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Abstract Propositional satisfiability (SAT) is a success story in Computer Science
and Artificial Intelligence: SAT solvers are currently used to solve problems in
many different application domains, including planning and formal verification. The
main reason for this success is that modern SAT solvers can successfully deal with
problems having millions of variables. All these solvers are based on the Davis–
Logemann–Loveland procedure (dll). In its original version, dll is a decision
procedure, but it can be very easily modified in order to return one or all assignments
satisfying the input set of clauses, assuming at least one exists. However, in many
cases it is not enough to compute assignments satisfying all the input clauses: Indeed,
the returned assignments have also to be “optimal” in some sense, e.g., they have
to satisfy as many other constraints—expressed as preferences—as possible. In this
paper we start with qualitative preferences on literals, defined as a partially ordered
set (poset) of literals. Such a poset induces a poset on total assignments and leads to
the definition of optimal model for a formula ψ as a minimal element of the poset
on the models of ψ . We show (i) how dll can be extended in order to return one
or all optimal models of ψ (once converted in clauses and assuming ψ is satisfiable),
and (ii) how the same procedures can be used to compute optimal models wrt a
qualitative preference on formulas and/or wrt a quantitative preference on literals
or formulas. We implemented our ideas and we tested the resulting system on a
variety of very challenging structured benchmarks. The results indicate that our
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implementation has comparable performances with other state-of-the-art systems,
tailored for the specific problems we consider.

Keywords Satisfiability · Preferences

1 Introduction

Propositional satisfiability (SAT) is a success story in Computer Science and Ar-
tificial Intelligence: SAT solvers are currently used to solve problems in many
different application domains, including planning [30], formal verification [6], and
many others, such as RNA folding, hand-writing recognition, graph isomorphism
and sudoku problems. The main reason for this success is that modern SAT solvers
can successfully deal with problems having millions of variables [32, 33].1 All these
solvers are based on the Davis–Logemann–Loveland procedure (dll) [17]. The
original version of dll is a decision procedure—given a finite set of clauses ϕ, dll
returns whether ϕ is satisfiable or not)—but dll can be easily modified in order to
return one or all assignments satisfying ϕ, assuming at least one exists. However,
in many cases, it is not enough to compute one or more satisfying assignments:
Indeed, the returned assignments have also to be “optimal” in some sense, e.g., they
have to satisfy as many other constraints—expressed as preferences—as possible.
For example, in standard min-one (resp. min-one⊆), given a satisfiable instance, the
goal is to find a satisfying assignment in which the set of variables assigned to true is
of minimal cardinality (resp. subset-minimal). In standard max-sat (resp. max-sat⊆),
the goal is to find an assignment satisfying as many clauses as possible, i.e., such that
the set of satisfied clauses is of maximal cardinality (resp. subset-maximal). In the
partial version of min-one/min-one⊆ (resp. max-sat/max-sat⊆) the optimization is
performed on a subset of the variables (resp. clauses) of the instance.

In this paper we start considering the simple model in which preferences are
expressed as a partially ordered set (poset) of literals as in, e.g., [50, 54]. Such a
poset induces a poset on total assignments and leads to the definition of optimal
model for a formula ψ as a minimal element of the poset on the models of ψ . Given
a qualitative preference on literals and a finite set of clauses ϕ, we show how dll can
be easily modified in order to return an optimal model of ϕ, assuming ϕ is satisfiable.
The simple idea for computing one optimal model, is to force dll branching heuristic
in order to follow the partial order on the literals. The idea of computing “optimal”
(according to some given definition) models by modifying the heuristic in order to
follow the expressed preferences on literals has been already proposed in [12] for
SAT and in [8] for acyclic CP-nets [9]. There are however some important differences
in the underlying formalism used in [8, 12] for expressing preferences—and thus on
the procedures based on these formalisms—wrt ours:2

1. In the language: Both [12] and [8] allow for expressing preferences on literals,
but in these approaches it is not possible to rank the preferences according to

1http://www.satcompetition.org/
2In the case of [9], we consider the simple case in which variables are Boolean and preferences are
not conditional.

http://www.satcompetition.org/
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a partial order. For instance, these approaches allow for directly expressing a
preference in which literals l1 and l2 are assigned to true, but do not allow for
expressing that having l1 assigned to true is preferred to having l2 assigned to
true. Further, in [8, 12] the set of preferences has to be consistent, while we do
not make this assumption.

2. In the semantics: Even considering the case in which preferences are expressed
as a consistent set S of literals, the order on models induced by S in [8, 12] is
different from ours. For example, given a language with two variables x1 and
x2, and assuming that our only preference is to have x1 assigned to true, given
an assignment μ1 (resp. μ2) assigning both x1 and x2 to true (resp. false), μ1 is
preferred to μ2 according to our semantics (see Section 2), while this is not the
case for the semantics in [8, 12] (see Definition 7 in [12] and Section 2.3 in [8]).

We then extend our procedure in order to find more, and possibly all, optimal
models. As in [12], the idea is to add to the input formula a constraint imposing
that the new models have not to follow μ in the partial order: Thus, assuming we
have already generated a non empty set of optimal models and we are interested
in more, differently from the procedures in [8, 47] for CP-nets, our algorithm for
generating a new optimal model μ never requires a dominance test to see if there
exists another model which is preferred to μ. Finally, we show how the same
procedures can be extended to compute optimal models wrt a qualitative preference
on formulas and a quantitative preference on literals or formulas. Indeed, this is
a trivial consequence of the fact that all these concepts (qualitative/quantitative
preference on literals/formulas and also their mixing) can be reduced to the basic
framework of qualitative preference on literals.

We implemented our ideas in minisat [21], and we called noptsat the resulting
system.3 In order to comparatively test our system, we focused our experimental
analysis on max-sat/max-sat⊆ and min-one/min-one⊆ problems. Indeed, this is a very
challenging—if not the most challenging—test bench for our implementation:

1. for min-one/max-sat, a wide variety of recently developed, customized systems
are available, e.g., those in the last Pseudo-Boolean (PB) and Max-SAT Evalua-
tions;4 and

2. in these problems, the number of preferences is very high (equal to the number of
clauses in standard max-sat/max-sat⊆ and to the number of variables in standard
min-one/min-one⊆): As we have already shown in [25], in the context of planning
as satisfiability, the more preferences we have, the more the performances of our
system are negatively affected.

Despite the above, our analysis shows that noptsat has comparable performances
with respect to other state-of-the-art systems on min-one/max-sat problems. In the
case of min-one⊆/max-sat⊆ problems, we consider the only other implementation
available for standard max-sat⊆, and here again we show that our system compares

3Available at http://www.star.dist.unige.it/~emanuele/nOPTSAT/.
4See http://www.cril.univ-artois.fr/PB09/ and http://www.maxsat.udl.cat/09/, respectively.

http://www.star.dist.unige.it/~emanuele/nOPTSAT/
http://www.cril.univ-artois.fr/PB09/
http://www.maxsat.udl.cat/09/
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well. However, we remark that our results goes far beyond the min-one/min-one⊆
and max-sat/max-sat⊆ cases, which

1. are the simplest cases of preferences on literals and on formulas respectively,
since they have an empty partial order on preferences; and

2. are the most difficult problems for our system, given the very high number of
preferences they have.

Indeed, we allow for preferences to be partially ordered and in many applications the
number of preferences is relatively low, as, e.g., in planning with soft goals [23, 25].

Summing up, given a set of clauses ϕ, the main contributions of the paper are:

1. We show how it is possible to easily extend dll in order to compute one optimal
model of ϕ wrt a qualitative preference on literals: We allow for inconsistent set
of preferences and for a partial order on the preferred literals.

2. We extend the procedure in order to compute and return more than one,
and possibly all, optimal models of ϕ wrt a given qualitative preference: Our
procedure does not require any dominance test.

3. We show how qualitative preferences on formulas and quantitative preferences
on literals or formulas can be reduced to the basic framework of qualitative
preferences on literals: This allows to use our procedures also in these extended
settings, and also for solving problems with mixed qualitative and quantitative
preferences.

4. We implemented these ideas on top of minisat and we comparatively tested
our system on a variety of structured min-one/min-one⊆ and max-sat/max-sat⊆
problems against various state-of-the-art systems, tailored for such problems:
Despite the generality of our procedure, the results indicate that our system has
comparable performances wrt the others.

The paper is structured as follows. In Section 2, we present the formalism we
are using for expressing qualitative preferences on literals, and we show how these
preferences induce a preference on the set of total assignments and thus also on
the models of any given formula. In Section 3, we first present opt-dll, i.e., dll
modified in order to compute an optimal model of a finite set of clauses wrt a
qualitative preference on literals, and then nopt-dll, i.e., opt-dll extended in order
to compute all optimal models. In Section 4, we show how it is possible to reduce
quantitative/qualitative preference on formulas to qualitative preference on literals.
In the same section, we give examples showing how it is possible to represent and
solve problems in which qualitative and quantitative preferences are mixed. Section 5
is devoted to the implementation details and the comparative experimental analysis
of the ideas presented. The paper ends in Section 6 with the conclusions.

2 Satisfiability and qualitative preferences

Consider a finite set P of variables, called signature. A literal is a variable x or its
negation ¬x. A formula or constraint is either a variable or a combination of formulas
using the n-ary connectives ∧ and ∨ for conjunction and disjunction, respectively
(n ≥ 0); the n-ary connective ≡ for equivalence (n ≥ 2); and the unary connective ¬
for negation.
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For example, given the five variables AtWork0, AtWork1, Car0, Bus0, Bike0, in
which the subscript models the time step, the following formula

AtWork1 ≡ ¬AtWork0 ≡ (Car0 ∨ Bus0 ∨ Bike0), (1)

models the fact that if we perform the action of taking the car (Car0) or the bus (Bus0)
or the bike (Bike0) then we move from home (¬AtWork0) to work (AtWork1), or
viceversa, while the formula

¬AtWork0 ∧ AtWork1 (2)

models the fact that at time 0 we are at home (or not at work) and at time 1 we are
at work (variables have the obvious meaning). The two equations do not rule out
the possibility of executing two or even three actions at the same time (e.g., to have
a model in which both Car0 and Bus0 are true). Indeed, these models can be easily
eliminated by adding additional constraints.

In the following, given a literal l, l denotes ¬l if l is a variable, and the variable in
l otherwise. If S is a set of literals,

S = {l : l ∈ S}.

An assignment is a consistent set of literals.
Consider an assignment μ.
If l ∈ μ, we say that both l and l are assigned by μ, to true and false, respectively.

μ is total if each literal is assigned by μ. If μ is total, we say that μ satisf ies

– a variable x if x ∈ μ;
– a formula ψ if μ satisfies ψ according to the truth tables of the propositional

connectives;
– a set of formulas if μ satisfies each formula in the set.

A model of a set of formulas is an assignment satisfying the set.
For instance, (1) has 16 models, while considering (1) and (2) the models become

7. In the following, we represent a total assignment as the set of variables assigned
to true, and we write μ |= ψ to indicate that μ is a model of ψ . For instance,
{Car0, AtWork1} represents the total assignment in which the only variables assigned
to true are Car0 and AtWork1.

As we already said in the introduction, in many applications not all the models
of a set of formulas are considered to be equally good. For example, in (1) we may
prefer the models in which as few actions as possible are performed, i.e., we may
prefer the models having a maximal intersection with {¬Car0,¬Bus0,¬Bike0}: This
intuitively corresponds to considering the two models in which we do not move
from/to home as optimal. Further, in case it is not possible to have a model with
¬Car0, ¬Bus0,¬Bike0 (as with (1) and (2)), we may want to express the additional
information that we have better to give up on ¬Car0 than the other two, i.e., that of
the three preferences, ¬Car0 is the least important: With such additional information,
we expect {Car0, AtWork1} to be the only optimal model for (1) and (2).

Such additional information about which model is preferred to the other ones can
be expressed via qualitative preferences on literals. A qualitative preference on literals
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is a (strict) partially ordered set of literals.5 We recall that a (strict) partially ordered
set (or poset) is a pair 〈S,≺〉 whose first element is a set and ≺ is a (strict) partial order
on S, i.e., a binary relation satisfying the following two properties:

1. Irreflexivity: For each a ∈ S, a �≺ a.
2. Transitivity: For each a, b , c ∈ S, a ≺ b and b ≺ c implies a ≺ c.6

Given a poset 〈S,≺〉,
– if for each two distinct a, b ∈ S, a ≺ b or b ≺ a then ≺ is said to be a total order;
– an element a ∈ S is said to be minimal (in 〈S,≺〉) if there is no b ∈ S with b ≺ a:

It is clear that if S is finite then the poset has at least one minimal element; and
– if S′ ⊆ S then 〈S′, ≺′〉 is also a poset, where ≺′ is ≺ restricted to the literals in S′.

It is common to represent a poset 〈S,≺〉 as the direct acyclic graph (DAG) whose
vertexes are the elements in S, and with an arc from a to b if and only if a ≺ b and
there is no c with a ≺ c ≺ b .

In a qualitative preference on literals 〈S,≺〉, S is the set of preferences and
intuitively represents the set of literals that we would like to have satisfied, while
≺ models the relative importance of the preferences. Notice that the set S can
be inconsistent: If S contains both a variable x and its negation ¬x—assuming
compatibility with the constraints and that neither x ≺ ¬x nor ¬x ≺ x—we expect
to have an optimal model with x true and another optimal model with x false. For
example,

1. the qualitative preference

〈{¬Car0,¬Bus0, ¬Bike0, Bike0},∅〉
models our preference to get (assuming compatibility with the underlying con-
straints) two optimal models μ1 and μ2, satisfying {¬Car0,¬Bus0,¬Bike0} and
{¬Car0,¬Bus0, Bike0}, respectively;

2. while

〈{¬Car0, ¬Bus0, ¬Bike0}, {¬Bus0 ≺ ¬Car0,¬Bike0 ≺ ¬Car0}〉 (3)

models our preference for not moving from/to home, and in which, of the three
preferences, ¬Car0 is the least important.

Consider a qualitative preference on literals 〈S,≺〉. The partial order on S can be
extended to the set of total assignments as follows [54]: Given two total assignments
μ and μ′, μ is preferred to μ′ or μ dominates μ′ (μ ≺ μ′) if and only if

1. μ satisfies at least one preference which is not satisfied by μ′, i.e., there exists a
literal l ∈ S with l ∈ μ and l ∈ μ′; and

2. the preferences satisfied by μ′ and not by μ are less preferred to those satisfied
by μ and not by μ′, i.e., for each literal l ∈ S ∩ (μ′ \ μ), there exists a literal l′ ∈
S ∩ (μ \ μ′) such that l′ ≺ l.

5The given definition of qualitative preference on literals generalizes the ones given in [24].
6If ≺ is irreflexive and transitive then it is also antisymmetric, i.e., if a ≺ b then b �≺ a.
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From the definition, it is clear that, for any two total assignments μ and μ′:

1. If S ∩ μ = S ∩ μ′ then μ �≺ μ′: In particular, if the set S of preferences is empty,
every model is optimal.

2. If S ∩ μ′ ⊂ S ∩ μ then μ ≺ μ′: Every optimal model has a maximal intersection
with S. In the case ≺ is empty, every model with a maximal intersection with S is
optimal.

〈S,≺〉 induces a partial order on the set of total assignments, as stated by the
following theorem, similar to Theorem 7 in [55].

Theorem 1 Let 〈S,≺〉 be a qualitative preference on literals. The relation ≺ extended
to the set of total assignments is a partial order.

Proof For a literal l and a total assignment μ, define

dom(l, μ) = {l′ : l′ ∈ S ∩ μ, l′ ≺ l}.
We have to show that the relation ≺ on the set of total assignments is irreflexive

and transitive. Let μ,μ′ and μ′′ be three total assignments.

1. Irreflexivity: Clearly μ �≺ μ, because of the first condition in the definition of ≺.
2. Transitivity: μ ≺ μ′ and μ′ ≺ μ′′ implies μ ≺ μ′′. We have to prove that for

each literal l′ ∈ S ∩ (μ′′ \ μ), there exists a literal l ∈ S ∩ (μ \ μ′′) such that l ≺ l′.
Considering the set

S′ = S ∩ (μ′′ \ μ),

it is enough to show that for each literal l′ which is minimal in 〈S′, ≺〉, there exists
a literal l ∈ S ∩ (μ \ μ′′) such that l ≺ l′.
Let l′ be a minimal element in 〈S′, ≺〉.
There are two cases:

(a) l′ ∈ μ′ and dom(l′, μ′′) ⊆ μ′: Since l′ ∈ μ′ and μ ≺ μ′, let l be a literal in
S ∩ μ such that l ≺ l′, and l �∈ μ′. Because of the second initial assumption,
l �∈ μ′′ and thus the thesis.

(b) l′ �∈ μ′ or dom(l′, μ′′) �⊆ μ′: The set ({l′} ∪ dom(l′, μ′′)) \ μ′ is not empty: Let
l′′ be a minimal element of this set according to ≺. Notice that either l′′ = l′
or l′′ ≺ l′. In both cases, l′′ ∈ μ′′, l′′ �∈ μ′, and

dom(l′′, μ′′) ⊆ μ′. (4)

Since μ′ ≺ μ′′, there exists a literal l′′′ ∈ μ′ \ μ′′ with l′′′ ≺ l′′ and thus l′′′ ≺ l′.
If l′′′ ∈ μ, l′′′ is the literal l we are looking for and thesis follows. If l′′′ �∈ μ,
since μ ≺ μ′ there exists a literal l ∈ S ∩ (μ \ μ′) such that l ≺ l′′′ and thus
l ≺ l′. This literal is not in μ′ and thus, because of (4), it is not in μ′′ as well.

��

Since the set M of models of an arbitrary set of constraints is a subset of the set
of total assignments, then also 〈M, ≺〉 is a partially ordered set. For example, given
the constraints (1) and (2), and the qualitative preference (3), the partial order on
models is represented by the DAG in Fig. 1.
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Car AtWork

Bus AtWork Bike AtWork

Bus Car AtWork Bike Car AtWork

Bike Bus AtWork

Car Bike Bus AtWork

Fig. 1 DAG representation of the partial order on the models of (1) and (2), wrt (3)

However, there can be partial orders on models (or on total assignments) which
are not extensions of partial order on literals. For example, assuming we have
only two variables x0, x1, the total order on the set of total assignments {x1, x0} ≺
{x1, x0} ≺ {x1, x0} ≺ {x1, x0} can not be obtained as the result of the extension of a
partial order on a subset of the literals in {x0, x0, x1, x1}. In Section 4 we extend the
formalism in order to express qualitative preferences on formulas. With preferences
on formulas, given that a total assignment μ can be represented as the conjunction
Cμ of the literals in μ, it is possible to capture any partial order on the set of total
assignments: Trivially, given any two total assignments μ1 and μ2 for which we want
μ1 ≺ μ2, imposing the preference on formulas Cμ1 ≺ Cμ2 leads to the desired order
on μ1 and μ2.
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Given that μ ≺ μ′ encodes the fact that μ is preferred to μ′, it is natural to define
a model as optimal if it is a minimal element of the partially ordered set of models. A
finite set of constraints and a qualitative preference defines an optimization problem,
consisting in determining an optimal model of the set of constraints. As it is clear
from Fig. 1, the assignment {Car0, AtWork1} is the only solution for the optimization
problem consisting of the constraints (1), (2), and the qualitative preference (3).

3 Solving optimization problems with DLL

Given a finite set of constraints and a qualitative preference on literals, we show how
it is possible to compute an optimal model by a simple modification of the Davis–
Logemann–Loveland procedure (dll) [17], and then how to extend dll in order to
compute all optimal models.

dll is at the basis of current state-of-the-art procedures for checking the sat-
isfiability of a finite set of constraints, which extend it in many ways, including
conflict driven backjumping and clause learning, see, e.g., [41, 45]. However, dll
does not directly handle arbitrary formulas, but finite sets of clauses (the clauses to
be interpreted in conjunction among them), where a clause is a finite set of literals
(the literals to be interpreted in disjunction among them). This is not a limitation
because of well known and efficient clause form transformation procedures (see,
e.g., [27, 46, 53]). Thus, from here on—with the exception of the text in the formal
statements—we assume we are able to use dll and our procedures also on formulas,
implicitly assuming that formulas are converted into a set of clauses beforehand.

3.1 Computing an optimal model with dll

Our procedure, that we call opt-dll, is a simple modification of dll in order to take
into account the given qualitative preference on literals 〈S,≺〉.

The pseudo-code of opt-dll is represented in Fig. 2, where:

– ϕ and 〈S,≺〉 are global variables storing the input set of clauses and the
qualitative preference on literals, respectively;

– μ is the current assignment, initially empty;

Fig. 2 The algorithm
of opt-dll for computing
one optimal solution
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– ϕμ is the result of simplifying the input set of clauses wrt the assignment μ, i.e.,
ϕμ is the set of clauses obtained from ϕ by (i) deleting the clauses C ∈ ϕ such that
C ∩ μ �= ∅, and (ii) substituting the other clauses C ∈ ϕ with C \ μ;

– ChooseLiteral(μ) returns a literal l unassigned by μ and such that

• either l ∈ S and each literal l′ with l′ ≺ l is assigned by μ;
• or, if each literal in S is assigned by μ, l is an arbitrary literal in ϕμ, selected

by any given heuristic.

It is easy to see that if there are no preferences (i.e., if the set S is empty) opt-dll
is the standard dll. On the other hand, if the set of preferences is not empty, the
search tree is explored in a way to ensure that the returned model (assuming the
input formula is satisfiable) is optimal. For instance, assuming we have the qualitative
preference

〈{¬Bus0, ¬Bike0}, {¬Bus0 ≺ ¬Bike0}〉
(modeling the fact that we prefer (i) to not take the bus; (ii) to not take the bike;
and (iii) to not go by bus more than to not go by bike) opt-dll looks for a model
extending

1. {¬Bus0, ¬Bike0}; if no such model exists, opt-dll looks for a model extending
2. {¬Bus0, Bike0}; if no such model exists, opt-dll looks for a model extending
3. {Bus0,¬Bike0}; if no such model exists, opt-dll looks for a model extending
4. {Bus0, Bike0}; if no such model exists, opt-dll returns false.

In words, opt-dll first looks for a model where both actions of going by bus and bike
are false; then one in which we use the bike and not the bus; then one in which we
use the bus and not the bike; and only finally for models where we use both the bus
and the bike. If ψ is the conjunction of (1) and (2), the model of ψ returned with
such exploration is {Car0, AtWork1}, while it is {Bike0, AtWork1} if we also consider
the constraint ¬Car0.

opt-dll returns an optimal assignment if the input formula is satisfiable, and false
otherwise, as stated by the following theorem, easy consequence of Theorem 4, which
is stated and proved in the next subsection.

Theorem 2 Let ϕ, 〈S, ≺〉 and opt-dll as in Fig. 2. opt-dll() returns an optimal model
of ϕ wrt 〈S,≺〉 if ϕ is satisf iable, and false otherwise.

Consider a satisfiable and finite set of clauses ϕ.
Depending on the literal returned by ChooseLiteral(μ), different optimal models

are computed and returned by opt-dll. For instance, given the qualitative preference

〈{¬Car0,¬Bus0,¬Bike0},∅〉, (5)

each of the three optimal models of (1) and (2) wrt (5) can be returned by opt-dll,
which one depending on the specific implementation of ChooseLiteral: If the first
two literals assigned at line 4 in opt-dll are in

1. {¬Car0,¬Bus0}, then the returned optimal model is {Bike0, AtWork1};
2. {¬Car0,¬Bike0}, then the returned optimal model is {Bus0, AtWork1};
3. {¬Bus0, ¬Bike0}, then the returned optimal model is {Car0, AtWork1}.
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In this example, each optimal model is a possible output of opt-dll. There are
however optimization problems in which some of the optimal models cannot be
returned by opt-dll. Consider, for instance, an optimization problem with qualitative
preference

〈{x0, x1, x2, x3}, {x0 ≺ x1, x2 ≺ x3}〉
and constraints imposing that if one variable in {x0, x2} is true then the other three
variables have to be false,7 e.g.,

(x0 ∨ x1) ∧ (x0 ∨ x2) ∧ (x0 ∨ x3) ∧ (x2 ∨ x1) ∧ (x2 ∨ x3).

The above formula has three models, i.e., {x0}, {x2} and {x1, x3}, and all of them are
optimal. However, opt-dll can return only two of them, namely either {x0} or {x2},
which one depending on the implementation of ChooseLiteral.

The fact that there can be some optimal model that cannot be returned by opt-
dll is not a limitation if the goal is to compute one optimal model. If the goal is to
compute more than one or all optimal models, we will see in the next subsection how
to generalize opt-dll.

3.2 Computing all optimal models with dll

Consider a formula ψ and a qualitative preference 〈S, ≺〉.
The problem of computing all optimal models of ψ wrt 〈S,≺〉 can be solved by

1. determining and printing an optimal model μ of ψ by imposing an ordering on
the splitting heuristic, as in the previous subsection;

2. adding to the input formula a new formula which prunes the assignments which
are dominated by μ; and

3. returning false in order to continue the search for other optimal models.

The idea to compute all optimal models by adding constraints pruning the models
dominated by the already computed optimal models, has been already proposed
in [12]. Other works which exploit further techniques to eliminate previously
computed solutions in SAT include, e.g., [29, 43, 49] in the context of symbolic
model checking [42]. However, the framework used in [12] assumes a consistent
set of preferences, does not allow for ordering the preferences and ultimately has
a different semantics.

For the above procedure, given an assignment μ, we have to define a formula
whose models are the assignments dominated by μ (wrt 〈S, ≺〉). Such a formula is

(
∨l∈S∩μl

)
∧

(
∧l∈S∩μ

(
l ∨ ∨l′∈S∩μ,l′≺ll′

))
. (6)

Theorem 3 Let 〈S,≺〉 be a qualitative preference on literals. A total assignment μ

dominates a total assignment μ′ wrt 〈S, ≺〉 if and only if μ′ satisf ies (6).

7For instance {x0, x1, x2, x3} can model the fact that we like to have wine (x0), beer (x1), fish (x2)
and pizza (x3); we like wine more than beer, and fish more than pizza. Due to budget limitations, if
we buy fish or wine we cannot afford anything else.
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Proof According to the definition, given two total assignments μ and μ′, μ ≺ μ′ iff

1. there exists a literal l ∈ S with l ∈ μ and l ∈ μ′; and
2. for each literal l ∈ S ∩ (μ′ \ μ), there exists a literal l′ ∈ S ∩ (μ \ μ′) such that

l′ ≺ l.

The first condition corresponds to the formula

∨l∈S∩μl.

The second condition corresponds to the formula

∧l∈S∩μ

(
l ∨ ∨l′∈S∩μ,l′≺ll′

)
.

The conjunction of the above two formulas is (6). ��

As examples of the application of Theorem 3, consider a total assignment μ:

1. If S ∩ μ = ∅ then the formula (6) is equivalent to the empty disjunction, i.e.,
false: Indeed, if μ does not satisfy any preference, no assignment is dominated
by μ;

2. If S ⊆ μ then the formula (6) is equivalent to ∨l∈Sl: Each assignment which does
not satisfy all the preferences is dominated by μ;

3. If ≺= ∅ then, the formula (6) is equivalent to ∨l∈S∩μl ∧ ∧l∈S∩μl: Each assignment
satisfying a strict subset of the set of preferences satisfied by μ, is dominated
by μ.

Notice that if μ1 dominates μ2 and ψ1 (resp. ψ2) is the formula (6) computed for μ1

(resp. μ2), then ψ2 entails ψ1, i.e., the models of ψ2 are a subset of the models ψ1:
This is a simple consequence of the fact that if μ1 ≺ μ2 then μ1 dominates a superset
of the total assignments dominated by μ2.

Thanks to Theorem 3, it is possible to generalize opt-dll in Fig. 2 in order to
return all the optimal models of a finite set of clauses ϕ. The resulting procedure
is represented in Fig. 3. In the figure, let P be the signature of ϕ, Reason(μ)

Fig. 3 The algorithm
of nopt-dll for computing
all optimal solutions
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corresponds to the negation of (6), i.e., Reason(μ) is a finite set of clauses—possibly
in a signature P′ extending P—such that

1. for each total assignment μ satisfying the negation of (6), there exists one
assignment μ′ in P′ extending μ and satisfying Reason(μ);

2. for each total assignment μ′ in P′ satisfying Reason(μ), the restriction of μ′ to P
satisfies the negation of (6).

Such a set of clauses can be computed starting from the negation of (6) using the
already mentioned clause form transformations [27, 46, 53].

As an example, consider the optimization problem discussed at the end of
previous subsection, having

〈{x0, x1, x2, x3}, {x0 ≺ x1, x2 ≺ x3}〉
as qualitative preference, while the constraint

(x0 ∨ x1) ∧ (x0 ∨ x2) ∧ (x0 ∨ x3) ∧ (x2 ∨ x1) ∧ (x2 ∨ x3),

imposes that the only models are {x0}, {x2} and {x1, x3}. nopt-dll

1. starts determining and printing the optimal model {x0} or {x2}, which one depend-
ing on whether ChooseLiteral(∅) returns x0 or x2. Assuming ChooseLiteral(∅) =
x0, nopt-dll

(a) computes and prints the first optimal model μ0 = {x0},
(b) computes (6) for μ0, i.e.,

x0 ∧ (x1 ∨ x0) ∧ x2 ∧ x3,

(c) adds to the input set of clauses a set of clauses corresponding to the
negation of the previous formula, e.g.,

x0 ∨ x2 ∨ x3;
2. backtracks setting x0, and continues the search looking for models extending the

partial assignment {x0}. Assuming ChooseLiteral({x0}) = x2, nopt-dll

(a) determines and prints the second optimal model μ1 = {x2},
(b) computes (6) for μ1, i.e.,

x2 ∧ (x3 ∨ x2) ∧ x0 ∧ x1,

(c) adds to the input set of clauses a set of clauses corresponding to the negation
of the previous formula, e.g.,

x2 ∨ x0 ∨ x1;
3. backtracks setting x2, and continues the search looking for models extending the

partial assignment {x0, x2}. nopt-dll

(a) determines and prints the third (and last) optimal model μ2 = {x1, x3},
(b) computes (6) for μ2, i.e.,

(x1 ∨ x3) ∧ x0 ∧ x2,
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(c) adds to the input set of clauses a set of clauses corresponding to the negation
of the previous formula, e.g.,

(x1 ∨ x0 ∨ x2) ∧ (x3 ∨ x0 ∨ x2); (7)

4. backtracks setting

(a) either x1 and thus the current assignment is {x0, x2, x1}
(b) or x3 and thus the current assignment is {x0, x2, x3}.
In both cases the formula (7) is contradicted, and given that the search tree has
been entirely explored, nopt-dll terminates returning false.

nopt-dll prints all and only the optimal models of ϕ wrt 〈S,≺〉 as stated by the
following theorem.

Theorem 4 Consider Fig. 3, and let ϕ, 〈S,≺〉 and nopt-dll as in the f igure. nopt-dll()

prints all and only the optimal models of ϕ wrt 〈S, ≺〉.

Proof Assume ϕ is satisfiable, otherwise nopt-dll prints nothing and the thesis
trivially holds.

Let μ1, . . . , μn (n ≥ 1) be the models printed by nopt-dll, listed according to the
order in which they are printed (thus μ1 is the first model printed by nopt-dll). The
first observation is that if a model μ of the input set of clauses is not printed by
nopt-dll then μ is not optimal. Indeed, if μ is not printed, then μ falsifies one of the
clauses added to ϕ when a model μ′ is determined and printed, and this implies that
μ′ ≺ μ. Thus, the set T = {μ1, . . . , μn} is a superset of the set of optimal models.

It remains to be showed that each model μ in T is optimal, i.e., that for each other
model μ′ ∈ T, μ′ �≺ μ.

For any i, j with 1 ≤ i < j ≤ n, μ j �≺ μi. To show this,

1. let l1; . . . ; lk; lk+1; lk+2; . . . ; l|P| be the sequence of literals in μi listed according
to the order in which they are assigned by nopt-dll, and

2. let l1; . . . ; lk; lk+1; l′k+2; . . . ; l′|P| be the sequence of literals in μ j listed according
to the order in which they are assigned by nopt-dll,

(k ≥ 0). Thus, lk+1 is the first literal which is assigned differently by μi and μ j, i.e.,
lk+1 has been assigned at line 8 and lk+1 has been assigned at line 10 after l1; . . . ; lk

by nopt-dll. There are two cases:

1. lk+1 ∈ S and thus by definition of ChooseLiteral all the literals l ≺ lk+1 are
assigned by {l1, . . . , lk} and thus in the same way by μi and μ j. Hence μ j �≺ μi.

2. lk+1 �∈ S and thus by definition of ChooseLiteral all the literals in S are assigned
by {l1, . . . , lk} and thus in the same way by μi and μ j. Hence μ j �≺ μi.

Thus, each model μi is optimal:

1. For each model μk with k < i (i.e., printed before μi), μk �≺ μi because μi satisfies
the formula (6) added to ϕ when μk has been computed.

2. For each model μk with k > i (i.e., printed after μi), we have shown that μk �≺ μi.
��
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4 Quantitative and qualitative preferences on formulas and their mixing

In this section, we first introduce quantitative preferences on literals and then we
generalize the concept of preferences on literals to preferences on formulas, showing
how all these notions (both separately or mixed) can be reduced to the basic
framework of qualitative preference on literals.

4.1 Quantitative preferences on literals

Given a set of preferences S and a formula ψ , if it is not possible to satisfy both S and
ψ , a standard approach to model the relative importance of the preferences in S, is
to define a function c : S �→ N+: Intuitively, c(l) is the reward for satisfying l ∈ S. A
pair 〈S, c〉 is a quantitative preference and a model μ of ψ is optimal if it maximizes
the objective function defined as8

∑
l∈S∩μ

c(l). (8)

In the literature, such kind of problem is also known as Binate Covering
Problem [16], recently generalized in [39].

Considering (1) and (2), if we have the preferences

1. {¬Bike0,¬Bus0,¬Car0}, assuming the reward function c is constant, then the
optimal models are {Bike0, AtWork1}, {Bus0, AtWork1}, {Car0, AtWork1}.

2. {¬Bike0,¬Bus0,¬Car0}, if we assume c(¬Bike0) = 2 while c(¬Bus0) = 1 and
c(¬Car0) = 1, then the optimal models are {Bus0, AtWork1} and {Car0,

AtWork1}.
Consider a quantitative preference 〈S′, c〉 and a satisfiable set of clauses ϕ′.
The problem of finding an (resp. all) optimal model (resp. models) of ϕ′ wrt 〈S′, c〉

can be solved again using opt-dll (resp. nopt-dll) as core engine. The basic idea is to
encode the value of the objective function (8) as a sequence of bits b n−1, . . . , b 0 and
then consider the qualitative preference 〈{b n−1, . . . , b 0}, {bi ≺ bj : 0 ≤ j < i < n}〉. In
more details, let adder(S′, c) be a set of clauses such that:

1. If n = �log2(
∑

l∈S′ c(l) + 1)�, adder(S′, c) contains n new variables b n−1, . . . , b 0;
and

2. A total assignment μ satisfies ϕ′ iff there exists a unique total assignment μ′ to
the variables in ϕ′ and in adder(S′, c) such that

(a) μ′ extends μ and satisfies both ϕ′ and adder(S′, c), and
(b)

∑
l∈S′∩μ c(l) = ∑n−1

i=0 μ′(bi) × 2i, where μ′(bi) is 1 if bi ∈ μ′, and is 0
otherwise.

8Assuming we want c(l) < 0 for some l ∈ S, we can replace l with l in S and define c(l) = −c(l): The
set of optimal models does not change. Given 〈S, c〉 and assuming we are interested in minimizing
the objective function (8), we can consider the quantitative preference 〈S, c′〉 with c′(l) = c(l), and
then look for a model maximizing

∑
l∈S∩μ

c′(l).
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If the above conditions are satisfied, we say that adder(S′, c) is a Boolean encoding
of 〈S′, c〉 with output b n−1, . . . , b 0. adder(S′, c) can be realized in polynomial time in
many ways, see, e.g., [56].

In the above hypotheses, if

1. ϕ is the set of clauses in ϕ′ or in adder(S′, c), and
2. 〈S,≺〉 is the qualitative preference 〈{b n−1, . . . , b 0},{bi ≺ bj : 0 ≤ j < i < n}〉
then opt-dll (resp. nopt-dll) returns one optimal model (resp. prints all the optimal
models) of ϕ′ wrt 〈S′, c〉. The following theorem formally states this result for
nopt-dll.

Theorem 5 Let ϕ′ be a set of clauses and let 〈S′, c〉 be a quantitative preference on
literals. Let adder(S′, c) be a Boolean encoding of 〈S′, c〉 with output b n−1, . . . , b 0. If

1. ϕ is the set of clauses in ϕ′ or in adder(S′, c), and
2. 〈S,≺〉 is the qualitative preference 〈{b n−1, . . . , b 0},{bi ≺ bj : 0 ≤ j < i < n}〉
3. M is the set of models of ϕ printed by nopt-dll in Fig. 3,

then the assignments in M, restricted to the signature of ϕ′, are all the optimal models
of ϕ′ wrt 〈S′, c〉.

Proof The qualitative preference 〈{b n−1, . . . , b 0},{bi ≺ bj : 0 ≤ j < i < n}〉 induces a
partial order on the models of ϕ′ ∪ adder(S′, c) according to which μ ≺ μ′ if and only
if

n−1∑
i=0

μ(bi) × 2i >

n−1∑
i=0

μ′(bi) × 2i,

i.e., if and only if
∑

l∈S′∩μ

c(l) >
∑

l∈S′∩μ′
c(l).

��

As an application of the above theorem, given a quantitative preference with
preferences S′ = {¬Bike0,¬Bus0, ¬Car0} and reward function c always returning 1,
then adder(S′, c) has two bits b 1, b 0 as output; and the models of adder(S′, c) satisfy

b 0 ≡ (¬Bike0 ≡ ¬Bus0 ≡ ¬Car0),

b 1 ≡ ((¬Bike0 ∧ ¬Bus0) ∨ (¬Bike0 ∧ ¬Car0) ∨ (¬Bus0 ∧ ¬Car0)).
(9)

The optimal models of (1), (2) and (9), given the qualitative preference 〈{b 1, b 0},
b 1 ≺ b 0〉 are {Bike0, AtWork1, b 1}, {Bus0, AtWork1, b 1}, {Car0, AtWork1, b 1}, i.e.,
the models of (1), (2) whose objective value is 2.

4.2 Qualitative and quantitative preferences on formulas

So far, a preference is a literal, and we have seen how it is possible to use dll to
find optimal models wrt both qualitative and quantitative preferences on literals.
We now show that the hypothesis that preferences are literals can be waved, i.e.,
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that it is possible to generalize the previous concepts and results from literals to
arbitrary formulas. The basic idea is to introduce definitions [53] or “names” [46]
for the formulas at hand (see also [18, 48]).

First, we define a qualitative preference on formulas to be a pair 〈S,≺〉 where S is
a finite set of formulas and ≺ a (strict) partial order on S. The set S of preferences
does not need to be consistent. Then, as in Section 2, the partial order on S induces a
partial order on the sets of total assignments according to which, if μ and μ′ are two
total assignments μ ≺ μ′ if and only if

1. there exists a formula ψ ∈ S satisfied by μ and not by μ′; and
2. for each formula ψ ′ ∈ S satisfied by μ′ and not by μ, there exists a formula ψ ∈ S

satisfied by μ and not by μ′ such that ψ ≺ ψ ′.

It is easy to see that if the formulas in S are literals, then the above definition
coincides with the one given in Section 2. It is also straightforward to generalize the
result of Theorem 1 saying that the if 〈S,≺〉 is a qualitative preference on formulas,
the relation ≺ extended to the set of total assignments is a partial order.

For example,

〈{AtWork0 ∨ ¬AtWork1 ∨ ¬Bus0, AtWork0 ∨ ¬AtWork1 ∨ ¬Car0,

¬AtWork0 ∨ AtWork1 ∨ ¬Bus0, ¬AtWork0 ∨ AtWork1 ∨ ¬Car0},
{AtWork0 ∨ ¬AtWork1 ∨ ¬Bus0 ≺ AtWork0 ∨ ¬AtWork1 ∨ ¬Car0,

¬AtWork0 ∨ AtWork1 ∨ ¬Car0 ≺ ¬AtWork0 ∨ AtWork1 ∨ ¬Bus0}〉
models the preference in which

1. we prefer to use neither the car nor the bus for moving from/to home, but
2. we prefer to use the car more than the bus for moving to work, and
3. we prefer to use the bus more than the car for moving to home.

A model μ of a formula ψ is optimal wrt a qualitative preference on formulas 〈S, ≺〉
if μ is a minimal element of the partial order on the models of ψ .

Consider a formula ψ and a qualitative preference on formulas 〈S,≺〉.
Instead of ψ and 〈S, ≺〉 we can consider

1. the qualitative preference on literals 〈Ls,≺S〉, where

– LS has a newly introduced variable xα for each formula α ∈ S, and
– xα ≺S xβ if and only if α ≺ β: and

2. the formula

ψ ∧ ∧α∈S(xα ≡ α). (10)

Then, if

μS = μ ∪ {xα : α ∈ S, μ |= α} ∪ {¬xα : α ∈ S, μ �|= α}
it is straightforward to see that a model μ of ψ is optimal wrt the qualitative
preference on formulas 〈S,≺〉 iff μS is an optimal model of (10) wrt the qualitative
preference on literals 〈LS, ≺S〉. It is also easy to see that (10) can be simplified to

ψ ∧ ∧α∈S(¬xα ∨ α) (11)

and we obtain again the desired correspondence between the models of ψ and (11).
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Introducing definitions [53] or “names” [46] for the formulas in the prefer-
ences allows us also to reduce quantitative preferences on formulas (defined in
the obvious way) to quantitative preferences on literals. Further, it allows us to
use opt-dll and nopt-dll as engines for computing optimal models of ψ given a
qualitative/quantitative preference on formulas. Similar modeling approaches have
been presented in, e.g., [1, 3].

Notice that in our approach, quantitative preferences are reduced to qualitative
ones. An advantage of this reduction is that it makes also possible to mix the two,
e.g., we can ask (we assume b n−1, . . . , b 0 to be the output bits of adder(S′, c)):

1. Which among the optimal models according to a qualitative preference 〈S,≺〉,
are optimal according to a quantitative preference 〈S′, c〉: Such assignments cor-
respond to the optimal models of ψ ∧ adder(S′, c) wrt the qualitative preference

〈S ∪ {b n−1, . . . , b 0},≺ ∪{bi ≺ bj : 0 ≤ j < i < n} ∪ {α ≺ bi : α ∈ S, 0 ≤ i < n}〉.
The above preference forces opt-dll to consider first 〈S, ≺〉 and then 〈S′, c〉.

2. or which among the optimal models according to a quantitative preference 〈S′, c〉,
are optimal according to a qualitative preference 〈S,≺〉: Such assignments corre-
spond to the optimal models of ψ ∧ adder(S′, c) wrt the qualitative preference

〈S ∪ {b n−1, . . . , b 0},≺ ∪{bi ≺ bj : 0 ≤ j < i < n} ∪ {bi ≺ α : α ∈ S, 0 ≤ i < n}〉.
The above preference forces opt-dll to consider first 〈S′, c〉 and then 〈S,≺〉.

For example, when buying a computer, assuming that we have a qualitative prefer-
ence 〈S,≺〉 on components, we may want to know

1. which are the least expensive computers among the ones which are optimal
according to 〈S,≺〉,

2. or, alternatively, what is the optimal computer according to 〈S,≺〉 among the
least expensive ones.

5 Implementation and experimental results

In order to test the viability of our approach we implemented our ideas in
minisat [21], the 2005 version, winner of the SAT 2005 competition on the industrial
benchmarks category (together with the SAT/CNF minimizer SatELite [20]). Such
choice is motivated by our interest in solving, in particular, large structured problems
coming from applications in general, planning and formal verification in particular.
It has to be noted that minisat is one of the most famous and efficient implementa-
tion of what is nowadays called a Conflict-Driven Clause Learning (CDCL) SAT
solver [44]. However, this choice is driven by the interest on solving structured
instances; other SAT solvers, e.g., satz, does not have learning incorporated, and
may perform (much) better on different (e.g., random or crafted) benchmarks.
Indeed, the algorithm in Fig. 2 is focused on dll, which is the basic part of almost
all available SAT solvers. Issues related to the use of SAT solvers with non-
chronological backtracking and learning to solve optimization problems have been
first studied in [37], and then in more recent publications by the same authors.
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For comparative benchmarking, we focused on min-one/min-one⊆ and max-sat/
max-sat⊆ problems, precisely defined as below:

1. Given a set S of variables, in min-oneS⊆(ϕ) (resp. min-oneS(ϕ)) the goal is to
find one or all the optimal models of ϕ wrt the qualitative (resp. quantitative)
preference on literals 〈S,∅〉 (resp. 〈S, c〉, where c is a constant function). When
all variables are considered, i.e., when S = P, we say that we are considering
a standard min-one/min-one⊆ problem, and a partial version of the problem
otherwise.

2. Given a set S of clauses, in max-satS⊆(ϕ) (resp. max-satS(ϕ)) the goal is to
find one or all the optimal models of ϕ wrt the qualitative (resp. quantitative)
preference on formulas 〈S, ∅〉 (resp. 〈S, c〉, where c is a constant function). When
there are no hard constraints, i.e., when ϕ = ∅, we say that we are considering
a standard max-sat/max-sat⊆ problem, and a partial version of the problem
otherwise.

It is thus clear that these two categories of problems are the simplest cases of
preferences on literals (min-one/min-one⊆) and on formulas (max-sat/max-sat⊆),
having an empty partial order. Further,

1. for min-one and max-sat problems, highly tuned tools are available, designed for
international competitions; and

2. the number of preferences is very high, equal to the number of clauses in max-
sat/max-sat⊆ and to the number of variables in min-one/min-one⊆.

Given the above, the goal of the experimental analysis,

1. on min-one⊆/max-sat⊆ problems, is to show that our approach for computing
optimal models wrt qualitative preferences is viable also when the number of
preferences is very high; and

2. on min-one/max-sat problems, is to show that our reduction from quantitative
to qualitative preferences is viable also when the number of preferences is very
high.

Problems with a high number of preferences are particularly interesting because
the more preferences we have, the more the performances of the underlying SAT
solver are negatively affected, see, e.g., [25]. Further, the availability of very efficient
tools for min-one/max-sat gives a good reference point to evaluate the results, also
for min-one⊆/max-sat⊆: Indeed, an optimal solution for min-one (resp. max-sat)
is also optimal for min-one⊆ (resp. max-sat⊆). However, we want to remark that
the applicability of our ideas go far beyond, allowing for solving problems with any
partial order on preferences, for which problems no implemented system is available
for comparative analysis.

Starting from minisat, the modifications needed in order to solve min-one⊆
problems have been minor: In practice, we have modified the vsids-like heuristic of
minisat in order to first branch on the literals in the set of preferences. Analogously
for max-sat⊆, once preferences on formulas are reduced to preferences on literals.
min-one/max-sat problems also required the implementation of a function adder as
specified in Section 4.1. As we already said, there are various ways to implement such
a function. We used the method described in [56], which takes linear time in the size
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of the input. We also experimented with the method described in [4] for encoding the
objective function. This last encoding has some interesting computational properties,
(e.g., it is efficiently coupled with the unit-propagation technique implemented in all
dll-based SAT solvers), but the resulting encoding is quadratic in the size of the
input, and for this reason—in our experience—it is usually very effective on small
instances, but not practical for instances of medium and big size, like the majority of
the ones we used.

Beside the modification in the heuristic, we had also to modify minisat internal
pre-processor in order to disable the assignment of pure literals.9

Concerning the other solvers for max-sat/min-one, we initially considered both
dedicated solvers for max-sat problems—like bf [7], maxSolver [57], Toolbar [18,
31] ver. 3.0, maxSatz version submitted to the 2007 Evaluation [34], MiniMaxSat
(abbreviated with MMSAT in the Tables) ver. 1.0 [26], MSU1.2 [40]—and generic PB
solvers—like opbdp ver. 1.1.1 [5], PBS ver. 2.1 and ver. 4 [2], minisat+ (abbreviated
with msat+ in the Tables) based on minisat ver. 1.13 [22], glpPB ver. 0.2 (by the
same authors of Pueblo [51]),10 bsolo ver. 3.0.17 [38]. All these systems are among
the state-of-the-art solvers for max-sat or PB problems (see the results of the last
evaluations). For the standard max-sat⊆ problems, we also considered CAMUS [35].
CAMUS is a system for computing all Minimal Unsatisfiable Subsets (MUSes) of a
given formula which, as first step, computes all the max-sat⊆ optimal solutions: Of
course, in the tables, we consider only the time CAMUS takes for generating the
max-sat⊆ solutions.

Each solver has been run using its default settings. All the experiments have been
run on a Linux box equipped with a Pentium IV 3.2 GHz processor and 1GB of
RAM. In the Tables, “TIME” indicates that the solver does not solve the instance
within 1,800 s; “MEM” indicates that the solver requires more than the allocated
800 MB; “SF” indicates that the solver exits abnormally; “–” indicates that the
solver returns an incorrect result. Moreover, best performing system(s) on each
benchmark/domain are emphasized, in bold: For a domain, we count number of
instances solved, with ties broken by mean CPU time (as customary in Max-SAT
evaluations).

Considering the dedicated solvers for max-sat, we discarded bf, maxSolver and
Toolbar after an initial analysis because they seem to be tailored for relatively small
typically randomly generated problems, and are thus not suited to deal with most of
the problems we consider. Concerning the PB solvers, we do not show the results for
opbdp, PBS ver 2.1 and ver. 4, and also glpPB because they are almost always slower
than the other systems on the instances that we consider.

The next two subsections show the results for min-one/min-one⊆ and for max-
sat/max-sat⊆ problems, respectively.

9A literal l is pure in a set of clauses ϕ if l does not belong to any clause in ϕ. If l is pure in ϕ, ϕ is
satisfiable if and only if ϕ{l} is. However, in an optimization problem, it may be the case that there
exist optimal models with l assigned to true, and thus the necessity to disable the assignment of pure
literals in minisat internal pre-processor.
10http://www.eecs.umich.edu/~hsheini/pueblo/

http://www.eecs.umich.edu/~hsheini/pueblo/
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5.1 min-one and min-one⊆

The results for min-one/min-one⊆ problems are reported in Table 1, on a variety
of well-known, publicly available satisfiable benchmarks. In particular, (1–5) are
Formal Verification instances ((1–2) from the Bejing’96 competition, (3–5) by
Ofer Shtrichman); (6–14) are planning problems from satplan; (15–20) are Data
Encryption Standard instances; (21–26) are quasi group instances. The domains
contain, in general, more benchmarks that the one we show: The instances showed
representative of the behavior of the systems, and, in general, smaller (resp. bigger)
instances are easy (resp. hard) to solve for most of the systems.

The first column of the table contains the number of the instance, followed by its
name in the second column. The third column is the optimal value of the instance.
Then, columns 4–7 show the results of each system on the min-one version of the
problem, while the last column shows noptsat results on the min-one⊆ version of the
problem.

The columns for all the systems but noptsat, show the CPU time (in seconds) that
the system takes to compute an optimal solution. For noptsat, we show both the time
that noptsat takes to compute the first solution (subcolumns T1), and (in subcolumn
#Sols) the number of optimal solutions computed by noptsat in 3,600 s, together

Table 1 Results on min-one (columns 3–7) and min-one⊆ (column 8) problems

Instance #C msat+ bsolo MMSAT noptsat noptsat

T1 #Sols #C⊆ T1 #Sols

1 bcomp5 39 0.4 4.98 0.22 1.74 3,360 A 40 0 21,600 A
2 bmax6 61 8.42 1,401.72 1.41 430.33 24 T 62 0 183,072 T
3 ibm2 940 19.73 19.96 2.04 TIME 0 T 966 0.02 33,132 M
4 ibm3 6,356 TIME TIME TIME 25.37 16 A 6,371 0.39 5,679 M
5 gal8 SF MEM TIME TIME 0 T 9,372 0.96 1,540 M
6 3blocks 56 0.29 0.5 3.85 0.56 1 A 60 0.02 174 A
7 4blocksb 66 0.24 0.65 4.87 1.3 4 A 66 0.05 4 A
8 4blocks 108 50.94 353.32 1,086.05 TIME 1 A 110 0.16 55,097 A
9 large.c 265 0.96 2.84 35.24 1.18 1 A 265 0.16 6 A
10 large.d 431 7.71 51.05 506.6 42.73 4 A 432 0.81 106 A
11 log.a 135 1.39 TIME 3.07 1.88 11,305 M 135 0.02 108,151 M
12 log.b 138 8.99 TIME 3.03 6.1 16,728 M 138 0.02 108,675 M
13 rock.a 65 0.2 1.18 0.4 1.58 13,100 A 65 0.01 13,100 A
14 rock.b 69 0.27 0.55 0.41 1.92 902 A 69 0.01 902 A
15 r2b3.1 141 0.2 0.07 3.36 0.12 2 A 141 0.02 2 A
16 r2b3.2 138 0.08 0.08 2 0.11 1 A 138 0.02 1 A
17 r3b1.1 119 1.3 5.93 22.96 28.77 1 A 119 0.14 1 A
18 r3b1.2 126 0.82 5.62 25.04 0.93 1 A 126 0.13 1 A
19 r3b2.1 217 0.46 1.32 47.03 0.72 1 A 217 0.08 1 A
20 r3b2.2 206 0.53 1.39 42.48 0.58 1 A 206 0.06 1 A
21 qg1-8 64 31.06 414.21 131.28 78.73 16 A 64 0.84 16 A
22 qg2-7 49 0.27 1.19 2.29 0.28 14 A 49 0.13 14 A
23 qg2-8 64 21.83 200.82 111.11 43.9 2 A 64 1.03 2 A
24 qg3-8 64 0.1 0.41 1.29 0.32 18 A 64 0.02 18 A
25 qg4-9 81 19.36 77.19 98.31 50.58 194 A 81 0.02 194 A
26 qg5-11 121 0.43 1.12 4 0.34 5 A 121 0.1 5 A

Bold entries highlight the winner solver for each problem (specified in rows)
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with the indication about whether noptsat computed all the solutions before the time
out (indicated with “A”), or whether noptsat exceeded the time out (indicated with
“T”), or whether noptsat exceeded the available memory (indicated with “M”).11

Looking at the results, we see that noptsat compares well wrt the other solvers when
computing one solution: minisat+/bsolo/MMSAT/noptsat are not able to find an
optimal solution in 2/4/2/3 cases respectively, and noptsat is the only system able to
solve the “ibm3” instance. From column #Sols it also emerges that our solver is able
to compute all the optimal solutions for many problems (21 out of 26), exceeding the
available memory in two cases and timing out in three cases. Considering the five
cases in which noptsat is not able to compute all the optimal solutions with the given
resources, we have to stress that in general a user is interested to a relatively small
number of solutions (say 20), possibly generated one after the other upon request.
Thus, a more reasonable reading of the results in column “#Sols” is that our system
is able to compute all or at least 20 optimal solutions in all cases but two.

Concerning the results for min-one⊆ problems, these are reported in the last
column only for noptsat being the only system able to directly deal with these
problems. The first two subcolumns show the optimal value returned and the time
taken by noptsat when computing the first optimal solution; the last subcolumn #Sols
has the same meaning as before. Looking at the results, the first observation is that
almost all the problems are solved in less than 1s, and that also the gal8 problem
is solved. However, comparing noptsat results on min-one and min-one⊆ problems,
two other observations are in order:

1. Considering the performances in solving min-one and min-one⊆ problems, we
see that the latter are solved in much less time. This could have been expected
given that handling min-one problems requires the encoding of adders counting
the number of variables set to true, and many of the examples have more than
a thousand variables (the “gal8” instance has > 58,000 variables: The resulting
adder has > 270,000 variables and > 1,300,000 clauses).

2. Considering the optimal value of the first solution found (columns #C and #C⊆)
we see that for most instances #C = #C⊆, and, even when not equal, the two
values are very close but for rows 3, 4, 6. This points out that noptsat for
min-one⊆ can be used as a good approximation algorithm for min-one problems.

3. Considering the number of optimal solutions (columns #Sols), noptsat is able
to determine many more optimal solutions in the case of min-one⊆ problems.
Interestingly, in six cases noptsat is not able to find all solutions in min-one⊆
problems (compared to the five problems for min-one), and in five out of the
six cases, noptsat exceeds the available memory: This can be easily explained by
the fact that whenever a solution is found, a set of clauses is added to the input
formula in order to rule out the solutions which are dominated by the solutions
found. However, as we already said, we do not expect that users want to generate,
e.g., 183,072 optimal models of problem “bmax6”, but rather a much smaller
number.

11Notice that we have two different time outs: 1,800 s for computing one solution, for all the systems.
For noptsat, we raised the time out to 3,600 s when trying to compute all solutions. This explains why
for the problem “4blocks” (#8 in the table) for noptsat subcolumn T1 we have the value “TIME”
indicating that the system did not compute any solution in 1,800 s, and “1 A” in column “#Sols”
indicating that the system computed the only optimal solution in less than 3,600 s.



Constraints (2010) 15:485–515 507

Table 2 Results on partial min-one (columns 3–7) and partial min-one⊆ (column 8) problems

Instance #C msat+ bsolo MMSAT noptsat noptsat

T1 #Sols #C⊆ T1 #Sols

27 air15 58 16.37 5.35 22.75 9.53 1,474 M 58 0.3 764 M
28 block5-2 16 1.58 31.79 36.96 30.55 27 A 16 0.14 27 A
29 dep7 23 78.92 TIME TIME 187.84 1,458 M 23 120.6 1,743 M
30 driv10 20 8.39 415.89 902.16 17.19 512 A 20 42.77 512 A
31 free3 21 14.69 169.24 803.63 7.68 2 A 21 2.71 2 A
32 log6-9 24 2.72 65.05 8.87 23.22 14,171 M 28 0.01 7,863 M
33 mprime2 9 TIME 327.73 TIME 49.45 786 M MEM 0 M
34 mprime5 11 TIME TIME TIME 129.08 663 M 11 75.97 917 M
35 myst2 9 160.63 236.32 TIME 28.71 1,130 M 9 1,340.94 571 M
36 opt11 216 TIME MEM TIME 159.93 533 M 216 972.95 85 M
37 path5 30 25.48 1,194.79 50.46 112.57 5,046 M 30 0.06 3,196 M
38 phil29 330 4.38 10.63 339.26 1.48 38,196 T 330 0.84 20,961 M
39 pipe6 8 16.15 838.54 940.27 238.65 9,715 M 8 1.76 6,320 M
40 pipet6 8 232.83 TIME TIME 121.09 5,152 M 8 29.7 3,274 M
41 psr29 21 18.03 234.09 TIME 35.12 1,999 M TIME 0 T
42 psr31 19 20.11 172.78 TIME 24.68 632 M 19 5.86 750 M
43 psr47 27 25.23 187.86 922.92 83.59 2,197 M 27 2.56 3,286 M
44 sat3 13 16.92 559.94 195.75 22.29 192 A 13 3.3 192 A
45 stor7 14 64.41 1,305.37 436.97 59.06 7,900 M 14 0.19 6,994 M
46 truck2 17 39.31 TIME 703.9 35.55 6,510 M 17 1.2 2,063 M
47 zeno8 15 123.3 1,175.87 TIME 156.13 1,523 M 15 6.88 2,459 M

Bold entries highlight the winner solver for each problem (specified in rows)

We also considered partial min-one/min-one⊆ planning problems generated with
SATPLAN 2004, release of 10 Feb. 2006.12 SATPLAN works as follows: Given a
planning problem � and a makespan n (initially set to 0), it

1. generates a corresponding SAT formula �n, and checks �n for satisfiability;
2. if �n is satisfiable then SATPLAN stops and a plan with optimal makespan is

returned;
3. otherwise, n is increased and the process is repeated.

In our experiments, we selected various planning problems from previous Inter-
national Planning Competitions (IPCs); we considered the first satisfiable instance
generated by SATPLAN, and we fixed the set S of preferences to be the set of
action variables: With such preferences, we are looking for a plan with as few action
variables as possible set to true. In Table 2 we show the results, where columns have
the same meaning as in Table 1.

On these partial min-one planning problems, noptsat performs very well: min-
isat+/bsolo/MMSAT/noptsat are not able to find an optimal solution in 3/5/9/0 cases
respectively, and noptsat is the only system able to solve the “mprime5” and “opt11”
instances. From column #Sols it emerges that noptsat is able to compute all the
optimal solutions only in a few cases (four out of 21), exceeding the available memory
in 16 cases and timing out in one case.

12http://www.cs.rochester.edu/u/kautz/satplan/index.htm

http://www.cs.rochester.edu/u/kautz/satplan/index.htm
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Considering also noptsat results on partial min-one⊆ (last column), it is no
longer true that noptsat is faster when solving a partial min-one⊆ problem than the
corresponding partial min-one problem. It is also interesting to notice that, given
the available resources in time and memory, for many problems noptsat is able to
find more optimal solutions in the min-one case than in the min-one⊆ one (e.g., for
“air15”). We believe that this is mostly due to the specific structure of the problems
in which

1. in the min-one case, noptsat is able to quickly determine the optimal value V for
the solution, i.e., noptsat is able to quickly determine the non existence of a plan
with less than V actions, and then noptsat is free to select the V actions,

2. in the min-one⊆ case, noptsat has to pay the price of always setting the variables
in the preferences to FALSE, i.e., noptsat has always to decide to not execute an
action, even though there’s a strong evidence (given by the score of the heuristic)
that the action has to belong to the plan being built.

5.2 max-sat and max-sat⊆

For max-sat/max-sat⊆ problems we considered non random benchmarks from the
Max-SAT Evaluations 2007 and 2008. The results are shown in Table 3 and in Table 4
for the standard and partial case respectively, organized as in the report of such
evaluations: Each row corresponds to a domain of benchmarks indicated in the first
column,13 the second column contains the number of instances,14 and the remaining
columns report, for each system, the number of solved instances in parenthesis, and
the average time taken to solve them: So, for example, in the “spinglass” domain
there are five instances, and maxSatz solves three of them, taking 33.19 s on average.
For noptsat, we show the data as for the other systems in subcolumn T1, and the
number of times noptsat

1. is able to compute all solutions (first number in subcolumn (A/T/M)),
2. exceed the available time (second number in subcolumn (A/T/M)),
3. exceed the available memory (third number in subcolumn (A/T/M)).

For example, in the max-sat case of the “spinglass” domain, noptsat

1. is able to compute one optimal solution in one case taking (on average) 7.52 s,
and

2. when computing all the optimal solutions, in one case terminates normally
(meaning that noptsat is able to compute all the optimal solutions); in four cases
times out, in zero cases exceeds the available memory.

13The majority of domains are (partial) Max-SAT problems originally designed in PB format and
submitted to PB evaluations, and then expressed as Max-SAT problems. The instances we have
given to PB solvers are the ones that come from a translation first in the input format of noptsat,
and then in the PB format: This is because we did want to evaluate the systems on the very same
formulation. Results for PB solvers on the original PB instances may thus be different.
14The industrial domain contains 112 instances: The 94 mentioned in Table 3 do not contain the
biggest instances. Nonetheless, the considered instances are very hard for the solvers considered and
already big, i.e., in the order of tens of MB: Thus, the remaining instances are likely to reach the
memory limit.
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maxSatz (resp. CAMUS) can only handle standard max-sat (resp. max-sat⊆) prob-
lems and thus it does not appear in Table 4. Extended versions of maxSatz, namely
W-MaxSatz and IncWMaxSatz, can handle partial Max-SAT problems: However
they have not been added to Table 4 because, while being very effective on random
benchmarks, other solvers we evaluated perform better on non random benchmarks,
as witnessed by the results of Max-SAT Evaluations 2007 and 2008.

Looking at the result for max-sat, the first observation is that there is not a
system clearly outperforming the others: Different systems perform better than the
others in different domains, and this is in line with the results of the last evaluations.
Indeed, there is a great variety in the techniques used by the solvers and thus we
can expect such a variety in the performances, depending on the specific features of
the domain at hand. Considering noptsat on the max-sat problems, its performances
are comparable to those of the other systems: If we rank systems on each domain
according first to the number of problems solved and then to the average CPU time
reported, we see that noptsat is among the top three systems in eight out of 12
domains, being a top system in the bcp-mtg domain.

On the other hand, considering the max-sat⊆ problems, noptsat is able to solve
almost always all the problems with the notable exception of the pbo-mqc/nenc
domain, in which noptsat is able to solve more problems in the quantitative than
in the qualitative setting. The positive results in the qualitative setting wrt the
ones in the quantitative setting echo the ones presented in the previous subsection
for min-one⊆/min-one. However, differently from the min-one⊆/min-one case, the
optimal result (called #C⊆ in the previous tables) of the first solution computed by
noptsat in the max-sat⊆ case differs, sometimes significantly, from the optimal result
in the max-sat⊆ case (i.e., #C and #C⊆ in the previous tables): In many cases #C⊆
is about 0.5 × #C, and only for a few problems #C⊆ = #C. Compared to CAMUS,
noptsat has better performances when the goal is to find one optimal solution:
CAMUS on the industrial/spinglass/dimacs_mod domains, is able to find an optimal
solution in 54/1/2 cases respectively, compared to the 58/5/62 of noptsat. However,
for the same domains, CAMUS is able to find all optimal solutions in 5/0/2 cases,
while noptsat corresponding results are 2/0/1.

Summing up the results on max-sat in this subsection, we have seen that noptsat
performances are comparable to those of the other systems, which have been
specifically designed for solving max-sat problems. On standard max-sat⊆ problems,
noptsat performs better than CAMUS when computing one solution, but worse
when computing all solutions. By further analyzing the results of noptsat on max-
sat, we have noticed a relation between the number of unsatisfied clauses in the
optimal solution, and the performance of noptsat: Performance seems to be better
when there are “few” unsatisfied clauses in the solution.

However, we have to remind that the benchmarks we have considered in this but
also in previous subsection are characterized by a very high number of preferences.
Indeed, in many applications, including planning with soft goals [23], we can expect
problems with a few (in the order of tens) preferences, and with such a low number
of preferences there is hardly any difference between the performances of noptsat
and those of minisat when run on the original SAT instance (see [25]).

Finally, our system is not tuned in any way: For example, there is no pre-
computation of an upper or lower bound for cutting initial portions of the search
tree. Herewith we mention how we could use a (pre)computed lower bound for a
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min-one problem in our algorithm. Consider a formula ψ ; assume the output of the
adder formula are the variables b n−1, . . . , b 0; and let lb > 0 the pre-computed lower
bound. It is relatively easy to add to ψ a set of clauses which inhibit the configurations
of bits corresponding to a value o s.t. o ≤ lb . For example, if lb = 5 and n = 4, the
added clauses are those corresponding to the formula:

b 3 ∨ (b 2 ∧ b 1)

e.g.,

(b 3 ∨ b 2) (b 3 ∨ b 1).

With such clauses, the initial branches of noptsat search tree corresponding to values
o ≤ lb = 5 are not explored.

6 Conclusions

In this paper we showed that dll can be used to solve satisfiability problems in
the presence of qualitative preferences on literals/formulas by simply imposing an
ordering on the literals to be used while branching. The computation of all optimal
models requires adding a formula pruning the generation of dominated models. We
also showed how it is possible to reduce quantitative preferences to qualitative ones
by a Boolean encoding of the objective function. We implemented our ideas in
minisat and we showed that the resulting system compares well with other state-
of-the-art systems even on min-one/min-one⊆/max-sat/max-sat⊆ problems.

There is a huge literature on qualitative and quantitative preferences, see, e.g.,
the proceedings of the last “Multi-disciplinary Workshop on Advances in Preference
Handling” [13], or the 2007 AAAI tutorial on “Representing, Eliciting, and Reason-
ing with Preferences” by Ronen Brafman and Carmel Domshlak.15 In this paper, we
have deeply analyzed the relation between our proposal and other works that deal
with computing “optimal” models in SAT and CSP [8, 12], and relate to papers that
use our same concept of optimality [54, 55].

Considering our approach for reducing quantitative to qualitative preferences
in general, and for solving min-one/max-sat problems in particular, the idea of
translating the objective function (via an adder function) into a set of clauses,
to be added to the input formula, has already been introduced and discussed in,
e.g., [5, 14, 36], implemented in minisat+ [22] and applied to, e.g., planning [11]
and telecommunication feature subscription [15]. However, wrt minisat+, in our
approach we do not run the SAT solver multiple times (one for each different
value of the objective function we want to test) till the optimal value is found.
Instead, we run the solver once, and the modification of the heuristic guarantees
that the first model our solver finds is also optimal. Moreover, again in comparison
to minisat+, which is the system whose behavior is “closer” to our, there are several
other differences, i.e., (i) minisat+ can not reuse the learned clauses from previous
calls, while for us this is inherited within our approach; (ii) we can compute “all”

15Available at http://iew3.technion.ac.il/~dcarmel/tutorial/.
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optimal solutions; and (iii) we can deal with qualitative preferences. Also, minisat+
computes an initial bound by calling a SAT solver.

Finally, we acknowledge that our approach for handling qualitative and quantita-
tive preferences has some drawbacks:

1. The underlying SAT solver can not be used as black-box but modifications in the
branching heuristics have to be implemented.

2. In SAT, it is known that imposing an ordering on the branching heuristics can
lead to significant degradations in performances (see, e.g. [10, 28]).

3. In the quantitative case, we need an adder formula encoding the value of the
objective function, which can be of significant size.

Despite the above, we have seen that our system compares well with other state-of-
the-art systems even on min-one/max-sat problems. Further, in practice, significant
degradations in the performances of the underlying SAT solver shows up only when
the number of preferences is very high. Finally, the modifications to the SAT solver
are minimal and limited to the branching heuristics: Because of this, when a new,
more efficient SAT solver will be available, it will be relatively easy to modify it thus
gaining further efficiency.
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