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Abstract Finite domain propagation solvers effectively represent the possible values
of variables by a set of choices which can be naturally modelled as Boolean variables.
In this paper we describe how to mimic a finite domain propagation engine, by map-
ping propagators into clauses in a SAT solver. This immediately results in strong
nogoods for finite domain propagation. But a naive static translation is impractical
except in limited cases. We show how to convert propagators to lazy clause genera-
tors for a SAT solver. The resulting system introduces flexibility in modelling since
variables are modelled dually in the propagation engine and the SAT solver, and we
explore various approaches to the dual modelling. We show that the resulting system
solves many finite domain problems significantly faster than other techniques.

Keywords Finite domain propagation · Boolean variables · SAT solver

1 Introduction

Propagation is an essential aspect of finite domain constraint solving which tackles
hard combinatorial problems by interleaving search and restriction of the possible
values of variables (propagation). The propagators that make up the core of a finite
domain propagation engine represent trade-offs between the speed of inference
of information versus the strength of the information inferred. Good propagators
represent a good trade-off at least for some problem classes. The success of finite
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domain propagation in solving hard combinatorial problems arises from these good
trade-offs, and programmable search.

Propositional satisfiability (SAT) solvers are becoming remarkably powerful and
there is an increasing number of papers which propose encoding hard combinatorial
(finite domain) problems in SAT (e.g. [21, 33]). The success of modern SAT solvers
is largely due to a combination of techniques including: watch literals, 1UIP nogoods
and the VSIDS variable ordering heuristic [27].

In this paper we propose modelling combinatorial problems in SAT, not by mod-
elling the constraints of the problem, but by modelling/mimicking the propagators
used in a finite domain model of the problem. Variables are modelled in terms of
the changes in domain that occur during the execution of propagation. We can then
model the domain changing behaviour of propagators as clauses.

Encoding finite domain propagation can test the limits of SAT solvers. While
modern SAT solvers can often handle problems with millions of clauses and hun-
dreds of thousands of variables, many problems are difficult to encode into SAT
without breaking these implicit limits. We propose a hybrid approach. Instead of
introducing clauses representing propagators a priori, we execute the original (finite
domain) propagators as lazy clause generators inside the SAT solver. Propagators
introduce their propagation clauses precisely when they are able to trigger new unit
propagation. The resulting hybrid combines the advantages of SAT solving, in par-
ticular powerful and efficient nogood learning and backjumping, with the advantages
of finite domain propagation, simple and powerful modelling and specialized and
efficient propagation of information.

Example 1 Consider propagation on the constraint x + y = z where x, y and z
range over values from −1000 to 1000. In a finite domain propagation engine, the
propagator is a tiny and efficient piece of code. For example given that x and y can
take values only less than or equal to 5, the propagator determines that z can take
only values less than or equal to 10. The propagator is highly efficient and invoked
whenever the domains of x, y or z change.

Encoding this simple constraint using clauses on the Boolean variables [[v � d]]
where v ∈ {x, y, z} and d ∈ [ −1000 .. 1000 ] involves over 2 million clauses, for exam-
ple ¬[[x � 5]] ∨ ¬[[y � 5]] ∨ [[z � 10]], and ¬[[x � −500]] ∨ ¬[[y � −501]]. This is a
huge representation for such a simple constraint.1

In lazy clause generation, the domains of the integer variables are represented
using Boolean variables, so the Boolean variable [[x � 5]] represents that x can take
values only less than or equal to 5. Rather than build the representation of the
constraint statically before execution it is built lazily during search. During search the
propagator is run, and its results are converted to clauses which are added to the SAT
solver. For example when x � 5 and y � 5 the propagator determines that z � 10,
this becomes the clause ¬[[x � 5]] ∨ ¬[[y � 5]] ∨ [[z � 10]]. This clause is added to the
SAT solver. Since during any execution many less combinations of domains for x, y
and z will occur than are actually possible, only very few of the more than 2 million
clauses will end up in the SAT solver.

1Smaller representations based on logarithmic encodings exist but they do not propagate nearly as
strongly.
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The advantage of creating the clauses is that the SAT solver can then be used to
direct search using its specialized search methods, and more importantly the SAT
mechanisms for nogood learning and backjumping can be used. Moreover, note that
clauses added by a propagator are globally true and never need to be retracted.
For example, if x � 5 and y � 5 becomes untrue due to backtracking then the
propagation clause ¬[[x � 5]] ∨ ¬[[y � 5]] ∨ [[z � 10]] simple no longer fires under
unit propagation and z � 10 is no longer implied. Indeed the clause can propagate
in other ways: give x � 5 and z � 11 (equivalently ¬z � 10) the SAT solver can
determine that y � 6. And this is a true consequence of x + y = z.

We show that the lazy clause generation approach allows independence between
the Boolean representation of integer variables and the propagators that act upon
them. This representation independence leads to a new type of propagation: mixing
bounds representation and domain propagators. The new propagator results in dis-
junctive propagation, where new information is created by propagation which is
disjunctive in nature, even though the propagator was not disjunctive initially.
Since the underlying SAT representation of propagation can represent disjunctive
information efficiently, it allows us to create new “disjunctive propagators” from
scratch.

We compare our hybrid solving approach to finite domain propagation-based
solving and static modelling and solving using SAT on a number of benchmark prob-
lems. We show that our prototype implementation can significantly improve on the
carefully engineered SAT and finite domain propagation solvers. We also illustrate
how the separation of Boolean model of the problems from the style of propagation
can lead to improved behaviour of the hybrid approach.

The contributions of this work are:

– A formalization of propagators in terms of clauses, and the correspondence
result between using the propagators and SAT solving on the resulting clauses;

– Design of a hybrid system for implementing propagation-based solving with a
SAT solver;

– Exploration of the modelling choices that arise from the hybrid system including
novel “disjunctive propagators” which create clauses in the SAT solver earlier
than standard propagators;

– The first system we are aware of that combines nogoods with bounds propaga-
tors; and

– Experimental evidence of the significant potential of the hybrid approach.

The remainder of this paper is organized as follows. In Section 2 we give our
terminology for finite domain constraint solving and in Section 3 we give our ter-
minology for SAT problems and unit propagation. In Section 4 we introduce atomic
constraints and propagation rules as a way of understanding the pointwise behaviour
of propagators. Then in Section 5 we show how we can represent propagators as
clauses. In Section 6 we introduce the concept of lazy clause generation, where we
lazily build a clausal representation of a propagator. In Section 7 we explore some
of the modelling choices that arise from the dual viewpoint of variables as Boolean
literals. In Section 8 we discuss issues in implementing the lazy clause generation
approach, and in Section 9 we show the results of a number of experiments. We
discuss related work in Section 10 and then conclude.
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2 Propagation-based constraint solving

We consider a typed set of variables V = VI ∪ VS made up of integer variables, VI ,
and sets of integers variables, VS. We use lower case letters such as x and y for integer
variables and upper case letters such as S and T for sets of integers variables. A
domain D is a complete mapping from V to finite sets of integers, for the variables
in VI , and to finite sets of finite sets of integers, for the variables in VS. We can
understand a domain D as a formula ∧v∈V (v ∈ D(v)) stating for each variable v that
its value is in its domain.

Let D1 and D2 be domains and V ⊆ V . We say that D1 is stronger than D2, written
D1 � D2, if D1(v) ⊆ D2(v) for all v ∈ V and that D1 and D2 are equivalent modulo
V, written D1 =V D2, if D1(v) = D2(v) for all v ∈ V. The intersection of D1 and D2,
denoted D1 � D2, is the domain which maps every v ∈ V to D1(v) ∩ D2(v).

We use range notation: For integers l and u,
[

l .. u
]

denotes the set of integers
{d | l � d � u}, while for sets of integers L and U , [ L .. U ] denotes the set of sets of
integers {A | L ⊆ A ⊆ U}. A domain D is convex if D(T) is a range for all T ∈ VS.
We restrict attention to convex domains. We assume an initial domain Dinit which is
convex such that all domains D that occur will be stronger i.e. D � Dinit.

A valuation θ is a mapping of integer and set variables to correspondingly
typed values, written {x1 
→ d1, . . . , xn 
→ dn, S1 
→ A1, . . . , Sm 
→ Am}. We extend
the valuation θ to map expressions or constraints involving the variables in the
natural way. Let vars be the function that returns the set of variables appearing in
an expression, constraint or valuation. In an abuse of notation, we define a valuation
θ to be an element of a domain D, written θ ∈ D, if θ(v) ∈ D(v) for all v ∈ vars(θ).

A constraint is a restriction placed on the simultaneously allowed values for a set
of variables. We define the solutions of a constraint c to be the set of valuations θ that
make that constraint true, i.e. solns(c) = {θ | (vars(θ) = vars(c)) ∧ (� θ(c))}

We associate with every constraint c a set of propagators, prop(c). A propagator
f ∈ prop(c) is a monotonically decreasing function on domains that is solution
preserving for c. That is for all domains D � Dinit: f (D) � D and

{θ ∈ D | θ ∈ solns(c)} = {θ ∈ f (D) | θ ∈ solns(c)}.

This is a weak restriction since, for example, the identity mapping is a propagator for
any constraint. In this paper we restrict ourselves to set bounds propagators that map
convex domains to convex domains.

Example 2 A common propagator f for the constraint x �= y is

f (D)(v) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D(v) − {d} if (v = x and D(y) = {d}) or
(v = y and D(x) = {d})

D(v) if (v = x and |D(y)| > 1) or
(v = y and |D(x)| > 1) or
(v �∈ {x, y})

Consider a domain D where D(x) = {3, 4, 5, 6} and D(y) = {5}, then f (D)(x) =
{3, 4, 6} and f (D)(y) = {5}.
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The output variables output( f ) ⊆ V of a propagator f are the variables changed
by the propagator: v ∈ output( f ) if ∃D � Dinit such that f (D)(v) �= D(v). The input
variables input( f ) ⊆ V of a propagator f are the variables that can change the result
of the propagator, that is the smallest subset V ⊆ V such that for each D � Dinit

and D′ � Dinit: D =V D′ implies that f (D) � D′ =output( f ) f (D′) � D. Only the input
variables are useful in computing the application of the propagator to the domain.

Example 3 For the constraint c ≡ x1 + 1 � x2 the function f defined by f (D)(x1) =
{d ∈ D(x1) | d � max D(x2) − 1} and f (D)(v) = D(v), v �= x1 is a propagator for c.
Its output variables are {x1} and its input variables are {x2}. Let D(x1) = {3, 4, 6, 8}
and D(x2) = {1, 5}, then f (D)(x1) = {3, 4} and f (D)(x2) = {1, 5}.

A propagation solver for a set of propagators F and current domain D, solv(F, D),
repeatedly applies all the propagators in F starting from domain D until there is no
further change in the resulting domain. solv(F, D) is the weakest domain D′ � D
which is a fixpoint (i.e. f (D′) = D′) for all f ∈ F. In other words, solv(F, D) returns
a new domain defined by

solv(F, D) = gfp(λd.iter(F, d))(D) iter(F, D) = � f∈F f (D).

where gfp denotes the greatest fixpoint w.r.t � lifted to functions.

3 SAT and unit propagation

A proposition p is a Boolean variable from a universe of Boolean variables P . A
literal l is either: a proposition p, its negation ¬p, the false literal ⊥, or the true
literal �. The complement of a literal l, denoted ¬l, is ¬p if l = p or p if l = ¬p,
while ¬⊥ = � and ¬� = ⊥. A clause C is a disjunction of literals, which we also
treat as a set of literals. An assignment is either a partial mapping μ from P to {�,⊥}
or the failed assignment {{⊥}}. An assignment μ is treated as a set of literals A =
{p | μ(p) = �} ∪ {¬p | μ(p) = ⊥}. We define a lattice over assignments as follows:
A � A′ iff A ⊆ A′ or A′ = {{⊥}}. The least upper bound operation � is defined as
A � A′ = A ∪ A unless either: the union contains {p,¬p} for some literal p, or one
of A, A′ is {{⊥}}, in which case A � A′ = {{⊥}}.

An assignment A satisfies a clause C if one of the literals in C appears in A. A
theory T is a set of clauses. An assignment is a solution to theory T if it satisfies
each C ∈ T.

A SAT solver takes a theory T and determines if it has a solution. Complete
SAT solvers typically involve some form of the Davis-Putnam-Logemann-Loveland
algorithm [12] which combines search and propagation by recursively fixing the
value of a proposition to either � (true) or ⊥ (false) and using unit propagation
to determine the logical consequences of each decision made so far. The unit propa-
gation algorithm finds all unit resolutions of an assignment A with the theory T.
Unit resolution of a clause C = C′ ∪ {l} with assignment A, adds the literal l to A
if the negation of each of the literals in C′ occurs in A, since this is then the only
way to satisfy C given the assignment A. Unit propagation continuously applies unit
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resolution until the assignment A does not change. It can be formally defined as
follows:

up(A, C) =
{

A � {l} ∃l, C′.C = C′ ∪ {l}, {¬l′ | l′ ∈ C′} ⊆ A
A otherwise

UP(A, T) = lfp.(λa.
⊔

C∈T up(a, C))(A)

Example 4 Given the theory T = { ¬p1 ∨ p2 ∨ p3 ∨ ¬p4 ∨ ¬p5, p1 ∨ p2, p4 ∨ ¬p5}
and the assignment A = {¬p2, p5} unit propagation on p1 ∨ p2 adds p1, and on p4 ∨
¬p5 adds p4, then unit propagation with the first clause adds p3. Hence UP(A, T) =
{p1,¬p2, p3, p4, p5}.

Modern DPLL SAT solvers combine very efficient unit propagation implemented
using watched literal techniques together with 1UIP nogoods and backjumping [27]
to create very powerful solvers.

4 Atomic constraints and propagation rules

Atomic constraints and propagation rules were originally devised for reasoning
about propagation redundancy [6, 7]. They provide a way of describing the behaviour
of propagators.

An atomic constraint represents the basic changes in domain that occur during
propagation. For integer variables, the atomic constraints represent the elimination
of values from an integer domain, i.e. xi � d, xi � d, xi �= d or xi = d where xi ∈ VI

and d is an integer. For set variables, the atomic constraints represent the addition
of a value to a lower bound set of integers or the removal of a value from an upper
bound set of integers, i.e. e ∈ Si or e �∈ Si where e is an integer and Si ∈ VS. We also
consider the atomic constraint false which indicates that unsatisfiability is the direct
consequence of propagation.

Define a propagation rule as C � c where C is a conjunction of atomic constraints,
and c is a single atomic constraint such that �|= C → c. A propagation rule C � c
defines a propagator (for which we use the same notation) in the obvious way.

(C � c)(D)(v) =
{ {θ(v) | θ ∈ D ∩ solns(c)} if vars(c) = {v} and |= D → C

D(v) otherwise.

In another words, C � c defines a propagator that removes values from D based
on c only when D implies C. We can characterize an arbitrary propagator f in
terms of the propagation rules that it implements. A propagator f implements a
propagation rule C � c iff |= D → C implies |= f (D) → c for all D � Dinit.

Example 5 The propagator fd for constraint x �= y of Example 2 implements the
following propagation rules (among many others) for Dinit(x) = Dinit(y) = [

l .. u
]
.

x = d � y �= d, l � d � u

y = d � x �= d, l � d � u
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Many propagators are better characterized by atomic constraints using bounds,
e.g. x � d, although it is always possible to describe their behaviour using only the
atomic constraints x �= d.

Example 6 A common propagator f for the constraint x1 = x2 × x3 [24] is

f (D)(x1) = D(x1) ∩ [
min S .. max S

]

where S = {(min D(x2)) × (min D(x3)), (min D(x2)) × (max D(x3)),

(max D(x2)) × (min D(x3)), (max D(x2)) × (max D(x3))}
f (D)(x2) = D(x2) if min D(x3) < 0 ∧ max D(x3) > 0

D(x2) ∩ [
min S .. max S

]
otherwise

where S = {(min D(x1))/(min D(x3)), (min D(x1))/(max D(x3)),

(max D(x1))/(min D(x3)), (max D(x1))/(max D(x3))}

and symmetrically for x3.2 Note that f does not enforce any notion of consistency.
The propagator f implements the following propagation rules (among many

others) for Dinit(x1) = Dinit(x2) = Dinit(x3) = [ −20 .. 20 ].

x2 � 2 ∧ x3 � 3 � x1 � 6

x1 � 6 ∧ x3 � 0 ∧ x3 � 3 � x2 � 2

x1 � 10 ∧ x2 � 6 � x3 � 1

x1 � 10 ∧ x2 � 9 � x3 � 1

x2 � −1 ∧ x2 � 1 ∧ x3 � −1 ∧ x3 � 1 � x1 � 1

Let rules( f ) be the set of all possible propagation rules implemented by f . A
set of propagation rules F ⊆ rules( f ) implements f iff solv(F, D) = f (D), for all
D � Dinit.

This definition of rules( f ) is usually unreasonably large, and full of redundancy.
For example the fourth propagation rule in Example 6 is clearly weaker than the
third. In order to reason more effectively about propagation rules for a given pro-
pagator f , we seek a concise representation rep( f ) ⊆ rules( f ) that implements f .

Example 7 The set of propagation rules given in Example 5 for the constraint x �= y
define a minimal representation rep( fd) of the propagator fd.

A propagation rule C′ �c′ is directly redundant with respect to another rule C�c
if Dinit |= C′ → C ∧ c → c′ and not Dinit |= C → C′ ∧ c′ → c. A propagation rule r
for propagator f is tight if it is not directly redundant with respect to any rule in
rules( f ). Obviously we would prefer to only use tight propagation rules in rep( f )
if possible.

2Division by zero has to be treated carefully here, see [24] for details.
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Example 8 Consider the reified difference inequality c ≡ x0 ⇔ x1 + 1 � x2 where
Dinit(x0) = {0, 1}, Dinit(x1) = {0, 1, 2}, Dinit(x2) = {0, 1, 2}. Then a set of tight prop-
agation rules rep( f ) implementing the domain propagator f for c is

x1 � 0 ∧ x2 � 1 � x0 = 1

x1 � 1 ∧ x2 � 2 � x0 = 1

x0 = 1 � x2 � 1

x0 = 1 ∧ x1 � 1 � x2 � 2

x0 = 1 � x1 � 1

x0 = 1 ∧ x2 � 1 � x1 � 0

x1 � 2 � x0 = 0

x1 � 1 ∧ x2 � 1 � x0 = 0

x2 � 0 � x0 = 0

x0 = 0 ∧ x1 � 1 � x2 � 1

x0 = 0 ∧ x1 � 0 � x2 � 0

x0 = 0 ∧ x2 � 1 � x1 � 1

x0 = 0 ∧ x2 � 2 � x1 � 2

For constraints of the form x0 ⇔ x1 + d � x2 we can build rep( f ) linear in the
domain sizes of the variables involved.

A bounds propagation rule only makes use of atomic constraints of the form x � d,
x � d and false. We can classify a propagator f as a bounds propagator if it has a
representation rep( f ) which only makes use of bounds propagation rules.

Example 9 The propagator in Example 8 is clearly a bounds propagator. A bounds
propagator fb for the constraint x �= y is defined by the propagation rules for
Dinit(x) = Dinit(y) = [

l .. u
]

where l � d � u:

x � d ∧ x � d ∧ y � d � y � d − 1

x � d ∧ x � d ∧ y � d � y � d + 1

y � d ∧ y � d ∧ x � d � x � d − 1

y � d ∧ y � d ∧ x � d � x � d + 1.

5 Clausal representations of propagators

Propagators can be understood simply as a collection of propagation rules. This
gives the key insight for understanding them as conjunctions of clauses, since we
can translate propagation rules to clauses straightforwardly.

5.1 Atomic constraints and Boolean variables

Changes in domains of variables are the information recorded by a propagation
solver. For example, x = d is a change which fixes the value of x to domain value
d, and x � d is a change that restricts the value of x to be greater or equal to
domain value d. In this sense atomic constraints are the “decisions” made or stored
representing the sub-problem. In translating propagation to Boolean reasoning these
decisions become the Boolean variables. For example, [[x = d]] and [[x � d]] denote
Boolean variables which encode information about the possible values of a variable
x with d an element in a (finite) integer domain.
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We adopt an encoding of integer domains as Booleans which is concise and is
well-matched to atomic constraints. It can be thought of as the combination of two
well-studied representations: the direct encoding (see e.g. [35]) where the Boolean
variables corresponding to integer variable x are of the form [[x = d]] for each value
d in the domain and clauses are added to ensure that at most one such variable is true
for a given x; and the unary encoding (see e.g. [2, 8]) where the Boolean variables are
of the form [[x � d]] and clauses are added to ensure that [[x � d]] implies [[x � d′]]
for all d′ < d in the domain. A similar encoding is proposed by Ansótegui and Manyá
in [1] where it is called the regular encoding. We encode set bounds domains as usual
with Boolean variables of the form [[e ∈ S]] to represent that element e is in set S.

This choice of Boolean variables enables us to directly represent changes to
domains made by atomic constraints. We define a mapping lit of atomic constraints
to Boolean literals as follows:

lit(false) = ⊥
lit(xi = d) = [[xi = d]] d ∈ Dinit(xi)

lit(xi �= d) = ¬[[xi = d]] d ∈ Dinit(xi)

lit(xi � d) = [[xi � d]] min Dinit(xi) � d < max Dinit(xi)

lit(xi � d) = � d = max Dinit(xi)

lit(xi � d) = ¬[[xi � d − 1]] min Dinit(xi) < d � max Dinit(xi)

lit(xi � d) = � d = min Dinit(xi)

lit(d ∈ Si) = [[d ∈ Si]] d ∈ max Dinit(Si)

lit(d �∈ Si) = ¬[[d ∈ Si]] d ∈ max Dinit(Si).

where d is a value in the domain of variable xi: min Dinit(xi) � d � max Dinit(xi); and
e ∈ max Dinit(Si). Note that lit is a bijection except where the result is �, hence lit−1(l)
is defined as long as l �= �.

There is a mapping from the domain of a variable v to an assignment on the
Boolean variables [[xi � d]], [[xi = d]], and [[e ∈ Si]] defined as:

assign(D, v) =
{ {{⊥}} D(v) = ∅

{lit(c) | (v ∈ D(v)) |= c, v ∈ vars(c)} otherwise

assign(D) =
{ {{⊥}} ∃v ∈ V .D(v) = ∅

⋃
v∈V assign(D, v) otherwise

Example 10 Consider the domain D(x) = {1, 3, 4}, D(S) = [ {1, 2} .. {1, 2, 4} ] where
Dinit(x) = [ 1 .. 6 ] and Dinit(S) = [ ∅ .. {1, 2, 3, 4, 5} ]. Since x ∈ {1, 3, 4} implies x �=
2, x � 1, x � 4, x � 5 and x � 6 then assign(D, x) = {¬[[x = 2]], [[x � 4]], [[x � 5]]}.
Similarly since S ∈ [ {1, 2} .. {1, 2, 4} ] implies 1 ∈ S, 2 ∈ S, 3 �∈ S and 5 �∈ S we have
assign(D, S) = {[[1 ∈ S]], [[2 ∈ S]],¬[[3 ∈ S]],¬[[5 ∈ S]]}.

5.2 Faithfullness of domains

Given that we model constraint propagation in terms of Boolean variables of the
form [[xi � d]], [[xi = d]], and [[e ∈ Si]], it is necessary to insure that the Boolean
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representation faithfully represents possible values of an integer variable. For exam-
ple, the Boolean variables [[x = 3]] and [[x � 2]] cannot both take the value � (true).

To maintain faithfulness for an integer variable x where Dinit(x) = [
l .. u

]
, we add

two types of clauses: (a) for variables of the form [[x � d]] we add clauses to encode
[[x � d]] → [[x � d + 1]] (Eq. 1, below); and (b) for variables of the form [[x = d]]
we add clauses to encode [[x = d]] ↔ ([[x � d]] ∧ ¬[[x � d − 1]]) (Eqs. 2–6, below).
In clause form, let DOM(x) be the following clauses:

¬[[x � d]] ∨ [[x � d + 1]] l � d < u − 1 (1)

¬[[x = d]] ∨ [[x � d]] l � d < u (2)

¬[[x = d]] ∨ ¬[[x � d − 1]] l < d � u (3)

[[x = l]] ∨ ¬[[x � l]] (4)

[[x = d]] ∨ ¬[[x � d]] ∨ [[x � d − 1]] l < d < u (5)

[[x = u]] ∨ [[x � u − 1]] (6)

The Boolean representation for set variables requires no additional clauses for
faithfulness hence we define DOM(S) = {} for a set variable S. Finally, we define the
set of clauses (for all variables): DOM = ∪{DOM(v) | v ∈ V}.

The faithfulness clauses DOM(x) involve 2n Boolean variables and 4n clauses
where n is the size of the domain Dinit(x). In contrast, the direct encoding of finite
integer variables domains into SAT (which only involves the variables of the form
[[x = d]]) enforces faithfulness either with O(n2) clauses

(∨u
d=l[[x = d]])

∧
∧l�d1<d2�u(¬[[x = d1]] ∨ ¬[[x = d2]]) (7)

as described in [35] or takes the BDD approach described in [14] which requires
a linear number of clauses but also introduces 2n fresh variables (in addition to
the n original variables). Note that the regular encoding is linear, involves only 2n
variables and has equally strong unit propagation as the quadratic encoding of the
direct approach.

Theorem 1 Let A be a set of literals on the variables [[x = d]], l � d � u. Let T be the
clauses of (7) Then UP(DOM(x), A) = {{⊥}} or UP(T, A) ⊆ UP(DOM(x), A).

Proof Let A′ = UP(DOM(x), A). Assume A′ �= {{⊥}} or we are done. The proof
is by induction over the execution of UP(T, A). Let A = A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂
An = UP(T, A) be a sequence of assignments computed by UP(T, A) where Ai+1 =
Ai ∪ {li} = up(Ai, Ci) for some li and Ci ∈ T. Assume that Ai ⊆ A′, i � m. Consider
Am+1 = Am ∪ {lm} = up(Am, Cm). Suppose lm = ¬[[x = d]] then Cm must be of the
form ¬[[x = d]] ∨ ¬[[x = d′]], d′ �= d, so [[x = d′]] ∈ Am ⊆ A′. Hence by (2) [[x � d′]] ∈
A′ and thus by (1) [[x � d′′]] ∈ A′, d′′ � d′, and by (3) ¬[[x = d′′]] ∈ A′, d′′ > d′.
Similarly by (3) ¬[[x � d′ − 1]] ∈ A′ and thus by (1) ¬[[x � d′′]] ∈ A′, d′′ < d′ and by
(2) ¬[[x = d′′]] ∈ A′, d′′ < d. Clearly ¬[[x = d]] ∈ A′ since either d < d′ or d > d′.

Suppose lm = [[x = d]] then Cm must be the first clause in (7) and ¬[[x = d′]] ∈
Am ⊆ A′, l � d′ �= d � u. By (6) either d = u or [[x � u − 1]] ∈ A′, and then by re-
peated use of (5) we have [[x � d′]] ∈ A′, d′ � d. By (4) either d = l or ¬[[x � l]] ∈ A′
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and again by repeated use of (5) we have ¬[[x � d′]] ∈ A′, d′ < d. Finally using (5)
(or (4) or (6) for the cases d = l and d = u) we have [[x = d]] ∈ A′.

A set of literals A can be converted to a domain:

domain(A)(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∅ A = {{⊥}}
{d ∈ Dinit(v) | ∀[[c]] ∈ A.vars(l) = {v} ⇒ v = d |= c ∧

∀¬[[c]] ∈ A.vars(l) = {v} ⇒ v = d |= ¬c}
otherwise

that is the domain of all values for v that are consistent with all the Boolean variables
related to v.

Example 11 Consider the set of literals A = { ¬[[x = 2]], [[x � 4]]}, where Dinit(x) =
[ 1 .. 6 ] then x = 1 |= x �= 2 and x = 1 |= x � 2, similarly for x = 3 and x = 4, but not
for x = 2, x = 5 and x = 6. Hence domain(A)(x) = {1, 3, 4}.

With domain clauses DOM, unit propagation on a translated set of atomic con-
straints generates all the consequences of the atomic constraints, i.e. faithfully
represents a domain.

The following lemma shows that for an assignment A, that any atomic constraints
that are a consequence of the decisions in A appear directly in the unit fixpoint of A
with DOM.

Lemma 1 Let A′ = UP(∅, A ∪ DOM(v)). If domain(A)(v) = S �= ∅ and v ∈ S |= c,
then lit(c) ∈ A′. If domain(A)(v) = ∅, A′ = {{⊥}}

Proof We first consider a set variable v = T. If domain(A)(T) = ∅ then either A =
{{⊥}} or A must contain [[e ∈ T]] and ¬[[e ∈ T]] since DOM(T) = ∅.

Suppose domain(A)(T) = S �= ∅. Suppose T ∈ S |= e ∈ T, then e ∈ ⋃
S∈S S.

Clearly then [[e ∈ T]] ∈ A otherwise we can take any element of d ∈ S and then
d − {e} ∈ domain(A)(T) by definition. The result for e �∈ T is analogous.

Next we consider an integer variable v = x The proof is by cases. Let
domain(A)(x) = S �= ∅.

Suppose d ∈ Dinit(x) − S, then x ∈ S |= x �= d. We show that ¬[[x = d]] ∈ A′. Since
d ∈ Dinit(x) − S then there is a literal in A which disallows the value. If it is (a)
¬[[x = d]] ∈ A we are done; if it is (b) [[x � d′]] ∈ A, d′ < d then by unit propa-
gation on (1) we have [[x � d − 1]] ∈ A′ and then propagating using (3) we have
¬[[x = d]] ∈ A′; if it is (c) ¬[[x � d′ − 1]] ∈ A, d′ > d by unit propagation on (1) we
have ¬[[x � d]] ∈ A′ and then propagating using (2) we have ¬[[x = d]] ∈ A′; and
if it is [[x = d′]] ∈ A, d′ �= d we have either [[x � d′]] ∈ A′, d′ < d or ¬x � d′ − 1 ∈
A′, d′ > d using the (2) or (3) and then similar reasoning to case (b) and (c) applies.

Suppose x ∈ S |= x � d, we show that [[x � d]] ∈ A′. Clearly we have ¬[[x = d′]] ∈
A′, ∀d′ > d using the reasoning of the previous paragraph. Using unit propagation on
the (6) we have [[x � u − 1]] ∈ A′ and then using (5) we have [[x � d′]] ∈ A′, d′ � d.
A similar argument applies if x ∈ S |= x � d forcing ¬[[x � d′ − 1]] ∈ A′, d′ � d.

Finally suppose S = {d} and hence x ∈ S |= x = d. Then using the previous para-
graph we have [[x � d]] ∈ A′ and ¬[[x � d − 1]] ∈ A′ and using unit propagation on
the (5) we have [[x = d]] ∈ A′.
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If domain(A)(x) = ∅, we show that unit propagation also leads to {{⊥}}. Either
A′ = {{⊥}} and we are done or A′ �= {{⊥}}. For each d ∈ Dinit(x) we have that d �∈ S, so
using the argument above ¬[[x = d]] ∈ A′, d ∈ Dinit(x), and hence using arguments
above [[x � d]] ∈ A′, l � d < u Then using the (4) [[x = l]] ∨ ¬[[x � l]] we have a
contradiction. Hence A′ = {{⊥}}. ��

The following theorem shows that give a set of atomic constraints c on variable v,
then the domain D(v) that satisfies these constraints is isomorphic to the result of
unit propagation on the faithfulness clauses DOM and the Boolean representation
of the atomic constraints.

Theorem 2 Let C be a set of atomic constraints on variable v, and D(v) = {d | v =
d |= C} then assign(D, v) = UP(∅, {lit(c) | c ∈ C} ∪ DOM(v)).

Proof Let A = UP(∅, {lit(c) | c ∈ C} ∪ DOM(v)). If C is unsatisfiable, then
assign(D)(v) = {{⊥}}. Clearly domain({lit(c) | c ∈ C}, v) = ∅, and hence by Lemma 1
we have A = {{⊥}}.

Otherwise C is satisfiable, and assign(D)(v) = {lit(c′) | vars(c′) = {x}, C |= c′}.
We show A ⊆ assign(D)(v) by induction on the unit propagation. Clearly the

base case holds since the starting set is ∅. The first clauses lit(c), c ∈ C can only
add a literal lit(c) which is in assign(D)(v). The clauses in DOM(v)) can also add
literals by unit propagation. Suppose the clauses (1) adds a literal, either [[x � d]] ∈ A
and it adds [[x � d + 1]] or ¬[[x � d + 1]] ∈ A and it adds ¬[[x � d]]. In the first
case since [[x � d]] ∈ A ⊆ assign(D, v) we have that C |= x � d and hence C |= x �
d + 1 and the result holds. Similarly in the second case. C |= ¬x � d + 1 and hence
C |= ¬x � d. Similar reasoning applies to unit propagations arising from the clauses
representing [[x = d]] ↔ ([[x � d]] ∧ ¬[[x � d − 1]]).

We show assign(D)(v) ⊆ A. Clearly domain({lit(c) | c ∈ C}, v) = D(v). Hence c′
where vars(c′) = {v}, C |= c′ is such that v ∈ D(v) |= c′. By Lemma 1 we have that
lit(c′) ∈ A. ��

Note that for the logarithmic encoding of an integer variable x as Booleans, where
Dinit(x) = [

0 .. 2k − 1
]

is encoded as x = 2k−1[[x > 2k−1 − 1]] + 2k−2[[x mod 2k−1 >

2k−2 − 1]] + · · · + 2[[x mod 4 > 1]] + [[x mod 2 > 0]], a similar result to Theorem 2
is not possible since the encodings of atomic constraints are not single literals.

5.3 Propagation rules to clauses

The translation from propagation rules to clauses is straightforward:

cl(C � c) = ∨c′∈C(¬ lit(c′)) ∨ lit(c)

Example 12 The translation of the propagation rule:

x2 � −1 ∧ x2 � 1 ∧ x3 � −1 ∧ x3 � 1 � x1 � 1
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is the clause C0 ≡ [[x2 � −2]] ∨ ¬[[x2 � 1]] ∨ [[x3 � −2]] ∨ ¬[[x3 � 1]] ∨ [[x1 � 1]].
The advantage of the inequality literals is clear here: to define this clause using only
[[x = d]] propositions for the domains given in Example 6 requires a clause of ≈100
literals.

The translation of propagation rules to clauses gives a system of clauses where
unit propagation is at least as strong as the original propagators.

Theorem 3 Let R be a set of propagation rules such that D′ = solv(R, D). Let A =
UP(assign(D), DOM ∪ ⋃{cl(r) | r ∈ R}) then A = {{⊥}} or A ⊇ assign(D′).

Proof If A = {{⊥}} we are done so assume A is a set of literals. Let

D = D0, D1 = r1(D0), D2 = r2(D1), . . . Dn = rn(Dn−1) = solv(R, D)

be a sequence of propagations of individual rules ri ∈ R leading to the fixpoint D′
We show by induction on i that A ⊇ assign(Di). The base case is obvious since A ⊇
assign(D) = assign(D0).

Suppose that ri ≡ c1 ∧ · · · ∧ cm � c. If the rule did not fire then Di = Di−1 and we
are done. Otherwise the rule fired and hence Di−1 |= c j, 1 � j � m. Hence lit(c j) ∈
assign(Di−1). Now Di is the domain Di−1 removing the values for v that do not
satisfy c.

Now ¬ lit(c1) ∨ · · · ∨ ¬ lit(cm) ∨ lit(c) ∈ cl(ri) and hence unit propagation adds
lit(c) to A.

Clearly A = UP(assign(Di−1) ∪ {lit(c)}, DOM ∪ ⋃{cl(r) | r ∈ R}), because
assign(D) ⊆ assign(Di−1) ∪ {lit(c)} ⊆ A. Now by Lemma 1 any c′ where v ∈ Di(v) |=
c′ is such that lit(c′) ∈ A. Hence assign(Di) ⊆ A. ��

In particular if we have clauses representing all the propagators F then unit
propagation is guaranteed to be at least as strong as finite domain propagation.

Corollary 1 Let rep( f ) be a set of propagation rules implementing propagator f .
Let A = UP(assign(D), DOM ∪ ⋃{cl(r) | f ∈ F, r ∈ rep( f )}). Then A = {{⊥}} or A ⊇
assign(solv(F, D)).

Example 13 Notice that the clausal representation may be “stronger” than the
propagator. Consider the propagator f for x1 = x2 × x3 defined in Example 6. Then
the clause C0 defined in Example 12 is in the Boolean representation of the propaga-
tor. Given ¬[[x2 � −2]], [[x2 � 1]], ¬[[x3 � −2]], ¬[[x1 � 1]] we infer ¬[[x3 � 1]]. But
given the domain D(x1) = [ 2 .. 20 ], D(x2) = [ −1 .. 1 ], and D(x3) = [ −1 .. 20 ] then
f (D)(x3) �= [ 2 .. 20 ]. In fact the propagator f can determine no new information.

Given the Corollary above it is not difficult to see that, if it uses the same search
strategy as a propagation based solver for propagators F, a SAT solver using clauses⋃{cl(r) | f ∈ F, r ∈ rep( f )}) needs no more search space to find the same solution(s).

But there is a difficulty in this approach. Typically rep( f ) is extremely large. The
size of rep( f ) for the propagator f for x1 = x2 × x3 of Example 6 is around 100,000
clauses. But clearly most of the clauses in rep( f ) must be useless in any computation,
otherwise the propagation solver would make an enormous number of propagation
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steps, and this is almost always not the case. This motivates the fundamental idea of
this paper which is to represent propagators lazily as clauses, only adding a clause to
its representation when it is able to propagate new information.

6 Lazy clause generation

The key idea is, rather than a priori representing a propagator f by a set of clauses,
to execute the propagator during the SAT search and record which propagation rules
actually fired as clauses.

We execute a SAT solver over theory T ⊇ DOM. At each fixpoint of unit prop-
agation we have an assignment A which corresponds to a domain D = domain(A).
We then execute (individually) each propagator f ∈ F on this domain obtaining a
new domain D′ = f (D). We then select a set of propagation rules R implemented
by f such that solv(R, D) = D′ and add the clauses {cl(r) | r ∈ R} to the theory T in
the SAT solver. In fact we add these clauses to the SAT solver one by one because
adding a single new clause may cause failure which means the rest of the work is
avoided.

Given the above discussion we modify our propagators, so that rather than
returning a new domain they return a set of propagation rules that would fire adding
new information to the domain.

Let lazy( f ) be the function from domains to sets of propagation rules R ⊆
rules( f ) such that if f (D) = D′ then lazy( f )(D) = R where solv(R, D) = D′, and
for each C � c ∈ R it is not the case that D |= c (that is each rule in R generates
new information).

With the lazy version of a propagator defined we can define lazy propagation as
Algorithm 1. We repeatedly search for a propagator which is not at fixpoint and add
the clausal version of a propagation rule that will fire using the lazy version of the
propagator.

Algorithm 1 lazy_prop(A,F,T)
Input: A is an assignment, F is a set of propagators, T is set of clauses

including DOM
Output: (A′, T ′) an assignment A′ ⊇ A or {{⊥}} and a set of clauses T ′ ⊇ T

1 repeat
2 A := UP(A, T) ;
3 T0 := T ;
4 D := domain(A) ;
5 for all f ∈ F do
6 if f (D) �= D then
7 let r ∈ lazy( f )(D);
8 T := T ∪ {cl(r)} ;
9 break

10 until T = T0 ;
11 return (A; T)

We are interested in minimal assignments that model a domain D to auto-
matically create lazy versions of propagators. Let A = UP(A, DOM(v)), then an



Constraints (2009) 14:357–391 371

information equivalent assignment is any A′ where A = UP(A′, DOM(v)). Define
minassign(A, v) as the set A′ of minimal cardinality where A = UP(A′, DOM(v)),
and preferring positive equational literals, over inequality literals, over negative
equational literals.

Example 14 The set A = {[[x = 1]], [[x � 1]],¬[[x � 2]],¬[[x = 0]], ¬[[x = 2]]} is a fix-
point of DOM(x) assuming Dinit(x) = [ 0 .. 2 ]. minassign(A, x) = {[[x = 1]]}, since
A = UP({[[x = 1]]}, DOM(x)).

The set A′ = {[[x � 1]],¬[[x = 2]]} is also a fixpoint of DOM(x). Here
minassign(A, x) = {[[x � 1]]} even though A′ = UP({¬[[x = 2]]} is information equiv-
alent, because inequalities are preferred over negated equality literals.

We can automatically create lazy( f ) from f as follows. Let f (D) = D′ and let
Cv = minassign(D′, v) − assign(D, v) be the new information (propositions) about
v determined by propagating f on domain D. Then a correct set of rules R =
lazy( f )(D) is the set of propagation rules

∧v∈input( f ){lit−1(l′) | l′ ∈ minassign(D, v)} � lit−1(l)

for each v ∈ output( f ) and each l ∈ Cv

We can almost certainly do better than this. Usually a propagator is well aware
of the reasons why it discovered some new information. The following examples
illustrates how we can improve upon the default lazy version of a propagator.

Example 15 Consider the propagator f for x1 = x2 × x3 defined in Example 6.
Applied to D(x1) = [ −10 .. 18 ], D(x2) = {3, 5, 6}, D(x3) = [ 1 .. 3 ] it determines
f (D)(x1) = [ 3 .. 18 ]. The new information is ¬[[x1 � 2]]. The naive propagation rule
defined above is

x1 � −10 ∧ x1 � 18 ∧ x2 � 3 ∧ x2 �= 4 ∧ x2 � 6 ∧ x3 � 1 ∧ x3 � 3 � x1 � 3

It is easy to see from the definition of the propagator, that the bounds of x1 and the
missing values in x2 are irrelevant, so the propagation rule could be

x2 � 3 ∧ x2 � 6 ∧ x3 � 1 ∧ x3 � 3 � x1 � 3

but in fact it could also correctly simply be x2 � 3 ∧ x3 � 1 � x1 � 3 but this is not
so obvious from the definition of f . The final rule is tight.

Example 16 Consider the propagator f for x0 ↔ x1 + 1 � x2 from Example 8. When
applied to the domain D(x0) = {0, 1}, D(x1) = {1, 2}, D(x2) = {0} it determines
f (D)(x0) = {0}. We can define lazy( f ) to return propagation rules in rep( f ) as
defined in Example 8. For this case lazy( f )(D) could return either {x1 � 1 ∧ x2 �
1 � x0 = 0} or {x2 � 0 � x0 = 0}.

Given we understand the implementation of propagator f , it is usually straight-
forward to see how to implement lazy( f ).
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Example 17 Let c ≡ ∑n
i=1 aixi − ∑m

i=n+1 bixi � d be a linear constraint where ai > 0,

bi > 0. The bounds propagator f for c is defined as

f (D)(xi) = D(xi) ∩
[
−∞ .. � S−ai min D(xi)

ai
�
]

1 � i � n

f (D)(xi) = D(xi) ∩
[
� S−bi max D(xi)

bi
� .. + ∞

]
n + 1 � i � m

where S = d − ∑n
i=1 ai min D(xi) + ∑m

i=n+1 bi max D(xi). If the bounds changes for
some xi, 1 � i � n, so ui = max f (D)(xi) < max D(xi) then the propagation rule
lazy( f ) generates is

n∧

j=1, j�=i

xi � min D(xi) ∧
m∧

j=n+1

xi � max D(xi) � xi � ui

similarly for xi, n + 1 � i � m. Note that this is not necessarily tight.

We claim extending a propagator f to create lazy( f ) is usually straightforward.
For example, Katsirelos and Bacchus [20] explain how to create lazy( f ) (or the
equivalent in their terms) for the alldifferent domain propagator f by un-
derstanding the algorithm for f . For a propagator f defined by indexicals [34],
we can straightforwardly construct lazy( f ) since the indexical definition illustrates
directly which atomic constraints contributed to the result. Direct constructions of
lazy( f ) may not necessarily be tight. For propagators implemented using Binary
Decision Diagrams we can automatically generate tight propagation rules using
BDD operations [17]. If we want to generate tight propagation rules from arbitrary
propagators f then we may need to modify the algorithm for f more substantially to
obtain lazy( f ).

Example 18 We can make the propagation rules of Example 17 tight by weaken-
ing the bounds on some other variables. Let r = ai(ui + 1) − (S − ai min D(xi)) − 1
be the remainder before rounding down will increase the bound. If there exists
a j � r where min D(x j) > min Dinit(x j) then we can weaken the propagation rule
replacing the atomic constraint x j � min D(x j) by x j � min D(x j) − r j where r j =
min{� r

a j
�, min D(x j) − min Dinit(x j)}. This reduces the remainder r by a jr j. Similarly

if there exists bj � r. We can repeat the process until r < a j and r < bj for all j. The
result is tight.

For example given 100x1 + 50x2 + 10x3 + 9x4 � 100 where Dinit(x1) = Dinit(x2) =
Dinit(x3) = Dinit(x4) = [ −3 .. 10 ] where D(x1) = D(x2) = D(x3) = D(x4) = [ 0 .. 10 ]
then the propagation gives S = 100. The new upper bound on x1 is u1 = 1, and r =
100 × 2 − (100 − 100 × 0) − 1 = 99. The initial propagation rule is

x2 � 0 ∧ x3 � 0 ∧ x4 � 0 � x1 � 1

We have a2 < r so we can decrease the coefficient of x2 by min{� 99
50�, 3} = 1. There

is still a remainder of r = 99 − 1 × 50 = 49. We can reduce the coefficient of x3 by
3 (the maximum since this takes it to the initial lower bound). This still leaves r =
49 − 3 × 10 = 19. We can reduce the coefficient of x4 by 2, the remainder is now 1,
and less than any coefficient. The final tight propagation rule is

x2 � −1 ∧ x3 � −3 ∧ x4 � −2 � x1 � 1
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Regardless of the tightness of propagation rules, the lazy clause generation
approach ensures that the unit propagation that results is at least as strong as applying
the propagators themselves.

Theorem 4 Let (A, T) = lazy_prop(assign(D), F, DOM) then A = {{⊥}} or A ⊇
assign(solv(F, D)).

Proof If A = {{⊥}} we are done, so assume A �= {{⊥}}. By definition of lazy_prop,
if D′ = domain(A) then f (D′) = D′ otherwise lazy_prop would have added a
new propagation rule to the theory T. Hence D′ = solv(F, D′) and clearly D′ �
solv(F, D). since solv(F, D) is the largest mutual fixpoint of f ∈ F less than D. Thus
A = assign(D′) ⊇ assign(solv(F, D). ��

Because we only execute the propagators at a fixpoint of unit propagation,
generating a propagation rule whose right hand side gives new information means
the clause cannot previously occur. The advantage of tight propagators is that, if the
set of propagation rules R generated by lazy( f ) is tight, over the lifetime of a search
it will not involve any direct redundancy.

7 Choices for modelling in lazy clause generation

Lazy clause generation combines a SAT solver with a finite domain solver. Because
we have two solvers available a whole range of possibilities arise in modelling a
constraint problem. In this section we explore some of the modelling possibilities
that the novel solving technology of lazy clause generation allows.

7.1 Laziness and eagerness

An important choice in the lazy clause generation approach is whether to implement
a propagator lazily (which is the default) or eagerly. The eager representation of
a propagator f simply adds the clauses cl(r) for all r ∈ rep( f ) into the SAT solver
before beginning the search. This clearly can improve search, since more information
is known a priori, but the size of the clausal representation may make it inefficient.

Example 19 The representation of the domain propagator for disequality x �= y
where Dinit(x) = Dinit(y) = [

l .. u
]

requires 2(u − l + 1) binary clauses. Hence it is
possible to model eagerly.

The representation of the bounds propagator for x1 + · · · + xn � k where
Dinit(x1) = · · · = Dinit(xn) = [ 0 .. 1 ] has

(
n
k

)
= n!

(n − k)!k!
propagation rules. Clearly it is impossible to represent this eagerly for large n and k.

In practice eager representation is only useful for constraints that have small
representations.
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7.2 Variable representation

The lazy clause generation approach represents variables domains of possible values
in dual manner: a Boolean assignment and a domain D on integer variables. There
are a number of choices of how we can represent integer variables in terms of
Boolean variables. The default choice (full integer representation) is described in
the Section 5. We present new choices below.

7.2.1 Non-continuous variables

We can represent an integer variable where Dinit(x) = {d1, . . . , dn} where di <

di+1, 1 � i � n, and the values are noncontinuous. This requires fewer Boolean
variables, and fewer domain constraints than representing the domain

[
d1 .. dn

]
. The

Boolean representation uses variables [[x = di]], 1 � i � n and [[x � di]], 1 � i < n.
The clauses DOM(x) required to maintain faithfulness of the Boolean assignment

are:

¬[[x � di]] ∨ [[x � di+1]] 1 � i < n − 1 (8)

¬[[x = di]] ∨ [[x � di]] 1 � i < n (9)

¬[[x = di]] ∨ ¬[[x � di−1]] 1 < i � n (10)

[[x = d1]] ∨ ¬[[x � d1]] (11)

[[x = di]] ∨ ¬[[x � di]] ∨ [[x � di−1]] 1 < i < n (12)

[[x = dn]] ∨ [[x � dn−1]] (13)

7.2.2 Bounds variables

We can represent an integer variable only using the bounds variables [[x � d]], l �
d < u where Dinit(x) = [

l .. u
]
. While this means we cannot represent all possible

subsets of
[

l .. u
]
, it has the advantage of requiring fewer Boolean variables, and the

domain representation requires only the clauses (1):

¬[[x � d]] ∨ [[x � d + 1]] l � d < u − 1

7.2.3 Non-continuous bounds variables

We can clearly restrict the representation of non-continuous variables to bounds only
analogously, just using the Boolean variables [[x � di]] and the clauses (8).

7.3 Propagator and variable representation independence

In a usual finite domain solver we are restricted so that if we use bounds variables,
they must be restricted to only occur in bounds propagators. Indeed we can use
this observation to avoid using full integer variables for variables that only occur in
bounds propagators. In the lazy clause generation solver we can separate the Boolean
variable representation from the propagator type. This is because the propagator
works on the domains representing the variables, and this is distinct from the Boolean
representation of domains.
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With this separation the propagation engine can work without knowing whether
integer variable x is a full integer, non-continuous, or bounds variable, since the
translation of assignments to domains, and from propagation rules to clauses, com-
pletely captures the relationship between the Boolean representation and the integer
variable.

Because of this separation we can independently choose which propagator we will
use to represent a problem, without considering the Boolean variable representation.
Hence for an individual constraint we can choose any of the propagators for that
constraint.

7.3.1 Non-continuous variables

We extend the translation of atomic constraints lit to map atomic constraints involv-
ing non-continuous variable x where Dinit(x) = {d1, . . . , dn} as follows:

lit(x = d) =
{⊥ d �∈ {d1, . . . , dn}

[[x = di]] d = di

lit(x �= d) =
{� d �∈ {d1, . . . , dn}

¬[[x = di]] d = di

lit(x � d) =

⎧
⎪⎨

⎪⎩

� d >= dn

⊥ d < d1

[[x � di]] di < d � di+1

lit(x � d) =

⎧
⎪⎨

⎪⎩

� d � d1

⊥ d > dn

¬[[x � di]] di < d � di+1

Note that each atomic constraint is translated as a single literal.

Example 20 Consider the translation of the propagation rules x = 3 � y �= 3
and x �= 3 � y = 3, where Dinit(x) = {0, 3, 5} and Dinit(y) = {1, 2, 4}. The resulting
clauses are ¬[[x = 3]] ∨ � or � (the always true clause) and [[x = 3]] ∨ ⊥ or equiva-
lently [[x = 3]].

7.3.2 Bounds variables

We extend the translation of atomic constraints lit to map atomic constraints involv-
ing bounds variable x where Dinit(x) = [

l .. u
]

as follows:

lit(x = d)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[[x � d]] d = l

[[x � d]] ∧ ¬[[x � d − 1]], l < d < u

¬[[x � u − 1]] d = u

⊥ otherwise

lit(x �= d)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

¬[[x � d]] d = l

¬[[x � d]] ∨ [[x � d − 1]], l < d < u

[[x � u − 1]] d = u

� otherwise
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The translations of x � d and x � d are as for full integer variables. Note that these
translations now no longer guarantee to return a single literal.

Clearly “Boolean integer” variables x where Dinit(x) = [ 0 .. 1 ] can be represented
as bounds only variables without loss of expressiveness since x � 0 ↔ x = 0 ↔
¬(x = 1).

We can translate any propagation rule to a conjunction of clauses by simply
applying lit as before. This creates (a possibly non-clausal) Boolean formulae which
can be transformed to conjunctive normal form.

Example 21 Consider the translation of the propagation rule x = 3 � y �= 3, where
x and y are bounds only variables. The resulting formula is ¬[[x � 3]] ∨ [[x � 2]] ∨
[[y � 2]] ∨ ¬[[y � 3]], which is a clause already.

Consider the translation of the propagation rule x �= 3 � y = 3. The resulting
formula is ¬([[x � 2]] ∨ ¬[[x � 3]]) ∨ ([[y � 3]] ∧ ¬[[y � 2]]). The conjunctive normal
form is

¬[[x � 2]] ∨ [[y � 3]]
[[x � 3]] ∨ [[y � 3]]

¬[[x � 2]] ∨ ¬[[y � 2]]
[[x � 3]] ∨ ¬[[y � 2]]

It would appear that the conversion of propagation rules including bounds vari-
ables could lead to an exponential explosion in the number of clauses required to
represent them. By restricting the conversion of the rules to clauses which may
actually be able to cause unit propagation, in fact we can represent them with at
most 2 clauses.

Lemma 2 If domain D = domain(A) is such that D(x) |= x �= d where x is a bounds
only variable, then D(x) |= x � d + 1 or D(x) |= x � d − 1.

Proof Now A can only include literals [[x � d′]] or ¬[[x � d′]] for some d′. Hence
domain(A)(x) is a range domain. If D(x) |= x �= d then either D(x) |= x � d + 1 or
D(x) |= x � d − 1. ��

Define the bounds simplification bs(r) of a propagation rule r ≡ C � c, for
domain D = domain(A) for some assignment A which fires the rule, as follows.
Replace each atomic constraint x �= d appearing in C where x is a bounds only
variable by either x � d − 1 or x � d + 1, whichever holds in D. The resulting propa-
gation rule can create at most 2 clauses.

Theorem 5 The conjunctive normal form of the clausal representation of bs(r) in-
volves at most 2 clauses.

Proof Each atomic constraint appearing in the left hand side of bs(r) is translated
as a single Boolean literal. The only conjunction that can occur in the translation is
if the right hand side is an atomic constraint x = d and x is a bounds variable. The
resulting CNF has two clauses. ��
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Example 22 Consider the translation of the propagation rule r ≡ x �= 3 � y = 3
where x and y are bounds variables ranging over [ 0 .. 10 ]. Suppose the domain
that causes it to fire is D = domain(A) where A = {[[x � 1]]}. Then D(x) = [ 0 .. 1 ]
and D(x) |= x � 2 and bs(r) ≡ x � 2 � y = 3. The translation to Booleans is the
formula ¬[[x � 2]] ∨ ([[y � 3]] ∧ ¬[[y � 2]]), which in CNF is (¬[[x � 2]] ∨ [[y � 3]]) ∧
(¬[[x � 2]] ∨ ¬[[y � 2]]). Note that the two clauses from Example 21 that are missing
could not fire in A.

There is an important new behaviour that arises when we consider using domain
propagators on bounds variables. The result of propagation is always a clause of
a form

cl(C � c) = ∨c′∈C(¬ lit(c′)) ∨ lit(c),

where ¬ lit(c′) are all false in the current assignment and lit(c) is either undefined or
false in the current assignment. Previously lit(c) was always a single literal, hence we
could guarantee unit propagation would apply, and set lit(c) to true. Now there is a
possibility that lit(c) is itself a disjunction and unit propagation will not apply.

Example 23 Consider the execution of the domain propagation for x �= y (Exam-
ple 2) where x and y are bounds variables on the assignment A = {[[x � 3]],
¬[[x � 2]]}. Then in the corresponding domain(A)(x) = {3} and the propagation
rule x = 3 � y �= 3 fires. The resulting clause is ¬[[x � 3]] ∨ [[x � 2]] ∨ ¬[[y � 3]] ∨
[[y � 2]]. No unit propagation is possible using A and this new clause.

In fact the domain propagator for x �= y applied to bounds variables x and y
generates exactly the same clauses as the bounds propagator, but it generates them
earlier!

7.4 Disjunctive propagators

The discussion of the end of the last subsection motivates examining a new pos-
sibility. Propagation rules are designed so that the result of the propagation is a
single atomic constraint, which can then be represented immediately as a change
in domain. Given that we will convert the propagation rules to clauses in any case
we can extend them to allow disjunction on the right hand side. A disjunctive
propagation rule has the form c1 ∧ · · · ∧ cn � cn+1 ∨ · · · ∨ cn+m. The translation
to clauses is clear cl(c1 ∧ · · · ∧ cn � cn+1 ∨ · · · ∨ cn+m) = ¬ lit(c1) ∨ · · · ∨ ¬ lit(cn) ∨
lit(cn+1) ∨ · · · ∨ lit(cn+m). Presently we restrict our implementation to only support
disjunctive propagation rules with at most two literals on the right hand side.

Example 24 Consider the constraint |x − y| � k for constant k > 0. The bounds
propagator for this constraint has representation given by the propagation rules:
(where l + k > u − k)

x � l ∧ x � u ∧ y � l + k − 1 � y � u − k

x � l ∧ x � u ∧ y � u − k + 1 � y � l + k

y � l ∧ y � u ∧ x � l + k − 1 � x � u − k

y � l ∧ y � u ∧ x � u − k + 1 � x � l + k
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A more eager version of this propagator fires when the range on one variable is small
enough to guarantee some (disjunctive) constraints on the other variable. It is defined
by the disjunctive propagation rules: (where l + k > u − k)

x � l ∧ x � u � y � l + k ∨ y � u − k

y � l ∧ y � u � x � l + k ∨ x � u − k

Disjunctive propagators can be seen as a more eager form of lazy clause
generation.

We shall see in the next section that disjunctive propagators (including those re-
sulting from domain propagation on bounds variables) do complicate things con-
siderably, principally because we are not guaranteed that they will cause unit
propagation when they are added to the SAT solver.

8 Building a lazy clause generator system

The creation of a practical lazy clause generation solver involves many more consid-
erations than were addressed in Section 6. To build the system we add a cut down
propagation engine into a SAT solver and modify it as a lazy clause generator.

The SAT solver applies unit propagation, and when it reaches a fixpoint it calls
the propagation engine. The new literals set by the SAT solver are converted into
domain changes in the propagation solver, and these “events” queue up propagators
for execution. Each Boolean literal in the SAT solver actually corresponds to a
different event in a propagation engine: [[x � d]] and [[e ∈ T]] corresponds to lower
bound change events, ¬[[x � d]] and ¬[[e ∈ T]] correspond to upper bound change
events, [[x = d]] corresponds to a variable fixing event, and ¬[[x = d]] corresponds to
a domain change event.

The first propagator in the queue is then executed. If it causes propagation, then
the clausal representation of the first propagation rule that fires is added to the
SAT solver and unit propagation is applied. When the SAT solver finishes we re-
execute the same propagator (which is still at the head of the queue) to search for
another firing propagation rule. When there are no more firing rules the propagator
is removed from the queue and the next propagator considered. The reason we
add clauses as soon as possible is to detect failure as soon as possible. Unit propa-
gations may schedule (or re-schedule) propagators. The process continues until the
propagation queue is empty and unit propagation is at fixpoint. At this point the SAT
solver makes a decision about a literal to set true and search continues.

On failure the propagation queue is cleared, and the SAT solver backtracks up
the trail of decided and inferred literals. For each canceled Boolean literal l which
is removed from the current assignment, we undo the change of atomic constraint
lit−1(l) to the domain D. Note that since all individual domain changes are reflected
in Boolean literals this is sufficient.

Example 25 Suppose [[x � 5]] was inferred at an earlier point in execution so
max D(x) = 5. Then suppose [[x � 2]] is inferred. In forward execution we will
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modify max D(x) = 2, but unit propagation will also infer [[x � 3]] and [[x � 4]]. On
backtracking we walk up the trail of decided and inferred variables. When we unset
[[x � 4]] we reset max D(x) = 5, and then when unsetting [[x � 3]] and [[x � 2]] we do
not change it further.

A subtle point we have not addressed is why we do not worry about a propagator
creating duplicates of clauses corresponding to its propagation rules, particularly
since we can execute the propagator repeatedly simply to create all the propagation
rules that fire for one domain. The reason is that since a propagator f is only run at
domain D = domain(A) for an assignment A which is a unit propagation fixpoint,
then if cl(r) is already in the SAT solver then r cannot fire on domain D (it has no
new information).

Example 26 Consider the propagation of the constraint x = y with Dinit(x) =
Dinit(y) = [ 0 .. 4 ]. After the SAT solver sets ¬[[x = 2]] and ¬[[y = 3]] the first prop-
agation rule that fires is x �= 2 � y �= 2. This is added as the clause [[x = 2]] ∨
¬[[y = 2]] and propagated to set ¬[[y = 2]]. Returning to the propagation engine, the
propagator for x = y is still at the head of the queue. The original propagation rule
no longer fires since y �= 2 is not new information. Hence the next propagation rule
y �= 3 � x �= 3 is considered.

When we extend lazy clause generation to allow domain propagators on bounds
variables, or more generally disjunctive propagators the considerations above fail
to hold. The reason is that the resulting newly added clauses may not cause unit
propagation with the current assignment. Hence we can add the clauses multiple
times.

This requires two modifications to the approach. First disjunctive propagators at
the head of the queue must store an index of the propagation rule processed last,
and clear this index every time the propagator queue is cleared. This is to avoid them
regenerating the same propagation rule when they are still the head of the queue.
Secondly, before adding a clause corresponding to a disjunctive propagation rule we
need to check that it is not already in the SAT solver.

We could build a separate data structure to record which clauses have been sent to
the solver. To avoid the complexity and space required to do this we re-use existing
data structures in the SAT solver. The following approach relies on the restriction
that the right hand side of a disjunctive propagation rule has at most two literals. This
is clearly the case for all disjunctive propagators resulting from domain propagation
on bounds variables.

Suppose a disjunctive propagation rule C � c1 ∨ c2 already has its corresponding
clause Cl in the SAT solver. All literals in the clause except lit(c1) and lit(c2) must
be false in the current assignment, otherwise the propagation rule would not fire.
The SAT solver keeps track of at least two literals in each clause which are not
false, the so-called watched literals, in order to detect unit propagations. Hence lit(c1)

and lit(c2) must be the watched literals for Cl. To check if Cl appears in the SAT
solver already, we check all clauses where lit(c1) is a watched literal (the SAT solver
provides this data structure), and see if one is identical to Cl. This check is reasonably
expensive, but much cheaper than looking at all clauses involving lit(c1) since it will
be the watched literal in few of them.
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9 Experiments

We have built a prototype lazy clause generator system using MiniSat [26] version
2.0 beta as the starting point. We now give the results of a number of different ex-
periments using lazy clause generation. We also compare various modelling choices
for lazy clause generation on some problems. We use 3 letter codes to define a mod-
elling choice: the first letter indicates (e)ager or (l)azy modelling; the second letter
indicates (f)ull integer representation, (n)on-continuous representation, (b)ounds
representation, and n(o)n-continuous bounds representation; and the third letter
represents (b)ounds or (d)omain propagators. Note that for the eager approach with
bounds variable representation the clauses for the bounds and domain propagators
are exactly the same, and thus we write eb(bd) to denote ebb and ebd. We compare
our approach versus eager approaches using the MiniSat [26] version 2.0 beta as the
SAT solver, and versus the Gecode 1.3.1 [16] finite domain propagation system.

The open-shop scheduling experiments were run on a 3 GHz Intel Pentium D with
4 Gb RAM running Debian Linux 3.1, while the remaining experiments were run on
a 3.4 GHz Intel Pentium D with 4 Gb RAM running Debian Linux 4.

9.1 Open shop scheduling problems

The first set of experiments use open-shop scheduling problems from [11]. Each of
the constraints in these problems is of the form x1 ∨ x2, x1 + d � x2 or x0 ⇔ x1 + d �
x2 where d is a constant. These problems are also amenable to solving using SAT
modulo difference logic. All of the propagators we use are tight bounds propagators
so we only use Boolean variables of the form [[x � d]] and the first class of clause for
DOM(x). We use eager models for the first two kinds of constraints x1 ∨ x2, x1 + d �
x2 since they can be modelled with a linear (in domain size) number of binary clauses.
We use lazy propagators for the reified difference inequalities x0 ⇔ x1 + d � x2 .

We compare our lazy clause generation approach versus the eager modelling
approach where we used the minimal clausal representations generated by [33].
The eager models are run with MiniSat version 2.0 beta as the SAT solver. For
open-shop scheduling problems we do not compare against Gecode, because without
very sophisticated encodings and search strategies [22], they are not competitive on
these problems, since they lack nogoods. Instead we compare against the Barcelogic
DPLL(T) SAT modulo theories (SMT) solver version 1.1 using its difference logic
theory solver [3], since these problems fall into the class of difference logic problems
which can be handled by this solver very efficiently.

These scheduling problems are optimization problems. we search for the min-
imal makespan (completion time for all jobs). The minimization is conducted by
dichotomic search over the space of possible makespans, see [33] for details. We note
that dichotomic optimization search is in a sense advantageous to the eager modelling
approach since it generates clauses once which are effectively used in solving multiple
(linked) satisfaction sub-problems.

Since these are large suites of benchmarks, we show summary results as well as a
few individual instances to illustrate the spread of results. In each table we show the
user time to find and prove the optimal solution for: the lazy approach lbb, the eager
approach ebb (and just the time spent in the SAT solver for the eager approach sat),
and the SMT approach smt. We also give the number of conflicts for each approach,
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Table 1 Open shop scheduling suite gp (80 instances)

Benchmark Time (s) Conflict number Clause ratio

lbb ebb sat smt lbb ebb smt ave min

gp04-09 0.38 6.84 1.31 0.17 32 21 39 5.15 5.15
gp05-01 1.41 27.32 6.53 0.27 39 19 61 5.67 5.67
gp08-09 5.09 136.62 32.25 0.86 129 53 121 9.05 9.05
gp10-07 16.25 347.60 99.30 9.53 622 622 1400 11.05 10.97
gp10-10 21.68 410.34 115.79 7.80 995 857 1371 10.85 10.82

Arith. mean 6.04 113.46 30.05 2.59 311 242 492 7.43 7.40
Geom. mean 2.49 47.43 11.14 0.59 100 48 94 7.03 7.02

and the average and minimum, across all sub-problems in the dichotomic search, of
the ratio of clauses for the eager approach divided by the total created by the lazy
approach.

The open-shop scheduling suite gp shown in Table 1 is easy for all approaches.
For these problems ebb spends most of its time just generating the clauses. While
clearly smt requires more search to find the solution, given the tiny description of the
problem for smt it is very rapid. Note that some of these problems were only closed in
2005 [22], so they are not considered easy for technologies without nogoods. Indeed
tackling gp06-* problems in Gecode fails to find a solution within 5 minutes.

The open-shop scheduling suite tai shown in Table 2 is more difficult. As the
problem size grows the advantage of the lazy and eager approaches grows over the
SMT approach. The search space explored by the lazy approach is around twice that
of the eager approach, but it is still uniformly faster. Note also that the larger the
example the smaller the percentage of clauses generated by the lazy approach.

The open-shop scheduling suite j shown in Table 3 is much harder. The three
hardest problems j7-per0-0, j8-per0-1, and j8-per10-2 which were closed
recently [33] are examined separately. The lazy approach is better than the eager
approach except for j7-per10-2, and better than SMT on the larger problems. To
save experimental time for the three hardest problems we only try to find a solution
with optimal makespan (a single sub-problem) (dichotomic search for the largest
problem takes over 2 days for ebb). Surprisingly ebb improves on lbb for two of these
problems, showing that having all the clause information from the beginning can be
advantageous. The main extra cost appears to be the size of nogoods generated.

Table 2 Open shop scheduling suite tai (60 instances)

Benchmark Time (s) Conflict number Clause ratio

lbb ebb sat smt lbb ebb smt ave min

tai_5x5_1 0.42 4.64 1.08 0.95 887 774 1679 6.33 5.53
tai_7x7_6 16.23 23.75 10.37 452.15 12722 4397 264167 7.38 5.38
tai_10x10_1 7.52 78.76 18.65 674.99 3614 1599 108764 12.90 10.63
tai_10x10_10 3.80 79.32 17.97 33.34 1431 2675 7848 13.21 12.66
tai_20x20_4 269.89 1361.31 369.42 601.35 11247 3782 39831 26.23 24.42
tai_20x20_8 424.78 1420.77 428.60 6035.09 56092 15891 345876 24.42 20.51

Arith. mean 62.42 317.95 88.39 631.78 6611 3597 43231 13.17 12.03
Geom. mean 4.02 42.47 9.98 21.12 1783 1231 5565 11.20 10.14
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Table 3 Open shop scheduling suite j (48 + 3 instances)

Benchmark Time (s) Conflict number Cl. ratio

lbb ebb sat smt lbb ebb smt ave min

j3-per0-2 0.29 4.02 0.89 0.15 57 20 31 3.46 3.46
j6-per0-0 500.68 703.66 638.23 277.67 158117 137911 212512 6.22 5.35
j7-per10-1 25.45 84.75 36.84 47.83 8967 5019 23478 8.23 7.75
j7-per10-2 1451.79 1437.52 1379.42 3136.69 303011 250942 1625354 6.90 5.04
j8-per20-0 19.02 104.56 36.57 552.40 5493 3138 186300 9.36 8.55

Arith. mean 113.48 252.97 226.08 298.71 25430 29877 110525 6.51 6.21
Geom. mean 3.19 29.37 8.96 2.66 780 559 937 6.30 6.04

j7-per0-0-sat 8443 5246 5210 11470 991907 533852 4328222 3.92 3.92
j8-per0-1-sat 19031 34322 34246 32413 1828054 1452649 8539727 5.90 5.90
j8-per10-2-sat 2205 1395 1322 3846 209822 160075 1316112 5.52 5.52

Overall, lbb solves faster than ebb except for j7-per0-0, j8-per10-2 and
j7-per10-2. Across the suites it is an order of magnitude faster in geometric mean.
While it requires more search than ebb, the massive reduction in clauses pays off. The
lowest clause ratio that occurs in any instance is 3.46. Overall lbb generally improves
upon smt the harder the examples become.

9.2 Crypt-arithmetic problems

The next set of problems are crypt-arithmetic problems like the famous: SEND+
MORE=MONEY problem where each letter represents a different digit and
the equation has to hold. They involve large linear equations and a single
alldifferent constraint. For none of these problems could the eager approach
[33] generate the clauses within hours.

All the models use bounds propagators for the large linear equation, while the
third code letter represents the style of propagator used for the alldifferent.
The lazy clause generation approach uses an alldifferent propagator equivalent to
propagation on a set of independent disequations (x1 �= x2) using either domain
propagators or bounds propagation for the disequations, while Gecode uses its native
distinct propagator. All solvers look for all solutions. We compare lfd, lbd and lbb
using VSIDS search and first fail search versus Gecode using first fail search.

We compare the approaches on the well known alpha problem and instances
taken from [9]. We show the instances from [9] which require more than 1000
conflicts/failure for some solver and search. A full description of the problems can
be found at [4].

The results are shown in Tables 4 and 5. Clearly the flexibility of using domain
propagators on a bounds representation can be beneficial since lbd outperforms lfd,
but the best lazy approach is simply using bounds propagation. Clearly nogoods can
significantly reduce the search for these problems. The highly engineered Gecode
solver propagates much faster than our naive propagation engine, and there is not
enough search here to really benefit from nogoods. Interestingly here is a case where
VSIDS search is bettered by a more usual CP style search, although admittedly the
problems are easy.
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Table 4 Crypt-arithmetic
problems: user-time

Benchmark VSIDS First fail

lfd lbd lbb lfd lbd lbb gecode

alpha 0.02 0.01 0.001 0.01 0.01 0.01 0.001
problem0 0.62 0.30 0.34 0.39 0.28 0.32 0.04
problem1 0.17 0.17 0.25 0.11 0.10 0.11 0.02
problem2 0.16 0.18 0.15 0.18 0.18 0.15 0.03
problem3 1.12 0.79 0.69 0.13 0.15 0.14 0.02
problem4 0.03 0.03 0.05 0.001 0.001 0.01 0.001
problem6 0.37 0.30 0.36 0.19 0.20 0.17 0.02
problem34 0.25 0.34 0.03 0.18 0.001 0.001 0.001
problem57 0.12 0.11 0.72 0.001 0.03 0.03 0.001
problem63 0.61 0.31 0.10 0.03 0.02 0.02 0.01

Arith mean 0.38 0.35 0.32 0.11 0.07 0.07 0.01
Geom mean 0.24 0.20 0.16 0.05 0.04 0.03 0.01

9.3 Quasigroup completion problems

A n × n latin square is a square of values xij, 1 � i, j � n where each number [ 1 .. n ]
appears exactly once in each row and column. It is represented by constraints

alldifferent([xi1, . . . , xin], 1 � i � n

alldifferent([x1 j, . . . , xnj], 1 � j � n

The quasigroup completion problem (QCP) is a latin square problem where some
of the xij are given. These are challenging problems which exhibit phase transition
behaviour. We use examples from the 2006 Constraint Satisfaction Solver Compe-
tition [10], and some larger examples generated by the lsencode [23] generator.
Again the propagators for the alldifferent constraint are equivalent to propaga-
tion on a set of independent disequations (x1 �= x2) using either domain propagators
or bounds propagators for the disequations. We compare against Gecode using
distinct with first fail search.

Table 5 Crypt-arithmetic
problems: conflicts

Benchmark VSIDS First fail

lfd lbd lbb lfd lbd lbb gecode

alpha 41 47 51 34 36 34 33
problem0 10025 6535 7201 6743 6280 7213 8213
problem1 3718 4203 6213 2579 2479 2746 4008
problem2 3559 4274 4150 3986 3998 3519 6204
problem3 15137 13124 12089 2511 2647 2543 2560
problem4 725 789 1396 182 195 183 181
problem6 6271 6335 7898 3444 3533 3439 3737
problem34 4861 7616 789 3999 200 164 62
problem57 2647 2950 12287 112 529 535 337
problem63 9122 7330 2737 604 488 468 427

Arith mean 6077 6200 6195 2035 1592 1507 1691
Geom mean 4275 4265 4058 1089 899 815 825
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Table 6 QCP 15 × 15
instances: user time

Benchmark Time (s)

efd eb(bd) lfd lbd lbb gecode

qcp-15-120-0_ext 0.03 0.02 0.03 0.14 0.02 0.02
qcp-15-120-1_ext 0.03 0.04 0.06 0.22 0.04 0.08
qcp-15-120-2_ext 0.06 0.02 0.05 0.16 0.03 454.53
qcp-15-120-3_ext 0.03 0.04 0.14 0.26 0.03 0.19
qcp-15-120-4_ext 0.18 0.02 0.02 0.33 0.22 5.50
qcp-15-120-5_ext 0.13 0.09 0.21 0.62 0.15 117.08
qcp-15-120-6_ext 0.02 0.02 0.01 0.17 0.04 38.01
qcp-15-120-7_ext 0.10 0.13 0.29 0.24 0.39 1.28
qcp-15-120-8_ext 0.04 0.10 0.04 0.18 0.06 6.70
qcp-15-120-9_ext 0.06 0.14 0.24 0.27 0.07 1685.44

qcp-15-120-10_ext 0.04 0.04 0.04 0.20 0.04 1044.80
qcp-15-120-11_ext 0.01 0.05 0.01 0.32 0.05 47.64
qcp-15-120-12_ext 0.01 0.01 0.02 0.04 0.01 862.29
qcp-15-120-13_ext 0.14 0.30 0.17 0.21 0.46 179.18
qcp-15-120-14_ext 0.01 0.01 0.01 0.01 0.12 2034.72

Arith mean 0.08 0.07 0.09 0.22 0.12 431.83
Geom mean 0.06 0.04 0.05 0.17 0.07 24.67

Tables 6 and 7 compare the user time and amount of search for finding the first
solution of quasigroup completion problems of size 15 × 15 for various modelling
possibilities. For eager modelling the time for constructing the clausal representation
is included, it is either 0.01 or 0.02 seconds. The benchmarks 0–9 are satisfiable while
10–14 are unsatisfiable.

We can see that nogoods are really effective in these problems in reducing search.
While Gecode is much more efficient in propagation, for hard examples the reduction

Table 7 QCP 15 × 15
instances: conflicts/failures

Benchmark Conflicts/Failures

efd eb(bd) lfd lbd lbb gecode

qcp-15-120-0_ext 369 174 151 1437 148 301
qcp-15-120-1_ext 312 635 522 2113 211 2717
qcp-15-120-2_ext 1214 455 599 1886 468 15994711
qcp-15-120-3_ext 470 767 1319 2961 223 6195
qcp-15-120-4_ext 2823 156 88 3870 2595 196310
qcp-15-120-5_ext 1995 1354 1964 6106 1520 3892358
qcp-15-120-6_ext 271 148 59 1615 326 1334910
qcp-15-120-7_ext 1259 2091 2440 2569 3942 43141
qcp-15-120-8_ext 458 1771 401 2028 715 226380
qcp-15-120-9_ext 1045 2199 2376 3163 890 59032321

qcp-15-120-10_ext 762 805 497 2453 650 38584120
qcp-15-120-11_ext 19 843 27 3529 382 1619456
qcp-15-120-12_ext 49 85 164 556 97 32919163
qcp-15-120-13_ext 2172 4437 1578 2349 5077 6364807
qcp-15-120-14_ext 26 45 42 157 2041 74004918

Arith mean 883 1064 815 2453 1286 15614787
Geom mean 422 546 359 1928 673 814626
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Table 8 QCP 25 × 25

Benchmark Time (s) Conflicts (’000)

efd eb(bd) lfd lbd lbb efd eb(bd) lfd lbd lbb

qcp-25-264-0_ext 114.07 65.56 149.88 85.89 34.81 212 117 159 174 98
qcp-25-264-1_ext 832.31 108.37 99.84 374.77 258.95 1037 178 119 626 608
qcp-25-264-2_ext 15.40 44.40 12.25 47.34 41.34 44 99 29 125 146
qcp-25-264-3_ext 542.61 273.36 442.57 532.47 471.86 814 393 399 892 1123
qcp-25-264-4_ext 265.00 268.84 24.87 418.33 65.55 417 405 42 760 193
qcp-25-264-5_ext 108.60 146.36 341.25 158.62 311.52 210 256 325 345 790
qcp-25-264-6_ext 255.60 185.53 130.06 127.91 67.32 397 282 161 273 185
qcp-25-264-7_ext 35.36 1.52 34.07 78.26 94.09 84 9.6 60 178 238
qcp-25-264-8_ext 9.52 48.36 81.10 171.35 137.44 30 96 102 352 360
qcp-25-264-9_ext 27.80 153.52 286.20 710.96 49.41 70 261 291 1301 155

qcp-25-264-10_ext 30.92 125.67 165.77 346.78 415.15 76 226 182 709 1058
qcp-25-264-11_ext 0.14 0.06 0.10 0.17 0.05 0.2 0.2 0.3 0.7 0.2
qcp-25-264-12_ext 0.23 0.21 0.24 0.32 0.16 1.6 3.1 2.1 2.8 1.3
qcp-25-264-13_ext 0.36 0.29 0.34 0.34 0.69 4.1 4.1 3.9 3.1 6.0
qcp-25-264-14_ext 107.82 131.88 175.01 176.97 58.41 192 208 170 352 168

Arith mean 156.38 103.60 129.57 215.37 133.78 239 169 136 406 342
Geom mean 26.40 23.75 30.31 53.07 30.74 64 61 53 137 100

in search space is so dramatic that it cannot compete. The eager approaches are
best for these examples, while the lfd combination is the best lazy approach. This
is interesting as the bounds propagation is worse than domain propagation for the
lazy approach, but better for the eager approach.

Table 8 shows the results on 25 × 25 QCP problems in order to see the trend
for modelling choices as size increases. These problems are hard for Gecode, taking
hours to complete. In 8 out of 15 instances lfd improves upon the eager approach efd,
and overall it solves the whole suite faster. Even though QCP problems are small (the
cost of eager clause generation is less than 0.10 seconds) the lazy approach avoids
the overhead of examining many useless clauses, and hence starts outperforming the
eager approach as the problem size grows. Interestingly eb(bd) is still better than the
lazy approach lfd for these problems, even though the lazy bounds representations
are poorer than lfd. Examining the novel combination lbd where it has the same
search as lfd it is substantially faster, but usually the search space is bigger, and even
bigger than the weaker lbb strangely.

In order to further view the trends as the problem size increased we generated
problems of size 35 × 35 with 600 holes [4] using the lsencode [23] problem
generator. Results are presented in Table 9, where all problems are satisfiable. We
can see that now lfd is the best method overall, significantly beating the eager version
efd, and just better than the eager bounds version eb(bd). For these larger problems
lbd now improves upon lbb and actually gives the best results for 5 out of 20 instances.
With a better implementation of duplicate checking it might be quite competitive.

This shows that it may well be the case that lazy propagation is worthwhile even
for problems where an eager encoding is quite good. One should remember that
there are very few constraints in the propagation engine, QCP n × n requires only 2n
alldifferent constraints.
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Table 9 QCP 35 × 35

Benchmark Time (s) Conflicts (’000)

efd eb(bd) lfd lbd lbb efd eb(bd) lfd lbd lbb

qcp35-600-0 4299 474 741 202 1612 2326 436 642 388 1390
qcp35-600-1 919 1323 226 204 231 653 797 286 293 437
qcp35-600-2 164 424 283 107 136 392 628 403 290 388
qcp35-600-3 1976 309 1641 1316 433 1132 288 904 1075 471
qcp35-600-4 954 451 23 214 639 783 431 94 410 752
qcp35-600-5 1514 5 1431 446 2589 1256 30 809 868 2155
qcp35-600-6 1850 1584 654 1868 129 1709 901 524 1259 227
qcp35-600-7 100 97 771 4413 299 227 260 813 3275 557
qcp35-600-8 56 144 184 200 91 142 248 210 365 181
qcp35-600-9 125 70 19 179 1380 366 250 85 520 1214
qcp35-600-10 1932 1167 782 917 288 1609 761 779 844 796
qcp35-600-11 168 2744 79 97 687 286 1242 189 230 989
qcp35-600-12 770 130 912 478 1665 628 235 719 1145 1613
qcp35-600-13 439 20 237 374 409 473 55 278 565 467
qcp35-600-14 156 1446 724 1562 2907 344 1128 532 1333 2914
qcp35-600-15 3883 33 582 86 655 1563 69 644 317 761
qcp35-600-16 817 1775 342 126 846 570 965 352 334 853
qcp35-600-17 233 784 1322 50 547 339 716 773 167 693
qcp35-600-18 19 216 2122 1398 429 80 365 1599 2002 560
qcp35-600-19 2084 200 114 1047 12 1123 314 181 1075 57

Arith mean 1123 670 660 764 799 800 506 541 838 874
Geom mean 506 277 373 376 448 578 353 421 617 638

9.4 CELAR radio link frequency assignment problems

The CELAR Radio Link Frequency Assignment Problems [5] consist of a set of
radio frequencies and a set of radio links to assign a frequency to each radio link.
Some pairs of radio links must be an exact distance apart in frequency, while other
should be at least some distance apart. We use the first 5 problems (where all con-
straints are mutually satisfiable) while minimizing the maximum frequency used. The
set of possible frequencies F is non-continuous:

{2 + 14i|1 � i � 11} ∪ {2 + 14i|18 � i � 28}
∪{8 + 14i|29 � i � 30} ∪ {8 + 14i|46 � i � 56},

using only 44 values in the range [ 16 .. 792 ] of 777 possible values. So these problems
are candidates for the non-continuous representation. We model the problem using

Table 10 CELAR problems:
user time

Prob User time (s)

lfb lnb lbb lob gecode

scen01 285.22 13.67 104.65 9.37 >400
scen02 2.03 0.16 0.86 0.11 >400
scen03 39.90 3.16 20.06 2.19 >400
scen04 2.17 0.16 0.88 0.10 0.46
scen05 2.25 0.17 0.96 0.10 0.34
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Table 11 CELAR problems:
Conflicts/Failures

Prob Conflicts/Failures

lfb lnb lbb lob gecode

scen01 5036 4542 4160 4247 –
scen02 202 127 180 261 –
scen03 3039 2380 2667 2553 –
scen04 7 6 2 1 31
scen05 17 22 36 24 74

bounds propagators for |x − y| � k (see Example 24), and model |x − y| = k using
the bounds propagators for the individual constraints |x − y| � k, x − y � k and
y − x � k.

We compare the full integer representation, non-continuous representation,
bounds representation, and non-continuous bounds representation. For the full
integer representation we statically add constraints ¬[[x = d]], d ∈ [ 16 .. 792 ] − F to
the SAT solver, while for the (continuous) bounds representation we statically add
the constraints ¬[[x � di]] ∨ [[x � di+1]] where di and di+1 are consecutive values in
F. We also compare with Gecode using reified constraints to represent |x − y| � k
as x − y � k ∨ y − x � k.

The results for the various modelling choices are shown for: user time in Table 10,
failures in Table 11, and unit propagation executed in Table 12. Clearly the non-
continuous representations are significantly better than the continuous representa-
tions, they involve around 20× fewer variables. The failure results show that it is not
the results of a better search because there are fewer Boolean variables to branch on,
instead it is simply the overhead of more unit propagations to deal with the larger
number of variables.

This clearly shows the benefit of separation of propagator implementation from
variable representation. The propagator is highly effective on the non-continuous
Boolean representations without being modified.

Interestingly for these problems the disjunctive propagator explained in Exam-
ple 24 does not improve upon the bounds propagator.

9.5 Lazy clauses as nogoods

The lazy clause generation approach adds clauses representing the propagators to the
SAT solver permanently, so they can never be removed. But since we continually run
the propagation engine, this is not necessary. If we removed them later they would
be rediscovered by the propagation engine, if needed. It seems worthwhile then to

Table 12 CELAR problems:
unit propagations

Prob Unit Propagations

lfb lnb lbb lob

scen01 177561515 13081789 133403108 7133763
scen02 1969516 183084 1732660 112612
scen03 43087573 3608960 38598246 1918102
scen04 628192 36289 304949 17368
scen05 901257 65516 1375927 47145
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Table 13 Treating lazy clauses
as nogoods

Suite Time Conflicts Lazy Clauses

gp +11.2% +4.9% +65.7%
tai +43.4% +26.7% +53.5%
qcp-25 +20.5% +20.5% +3.6%

consider treating these added clauses like nogood clauses, which are added and then
later removed when they seem not be useful.

The final experiment checks if giving lazy clauses as nogoods could improve an
overall performance of our solver, i.e. leaving it to a SAT solver to decide which
lazy clauses to keep. We changed our implementation slightly to give a lazy clause
as follows. We do not add a conflict clause to the clause store of the SAT solver but
simply give it as a reason for a conflict. A clause with an implied literal is added as a
learnt clause.

We compared either keeping clauses from propagators as permanent clauses or as
nogoods on the gp and tai open-shop scheduling suites using nlbb and QCP 25 × 25
suite using lfd. The relative performance of the version with lazy clauses treated as
nogoods is shown in Table 13. The table illustrates that it is not beneficial to keep
lazy clauses as nogoods, and doing so always increased the search and the number of
clauses generated.

Note that we only used MiniSATs default strategy for nogood management,
which may not be suited to the lazy clause generation, so this should probably be
more deeply investigated. Clearly if the size of the lazy clauses generates becomes
prohibitive for some problems the cost of using nogoods to store lazy clauses is not
prohibitive in any case.

10 Related work

The paper [33] explains how to eagerly encode linear arithmetic constraints into
CNF (to give tight clauses) using the propositions [[x � d]]. They closed three very
hard open-shop scheduling problems using their eager approach, but the approach
is manifestly impractical when the linear constraint involves a significant number of
variables. Our lazy approach makes the encoding of linear arithmetic possible for
large linear constraints, and allows encoding of arbitrary propagators.

Gent [15] describes how to encode arc consistency in SAT using the support
encoding [18]. This is tantamount to encoding the propagation rules of an arc consis-
tency algorithm. Gent [15] shows that the support encoding is more efficient than the
usual direct encoding of binary CSPs to SAT. Again the approach, which is analogous
to that of [33], is completely impractical for large arity constraints.

The closest related work to this paper is the hybrid BDD and SAT bounds propa-
gation set solver described in [17]. There a BDD-based set solver and a SAT solver
are integrated and the BDD set solver passes clauses describing its propagations
to the SAT solver in order to make use of the nogood capabilities of the SAT
solver. Using BDD propagators, the construction of tight propagation rules can be
automatic. Here we extend the approach beyond set variables to support integer
variables, eliminate the propagation solver by embedding the minimal amount of
machinery required into the SAT solver.
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There is a substantial body of work on look back methods in constraint satisfaction
(see e.g. [13], chapter 6), but there was little evidence until recently of success
for look back methods that combine with propagation. The work of Katsirelos
and Bacchus [19] showed that one could use nogood technology derived from
SAT for storing and managing nogoods in a CSP system using FC-CBJ. In further
work [20] they consider how to generate explanations (which are effectively clauses)
of propagation for a number of global constraints, in order to support nogoods in
a CP solver. They consider the usual DIMACS encoding of integers {[[x = d]]} and
hence do not consider bounds propagation.

Roussel [31] gave a linear encoding of domains (not including inequality literals)
which has the same unit propagation strength as our new encoding, but requires more
variables and literals.

The lazy propagation approach can be viewed as a special form of Satisfiability
Modulo Theories [28] solver, where each propagator is considered as a separate
theory, and theory propagation is used to learn clauses.

There are other propagation solvers which allow different representation of inte-
gers, in particular Minion [25] and Gecode [16]. All representations either support
all atomic constraints or are restricted in the propagators they can be used. The views
approach of Gecode [32] allows variables defined by simple constraints to be seen as
mappings from atomic constraint to atomic constraints, and hence has some similarity
with the mapping idea of this paper. For example a variable y = x + 3 effectively
rewrites atomic constraint like x � 4 to y � 6 and vice versa. It would be useful to
include views in the lazy clause generation solver, since it reduces the number of
Boolean variables required.

11 Conclusion

In conclusion, we have constructed a hybrid SAT finite domain propagation solver
using lazy clause generation that captures some of the advantages of both paradigms.
It can tackle hard scheduling problems efficiently without complex search strategies.
Where large amounts of search are required we expect it to be more effective
than propagation based solvers because it includes nogoods and conflict directed
backjumping. We have examined the modelling choices that arise from the lazy
clause generation hybrid solving approach. We find that the separation of choice
of propagator from Boolean variable representation leads to an increased number of
modelling choices. The direct representation of non-continuous variables is clearly
advantageous, and there is some evidence that the use of disjunctive propagators
(domain propagators for bounds variables) can improve upon other modelling
approaches. It also appears there sometimes even if an eager model is quite small,
as in QCP, it still may be preferable to use a lazy propagation approach. But we have
only really scratched the surface of the possibilities of the lazy approach.

References

1. Ansótegui, C., & Manyá, F. (2004). Mapping problems with finite-domain variables into prob-
lems with Boolean variables. In Proceedings of the seventh international conference on theory
and applications of satisfiability testing (SAT’04). LNCS (Vol. 3542, pp. 1–15).



390 Constraints (2009) 14:357–391

2. Bailleux, O., & Boufkhad, Y. (2003). Efficient CNF encoding of Boolean cardinality constraints.
In F. Rossi (Ed.), Proceedings of the 9th international conference on principles and practice of
constraint programming (CP2003). LNCS (Vol. 2833, pp. 108–122).

3. Barcelogic for SMT. www.lsi.upc.es/∼oliveras/bclt-main.html. Accessed 07 February.
4. Benchmarks for Lazy Clause Generation. http://www.cs.mu.oz.au/∼olgao/benchmarks.htm.

Accessed 07 December.
5. Cabon, B., de Givrey, S., Lobjois, L., Schiex, T., & Warners, L.P. (1999). Radio link frequency

assignment. Constraints, 4(1), 78–89.
6. Choi, C.W., Lee, J.H.M., & Stuckey, P.J. (2003). Propagation redundancy in redundant mod-

elling. In F. Rossi (Ed.), Proceedings of the ninth international conference on principles and
practices of constraint programming (CP2003). LNCS (Vol. 2833, pp. 229–243).

7. Choi, C.W., Lee, J.H.M., & Stuckey, P.J. (2007). Removing propagation redundant constraints
in redundant modeling. ACM Transactions on Computational Logic, 8(4), article 23.

8. Crawford, J., & Baker, A. (1994). Experimental results on the application of satisfiability
algorithms to scheduling problems. In Proceedings of the 12th national conference on artificial
intelligence (AAAI’94) (pp. 1092–1097).

9. Cryptarithmetic puzzles. http://www.tkcs-collins.com/truman/alphamet/alphamet.shtml.
Accessed 07 December.

10. CSP competition (2006). http://cpai.ucc.ie/06/Competition.html. Accessed 07 June.
11. CSP2SAT. http://bach.istc.kobe-u.ac.jp/csp2sat/. 06 December.
12. Davis, M., Logemman, G., & Loveland, D. (1962). A machine program for theorem proving.

Communications of the ACM, 5(7), 394–397.
13. Dechter, R. (2003). Constraint processing. San Francisco: Morgan Kaufmann.
14. Eén, N., & Sörensson, N. (2006). Translating pseudo-Boolean constraints into SAT. Journal on

Satisfiability, Boolean Modeling and Computation, 2, 1–26.
15. Gent, I. P. (2002). Arc consistency in SAT. In Proceedings of the 15th Eureopean conference on

artificial intelligence, ECAI’2002, Lyon, France, July 2002 (pp. 121–125).
16. GECODE. www.gecode.org. Accessed 07 February.
17. Hawkins, P., & Stuckey, P.J. (2006). A hybrid BDD and SAT finite domain constraint solver.

In P. Van Hentenryck (Ed.), Proceedings of the practical applications of declarative programming
(PADL’06). LNCS (Vol. 3819, pp. 103–117).

18. Kasif, S. (1990). On the parallel complexity of discrete relaxation in constraint satisfaction
networks. Artificial Intelligence, 45, 275–286.

19. Katsirelos, G., & Bacchus, F. (2003). Unrestricted nogood recording in CSP search. In F. Rossi
(Ed.), Proceedings of the 9th international conference on principles and practice of constraint
programming (CP2003). LNCS (Vol. 2833, pp. 873–877).

20. Katsirelos, G., & Bacchus, F. (2005). Generalized nogoods in CSPs. In The twentieth national
conference on artificial intelligence (AAAI’05) (pp. 390–396).

21. Kautz, H.A., & Selman, B. (1992). Planning as satisfiability. In Proceedings of the tenth European
conference on artificial intelligence (ECAI’92) (pp. 359–363).

22. Laborie, P. (2005). Complete MCS-based search: Application to resource constrained project
scheduling. In Proceedings of the nineteenth international joint conference on artificial intelligence
(IJCAI’05) (pp. 181–186).

23. Lsencode. http://www.cs.cornell.edu/gomes/SOFT/lsencode-v1.1.tar.Z/. Accessed 07 November.
24. Marriott, K., & Stuckey, P.J. (1998). Programming with constraints: An introduction. Cambridge:

MIT.
25. Minion. minion.sourceforge.net. Accessed 07 Feb.
26. MiniSat. www.cs.chalmers.se/Cs/Resarch/FormalMethods/MiniSat/. Accessed 06 December.
27. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff: Engineering

an efficient SAT solver. In Proceedings of 38th conference on design automation (DAC’01)
(pp. 530–535).

28. Niewenhuis, R., Oliveras, A., & Tinelli, C. (2004). Abstract DPLL and abstract DPLL modulo
theories. In Proceedings of the 11th international conference on logic for programming artificial
intelligence and reasoning (LPAR’04). LNAI (Vol. 3452, pp. 36–50)

29. Ohrimenko, O., & Stuckey, P.J. (2008). Modelling for lazy clause generation. In J. Harland, &
P. Manyem (Eds.), Proceedings of the fourteenth computing: The Australasian theory symposium
(CATS 2008). CRPIT (Vol. 77, pp. 27–38)

30. Ohrimenko, O., Stuckey, P.J., & Codish, M. (2007). Propagation = lazy clause generation.
In C. Bessiere (Ed.), Proceedings of the 13th international conference on principles and practice
of constraint programming. LNCS (Vol. 4741, pp. 544–558)

http://www.lsi.upc.es/~oliveras/bclt-main.html
http://www.cs.mu.oz.au/~olgao/benchmarks.htm
http://www.tkcs-collins.com/truman/alphamet/alphamet.shtml
http://cpai.ucc.ie/06/Competition.html
http://bach.istc.kobe-u.ac.jp/csp2sat/
http://www.gecode.org
http://www.cs.cornell.edu/gomes/SOFT/lsencode-v1.1.tar.Z/
http://www.minion.sourceforge.net
http://www.cs.chalmers.se/Cs/Resarch/FormalMethods/MiniSat/


Constraints (2009) 14:357–391 391

31. Roussel, O. (2005). Some notes on the implementation of csp2sat+zchaff, a sim- ple translator
from CSP to SAT. In Proceedings of the 2nd international workshop on constraint propagation
and implementation (pp. 83–88).

32. Schulte, C., & Tack, G. (2005). Views and iterators for generic constraint implementations. In
P. van Beek (Ed.), Proceedings of the 11th international conference on principles and practice of
constraint programming (CP 2005). Lecture notes in computer science (Vol. 3709, pp. 817–821).

33. Tamura, N., Taga, A., Kitagawa, S., Banbara, M. (2006). Compiling finite linear CSP to SAT.
In F. Benhamou (Ed.), Proceedings of 12th international conference on principles and practice of
constraint programming (CP2006). LNCS (Vol. 4204, pp. 590–603).

34. Van Hentenryck, P., Saraswat, V., & Deville, Y. (1998). Design, implementation and evaluation
of the constraint language cc(FD). Journal of Logic Programming, 37(1–3), 139–164.

35. Walsh, T. (2000). SAT v CSP. In R. Dechter (Ed.), Proceedings of 6th international conference
on principles and practice of constraint programming (CP2000). LNCS (Vol. 1894, pp. 441–456).


	Propagation via lazy clause generation
	Abstract
	Introduction
	Propagation-based constraint solving
	SAT and unit propagation
	Atomic constraints and propagation rules
	Clausal representations of propagators
	Atomic constraints and Boolean variables
	Faithfullness of domains
	Propagation rules to clauses

	Lazy clause generation
	Choices for modelling in lazy clause generation
	Laziness and eagerness
	Variable representation
	Non-continuous variablesQ2Please check if the section titles were presented correctly.
	Bounds variables
	Non-continuous bounds variables

	Propagator and variable representation independence
	Non-continuous variables
	Bounds variables

	Disjunctive propagators

	Building a lazy clause generator system
	Experiments
	Open shop scheduling problems
	Crypt-arithmetic problems
	Quasigroup completion problems
	CELAR radio link frequency assignment problems
	Lazy clauses as nogoods

	Related work
	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


