.

There may be situations where the prerequisites make the instance unsatisfiable.
We propose to deal with unsatisfiable instances of the decision version of the BACP
by relaxing the prerequisite constraints, i.e., by turning them into soft constraints. We
allow the solution to violate a prerequisite constraint between two courses but then,
in order to reduce the pedagogical impact of the violation, we introduce a new hard
constraint, the corequisite constraint, enforcing both courses to be assigned to the
same period. We call this new problem Soft Balanced Academic Curriculum Problem
(SBACP).

The goal of the SBACP is to assign a period to every course which minimises
the total amount of prerequisite constraint violations and satisfies the conditionally
introduced corequisite constraints, and the constraints on the number of credits and
courses per period.

In Fig. 6 we propose a modelling of the SBACP using WSimply. In order to
obtain instances of the SBACP, we have over-constrained the BACP instances
from the MiniZinc [28] repository, by reducing the number of periods to four, and
proportionally adapting the bounds on the workload and number of courses in each
period. With this reduction on the number of periods, we have been able to turn all
these instances into unsatisfiable.
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Fig. 6 WSimply model for the SBACP

In the following we present several experiments with WSimply over the obtained
SBACP instances, using a 2.6 GHz Intel® Core™ i5, with a timeout of 600 s.

The best solving approach for this problem in our system is yices, closely followed
by dico. The core solving approach is not competitive for this problem. The perfor-
mance of the WPM1 algorithm strongly depends on the quality of the unsatisfiable
cores the SMT solver is able to return at every iteration. This quality has to do, among
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other details, with the size of the core, the smaller the better, and the overlapping of
the cores, the lower the better. For the SBACP instances, the SMT solver tends to
return cores which involve almost all the soft clauses, i.e., they are as big as possible
and they completely overlap. This clearly degrades the performance of the WPM1
algorithm.

Columns two to five of Table 6 show the results obtained by WSimply on
our 28 instances. The second column shows the required CPU time in seconds
(with the yices solving approach); the third column indicates the total amount of
prerequisite violations, and the fourth and fifth columns show the maximum and
minimum number of prerequisite constraint violations per course. This maximum
and minimum exhibit the lack of homogeneity of each instance. Column six shows
the time obtained by CPLEX for solving the SBACP instances.

Table 6 Results of the experiments on the SBACP instances without and with homogeneity

N. Time Cost V. per c. CPLEX Homogeneity factor 1 Homogeneity factor 2

Max Min Time Cost V. per c. Time Cost V. per c.

Max Min Max Min

1 0.63 19 2 0 0.45 0.26 21 1 0 0.75 19 2 0
2 4.27 16 2 0 0.39 0.27 42 2 1 1.61 16 2 0
3 0.78 17 2 0 0.83 0.26 19 1 0 1.70 17 2 0
4 32.93 28 4 0 0.69 0.26 Unsatisfiable 3.69 28 2 0
5 0.97 15 2 0 0.43 0.25 39 2 1 0.86 15 2 0
6 0.56 10 2 0 0.43 0.31 10 1 0 0.47 10 2 0
7 1.35 19 2 0 0.50 0.28 40 2 1 0.86 19 2 0
8 2.63 21 3 0 0.46 0.24 Unsatisfiable 0.56 23 2 0
9 5.44 27 3 0 0.92 0.22 Unsatisfiable 1.26 27 2 0
10 3.43 21 3 0 0.57 0.28 39 2 1 3.07 21 2 0
11 10.23 22 3 0 0.59 0.29 38 2 1 2.29 22 2 0
12 18.11 27 3 0 0.66 0.30 47 2 1 4.30 27 2 0
13 1.29 14 3 0 0.32 0.28 17 1 0 0.72 15 2 0
14 0.47 17 2 0 0.40 0.44 33 2 1 0.34 17 2 0
15 0.17 6 2 0 0.20 0.45 28 2 1 0.26 6 2 0
16 1.61 15 2 0 0.31 0.29 15 1 0 1.10 15 2 0
17 10.72 23 5 0 0.66 0.24 Unsatisfiable 0.24 Unsatisfiable
18 2.93 20 3 0 0.54 0.23 Unsatisfiable 1.09 20 2 0
19 0.43 16 2 0 0.37 0.25 39 2 1 0.41 16 2 0
20 3.71 15 2 0 0.59 0.49 15 1 0 3.58 15 2 0
21 1.93 14 2 0 0.47 0.25 20 1 0 0.61 14 2 0
22 0.74 15 2 0 0.43 0.31 17 1 0 0.55 15 2 0
23 2.18 20 1 0 0.63 0.28 20 1 0 2.33 20 1 0
24 0.22 7 2 0 0.30 0.32 9 1 0 0.30 7 2 0
25 3.03 13 2 0 0.33 0.52 14 1 0 1.58 13 2 0
26 0.23 5 1 0 0.21 0.38 5 1 0 0.35 5 1 0
27 1.09 17 2 0 0.43 0.25 21 1 0 1.48 17 2 0
28 0.19 10 2 0 0.28 0.26 11 1 0 0.34 10 2 0

T. 1.48 451 0.44 0.28 209 0.86 3

Numbers in boldface denote instance improvements while maintaining the same cost. The last row
shows the median of CPU solving time and the sum of the costs found; in the homogeneity cases we
show the aggregated increment of the cost with respect to the original instances
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Fig. 7 WSimply constraints to add to the model for the SBACP in order to ask for homogeneity
with factor F in the solutions

As we can observe, there are instances which have courses with three, four,
and even five prerequisite constraint violations, as well as courses with zero vio-
lations. It would be more egalitarian to obtain solutions where the difference in
the number of prerequisite constraint violations between courses is smaller. Thanks

Table 7 Results when adding the multiLevel meta-constraint to deal with the optimisation
version of the SBACP, minimising the maximum workload per period and the maximum number
of courses per period

N. Homogeneity factor 2 MLevel: prereq, workload MLevel: prereq, wl, courses

Time c./p. wl/p. Time c./p. wl/p. Time c./p. wl/p.

Min Max Min Max Min Max Min Max Min Max Min Max

1 0.75 11 14 51 87 23.60 12 14 65 66 32.68 12 13 65 66
2 1.61 12 13 68 77 11.06 11 15 70 71 9.33 12 13 70 71
3 1.70 12 14 62 72 23.59 11 15 67 68 17.00 11 14 66 68
4 3.69 11 17 52 112 16.09 11 15 74 77 5.29 12 13 72 77
5 0.86 11 15 41 81 6.20 9 16 59 63 8.67 9 15 58 63
6 0.47 11 15 49 86 2.35 12 13 59 60 2.93 12 13 59 60
7 0.86 6 17 32 104 9.73 11 14 65 66 59.32 10 14 65 66
8 0.56 9 16 43 86 1.92 10 16 58 66 2.66 12 13 61 66
9 1.26 8 16 39 109 15.28 12 13 74 77 5.00 12 13 74 77
10 3.07 8 15 33 79 26.00 11 16 58 66 12.19 12 14 57 66
11 2.29 10 15 46 88 12.26 11 14 68 68 45.67 12 13 68 68
12 4.30 6 16 37 100 97.92 10 17 69 70 195.52 10 17 69 70
13 0.72 6 18 44 98 10.16 10 15 71 72 16.06 11 13 71 72
14 0.34 9 18 40 106 1.18 10 16 65 69 1.79 10 16 65 69
15 0.26 5 16 46 92 13.05 11 16 72 72 46.65 11 13 72 72
16 1.10 9 17 50 79 61.86 11 14 61 63 108.07 12 13 61 63
17 0.24 Unsatisfiable 0.59 Unsatisfiable 0.67 Unsatisfiable
18 1.09 10 15 62 92 15.25 12 13 74 75 19.96 12 13 74 75
19 0.41 8 19 51 99 8.65 11 14 67 68 15.94 11 13 67 68
20 3.58 10 16 54 112 53.86 10 14 70 75 38.80 10 14 70 75
21 0.61 9 18 42 94 2.27 11 14 65 65 2.51 12 13 65 65
22 0.55 10 16 57 105 2.18 11 14 75 77 1.76 12 13 75 77
23 2.33 20 25 25 128 103.47 11 15 67 68 173.60 11 13 67 68
24 0.30 12 14 57 81 0.71 12 13 63 78 2.65 12 13 64 78
25 1.58 9 16 44 87 31.86 12 14 70 70 26.15 12 13 70 70
26 0.35 5 18 24 102 9.28 11 14 51 78 8.01 10 14 61 78
27 1.48 10 15 57 96 8.19 11 15 81 81 23.60 11 14 81 81
28 0.34 9 15 42 101 2.30 11 15 69 70 4.28 11 14 68 70

T. 0.86 439 2553 10.61 −654 14.07 −27

Numbers in boldface denote improvements. Timeout is 600s. The last row shows the median of the
solving time and the improvements on the aggregated maximums of the workload and number of
courses per period thanks to the multiLevel meta-constraint
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Fig. 8 Extension to minimise the maximum workload (amount of credits) of periods

to the homogeneousAbsoluteNumber meta-constraint we can easily enforce this
property of the solutions, as shown in Fig. 7.

Also in Table 6, we show the results obtained by WSimply of these instances
with homogeneity factor F = 1 (second block of columns) and F = 2 (third block of
columns). The homogeneity factor bounds the difference in the violation of prerequi-
site constraints between courses (1 and 2 in our experiments). For homogeneity with
factor 1, there are 5 unsolvable instances and 9 instances that achieve homogeneity
by increasing the minimum number of violations per course (from 0 to 1) with, in
addition, a dramatic increase in the total number of violations (+209). Experiments
with homogeneity factor 2 give different results in 9 instances, all of which, except
one becoming unsatisfiable, and are effectively improved by reducing the maximum
number of violations per course, and slightly increasing the total number of violations
(+3). Interestingly, the solving time has been improved when adding homogeneity.

By way of guidance a comparison between WSimply and CPLEX has been
done only over the basic SBACP instances since CPLEX does not have any meta-
constraint. WSimply exhibits a reasonably good performance in taking 1.48 s in
median against the 0.44 s of CPLEX.

The first block of columns of Table 7 shows the minimum and maximum number
of courses per period and the minimum and maximum workload per period, for each
considered instance, when asking for homogeneity with factor 2 on the number of
prerequisite violations.10 As we can see, the obtained curricula are not balanced
enough with respect to the number of courses per period and the workload per
period. Therefore, we propose considering the optimisation version of SBACP by
extending the initial modelling and using the multiLevel meta-constraint in order
to improve the balancing in the workload and the number of courses per period
(let us recall that the homogeneity meta-constraint on the number of violations

10We have chosen homogeneity factor 2 to continue with the experiments since, with factor 1, the
number of violations increases in almost all instances.
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introduced so far is hard). In Fig. 8 we show how we have implemented this extension
for the workload (for the number of courses it can be done analogously). We also
must set the weights of the prerequisite soft constraints to undefined to let the
multiLevel meta-constraint compute them.

The idea of this encoding is to minimise the maximum workload per period
using soft constraints. Column eleven (wl/p. Max) shows the improvement in the
maximum workload per period obtained when introducing its minimisation with the
multiLevel meta-constraint. Column fourteen (c./p. Max) shows the improvement
in the the maximum number of courses per period obtained when adding its
minimisation as the next level in the multiLevel meta-constraint.

8 Conclusions

We have introduced a new framework, called WSimply, which fills the gap between
CSP and SMT regarding over-constrained problems. A new modelling language
has been introduced for the intensional description of over-constrained problems.
This language reasonably reduces the work needed to model this kind of problem
and, at the same time, makes the models easier to read. In addition, the inclusion
of meta-constraints also increases the capability to easily model several real-world
problems. We have implemented some of the best-known meta-constraints from the
literature, and we have extended some of them proposing variants and alternative
meta-constraints. In particular, we have applied these meta-constraints to two well-
known problems, the NRP and a variant of the BACP, showing how to improve
the quality of the solutions and even the solving time for some cases. WSimply is
the first declarative modelling language with such a high level of expressiveness for
WCSP and meta-constraints.

Although in the preliminary comparision between CPLEX and SMT solving the
SBACP, the performance of CPLEX is a bit better than SMT, the usage of SMT
solvers in our solving strategies is a promising choice, since several constraints, once
described intensionally, can be potentially more efficiently handled. We plan to
incorporate newer algorithms from the MaxSAT community and adapt them to solve
weighted SMT formulas.

We also plan to extend our framework with support for integer programming
techniques, which may be more suitable for some problems where the Boolean
structure is much less important than the arithmetic expressions.

Finally, we want to comment that we have also proposed a similar extension to
deal with WCSPs for MiniZinc in [3], to which we could easily provide a solving
mechanism based on SMT and WSMT as is done for WSimply.
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