
Constraints (2012) 17:39–50
DOI 10.1007/s10601-011-9113-8

LETTER

Solving steel mill slab design problems

Stefan Heinz · Thomas Schlechte · Rüdiger Stephan ·
Michael Winkler

Published online: 18 October 2011
© Springer Science+Business Media, LLC 2011

Abstract The steel mill slab design problem from the csplib is a combinatorial
optimization problem motivated by an application of the steel industry. It has been
widely studied in the constraint programming community. Several methods were
proposed to solve this problem. A steel mill slab library was created which contains
380 instances. A closely related binpacking problem called the multiple knapsack
problem with color constraints, originated from the same industrial problem, was
discussed in the integer programming community. In particular, a simple integer pro-
gram for this problem has been given by Forrest et al. (INFORMS J Comput 18:129–
134, 2006). The aim of this paper is to bring these different studies together. More-
over, we adapt the model of Forrest et al. (INFORMS J Comput 18:129–134, 2006)
for the steel mill slab design problem. Using this model and a state-of-the-art integer
program solver all instances of the steel mill slab library can be solved efficiently to
optimality. We improved, thereby, the solution values of 76 instances compared to
previous results (Schaus et al., Constraints 16:125–147, 2010). Finally, we consider
a recently introduced variant of the steel mill slab design problem, where within all

Supported by the DFG Research Center Matheon Mathematics for key technologies in Berlin.

S. Heinz (B) · T. Schlechte · M. Winkler
Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
e-mail: heinz@zib.de

T. Schlechte
e-mail: schlechte@zib.de

M. Winkler
e-mail: michael.winkler@zib.de

R. Stephan
Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136,
10623 Berlin, Germany
e-mail: stephan@math.tu-berlin.de

40 Constraints (2012) 17:39–50

solutions which minimize the leftover one is interested in a solution which requires a
minimum number of slabs. For that variant we introduce two approaches and solve
all instances of the steel mill slab library with this slightly changed objective function
to optimality.

Keywords Steel mill slab design problem · Multiple knapsack problem with color
constraints · Integer programming · Set partitioning · Binpacking with side
constraints

1 Introduction

The steel mill slab design problem is motivated by a real world application from
the steel industry. Mathematically, the problem consists of a set of n ∈ N orders,
each order j coming with a size s j ∈ N and color c j ∈ C, where C is a finite set.
Furthermore, we are given a set K := {k1, . . . , km} ⊂ N of m ∈ N capacities. The task
is to equip each used slab with one capacity and assign each order to exactly one slab
with the requirements that the selected capacities are respected and that each slab
only processes orders of at most two different colors. The objective is to minimize
the leftover that is the total loss or equivalent the residual capacity. Recently, Schaus
et al. [14] considered a variation of the problem by adding a second criteria to
the objective. Within all solutions, which minimize the leftover, one searches for a
solution with a minimal number of used slabs.

The steel mill slab design problem is problem number 38 of the csplib.1 This
library provides one instance which consists of 111 orders with 88 different colors,
and 20 possible capacities. We call this instance the original instance. Furthermore,
there exists a steel mill slab library [15]. This library contains 380 instances which are
grouped into 19 classes each with 20 instances. These instances have been created
by changing the set of possible capacities of the original instance. This means, the
orders are the same as the one of the original instance. The capacities are generated
uniformly and range between 10 and 50; the 19 classes are ranging from having 2 to
20 possible capacities. For more details about the generation of these instances and
the library we refer to [14].

Outline In the following section, we give a brief overview on different approaches
to solve the steel mill slab design problem and related binpacking problems. We
recall among others a set packing formulation [4] to the so-called multiple knapsack
problem with color constraints which can be perceived as a slight generalization of the
steel mill slab design problem. In Section 3, we adapt this model to the steel mill slab
design problem and the variant where also the number of used slabs is minimized.
In Section 4 we report on our computational results. Using a state-of-the-art integer
program solver, we solved all instances of the steel mill slab library and the original
instance to optimality improving the solution value of 76 instances. Moreover, we
solved all these instances for the above-mentioned modification of the problem to
optimality as well.

1http://www.csplib.org/

http://www.csplib.org/

Constraints (2012) 17:39–50 41

2 Related work

In the past, several different models have been proposed to solve the steel mill slab
design problem. A first set of constraint programming models was presented by
Frisch et al. [5] and first computational results for a (small) subset of orders of the
original instance were given by the same authors in [6]. Dawande et al. [3] presented
an asymptotic polynomial time approximation scheme and two 3-approximation
algorithms. Hnich et al. [10] introduced an integer programming formulation, a con-
straint programming formulation, and a hybrid model and solved also one instance
which consists of a subset of orders of the original instance. A first optimal solution
of the original instance (total loss of zero) was given by Gargani and Refalo [7] using
a large neighborhood search heuristic. Van Hentenryck and Michel [16] introduced a
constraint programming model which can be used to solve the original instance using
a heuristic approach. Recently, Schaus et al. [14] presented a collection of different
constraint-based solving techniques for this problem and introduced the steel mill
slab library [15]. All previously used models and solving techniques are not capable
of solving all instances of the steel mill slab library.

Kalagnanam et al. [11] and Forrest et al. [4] studied a closely related binpacking
problem called the multiple knapsack problem with color constraints. The problem
provides another view on the same industrial application as the steel mill slab design
problem. The problem input consists of m slabs, each slab j coming with a capacity
k j ∈ R, and n items, each item i coming with a size si ∈ R, a color ci ∈ N, and a
specification in form of a subset of slabs indicating from which slabs this item can be
manufactured. We say that an item is valid for a slab if the item can be manufactured
from it. The goal is to find an assignment such that each slab contains valid items
of at most two different colors, the capacities of the slabs are respected, and the
unused capacity of the used slabs is minimized. For this problem, Kalagnanam et
al. [11] presented a compact integer programming formulation, while Forrest et al. [4]
gave a set packing formulation and designed a simple column generation approach.
Their computational results indicate that this method is superior in practice. They
solved an instance with 439 orders, 347 different colors, and 24 slabs (two having the
same capacity). Due to the additional assignment restrictions, a slab has a restricted
set of items which can be manufactured from it. The number of different colors of
the associated valid items is at most 222. This instance is called mkc and is part
of the miplib2010 [12]. Interpreting,2 this instance w.r.t. the steel mill slab design
problem, it consists of 439 orders, 23 different slab capacities, and 347 colors. Forrest
et al. [4] tried to solve an even larger instance called mkc7. This instance has 74 slabs,
9,484 orders, and 233 colors within the context of the multiple knapsack problem
with color constraints. This boils down to 70 different slab capacities and 642 colors
w.r.t. the steel mill slab design problem. See the Appendix of [9] for a more detailed
description of the transformation and the particular problem instances in the context
of steel mill slab design.

One main reason why these two binpacking problems are hard to solve in practice
is that the used models, with the exception of the set packing formulation of Forrest

2We ignored the assignment restrictions and allowed an arbitrary number of slabs of each capacity.

42 Constraints (2012) 17:39–50

et al. [4], are symmetric. In these models, orders are explicitly assigned to slabs,
and therefore, symmetry naturally arises by permuting slabs. It is well known, for
instance, that symmetry causes branch-and-bound algorithms to perform poorly,
since the resulting problems change only marginally after branching, see Barnhart
et al. [2]. In principle, one can respond to this difficulty by either adding symmetry
breaking constraints to the given model or by avoiding such a symmetric model
in advance. The first strategy was pursued by several authors. Van Hentenryck
and Michel [16] partly broke symmetry using a customized search routine. Other
symmetry breaking techniques are discussed in [6]. The set packing formulation of
Forrest et al. [4], however, provides a model that avoids this kind of symmetry, which
is one explanation for the performance of their column generation algorithm.

3 Integer programming formulation

Adapting the set packing formulation of Forrest et al. [4], we obtain an integer
programming formulation for the steel mill slab design problem. This model does
not contain the kind of symmetry mentioned in the previous section.

Let S be the set of all feasible slab designs. A slab design s is an assignment
vector λs ∈ {0, 1}n. This vector defines which orders belong to this particular slab
design s. This means, order j ∈ {1, . . . , n} belongs to slab design s if (λs) j is one. A
slab design is feasible if the total order size is not greater than the largest available
capacity and if s contains orders of at most two different color classes. Each slab
design s comes with an unique leftover ls which is given by

ls = min
{

k ∈ K | k ≥
n∑

j=1

(λs) j

}
−

n∑
j=1

(λs) j.

Introducing for each feasible slab design s ∈ S a binary decision variable xs which
is one if s is used and zero otherwise, we can formulate the steel mill slab design
problem as an integer program:

min
∑
s∈S

lsxs (1)

subject to
∑
s∈S

(λs) jxs = 1 ∀ j ∈ {1, . . . , n}

xs ∈ {0, 1} ∀s ∈ S.

This is a set partitioning problem. The objective is to minimize the total leftover. The
equalities are set partitioning constraints to ensure that for each order j exactly one
slab design s is chosen. Finally, the last conditions state that all variables are binary.

In contrast to the setting of Forrest et al. [4] we consider the case that all
orders must be covered. This is simply reflected by the transition from packing to
partitioning constraints. As a result we focus on pure minimizing of the total leftover
whereas Forrest et al. [4] additionally consider to maximize satisfied orders, i.e., they
combine both goals in one objective function. In general we would propose the same
solution methodology as Forrest et al. [4] to cope with such formulations. Since the
number of columns/slab designs can become quite large, an integer program like

Constraints (2012) 17:39–50 43

the one above is usually solved with a branch-and-price [2] algorithm. Checking
the instances of the steel mill slab library revealed, however, that these instances
have between 7,103 and 10,011 feasible slab designs. Therefore, all variables can
be generated, i.e., all feasible slab designs can be enumerated, in advance. In [8] a
branch-and-price approach for the steel mill slab design problem is briefly discussed.

The set partitioning Model (1) can also be used for the problem of finding within
the solutions with minimal leftover one which additionally uses a minimal number of
slabs. To cope with this tie breaker rule for different optimal solutions, we can use
a simple sequential approach or integrate that tie breaker rule directly in to the first
model.

The sequential approach works as follows. First, we solve Model (1) to compute
the minimal leftover, say L�. Then we add a knapsack constraint to limit the total
leftover by L�, and change the objective function to min

∑
s∈S xs which leads to:

min
∑
s∈S

xs (2)

subject to
∑
s∈S

(λs) jxs = 1 ∀ j ∈ {1, . . . , n}
∑
s∈S

lsxs ≤ L�

xs ∈ {0, 1} ∀s ∈ S.

Solving this integer program, knowing L�, gives us a solution with minimal leftover
which uses the minimum number of slabs. Note that the knapsack constraint can be
replaced by an equation. Computational experiments showed that this performed
with a similar efficiency as the above knapsack version.

As mentioned above, before one also can integrate the additional optimization
criterion directly into the first model. Since n orders require at most n slabs to
be served, we can slightly manipulate the objective function by adding 1

2n to each
coefficient. Then, each used slab design contributes a fixed amount to the objective
value independently of the leftover. Therefore, a solution with minimum leftover
which uses fewer slabs is cheaper then one which uses more slabs. Using this known
technique results in the following integer program:

min
∑
s∈S

(
ls + 1

2n

)
xs (3)

subject to
∑
s∈S

(λs) jxs = 1 ∀ j ∈ {1, . . . , n}

xs ∈ {0, 1} ∀s ∈ S.

In the following section we present computational results for the steel mill slab
library in its original formulation and the variant which also minimizes the number
of slabs.

44 Constraints (2012) 17:39–50

4 Computational results

In this section we present our computational studies. We used IBM ILOG
CPLEX 12.1.0 to solve the resulting integer programs. All computations were
performed on computers with an Intel Core 2 Extreme CPU X9650 with 3 GHz, 6 MB
cache, and 8 GB of RAM. We used the deterministic parallel mode with 4 threads
of IBM ILOG CPLEX. The remaining parameters are kept at their default values.
As test set we chose the recently established steel mill slab library [15]. This library
contains 380 steel mill slab design instances. We first present the overall results for
the original steel mill slab version and its variant. Second, we present more detailed
performance results for the different models and selected instances.

4.1 Overall results

For each instance we generated all feasible slab designs in advance. For the instances
of the steel mill slab library this took a negligible amount of time (at most 0.02 s). The
overall results for the minimization of the leftover are summarized in Table 1. The
rows represent capacity classes, each of them consisting of 20 problem instances. The
first column, indexed by “|K|”, states the number of available capacities in this class.
The other columns, indexed from 0 to 19, list the optimal objective values (leftover)
of the 20 (ordered) instances of the corresponding capacity class. Values written in
bold italic font indicate an improvement to the previous best known solutions [14].
Overall we improved 76 instances and proved for all instances optimality. The
running time, which does not included the time for generating all feasible slab
designs, for these instances were around one second each, except for five instances
of the capacity class 2. Instance 2 required 2.5 s, instance 5 took 101.5 s, instance 6
ran in 174.8 s, instance 8 needed 7.2 s, and instance 15 required 14.6 s (see Table 4).
In these cases most of the time is spend for proving optimality.

Table 2 gives the overall results for all instances of the steel mill slab library for
which we additionally minimized the number of slabs. The columns of this table are
arranged in the same fashion as in the previous table. The values state for each
instance the minimum number of used slabs (w.r.t. the minimum leftover). Again,
all problems of the steel mill slab library are solved to optimality.

4.2 Detailed results

In what follows we give some more insights on the different models. Table 3
summarizes performance results for each capacity class and model. Thereby, the first
column “|K|” shows the capacity class by stating the number of available capacities.
Followed by pairs of columns for the results of Models (1) and (2), the sequential
solving approach (Models (1) + (2)) to find within all solutions with minimal leftover
one which uses a minimal number of slabs, and the integrated Model (3) which solves
the secondary slab minimization directly. For performance measures we choose the
shifted geometric mean3 for the number of search “Nodes” and for the running

3The shifted geometric mean of values t1, . . . , tn is defined as
(∏

(ti + s)
)1/n − s with shift s. We use

a shift s = 10 for time and s = 100 for nodes.

Constraints (2012) 17:39–50 45

T
ab

le
1

O
pt

im
al

le
ft

ov
er

fo
r

al
li

ns
ta

nc
es

of
th

e
st

ee
lm

ill
sl

ab
lib

ra
ry

[1
5]

In
st

an
ce

|K
|

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

2
22

54
10

0
34

15
36

40
42

53
1

76
66

64
19

78
44

29
6

56
15

5
36

36
3

5
15

10
14

7
35

11
39

63
15

5
39

14
6

19
15

45
35

8
22

17
4

32
18

10
7

8
6

6
3

1
12

13
8

1
19

1
11

15
0

5
12

5
0

21
5

1
9

8
0

0
1

2
7

5
17

7
2

10
5

11
15

0
6

0
19

0
0

0
1

0
0

0
1

0
7

0
12

2
3

0
0

0
0

7
0

0
1

0
1

2
0

1
0

0
7

0
2

4
0

0
0

1
0

1
8

0
0

0
0

0
0

0
0

0
0

0
0

0
6

0
0

0
0

0
0

9
0

0
0

0
0

0
0

0
0

0
0

0
3

0
0

0
0

0
0

0
10

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
1

0
0

11
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
12

0
0

0
0

0
0

0
0

5
0

0
0

0
0

0
0

0
0

0
0

13
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
14

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

15
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

17
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
18

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

19
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
20

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

46 Constraints (2012) 17:39–50

T
ab

le
2

M
in

im
al

nu
m

be
r

of
us

ed
sl

ab
s

fo
r

al
li

ns
ta

nc
es

of
th

e
st

ee
lm

ill
sl

ab
lib

ra
ry

[1
5]

In
st

an
ce

|K
|

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

2
58

51
48

50
50

48
50

52
47

48
52

54
51

56
56

47
50

47
49

55
3

59
55

52
53

52
51

51
53

58
47

55
50

53
52

48
53

53
56

57
59

4
54

53
50

50
47

50
49

51
52

51
51

52
51

48
55

57
55

50
52

52
5

57
56

56
51

51
53

55
49

51
53

49
50

51
54

52
52

52
52

48
51

6
51

50
51

47
47

51
54

48
49

50
52

51
50

52
53

52
52

48
47

53
7

56
48

53
47

50
49

47
50

47
51

54
49

48
51

47
48

50
55

47
47

8
47

50
52

47
51

48
48

47
51

49
51

47
50

49
47

49
48

49
50

47
9

51
50

47
48

47
48

47
49

48
47

50
47

51
47

47
50

49
47

55
48

10
47

47
49

47
48

47
48

47
47

47
51

47
47

47
49

48
49

50
47

47
11

47
47

47
47

47
47

48
51

48
47

48
47

47
49

47
47

47
48

48
47

12
47

48
47

47
47

50
49

47
56

47
47

47
47

47
48

47
47

47
47

47
13

47
47

47
47

47
47

47
50

47
47

47
47

47
47

47
47

47
47

47
47

14
47

47
47

47
47

48
47

47
47

47
47

47
47

47
47

47
47

49
47

47
15

47
47

47
47

47
47

47
47

47
47

47
47

47
47

47
48

47
47

47
47

16
47

47
47

47
47

47
47

47
47

48
47

47
47

47
47

47
47

47
47

47
17

47
47

47
47

47
47

47
47

47
47

47
47

47
47

47
47

47
47

47
47

18
47

47
47

47
47

47
47

47
47

47
47

47
47

47
47

47
47

47
47

47
19

47
47

47
47

47
47

47
47

47
47

47
47

47
47

47
47

48
47

47
47

20
47

47
47

47
47

47
47

47
47

47
47

47
47

47
47

47
47

47
47

47

Constraints (2012) 17:39–50 47

Table 3 Number of search nodes and running times for all models summarized for the different
capacity classes of the steel mill slab library [15]

Model (1) Model (2) Model (1) + (2) Model (3)

|K| Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s)

2 1,285 5.0 179 2.8 1,656 8.2 2,178 11.1
3 86 0.3 41 0.9 117 1.2 185 0.6
4 43 0.2 49 0.7 91 0.9 325 0.5
5 1 0.1 23 0.3 25 0.4 115 0.3
6 15 0.2 6 0.2 21 0.3 50 0.3
7 1 0.1 2 0.1 3 0.2 71 0.3
8 1 0.1 1 0.1 2 0.2 77 0.3
9 1 0.1 2 0.1 3 0.2 37 0.3
10 1 0.1 2 0.1 3 0.2 78 0.3
11 1 0.1 1 0.1 2 0.2 29 0.2
12 1 0.1 1 0.1 2 0.2 56 0.3
13 1 0.1 1 0.1 2 0.2 62 0.3
14 1 0.1 1 0.1 2 0.2 54 0.3
15 1 0.1 1 0.1 2 0.2 20 0.2
16 1 0.1 1 0.1 2 0.2 58 0.3
17 1 0.1 1 0.1 2 0.2 12 0.2
18 1 0.1 1 0.1 2 0.1 10 0.2
19 1 0.1 1 0.1 2 0.2 33 0.2
20 1 0.1 1 0.1 2 0.2 32 0.3

“Time” in seconds. The shifted geometric mean has the advantage that it reduces the
influence of outliers. The geometric mean ensures that hard instances are prevented
of having a huge impact on the measures. Similar shifting reduces the bias of easy
instances, those solved in less than 10 s and/or less than 100 nodes. Note that the
measures for the columns related to Models (1) + (2) are computed by first adding
the measure values of Models (1) and (2) for each instance and then applying the
shifted geometric mean to these values. For a detailed discussion about different
measures we refer to [1].

All instances belonging to a class with more than two capacities are easy to solve
independently of the chosen model. Regarding the running times all models need less
than one second w.r.t. the shifted geometric mean except for the sequential approach
(Models (1) + (2)) for capacity class 3 which takes 1.2 s. The number of visited search
nodes reveals that for larger capacity classes almost no search is required. That means
problems are solved in the root node of the search tree. Concerning the sequential
and integrated approaches for additionally minimizing the number of used slabs, it
makes (almost) no difference regarding these two methods.

Next, we have a closer look at the results for the capacity class two which are given
in Table 4. The columns of this table have almost the same meaning as in Table 3
except that we are stating the real number of search nodes and running times in
seconds. The table shows that within this capacity class there are only a few instances
which are slightly harder. For the sequential and integrated approaches to minimize,
in addition, the number of used slabs, we note that for the instances 5, 8, 14, and 18
the sequential method is superior to the integrated model. In case of the instances
11, 12, 15 and 17, however, the integrated approach slightly dominates the sequential
method.

48 Constraints (2012) 17:39–50

Table 4 Individual results for the instances from capacity class |K| = 2 of the steel mill slab
library [15] and the steel mill slab version of the mkc instance

Model (1) Model (2) Model (1) + (2) Model (3)

Inst. Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s)

0 150 0.2 1 0.5 151 0.7 1,274 0.4
1 507 0.6 520 1.6 1,027 2.2 555 0.7
2 541 2.5 1 0.6 542 3.1 544 3.0
3 531 1.1 529 5.5 1,060 6.6 534 1.0
4 1 0.1 1 0.4 2 0.5 39 0.1
5 226,348 101.5 1 0.6 226,349 102.1 1,850,052 1149.5
6 367,617 174.8 530 2.3 368,147 177.1 310,277 195.7
7 520 0.8 1 0.7 521 1.5 527 0.8
8 3,421 7.2 1 1.0 3,422 8.2 275,385 402.5
9 367 0.6 1 0.2 368 0.8 1 0.4
10 375 0.3 88 1.0 463 1.3 496 0.7
11 1,024 0.5 536 4.1 1,560 4.6 66 0.3
12 526 0.9 1,183 6.5 1,709 7.4 1,109 1.4
13 713 0.6 1 0.4 714 1.0 565 0.7
14 1,589 1.0 540 3.1 2,129 4.1 55,464 18.2
15 10,569 14.6 7,906 41.2 18,475 55.8 555 2.9
16 530 0.7 157 2.0 687 2.7 1,480 1.7
17 1,012 2.0 1,402 9.7 2,414 11.7 830 2.1
18 517 2.3 1 0.5 518 2.8 21,165 14.9
19 509 0.2 1 0.2 510 0.4 206 0.2

mkc4 13,041 119.2 496 136.1 13,537 255.3 207,003 639.7

Finally, we consider the two instances mkc and mkc7 (see [4]). Our approach
works for the smaller mkc instance which consists in the steel mill slab context of 439
orders, 23 (different) capacities, 347 colors. There exist 140,223 feasible slab designs
which lead in our models to the same number of binary variables. It takes 0.2 s
to generate these variables. Table 4 shows in the last line the performance results
for this particular instance (excluding the problem generation time). The minimal
leftover is 48.32 which requires at least 191 slabs. In case of the much larger instance
mkc7 our static approach already failed to generating all feasible slab designs. There
exist more than 12 billion slab designs. To cope with that issue a branch-and-price
approach using the introduced set partitioning models as basis could be a promising
approach, see for example [8].

5 Conclusion

We utilized a standard integer programming model to solve the steel mill slab design
problem. An advantage of the proposed model is that the naturally arising symme-
tries are removed. We solved all instances of the steel mill slab library efficiently. This

4Note that in this paper the mkc instance is not equivalent to the correspond instance in the
miplib2010 [12]. The miplib2010 version just gave the data input for the steel mill slab design problem
which is consider in this paper.

Constraints (2012) 17:39–50 49

approach is superior to all previous techniques applied to this problem. Furthermore,
we showed that the recently introduced variant of that problem, which additionally
minimizes the number of used slabs, can be easily incorporated into our integer
programming approach. Again, all instances of the steel mill slab library with
that secondary objective criteria are solved efficiently to optimality. Besides these
instances which all consists of 111 orders we solved the steel mill slab version of mkc
which contains 439 orders.

All results state that the current steel mill slab library needs an update. Instances
with 111 orders can be solved with the introduced integer programming models using
a general purposes state-of-the-art solver efficiently.

The introduced models, however, are not scalable. They have the drawback that
the number of required variables increases rapidly if there are more orders to be
placed. For example, in case of the mkc7 instance, which has more than 12 billion
feasible slab designs, we were not able to create all feasible slab designs in advance.
This challenge, however, can be overcome using a branch-and-price approach which
generates feasible slab designs only on demand and by reducing the number of
required slab designs by considering dominance between one slab design and m
others. For the latter one we refer to Prestwich and Beck [13].

Acknowledgements We are grateful to valuable remarks of the editor and the three anonymous
reviewers which enhanced this paper.

References

1. Achterberg, T. (2007). Constraint integer programming. PhD thesis, Technische Universität
Berlin.

2. Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., & Vance, P. H. (1998).
Branch-and-price: Column generation for solving huge integer programs. Operations Research,
46, 316–329.

3. Dawande, M., Kalagnanam, J., & Sethuraman, J. (2001). Variable sized bin packing with color
constraints. Electronic Notes in Discrete Mathematics, 7, 154–157.

4. Forrest, J. J. H., Kalagnanam, J., & Ladányi, L. (2006). A column-generation approach to the
multiple knapsack problem with color constraints. INFORMS Journal on Computing, 18, 129–
134.

5. Frisch, A. M., Miguel, I., & Walsh, T. (2001). Modelling a steel mill slab design problem.
In Proceedings of the IJCAI-01 workshop on modelling and solving problems with constraints
(pp. 39–45).

6. Frisch, A. M., Miguel, I., & Walsh, T. (2001). Symmetry and implied constraints in the steel mill
slab design problem. In Proceedings of CP’01 workshop on modelling and problem formulation
(pp. 8–15).

7. Gargani, A., & Refalo, P. (2007). An efficient model and strategy for the steel mill slab design
problem. In C. Bessiere (Ed.), Principles and practice of Constraint Programming—CP 2007,
LNCS (Vol. 4741, pp. 77–89).

8. Heinz, S., Schlechte, T., & Stephan, R. (2009). Solving steel mill slab problems with branch-and-
price. ZIB-Report 09-14, Zuse Institute Berlin.

9. Heinz, S., Schlechte, T., Stephan, R., & Winkler, M. (2011). Solving steel mill slab design prob-
lems. ZIB-Report 11-38, Zuse Institute Berlin.

10. Hnich, B., Kiziltan, Z., Miguel, I., & Walsh, T. (2004). Hybrid modelling for robust solving.
Annals of Operations Research, 130, 19–39.

11. Kalagnanam, J. R., Dawande, M. W., Trumbo, M., & Lee, H. S. (2000). The surplus inventory
matching problem in the process industry. Operations Research, 48, 505–516.

12. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R. E., et al. (2011).
MIPLIB 2010. Mathematical Programming Computation (Vol. 3).

50 Constraints (2012) 17:39–50

13. Prestwich, S., & Beck, J. C. (2004). Exploiting dominance in three symmetric problems. In Fourth
international workshop on symmetry and constraint satisfaction problems (pp. 63–70).

14. Schaus, P., Van Hentenryck, P., Monette, J.-N., Coffrin, C., Michel, L., & Deville, Y. (2010). Solv-
ing steel mill slab problems with constraint-based techniques: CP, LNS, and CBLS. Constraints,
16, 125–147.

15. Steel mill slab library. http://becool.info.ucl.ac.be/steelmillslab. Accessed Sept 2011.
16. Van Hentenryck, P., & Michel, L. (2008). The steel mill slab design problem revisited. In

L. Perron & M. A. Trick (Eds.), Integration of AI and OR techniques in Constraint Programming
for Combinatorial Optimization Problems (CPAIOR 2008), LNCS (Vol. 5015, pp. 377–381).

http://becool.info.ucl.ac.be/steelmillslab

	Solving steel mill slab design problems
	Abstract
	Introduction
	Related work
	Integer programming formulation
	Computational results
	Overall results
	Detailed results

	Conclusion
	References

