Constraints (2011) 16:77-99
DOI 10.1007/s10601-009-9085-0

Dantzig-Wolfe decomposition and branch-and-price
solving in G12

Jakob Puchinger - Peter J. Stuckey - Mark G. Wallace -
Sebastian Brand

Published online: 19 November 2009
© Springer Science + Business Media, LLC 2009

Abstract The G12 project is developing a software environment for stating and
solving combinatorial problems by mapping a high-level model of the problem to an
efficient combination of solving methods. Model annotations are used to control this
process. In this paper we explain the mapping to branch-and-price solving. Dantzig-
Wolfe decomposition is automatically performed using the additional information
given by the model annotations. The models obtained can then be solved using
column generation and branch-and-price. G12 supports the selection of specialised
subproblem solvers, the aggregation of identical subproblems to reduce symmetries,
automatic disaggregation when required by branch-and-bound, the use of specialised
subproblem constraint-branching rules, and different master problem solvers includ-
ing a hybrid solver based on the volume algorithm. We demonstrate the benefits of
the G12 framework on three examples: a trucking problem, cutting stock, and two-
dimensional bin packing.

Keywords Modelling - Hybrid solving - Column generation - Branch and price

J. Puchinger (X))
Mobility Department, Austrian Institute of Technology, Vienna, Austria
e-mail: jakob.puchinger@ait.ac.at

P.J. Stuckey - S. Brand
NICTA Victoria Research Laboratory, Department of Computer Science
& Software Engineering, University of Melbourne, Melbourne, Australia

P. J. Stuckey
e-mail: pjs@csse.unimelb.edu.au

S. Brand
e-mail: sbrand@csse.unimelb.edu.au

M. G. Wallace

Faculty of Information Technology, Monash University,
Melbourne, Australia

e-mail: mark.wallace@infotech.monash.edu.au

@ Springer

78 Constraints (2011) 16:77-99

1 Introduction
1.1 Mapping models to hybrid algorithms

Combinatorial optimisation problems are easy to state, but hard to solve. They
arise in a huge variety of applications. Branch-and-price is one of many powerful
methods for solving them. This paper describes how Dantzig-Wolfe decomposition,
column generation and branch-and-price are integrated into the hybrid optimisation
platform G12 [29]. The G12 project consists in developing a software environment
for stating and solving combinatorial problems by mapping a high-level model of the
problem to an efficient combination of solving methods. We call such a combination
of methods a hybrid algorithm. Because there is no method for choosing the best
way to solve a given problem, we believe the (human) problem solver must be able
to experiment easily with different hybrid algorithms. To meet this purpose, the G12
project is developing user-controlled mappings from a high level model to different
solving methods. These mappings must satisfy three conflicting objectives. They
must be

— efficient, enabling the human problem solver to tightly control the behaviour of
the algorithm if necessary for performance;

— flexible, allowing plug-and-play between different sub-algorithms;

— easy-to-use and easy-to-change for efficient experimentation with alternative
hybrid algorithms.

The mapping to branch-and-price presented in this paper is designed to meet all three
objectives (in reverse order):

— The user can select branch-and-price and control its behaviour by annotating a
high-level model of the problem.

— The generated algorithm can use a separate solver for the subproblem. The
user can control the decomposition and select the subproblem solver by further
annotations.

— Inefficiencies arising as a result of identical subproblems are avoided by aggre-
gating them, but the user is still enabled to express search control in terms of
variables in the original model. The system also supports specialised branching
rules, allowing fine-grained control of search where necessary.

1.2 The G12 platform

The G12 platform consists of three major components, the high-level modelling
language Zinc [13], the model transformation language Cadmium [10], and several
internal and external solvers written and/or interfaced using the general-purpose
programming language Mercury [28].

The system allows one to take a model written in Zinc, transform it to various
underlying solvers using Cadmium, and then execute it. Cadmium transformations
can be selected from a library of standard transformations or can be user-defined.
Mappings from Zinc to Finite Domain Constraint Programming (FD) or Linear
Programming (LP) models are available [6]. To control these transformations the
user can annotate the model.

@ Springer

Constraints (2011) 16:77-99 79

At the solver programming language (Mercury) level, G12 defines interfaces
to solvers such as an FD solver, a continuous interval constraint solver, and LP
solvers using type classes. Various implementations of these interfaces are provided,
e.g. for LP/MIP solvers including CPLEX and COIN-OR/OSI. The Dantzig-Wolfe
decomposition column generation, default branch-and-bound, and branch-and-price
solvers heavily rely on the LP solver interfaces. These interfaces provide standard
predicates for variable creation, constraint posting, setting an objective function,
and LP and MIP optimisation. This system of pluggable components allows us to
quickly design new hybrid algorithms and to combine existing solvers in innovative
ways.

1.3 Plan of the paper

We discuss related work before introducing Dantzig-Wolfe decomposition and
column generation. We then explain how these techniques are used in the G12
system and present computational experiments on a trucking problem. Thereafter
we describe several more advanced features of our system. We explain how the
G12 column generation implementation deals with identical subproblems. We use
the cutting stock problem as an example and present results of some computational
experiments. We then elaborate how a hybrid volume algorithm/linear programming
solver can be used to solve the column generation master problem; further computa-
tional experiments are performed on the cutting stock problem. We then show how
our system allows for the implementation of specialised branching rules and report
computational experiments for the two-dimensional bin packing problem. Finally
conclusions are drawn and some future research directions are pointed out.

2 Related work

The practical usefulness of column generation and branch-and-price has been well-
established over the last 20 years [4, 9]. More recently it has emerged that column
generation provides an ideal method for combining approaches, such as constraint
programming, local search, and integer/linear programming. Columns can be gener-
ated by constraint programming or application-specific algorithms, while the master
problem is handled using branch-and-price [18, 24, 26, 35].

For systems such as G12 that support hybrid algorithms, Dantzig-Wolfe decom-
position, column generation and branch-and-price provide an elegant way for the
different solving techniques to be combined. However, the specification of this form
of hybrid is quite complex, as it requires adaptation of simplex-based approaches
to support the lazy generation of columns. Thus systems such as ABACUS [17],
MINTO [22], OPL script [30], MAESTRO [7], COIN/BCP [25], SCIP [1], and
COMET [31] offer facilities to support the implementation of column generation or
branch-and-price on top of generic integer/linear programming packages. However,
these systems still require the user to understand the technical details of branch-and-
price: the purpose was to support algorithm implementation rather than problem
modelling. Both COMET and OPL allow column generation to be specified in an
elegant way. Example code for the cutting stock problem is available in [30] for OPL

@ Springer

80 Constraints (2011) 16:77-99

and in the COMET distribution.! However, these examples are not comparable to
the approaches developed in our work, since no branching in the master problem
is performed. The examples are therefore not implementing branch-and-price and
cannot ensure that optimal solutions are obtained as final results. Furthermore, they
cannot guarantee that feasible integer solutions are obtained if the master problem
is not a set covering problem where feasible solutions can simply be obtained by
rounding.

A system based on similar ideas such as annotating high-level models is
SIMPL [34], allowing various types of hybrid solving. The focus of SIMPL is on
instances of a branch-infer-relax model of solving which naturally fits with Benders
decomposition and branch-and-bound search. The paper [34] allows a bp search
specification indicating branch-and-price search, but there are no details of how this
is supported, nor any examples making use of it.

Certainly column generation is technical, but for people trying to solve com-
binatorial problems the most important requirement is to be able to try out an
algorithm, or more generally a hybrid algorithm, quickly and easily without rewriting
the problem specification. The first attempt to provide a column generation library
was in ECL/PS¢ [11, 12]. It introduced the idea of an aggregate variable appearing in
the master problem to represent a set of values returned as columns from multiple
solutions to identical subproblems. However this library assumes a fixed set of
variables in each subproblem, and precludes search choices which break some of
the subproblem symmetries. In order to achieve tight control over branch-and-
price, sophisticated ECL/PS¢ users have required special adaptations of the column
generation library in order to be able to work directly with low level primitives [23].

3 Dantzig-Wolfe decomposition, column generation and branch-and-price

Dantzig-Wolfe decomposition is a standard way to decompose an integer program-
ming model into a master problem and one or several subproblems [8, 9, 21]. The
bound on the objective resulting from the LP relaxation of the decomposed model
is usually stronger than that of the original formulation (if the subproblem does not
have the integrality property). This can result in a smaller search space in LP-based
branch-and-bound algorithms.

The Original Problem has the form

. . . . k k
OP: minimise ZkeKc X
subject to ZkKA’,‘»xkzb/ Vi=1...M
€
xk e DK ke K.

Since we are considering pure integer subproblems, the D are finite sets of vectors
in ka implicitly defined by additional constraints. We view the elements of D* as

http://www.comet-online.org

@ Springer

http://www.comet-online.org

Constraints (2011) 16:77-99 81

indexed using an index set P*; that is, we have D = {d | p € P¥}. We can then
alternatively write

k k N, k k4 k k _ 1. 1k k
D _{e eRM =) diih Y b =Tixel0.)vpeP }

Substituting the x* by the 1% in OP, we obtain the Master Problem:

MP: minimise Z Z ckakax
keK pe Pk pp

. k gk o k P

subject to ZkeK Zpepk Aldy)\, > b Vi=1...M (1)
doak=1 keK (2
pe Pk
My e 0,1) Vpe P* keK.

Dantzig-Wolfe decomposition typically results in a master problem with many
variables. To deal with a possibly exponential number of variables, delayed column
generation [9] is used. Starting from a restricted LP-relaxation of the original prob-
lem, the Restricted Master Problem, variables (columns) are dynamically included in
order to find an optimal solution.

The simplex algorithm for solving linear programs proceeds from one basic
feasible solution to the next one, always in the direction of a potential improvement
of the objective function. This is achieved by adding a variable with negative reduced
cost to the basis and by removing some other variable from it. Reduced costs can
be seen as an optimistic estimate of the amount of improvement achieved by a unit
increase of their corresponding variable. This is the crucial property of the simplex
algorithm exploited in column generation. For every D, a subproblem is solved to
identify a subproblem solution d’; with negative reduced cost

(ck — nAk) d’l‘, — uk 3)
where 7 are the dual variable values corresponding to the constraints (1) and u* is
the dual value of the kth convexity constraint (2). If a column with negative reduced
cost exists, it is not necessary to look for a column with minimal negative reduced
cost.

Since the column generation algorithm alone only solves the LP-relaxed version of
the problem, one has to branch to guarantee integrality of the variables. A standard
linear programming based branch-and-bound algorithm branches on the original
variables. This does not affect the subproblem structure [33]. Adding a constraint
to the original problem corresponds to adding a row to MP:

Zkek ZpePk de];A]; >c.

This additional row affects only the coefficients of the objective function of the
subproblem (3), which becomes

(ck —n Ak — ka) dk — Mk,

where v is the dual variable value corresponding to the newly added constraint.

@ Springer

82 Constraints (2011) 16:77-99

The additional branching constraint could render the restricted master problem
infeasible. But, since one usually does not deal with the complete master problem,
additional columns can possibly restore feasibility of the restricted master prob-
lem. Such columns are obtained by solving a problem very similar to the pricing
problem [16]. The infeasibility of an LP is proven with the existence of a dual
ray, describing an unbounded direction of the dual problem. In order to restore
feasibility, a column whose inner product with the dual ray is positive, has to be
determined. This column yields a new constraint in the dual problem removing its
unboundedness along the direction of the given dual ray. Solving a problem very
similar to the standard subproblem, where the dual ray is used instead of the optimal
dual variable values and disregarding the original objective function coefficients,
yields such a column or a proof that no such column exists. Only in the latter case
can one conclude that the branching constraint rendered the MP infeasible.

4 Zinc formulations of Dantzig-Wolfe decomposition
4.1 Solver and search annotations

To use Dantzig-Wolfe decomposition and column generation in G12, one annotates
a high-level Zinc model to explain what parts define the master problem and the
subproblems and which solvers are to be used for them. We demonstrate this by a
simple transportation problem.

4.1.1 The trucking problem

Consider the following problem, inspired by [5]. We are given N trucks; each truck
has a cost and an amount of material it can load. We are further given P time periods;
in each time period a given demand of material has to be shipped. Each truck also
has constraints on usage: in each consecutive k time periods it must be used at least /
and at most u times. The Zinc model of the problem is as follows:

Trucking.zinc - user defined

int: P; type Periods = 1..P;
int: T; type Trucks = 1..T;
array[Periods] of int: Demand; array[Trucks] of int: Cost;
array[Trucks] of int: Load; array[Trucks] of int: K;
array[Trucks] of int: L; array[Trucks] of int: U;

[

array[Periods] of var set of Trucks: x;

constraint
forall(p in Periods) (sum_set (x[p], Load) >= Demand[p]);
constraint
forall(t in Trucks) (
sequence ([bool2int(t in x[p]) | p in Periods], L[t], U[t], K[t])
)i
solve minimize sum(p in Periods) (sum_set (x[p], Cost));

At each time period we need to choose which trucks to use in order to ship enough
material and satisfy the usage limits. The sum_set(s, f) function returns X, f(e),
while the sequence([yy, ..., Vul,l, u, k) constrains the sum of each subsequence
of length k&, yi+ -+ yix—1, 1l <i<n—k+1 to be between / and u inclusive.

@ Springer

Constraints (2011) 16:77-99 83

The bool2int function coerces a Boolean to 0..1. As it stands this model is
directly executable in an FD solver that supports set variables. There exist specialised
propagators for sum_set and sequence.

In Zinc we can control the search by adding an annotation on the solve item. For
example,

solve :: set_search(x, first_fail, outdomain_min, complete)
minimize sum(p in Periods) (sum_set (x[p], Cost));

indicates that we want label the set variables with smallest domain first (first_fail)
by first trying to exclude the least unknown element of the set and then including it
(outdomain_min) in a complete search.

A specific set of annotations is used to specify branch-and-price models:

colgen_subproblem_constraint(int: id, ann: solver) designates an individual sub-
problem and associates it with an identifier and the solver to be used for it,

colgen_solver(ann: solver) specifies the solver to be used for the master problem,

Ip_bb(array[int] of var int: x, ann: choice, ann: split) specifies the search strategy
as LP-based branch-and-bound on the given variables with specific variable choice
and split methods.

The trucking problem example shows these annotations in use (unchanged model
components are omitted):

Trucking.zinc - user defined

constraint
forall(p in Periods) (
(sum_set (x[p], Load) >= Demand[p])
:: colgen_subproblem constraint(p, mip)
)i

solve :: colgen_solver (lp)
:: Ip bb(x, most_frac, std_split)
minimize sum(p in Periods) (sum_set (x[p], Cost));

For each Period a subproblem is defined in terms of its constraints and solver.
Note that we could have used a more specialised solver here since the subprob-
lem is a knapsack problem. The annotation to the solve item determines the
solver for the master problem as well as the search specification, branch-and-
bound selecting the most fractional variable first and performing a standard split
(x < |xP] or x > [xFFY).

4.2 Automatic model reformulation

The annotated model is subjected to an automatic, implicit Dantzig-Wolfe decom-
position controlled by a Cadmium transformation. The resulting Zinc model is such
that it can directly be handled by the G12 column generation module. The main
components of this transformation are explained in the following.

@ Springer

84 Constraints (2011) 16:77-99

Step 1: variable declarations First, the variables to be used in column generation
are determined. They are those variables occurring in the subproblem constraint
expressions that are indexed by the respective subproblem identifier. For each such
original problem variable, a subproblem variable and a (so-called) master problem
variable is declared. The master problem variables are place-holders representing
the implicit sums of the A variables ", p dA% as introduced in MP.

A second set of column generation specific low-level annotations are employed to
differentiate the variables. They are automatically attached to variable declarations
as appropriate:

colgen_var designates original variables,

colgen_master_var designates master variables,

colgen_subproblem_var(ann: solver) designates subproblem variables and the sub-
problem solver to be used.

While creating the additional variable declarations, the transformation keeps
track of which original, master and subproblem variables are associated with each
other. This information is conveyed to the G12 column generation module in the
form of special colgen_1ink constraints, which are automatically added to the Zinc
model. They allow the original variable values to be recovered from the master
problem, and they link the subproblem variables to the original variables so that
the correct subproblem objectives can be derived by the column generation module.

In the trucking example, the subproblem variables are the x [p] where p is the
subproblem identifier. Corresponding additional variables mx [p] and sx[p] are
automatically introduced.

Step 2: model partitioning Next, the constraints are turned into either master
problem or subproblem constraints by replacing the original variables appropriately.
In subproblem constraints, they are replaced by the corresponding subproblem
variables, while generally elsewhere they are replaced by the corresponding master
problem variables. However note that the search is still expressed in terms of the
original problem variables.

Here is the resulting generated model of the trucking problem:

Trucking_2.zinc - automatically generated by steps 1,2

array[Periods] of var set of Trucks: x :: colgen_var;
array[Periods] of var set of Trucks: mx :: colgen master_var;
array[Periods] of var set of Trucks: sx :: colgen_subproblem var (mip);
constraint

forall(p in Periods) (

colgen_link (x[p], mx[p], sx[p])

)i

constraint

forall(p in Periods) (
(sum_set (sx[p], Load) >= Demand[p])
:: colgen_subproblem constraint(p, mip)
)i

constraint
forall (t in Trucks) (
sequence ([bool2int (t in mx[p]) | p in Periods], L[t], U[t], K[t]

)i

@ Springer

Constraints (2011) 16:77-99 85

solve :: colgen_solver (lp)
Ilp_bb(x, most_frac, std_split)
minimize sum(p in Periods) (sum_set (mx[p], Cost));

Step 3: linearisation and further solver-specific preprocessing Since column gener-
ation is to be used, the master constraints and objective function must be linear.
Subproblem solvers in general may accept the subproblem variables and constraints
in their original representation, or they may require them in a solver-specific form.
For example, if a MIP solver is specified, linearisation also of the subproblems is
needed.

The master and subproblem constraints in our example can be linearised by giving
suitable definitions for the sum_set and sequence globals, e.g.:

function var int: sum_set (var set of $T: s, array[$T] of int: cost) =
sum(e in index_set (cost)) (cost[e] x bool2int(e in s));

predicate sequence (array[int] of var int: y, int: 1, int: u, int: k) =
forall(i in min(index_set (y)) .. max(index_set(y)) - k + 1) (
let { var int: s = sum(j in i .. i + k - 1) (y[3]) }
in
s > 1/\ s <=u
)i
The index_set function returns the set of indices of its array argument. Finally,
a generic Cadmium transformation [6] can be used to transform the array of set
variables x into a two-dimensional array of 0. . 1 variables such that x [p, t] = 1if
tex[pl].
The following is the final result of the reformulation:

Trucking_3.zinc - automatically generated by steps 1,2,3

array[Trucks, Periods] of var 0..1: x :: colgen_var;

array[Trucks, Periods] of var 0..1l: mx :: colgen_master_var;
array[Trucks, Periods] of var 0..1: sx :: colgen_subproblem var (mip);
constraint

forall(t in Trucks, p in Periods) (
colgen_link (x[t,p], mx[t,p]l, sx[t,p]l)
)i

constraint
forall(p in Periods) (
(sum(t in Trucks) (Load[t] * sx[t,p]) >= Demand[p])
colgen_subproblem constraint (p, mip)
)i
constraint
forall(t in Trucks) (
forall(i in 1 .. P — K[t] + 1) (
let { var int: s = sum(j in 1 .. i + K[t] - 1) (mx[t,3]) }
in
s >= L[t] /\ s <= U[t]
)
)i
solve :: colgen_solver (lp)
lp_bb(x, most_frac, std_split)
minimize sum(p in Periods) (sum(t in Trucks) (Cost[t] * mx[t,p]l));

@ Springer

86 Constraints (2011) 16:77-99

5 Column generation and branch-and-price in G12

A Zinc model obtained from the automatic reformulation is suitable to be sent to the
column generation module.

5.1 Column generation module

The G12 column generation module reads the transformed model together with
its instance data. It builds the subproblems and attaches them to the requested
solvers. These solvers must support optimisation with a linear objective function, and
preferably support it in an incremental way. Then the restricted master problem is
defined and attached to a solver that supports delayed column generation: currently
LP solvers or a hybrid solver (see Section 6.3).

The G12 Dantzig-Wolfe decomposition and column generation solver interface
implements most of the standard functionality of the G12 LP solver interface. From
the outside it looks mostly like a standard LP solver set up with the original problem
using the original (linearised) variables. The mapping between the original variables
and the master problem variables is straightforward; we simply set

k _ k y k
= Zpepk dp}‘p'

The main difference to a standard LP solver lies in the initialisation of the column
generation module. First the subproblem solver instances have to be added, then the
variables to be decomposed are created, and finally the master problem constraints
are posted.

Similarly to the simplex algorithm, column generation requires an initial feasible
solution. If none is provided by the user, the column generation module introduces
artificial variables in order to determine it automatically. At the end of this first phase
the artificial variables are removed from the problem [32].

5.2 Branching

The column generation algorithm only solves the LP-relaxed version of the problem;
thus branching is required to ensure integrality of the integer variables. The default
G12 branch-and-bound module is a simple, standard linear programming based
branch-and-bound algorithm as outlined in Section 3. It branches on the original
model variables and does not affect the subproblem structure.

The availability of the original variables in the column generation module is the
key to being able to use it in further hybrids. We can use it with an arbitrary search
strategy on the original variables, or for example in combination with an FD solver,
by communicating bounds on the original variables.

5.3 Computational experiments

We solved various instances of our trucking example, showing the advantages of
using DW decomposition. Table 1 lists the results for five instances. Four solvers
were used: the G12 finite domain constraint programming solver (FD) on the original
(non-linearised) model, the regular G12 LP-based branch-and-bound module (LP-
BB) with CPLEX (version 10.0) as the LP solver, CPLEX as a stand-alone MIP

@ Springer

Constraints (2011) 16:77-99 87

Table 1 Results for the trucking problem: constraint programming vs. LP-based branch-and-bound
vs. CPLEX vs. DW decomposition

Instance FD LP-BB CPX-MIP DW

Trucks Periods Nodes Time Nodes Time Time Columns LP/IP opt. Time
4 6 4655 0.80s 3282 0.55s 0.12s 19 220.0 0.18s
4 6 5860 0.85s 1992 0.47s 0.16s 12 210.0 0.16s
4 6 4607 0.77s 3102 0.55s 0.16s 20 224.0 0.18s
4 8 39848 5.04s 25646 2.64s 0.16s 24 324.0 0.18s
5 7 2361926 215.90s 194000 18.75s 0.18s 18 287.0 0.18s

solver (CPX-MIP), and the G12 DW decomposition and column generation module
(DW). For the latter, we used the G12 branch-and-bound module with CPLEX as
LP solver for the linearised master problem and CPLEX as IP solver for the column
generation subproblem. In principle, any kind of LP solver can be used as the master
solver, and any kind of subproblem solver is possible, as long as G12 interfaces are
provided.

We report the times required for solving the problem, and the number of search
nodes for FD and LP-BB. For the examined instances, the DW decomposition is
so strong that it yielded the optimal integral solution in the root node without a
need to branch; so instead of the number of nodes we show the number of columns
generated for the DW decomposed problem. The results of stand-alone CPLEX are
comparable to the ones obtained using the column generation module, suggesting
that the overhead introduced by the G12 column generation library is not very
significant.

6 Advanced concepts in the G12 implementation

The basic Dantzig-Wolfe decomposition, column generation, and branch-and-bound
scheme defined in the previous section is a good theoretical starting point. In general
we are often confronted with problems with special subproblem structures requiring
more advanced techniques enabling more efficient solving. Our implementation
provides some of those techniques while others, such as column pool management
or various stabilisation techniques [21], still remain to be added to our system.

6.1 Identical subproblems

Dantzig-Wolfe decomposition often results in highly symmetrical models because of
structurally identical subproblems, i.e. the objective coefficients, the master problem
constraints and the subproblem constraints are identical. A typical example for such
a model is the cutting stock problem where all the stock pieces have the same
dimensions [15, 19].

Solving problems with identical subproblems by the pure Dantzig-Wolfe approach
can be quite inefficient. This issue is usually overcome by aggregating the identical
subproblems. The set K of subproblem indices is partitioned into sets K* by grouping
the indices of identical subproblems; s ranges over some S. We turn

Z:keKA ZpePk d];;)‘-];; into ZPEPS d;’)\;

@ Springer

88 Constraints (2011) 16:77-99

where A, are integer variables satisfying 0 < 1), < |K*| and the convexity constraint

ZpePS)“;) - |KS|
The Master Problem MP becomes the Aggregated Master Problem:

. Tt : S JS 18
AMP: minimise ZSd Zpgpx cd,x,
: S 1518 . b
subject to Zses ZpeP& Ad))\, > b Vi=1...M
s S
Z,,epx*p—”{' ses
L, <K', &, € Zy Vpe P°, seS.

6.2 Automatic disaggregation when branching on original variables

The direct mapping between the original variables and the newly introduced vari-
ables is not obvious anymore. In the aggregated case we have

k __ s s s
=D en o /1K

This usually leads to highly fractional values for the original variables, even if the 1,
variables take integer values. Integrality is preserved as much as possible by greedily
decomposing the 17, values into their non-aggregated counterparts (A’;), assigning a

non-integral value to at most two of the A’;. First, A, is decomposed into a fractional
(f) and an integral (i) part. Second, it 1s made sure that decomposed convexity

constraints are not violated

Do =1 VkeK.
PE

This is achieved by assigning the fractional part to the first A%, g € K® where
> pep A <1 If > pepi A%+ f > 1, the remaining fractional part is assigned to
A.re K with Y- _p 27 = 0. 1f after thisstep Y p, Ap = 1, then g is removed from
K*. The integral part i is then distributed onto)JP, l € K* where }_pi)Jp = 0. These
indices are removed from K°® as well, thus ensuring that the decomposed convexity
constraints are not violated. Finally, the mapping for the non-aggregated case is
applied.

In order to allow branching on the original variables we have to disaggregate the
problem as required by the branching. As explained earlier, the column generation
module allows one to post any kind of linear constraint on the original problem
variables without affecting the subproblem structure. Each aggregated subproblem
appearing in these constraints is automatically disaggregated and separately consid-
ered by the column generation iterations in the subsequent nodes. Given K identical
subproblems, if a constraint is posted involving an original variable belonging to the
kth subproblem, this subproblem becomes different from the others and is disag-
gregated (while the remaining K — 1 subproblems are kept aggregated). In order
to implement this complex behaviour, the column generation module maintains a
mapping between the original variables and their associated subproblems. It also
tracks the aggregation status of all the subproblems by keeping a list of active
subproblems. The disaggregations are automatically rolled back upon backtracking.

@ Springer

Constraints (2011) 16:77-99 89

6.2.1 The cutting stock problem

In this classic problem, we are given N items with associated lengths and demands.
We are further given stock pieces with length I and an upper bound K on the number
of required stock pieces for satisfying the demand (a trivial upper bound is the sum
over all the demands).

The Zinc model of this problem contains subproblem annotations as seen before,
but it also makes use of new annotations. The first one, colgen_symmetric, annotates
a type. It indicates that the model is symmetric in this dimension and that the
resulting column generation should aggregate in it.

The second, colgen_ph(ann: solver, int: nnodes, int: time), adds a primal heuristic
to the standard LP based branch-and-bound solver. Every nnodes nodes the solver
solver is called for time seconds on the master problem to possibly derive a feasible
(integral) solution.

The following Zinc model corresponds to the formulation by Kantorovich [19]:

CuttingStock.zinc - user defined

int: K; type Pieces = 1..K :: colgen_symmetric;
int: N; type Items = 1..N;
int: L;
array[Items] of int: i_length;
array[Items] of int: i_demand;
array[Pieces] of var 0..1: pieces;
array[Pieces, Items] of var int: items;
constraint

forall(i in Items) (

sum([items[k,i] | k in Pieces]) >= i_demand[i]

)i
constraint

forall(k in Pieces) (

(sum (i in Items) (items[k,i] = i_length[i]) <= pieces[k] * L)
colgen_subproblem constraint (k, knapsack)

)i

solve :: colgen_solver (lp)
colgen_ph(mip, 100, 10)
Ip _bb(pieces ++ [items[k,1] | k in Pieces, i in Items]
most_frac, std_split)
minimize sum([pieces[k] | k in Pieces 1]);

The Cadmium column generation reformulation (see Section 4) recognises the
symmetry annotation. It processes the model similarly to the non-symmetric case
but it projects out the array component corresponding to the symmetric index in
subproblem constraints. For the cutting stock example, the following aggregated
version of the variables and constraints is produced:

CuttingStock_2.zinc - automatically generated

var 0..1: s_pieces :: colgen_subproblem var (knapsack);
var int: m_pieces :: colgen master_var;

array[Items] of var int: s_items :: colgen_subproblem var (knapsack);
array[Items] of var int: m_items :: colgen master_var;

constraint
colgen_link (pieces, m_pieces, s_pieces);

@ Springer

90 Constraints (2011) 16:77-99

constraint
forall (i in Items) (
colgen_link ([items[k,i] | k in Pieces], m_items[i], s_items[i])
)i
constraint

forall(i in Items) (m_items[i] >= i_demand[i]);

constraint
(sum(i in Items) (s_items[i] % i_length[i]) <= s_pieces x L)
:: colgen_subproblem constraint (0, knapsack);

solve :: colgen_solver (lp)
: colgen_ph(mip, 100, 10)
: Ip _bb(pieces ++ [items[k, 1] | k in Pieces, i in Items],

most_frac, std_split)
minimize m_pieces;

As in the non-symmetric case, the colgen_link constraints associate the aggre-
gated master and subproblem variables with the original problem variables. The
m_pieces and m_items variables are place-holders representing the implicit sums
of aggregated 2 variables) _p d},1}, as introduced in the AMP. The s_pieces and
s_1items variables are the actual subproblem variables.

This model is similar to the well-known column generation formulation first
described by Gilmore and Gomory [15], although that does not retain the original
variables. Note that it is quite conceivable to use Cadmium to detect symmetries and
automatically add colgen_symmetric annotations.

We experimentally evaluated possible differences when using the aggregated
and the non-aggregated DW decomposition. The results are shown in Table 2. We
display in percent how often a proven optimal solution or a feasible solution was
found. We further give average objective values where at least a feasible (but not
proven optimal) solution was found. Average run-times over all the instances are
also shown. The maximum run-time per instance was 5 minutes. We used CPLEX
as LP solver and a specialised dynamic programming algorithm implemented in
Mercury for solving the knapsack subproblems. The CPLEX MIP solver was used as
primal heuristic to solve the restricted master problem to integrality at every 100th
node with a time limit of 10 seconds, as specified by the colgen_ph annotation. The
instances were randomly generated using CUTGENT1 [14]. Instances of Classes 1-12
have stock length L = 1000; each class consists of 10 instances. We further display
the results obtained by applying the CPLEX MIP solver to the original problem.

For almost all classes, aggregating identical subproblems presents an advantage
in the number of solved instances, solution quality and solving time. We anticipated
these results, since aggregation can strongly increase the number of explored nodes
in the limited amount of time given.

6.3 Hybrid LP-solving of the master problem

In column generation a near-optimal solution is usually reached relatively quickly,
but the closer to the optimum one gets, the smaller the progress per iteration
becomes. Sometimes the speed and convergence behaviour of column generation can
be improved using non-optimal dual solutions, for example generated by the volume
algorithm [2, 3, 21].

@ Springer

91

Constraints (2011) 16:77-99

0S 069%11 0¢ 08 598 STT8IT o1 0L Lee 0S6vIT 00T 0 0C TISseD
09 0S'STL 0¢ 08 S6 SLLLL ()8 0L 0Lc 0TSLL 06 01 0¢ T1sserd
6€ 0L'6€9 0t 06 0L LY'LSY 01 08 0€c 09'6£9 08 0¢ ()8 OTSSeD
C 00v9 0 001 C 00'%9 0 00T L81 009 09 oy ot 6SSB[D
1€ 05768 ()8 06 ¥81 £€8'LY6 0 09 ore 0¥"206 001 0 0¢ 8SSe[D
0s 00706 ()¢ 06 SOl 06 0¢ 0L 11 0106 0L 0¢ 0c LSSBID
@ 06'v6¥ 0 001 89 9¢'81¢ o1 08 €L 08°S6Y 06 0t ot 9SSB[D
1> 0S'6¥ 0 001 9 0s°6¥ 0 001 0L 096 06 0t 01 GSSBD
89¢ 0ScCe 0¢ 0t 66C L 0 0 00€ 0601 00T 0 0c PSSBD
0S¢ 0S¥C 08 0¢ £ve £€°€T 0 0¢ 1> 0€'1T 0 00T 0c €SSB[D
6S 06°CLL 01 06 101 SL'8LL 0t 0L wec 00vIL 08 0¢ 01 TSSeD
0rc 09ClL 0L 0¢ 01¢ 0LClL 0L 0¢ 0T OL'TT 01 06 01 1sse[)
[s]owry, QO % sedd %1do [s]ouwry QO %sedd %1do [s]ouwry [0 %sead %1do
uonegoIdsy uonedoIdse oN [opou euIsII0 Nueiif Sse[D

U G JO SWN-UnI WNWIXeW € [)IM Y003S-3ur}Ind 10J SINSoY ¢ dqelL

pringer

Qs

92 Constraints (2011) 16:77-99

Because of the incompleteness of the volume algorithm, we implemented a hybrid
solver. It first solves the LP using the volume algorithm and, if called a second time
on an unchanged problem, solves it using a standard simplex solver. We adapted the
column generation algorithm in such a way that the LP solver for the master problem
is called a second time on the unchanged master problem, if the first call to solve did
not guarantee an optimal dual solution and no variable with negative reduced cost
was found. If a new column with negative reduced cost was found using the optimal
dual solution of the standard LP solver it is added to the master problem, and the
hybrid implementation switches back to the volume algorithm.

We added the possibility to choose such a hybrid volume algorithm/LP solver for
the master problem. It can be selected by a lin_hyb(volume, Ip) annotation on the
solve goal; for example, in the cutting-stock problem:

solve :: 1in hyb(volume, 1p)
colgen_ph(mip, 100, 10)
1lp_bb(pieces ++
[items[k, 1] | k in Pieces, 1 in Items],
most_frac, std_split)
minimize pieces;

In Table 3 we present the cutting-stock experiments from the previous section
but using the hybrid algorithm instead of the pure LP master solver. The hybrid
improves the number of instances solved to optimality and the required run-times.
These improvements are mainly due to the fact that the columns generated are better
than the ones generated by the pure LP master solver, since the primal heuristic is
capable of finding an optimal or near-optimal solution earlier.

6.4 Specialised branching rules

In order to overcome symmetry issues, specialised branching rules for specific
problem types were developed; see e.g. [4]. They usually require changes to the
subproblems during the branch-and-bound process. G12 enables users to implement
such specialised branching rules, changing the structure of the subproblems but
preserving aggregations.

The column generation module allows one to ask for fractional columns of the DW
decomposed model. It returns their values as well as their entries in the constraint
matrix of the master problem. Using this information the user can define specialised
branching rules by introducing constraint branches on subproblem variables. In the
master problem these constraint branches can be enforced by setting forbidden
columns to zero in their respective branch. The column generation module provides
a predicate by which the user can specify a list of column patterns that have to be
set to zero. In our current system the specialised branching rules are implemented in
Mercury and can be accessed through model annotations.

6.4.1 The two-dimensional bin packing problem

In order to demonstrate the effectiveness of specialised branching rules, we imple-

mented a simple, well-known rule for the two-dimensional bin packing problem.
We are given N rectangular items of given height and width. These items have

to be placed on (or cut out) of bins of height # and width W, of which there are at

@ Springer

93

Constraints (2011) 16:77-99

L9 069%11 0¢ 08 0S 06'9%11 0¢ 08 Lee 0S6vIT 00T 0 0C TISseD
09 0S'STL 0¢ 08 09 0SSt 0¢ 08 0L 0CSILL 06 01 0¢ T1sserd
0¢ 0L'6€9 ()8 06 6€ 0L'6€9 ot 06 0€c 09'6£9 08 0¢ 0t OTSSeD
C 00v9 0 001 C 00v9 0 00T L81 009 09 oy ot 6SSB[D
0¢ 0568 ()8 06 1€ 0S°¢68 ()8 06 ore 0¥"206 001 0 0¢ 8SSB[D
! 06'68 0 00T 0s 0006 (1) 06 11 0106 0L 0¢ 0c LSSB[D
[> 06'v6¥ 0 001 (44 06'v6¥ 0 00T €L 0856y 06 0t ()8 9SSB[D
1> 0s'6¥ 0 001 1> 0S'6¥ 0 001 0Lc 096 06 0t 01 GSSBD
ove STlle 0¢ 0¢ 89¢ 0Scee 0¢ (1) 00€ 0601 00T 0 0c PSSBD
0Lc 08%¢ 06 01 0S¢ 0SvC 08 0¢ 1> 0€'1T 0 00T 0c €SSB[D
0¢ 06CIT ()8 06 65 06°CLL 0t 06 wec 00vIL 08 0¢ 01 TSSeD
¥9 oret 0¢ 08 01z 09°ClL 0L 0¢ 0T OL'TT 01 06 01 1sse[)
[s]owry, QO % sedd %1do [s]ouwry QO %sedd %1do [s]ouwry [0 %sead %1do
awnjoa/uonesaIssy uonedoIdsy [opou euIsII0 Nueiif Sse[D

IOAJOS I9)SeW PLIQAY W)LIOZ[B SWN[OA/J] 2Y) SUIsn "UIW G JO dWI}-UNI WNWIXBW € YIIM JD0)s-3unind I0J synsoy ¢ d[qel

pringer

Qs

94 Constraints (2011) 16:77-99

most K. Item rotations are not allowed and only level packings (or 2-stage cuttings)
are feasible. Each bin can be divided into several levels, and each level contains the
items next to each other [20]. For ease of modelling, we assume that the items are
sorted by non-increasing heights.

The annotation bp(array[int] var int: x, ann: choice, ann: split) determines
the use of the branch-and-price algorithm with branching on subproblems. The
formulation in Zinc is as follows:

2DBinPacking.zinc

int: K; type Bins = 1..K :: colgen_symmetric;
int: N; type Items = 1..N;

int: W;

int: H;

array[Items] of int: ItemWidth;
array[Items] of int: ItemHeight;

array[Bins] of var 0..1: bin;
array[Bins, Items] of var 0..1: item;

constraint
forall(j in Items) (sum(k in Bins) (item[k, J]) >= 1);

constraint
forall(k in Bins) (
is_feasible_packing(bin(k], [item[k, j] | J in Items])
: colgen_subproblem_constraint (k, mip)
)i

set of tuple(Items, Items): Idx = { (i, Jj) | i, j in Items where j >= i };

predicate
is_feasible_packing(var 0..1: 1_bin, array[Items] of var 0..1: 1_item) =
let { array[Idx] of var 0..1: x }
in
forall (i in Items) (

sum(j in Items) (ItemWidth[]j] * x[i, J]) <= W * x[i, 1]
)
/\
sum(i in Items) (ItemHeight[i] % x[i, i]) <= 1_bin * H
/\
forall(j in Items) (1_item[j] = sum(i in 1..7) (x[i, 31));
solve :: colgen_solver (1lp)
:: colgen_ph(mip, 100, 10)
:: bp(bin ++ [item[k,J] | k in Bins, j in Items],
most_frac_master, special_split)
minimize sum(k in Bins) (bin[k]);

The bp annotation tells the branch-and-price algorithm to use the most fractional
master variable choice and the specialised branching rule. The specialised branching
rule corresponds to the one described in [24], which is based on a well known
branching rule for set partitioning [27]. The solution space is divided by branching on
whether two different items are in the same bin. We always choose the two highest
items u and v appearing in a pattern whose corresponding column generation master
variable A has an LP solution value closest to 0.5. The branches are created by adding

sum (i in 1..u) (x[1i, ul]) + sum(i in 1..v) (x[1i, Vv]) <=1
to the subproblems in the first branch and

sum(i in 1..u) (x[i, ul]) = sum(i in 1..v) (x[i, VvI])

@ Springer

95

Constraints (2011) 16:77-99

SLT oL'L ¥ 0S 68T 9L ¥ w LST v9°CT L 9z 0TSse[D
43 9T 0 96 (44 0S' Ty 0 96 €91 £8'8¢ 9z 8¢ 6SSE1D
Y01 Ly91 01 08 e 8991 4! 9 L9z v9'81 08 0z 8SSE[D
L 0891 4 98 w1 €CLT 91 9S 06T €8T S 44 LSSEID
97T 00T 0 (44 LT 00T 0 (44 081 9T'¢ 9% S 9sse)
18 LOLT 9 (3 001 LOLT 9 SL LET 0881 09 8T gsse)
(454 00T 0 0z (454 001 0 0T 8LT 8¢ 0S 0S Sse[)
LET wer z 0L 091 e 9 S S 89'¥T 8y 9z gsse)
9zz L1T 0 e vee 9¢'1 0 8T 681 w©s (43 8y TSSEID
8 €e61 v 93 8¢T 6L°6T L 9 67T 88°6T 95 8T Tsser)
[s]ouny, lao % Sed] % 1dO [s]ounry, a0 % Sed] % 14O [s] oy, fao % Sed] % 1dO
Suryoueiq “ds um HO D) piepuels [opout [euISLIO sse[)

UIl G JO SWIT}-UNI WNWIXeW € Yim Suryoed uiq [eUOISUSWIP-0M] I0J S)NSAY d[qeL

pringer

Qs

96 Constraints (2011) 16:77-99

to the subproblems in the second branch. The branching has to be further enforced in
the master problem, which is done by deleting those columns that violate the newly
added subproblem constraints. The Mercury column generation module supports
the implementation of special (subproblem based) branching rules by providing
functionality for deleting columns according to column patterns specified by the
branching implementation.

The modelling of the problem in Zinc and the implementation of the specialised
branching in Mercury was a matter of days. One of the authors has implemented a
customised branch-and-price algorithm for 3-stage two-dimensional bin packing [24]
using the COIN-OR/BCP library requiring substantially more effort (a few months).
The implementation required the modelling of the problem, reading of instance data,
initialisation of the master problem using feasible solutions, implementation of the
branching rules and dealing with resulting infeasible branches (restoring feasibility),
implementation of the subproblem solving procedure and many other aspects.

Table 4 displays the results of applying standard branching on the original
variables or using the specialised branching rule. We tested these approaches on the
set of 500 instances described in [20]. They are divided in 10 classes of 50 instances
each, with item numbers ranging from 20 to 100 in each class. While many instances
could be solved to optimality in the root node, the specialised branching rules did
reach optimal solutions more often in the given limited run-time. The number of
problems without solutions could also be reduced while requiring lower average run-
times. We also applied CPLEX MIP to the original model. One can observe that this
yields significantly fewer proven optimal solutions in the limited run-time, while it
allows CPLEX to find more feasible solutions in total.

7 Conclusion

As noted in Section 2 there are other systems that allow the same model to run
using different solvers or solving approaches. However, we are not aware of any
system, other than G12, that supports the complex rewriting required to take a
solver-independent model and solve it using column generation. The second novelty
is the ability to perform search on user variables such that any symmetries which
are dynamically broken during search are still correctly, efficiently and automatically
handled by the column generation solver. Thirdly, the facility to define specialised
search still using the mapping managed by the library provides the full flexibility
needed by the expert user.

The G12 scheme is to add high-level annotations to a conceptual problem model,
which allows it to be turned into a design model that maps to a specific algorithm.
Annotating a constraint in the conceptual model with a solver that will handle it is a
simple example of this scheme.

Column generation is an interesting challenge because it does not naturally fit into
the above scheme. Certainly we view the column generation module as a solver in
the normal way. However annotating a constraint with the column generation solver
is not enough: the solver needs to know which problem component the constraint
belongs to, the master problem or the subproblem. Moreover there is not one column
generation solver: the master problem might be sent to one underlying solver and the
subproblem to another. Our system also allows the use of hybrid master solvers such

@ Springer

Constraints (2011) 16:77-99 97

as the volume algorithm based master we describe in Section 6.3. Finally branch-and-
price search is closely connected with the column generation solver, and annotations
to control the search can be crucial to the performance of the algorithm.

Each requirement has been satisfied in Zinc by having a sufficiently expres-
sive annotation language. For example an annotation with a compound term,
colgen_subproblem_constraint(p, mip), was used to specify the subproblem solver
in Section 4, and the search was specified by multiple annotations.

The next particular challenge of column generation is that the variables (and
constraints) used in the conceptual model of the problem are quite different from
those needed in the design model. Our column generation module automates this
mapping using G12’s Cadmium mapping language. To ensure the annotations are
still meaningful with respect to the new variables, the annotations have to be
transformed by Cadmium in the same way. Moreover the search control as illustrated
in Section 6.2 must be mapped to search steps expressed in terms of the design model
variables.

The greatest design and implementation challenge was to have these still work,
fully automatically, when handling symmetry by generating aggregated variables
(used when solving the subproblem) and dynamically disaggregating some of them
during search. Indeed, each symmetry-breaking search step causes the design model
to be updated so as to operate on a new set of variables.

One interesting challenge arising out of this work is how to automatically detect
identical subproblems. This is a completely novel form of automated symmetry
detection, which is of significant practical value, as the results in Table 2 reveal.
Finally, we envisage exploring the use of the column generation module for solving
a subproblem within a larger problem—thus supporting, for example, a combination
of row and column generation.

Acknowledgements We would like to thank the members of the G12 team at NICTA VRL for
helpful discussions and implementation work.

NICTA is funded by the Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the Australian Research Council through the
ICT Centre of Excellence program.

References

1. Achterberg, T. (2007). Constraint integer programming. PhD thesis, Technische Universitit
Berlin.

2. Anbil, R., Forrest, J., & Pulleyblank, W. (1998). Column generation and the airline crew pairing
problem. In Documenta mathematica, extra volume ICM.

3. Barahona, F., & Anbil, R. (2000). The volume algorithm: Producing primal solutions with a
subgradient method. Mathematical Programming, 87(3), 385-399.

4. Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., & Vance, P. H. (1998).
Branch-and-price: Column generation for solving huge integer programs. Operations Research,
46(3), 316-329.

5. Boland, N., & Surendonk, T. (2001). A column generation approach to delivery planning over
time with inhomogeneous service providers and service interval constraints. Annals of Opera-
tions Research, 108, 143-156.

6. Brand, S., Duck, G. J., Puchinger, J., & Stuckey, P. J. (2008). Flexible, rule-based constraint
model linearisation. In P. Hudak, & D. Warren (Eds.), Practical aspects of declarative languages
(PADL’08). LNCS (Vol. 4902, pp. 68-83). New York: Springer.

7. Chabrier, A. (2002). Génération de colonnes et de coupes utilisant des sous-probléemes de plus
court chemin. PhD thesis, Université d’Angers, France.

@ Springer

98

Constraints (2011) 16:77-99

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

. Dantzig, G. B., & Wolfe, P. (1960). Decomposition principle for linear programs. Operations

Research, 8(1), 101-111.

. Desaulniers, G., Desrosiers, J., & Solomon, M. (Eds.) (2005). Column generation. GERAD

25th Anniversary Series. New York: Springer.

Duck, G. J., Stuckey, P. J., & Brand, S. (2006). ACD term rewriting. In S. Etalle, &
M. Truszezynski (Eds.), Logic programming (ICLP 2006). LNCS (Vol. 4079, pp. 117-131).
New York: Springer.

ECL/PS®(2009). www.eclipse-clp.org.

Eremin, A. (2003). Using dual values to integrate row and column generation into constraint logic
programming. PhD thesis, Imperial College London.

Garcia de la Banda, M. J., Marriott, K., Rafeh, R., & Wallace, M. (2006). The modelling language
Zinc. In F. Benhamou (Ed.), Principles and practice of constraint programming (CP’06). LNCS
(Vol. 4204, pp. 700-705). New York: Springer.

Gau, T., & Wischer, G. (1995). CUTGEN1: A problem generator for the standard
one-dimensional cutting stock problem. European Journal of Operational Research, 84(3),
572-579.

Gilmore, P. C., & Gomory, R. E. (1961). A linear programming approach to the cutting-stock
problem (part I). Operations Research, 9, 849-859.

Gunluk, O., Ladanyi, L., & Vries, S. D. (2005). A branch-and-price algorithm and new test
problems for spectrum auctions. Management Science, 51(3), 391-406.

Jiinger, M., & Thienel, S. (2000). The ABACUS system for branch-and-cut-and-price algorithms
in integer programming and combinatorial optimization. Software: Practice and Experience,
30(11), 1325-1352.

Junker, U., Karisch, S. E., Kohl, N., Vaaben, B., Fahle, T., & Sellmann, M. (1999). A framework
for constraint programming based column generation. In J. Jaffar (Ed.), Principles and practice
of constraint programming (CP’99). LNCS (Vol. 1713, pp. 261-274). New York: Springer.
Kantorovich, L. V. (1960). Mathematical methods of organizing and planning production.
Management Science, 6(4), 366-422.

Lodi, A., Martello, S., & Vigo, D. (2004). Models and bounds for two-dimensional level packing
problems. Journal of Combinatorial Optimization, 8(3), 363-379.

Liibbecke, M., & Desrosiers, J. (2005). Selected topics in column generation.
Operations Research, 53(6), 1007-1023.

Nembhauser, G. L., Savelsbergh, M. W. P., & Sigismondi, G. C. (1994). MINTO, a Mixed INTeger
Optimizer. Operations Research Letters, 15, 47-58.

Papadakos, N. (2009). Integrated airline scheduling. Computers and Operations Research, 36,
176-195 (to appear). Available online 27 August 2007.

Puchinger, J., & Raidl, G. R. (2007). Models and algorithms for three-stage two-dimensional bin
packing. European Journal of Operational Research, 183(3), 1304-1327.

Ralphs, T., & Ladanyi, L. (2001). COIN/BCP user’s manual.

Rousseau, L.-M., Gendreau, M., Pesant, G., & Focacci, F. (2004). Solving VRPTWs with
constraint programming based column generation. Annals of Operations Research, 130(1),
199-216.

Ryan, D. M., & Foster, B. (1981). An integer programming approach to scheduling. In A. Wren
(Ed.), Computer scheduling of public transport urban passenger vehicle and crew scheduling
(pp. 269-280). Amsterdam: North Holland.

Somogyi, Z., Henderson, F., & Conway, T. (1996). The execution algorithm of Mercury, an
efficient purely declarative logic programming language. Journal of Logic Programming, 29(1-3),
17-64.

Stuckey, P. J., de la Banda, M. J. G., Maher, M. J., Marriott, K., Slaney, J. K., Somogyi, Z.,
et al. (2005). The G12 project: Mapping solver independent models to efficient solutions. In
P. van Beek (Ed.), Principles and practice of constraint programming (CP’05). LNCS (Vol. 3709,
pp. 13-16). New York: Springer.

Van Hentenryck, P., & Michel, L. (1999). OPL script: Composing and controlling models. In
K. R. Apt, A. C. Kakas, E. Monfroy, & F. Rossi (Eds.), New trends in constraints. LNCS
(Vol. 1865, pp. 75-90). New York: Springer.

Van Hentenryck, P., & Michel, L. (2005). Constraint-based local search. Cambridge: MIT.
Vanderbeck, F. (2005). Branching in branch-and-price: A generic scheme. Technical Report
U-05.14, Applied Mathematics, University Bordeaux 1, France.

@ Springer

http://www.eclipse-clp.org

Constraints (2011) 16:77-99 99

33. Villeneuve, D., Desrosiers, J., Liibbecke, M. E., & Soumis, F. (2005). On compact formulations
for integer programs solved by column generation. Annals of Operations Research, 139(1),
375-388.

34. Yunes, T., Aron, I., & Hooker, J. (2009). An integrated solver for optimization problems (updated
on 6/10/09). Technical report, University of Miami.

35. Yunes, T. H., Moura, A. V., & de Souza, C. C. (2000). A hybrid approach for solving large
scale crew scheduling problems. In Practical aspects of declarative languages (PADL’00). LNCS
(Vol. 1753, pp. 293-207). New York: Springer.

@ Springer

	Dantzig-Wolfe decomposition and branch-and-price solving in G12
	Abstract
	Introduction
	Mapping models to hybrid algorithms
	The G12 platform
	Plan of the paper

	Related work
	Dantzig-Wolfe decomposition, column generation and branch-and-price
	Zinc formulations of Dantzig-Wolfe decomposition
	Solver and search annotations
	The trucking problem

	Automatic model reformulation

	Column generation and branch-and-price in G12
	Column generation module
	Branching
	Computational experiments

	Advanced concepts in the G12 implementation
	Identical subproblems
	Automatic disaggregation when branching on original variables
	The cutting stock problem

	Hybrid LP-solving of the master problem
	Specialised branching rules
	The two-dimensional bin packing problem

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

