
Constraints (2009) 14:325–356
DOI 10.1007/s10601-008-9062-z

Limitations of restricted branching in clause learning

Matti Järvisalo · Tommi Junttila

Published online: 7 January 2009
© Springer Science + Business Media, LLC 2009

Abstract The techniques for making decisions, that is, branching, play a central
role in complete methods for solving structured instances of constraint satisfaction
problems (CSPs). In this work we consider branching heuristics in the context
of propositional satisfiability (SAT), where CSPs are expressed as propositional
formulas. In practice, there are cases when SAT solvers based on the Davis-Putnam-
Logemann-Loveland procedure (DPLL) benefit from limiting the set of variables the
solver is allowed to branch on to so called input variables which provide a strong unit
propagation backdoor set to any SAT instance. Theoretically, however, restricting
branching to input variables implies a super-polynomial increase in the length of
the optimal proofs for DPLL (without clause learning), and thus input-restricted
DPLL cannot polynomially simulate DPLL. In this paper we settle the case of DPLL
with clause learning. Surprisingly, even with unlimited restarts, input-restricted
clause learning DPLL cannot simulate DPLL (even without clause learning). The
opposite also holds, and hence DPLL and input-restricted clause learning DPLL are
polynomially incomparable. Additionally, we analyze the effect of input-restricted
branching on clause learning solvers in practice with various structured real-world
benchmarks.

This is an extended version of a paper [27] presented at the 13th International Conference on
Principles and Practice of Constraint Programming (CP 2007) in Providence, RI, USA. The first
author gratefully acknowledges financial support from Helsinki Graduate School in Computer
Science and Engineering, Academy of Finland (grants #211025 and #122399), Emil Aaltonen
Foundation, Jenny and Antti Wihuri Foundation, Finnish Foundation for Technology
Promotion TES, and Nokia Foundation. The second author gratefully acknowledges the
financial support from Academy of Finland (grant #112016).

M. Järvisalo (B) · T. Junttila
Department of Information and Computer Science, Helsinki University
of Technology TKK, PO Box 5400, 02015 TKK, Finland
e-mail: matti.jarvisalo@tkk.fi

T. Junttila
e-mail: tommi.junttila@tkk.fi

326 Constraints (2009) 14:325–356

Keywords Propositional satisfiability · Branching heuristics · Clause learning ·
DPLL · Proof complexity · Problem structure · Backdoor sets

1 Introduction

Modern complete satisfiability (SAT) solvers (such as [18, 22, 39, 40] among others)
provide an efficient way of solving various real-world problems as propositional sat-
isfiability. Typical SAT solvers aimed at solving such structured problems are based
on the conjunctive normal form (CNF) level Davis-Putnam-Logemann-Loveland
procedure (DPLL) [16, 17] and incorporate techniques such as intelligent branching
heuristics, randomization and restarts [23], and clause learning [39] for boosting
search efficiency.

Branching heuristics, that is, deciding on which variable to next set a value during
search, play an important role in the efficiency of complete SAT methods aimed at
solving typically very large real-world problem instances. Intuitively, the inherent
structure of the problem domain is reflected in individual variables in the SAT
encoding, and making decisions on structurally irrelevant variables may have an
exponential effect on the running times of SAT solvers.

In SAT-based approaches to structured problems such as bounded model check-
ing [10] and automated planning [33], the CNF encoding is often derived from a
transition relation, where the behavior of the underlying system is dependent on the
input—initial state, nondeterministic choices due to external control, et cetera—of
the system. Empirical case studies [14, 19, 20, 45] have shown that, in some cases,
SAT solvers benefit from restricting the variables the solver is allowed to branch
on to so called input (or independent) variables, corresponding to the input of the
underlying system. By noticing that the system behavior is determined by its input, it
is in fact the case that all variables in the SAT encoding of the system can be assigned
through unit propagation once all input variables have been assigned values. In other
words, the set of input variables is a strong unit propagation backdoor set [51]—
although possibly not of minimum cardinality. Hence DPLL remains complete even
if branching is restricted to the set of input variables alone. Intuitively, this drops the
raw search space size from 2N to 2I with I � N , where I and N are the number of
input variables and all variables in the CNF encoding, respectively.

From another point of view to the effects of different techniques for branching,
one can investigate the best-case performance of SAT algorithms through proof
complexity [13], by studying the relative power of their underlying inference systems
(or proof systems) in terms of the shortest existing proofs in the systems. For two
proof systems, S and S′, we say that S′ (polynomially) simulates S if, for all infinite
families {Fn} of unsatisfiable CNF formulas, there is a polynomial that bounds for all
Fn the length of the shortest proofs in S′ w.r.t. the length of the shortest proofs in S. If
S′ simulates S and vice versa, then S and S′ are polynomially equivalent. If S′ cannot
simulate S and vice versa, then S and S′ are incomparable. From the practical point
of view, if S′ cannot simulate S, we know that any implementation of S′ can suffer
a notable decrease in efficiency compared to implementations of S. For example,
through a formal characterization of DPLL with clause learning, called CL, Beame
et al. [9] show that CL can provide superpolynomially shorter proofs than DPLL, and
thus DPLL cannot simulate CL.

Constraints (2009) 14:325–356 327

Considering restricting branching in DPLL algorithms to input variables, a natural
question to ask is whether the power of the underlying inference systems of DPLL-
based solvers is affected by the input-restriction. For DPLL without clause learning,
this question is answered in [29]: input-restricted DPLL cannot simulate DPLL.

In this paper we settle the case of input-restricted CL: it turns out that input-
restricted CL cannot simulate CL. This implies that all implementations of clause
learning DPLL, even with optimal heuristics, have the potential of suffering a notable
efficiency decrease if branching is restricted to input variables. In fact, we show
that even with unlimited restarts and the ability to create conflicts at will, input-
restricted CL cannot even simulate the basic DPLL without clause learning. This is
surprising, since the unrestricted version of this variant of CL can efficiently simulate
(general) Resolution [9], being thus very powerful compared to DPLL. Additionally,
we evaluate the effect of input-restricted branching on clause learning with various
structured real-world benchmarks, with possible explanations for the reasons why
input-restricted branching can in fact hinder the efficiency of typical clause learning
solvers.

As preliminaries, in Section 2 we define Boolean circuits, which we use for repre-
senting general propositional formulas, and discuss their relation to CNF formulas.
We then review the Resolution proof system and characterizations of DPLL and CL,
and discuss known results concerning their relative efficiency (Section 3). Section 4
concentrates on the tight correspondence between a constrained Boolean circuit
and its CNF translation from the viewpoint of DPLL and clause learning, which
is of value in presenting the theoretical results of this work. The main theoretical
and experimental contributions of this paper are presented in Sections 5 and 6,
respectively.

2 Propositional satisfiability and constrained Boolean circuits

In this section we review basic concepts related to propositional satisfiability and
define constrained Boolean circuits which we use as the representation form for
structured formulas. We also discuss the relationship between constrained Boolean
circuits and clausal propositional (CNF) formulas, and present the translation from
constrained Boolean circuits to CNF which is applied in this work.

2.1 Propositional satisfiability

Given a Boolean variable x, there are two literals, the positive literal, denoted by
x, and the negative literal, denoted by ¬x, where ¬ is the logical negation (not). As
usual, we identify ¬¬x with x. A clause is a disjunction (∨, or) of distinct literals and a
CNF formula is a conjunction (∧, and) of clauses. When convenient, we view a clause
as a finite set of literals and a CNF formula as a finite set of clauses; e.g. the formula
(a ∨ ¬b) ∧ (¬c) can be written as {{a,¬b}, {¬c}}. The sets of variables appearing
as positive and negative literals in a CNF formula F are denoted by vars+(F) and
vars−(F), respectively, and the set of variables by vars(F); for a clause C, vars+(C),
vars−(C), and vars(C) are defined similarly.

Given a CNF formula F, a (partial) assignment for F is a (partial) function τ :
vars(F) → {t, f}, where t and f stand for true and false, respectively. With a slight

328 Constraints (2009) 14:325–356

abuse of notation, if τ(x) = v, then τ(¬x) = ¬v, where ¬t = f and ¬f = t. A clause
is satisfied by τ if it contains at least one literal l such that τ(l) = t. If τ(l) = f for
every literal l in a clause, the clause is falsified by τ . An assignment τ satisfies a CNF
formula it satisfies every clause in the formula. A formula is satisfiable if there is an
assignment that satisfies it, and unsatisfiable otherwise.

2.2 Constrained Boolean circuits

The correspondence between system input of a real-world problem and propositional
variables in a CNF encoding is not evident. However, in SAT-based approaches,
direct CNF encodings of a problem domain are rarely used: the problem at hand is
typically encoded with a general propositional formula φ, which is then translated
into an equi-satisfiable CNF formula by introducing additional variables for the
sub-formulas of φ. Boolean circuits (see e.g. [42]) offer a natural way of presenting
propositional formulas in a compact DAG-like structure with sub-formula sharing,
which helps in lowering the number of additional variables needed. Additionally, the
system input of the original problem is presented by input gates in Boolean circuits.

A Boolean circuit over a finite set G of gates is a set C of equations of form g :=
f (g1, . . . , gn), where g, g1, . . . , gn ∈ G and f : {f, t}n → {f, t} is a Boolean function,
with the additional requirements that (i) each g ∈ G appears at most once as the left
hand side in the equations in C , and (ii) the underlying directed graph

〈
G, E(C) = {〈g′, g〉 ∈ G × G | g := f (. . . , g′, . . .) ∈ C

}〉

is acyclic. If 〈g′, g〉 ∈ E(C), then g′ is a child of g and g is a parent of g′. Similarly,
if there is a non-empty path from a gate g′ to a gate g in 〈G, E(C)〉, then g′ is a
descendant of g. If g := f (g1, . . . , gn) is in C , then g is an f -gate (or of type f),
otherwise it is an input gate. A gate with no parents is an output gate. A (partial)
assignment for C is a (partial) function τ : G → {f, t}. An assignment τ is consistent
with C if τ(g) = f (τ (g1), . . . , τ (gn)) for each g := f (g1, . . . , gn) in C . Note that a
circuit with I input gates has 2I consistent assignments.

A constrained Boolean circuit C τ is a pair 〈C , τ 〉, where C is a Boolean circuit
and τ is a partial assignment for C . With respect to a 〈C , τ 〉, each 〈g, v〉 ∈ τ is a
constraint, and g is constrained to v if 〈g, v〉 ∈ τ . An assignment τ ′ satisfies C τ if (i)
it is consistent with C , and (ii) it respects the constraints in τ , meaning that for each
gate g ∈ G, if τ(g) is defined, then τ ′(g) = τ(g). If some assignment satisfies C τ , then
C τ is satisfiable and otherwise unsatisfiable.

In the following, we will apply the following Boolean functions as gate types.
Notice that this set of is sufficient for representing all Boolean functions, and on
the other hand, enough for describing the constructions applied in this paper in an
intuitive way.

– not(g) evaluates to t if and only if g evaluates to f.
– or(g1, . . . , gn) evaluates to t if and only if at least one of g1, . . . , gn evaluates to t.
– and(g1, . . . , gn) evaluates to t if and only if all g1, . . . , gn evaluate to t.
– xor(g1, g2) evaluates to t if and only if exactly one of g1, g2 evaluates to t.

Example 1 A Boolean circuit C τ and its graphical representation are shown in
Fig. 1. The circuit models a full-adder with the constraint that the carry-out bit

Constraints (2009) 14:325–356 329

Fig. 1 A constrained Boolean
circuit C τ and its graphical
representation

c1 is t. A satisfying truth assignment for the circuit is τ ′ = {〈c1, t〉, 〈t1, t〉, 〈o0, f〉, 〈t2, f〉,
〈t3, t〉, 〈a0, t〉, 〈b 0, f〉, 〈c0, t〉}.

For notational convenience, when well-defined, the join of two constrained cir-
cuits, A τ = 〈A , τ 〉 and Bθ = 〈B, θ〉, is A τ ∪ Bθ = 〈A ∪ B, τ ∪ θ〉. When applying
the join, we will always make sure that the result is a well-defined constrained
Boolean circuit. This means that the requirements (i) on unique definition and (ii)
on acyclicity above are met, and that τ ∪ θ is a (possibly partial) function.

2.3 Translating Boolean circuits to CNF

In order to exploit clausal SAT solvers in solving instances of Boolean circuit
satisfiability, the circuit in question has to be translated to CNF. In this work we
apply the standard “Tseitin-style” [47] translation. First, a variable g̃ is introduced
for each gate g. For encoding the functionalities of gates, the idea is to represent the
logical equivalence g ⇔ f (g1, . . . , gn) as clauses; hence for each g := f (g1, . . . , gn)

the corresponding introduced clauses are as shown in Table 1. Similarly, a unit clause
is added for each constraint 〈g, v〉 ∈ τ as shown in Table 1. Given a constrained
Boolean circuit C τ , we will denote its CNF translation by cnf(C τ).

2.4 CNF formulas as constrained circuits

Any CNF formula F = {C1, . . . , Ck} can naturally be seen as a Boolean circuit.
Basically, F is a Boolean circuit with an and of ors which represent the clauses.
Formally, circuit(F) := 〈C , τ 〉 is defined by associating an input gate x with each

Table 1 CNF translation for constrained Boolean circuits

Gate or constraint Clauses

g := xor(g1, g2)
(¬g̃ ∨ ¬g̃1 ∨ ¬g̃2

)
,
(¬g̃ ∨ g̃1 ∨ g̃2

)
,
(
g̃ ∨ ¬g̃1 ∨ g̃2

)
,
(
g̃ ∨ g̃1 ∨ ¬g̃2

)

g := or(g1, . . . , gn)
(¬g̃ ∨ g̃1 ∨ · · · ∨ g̃n

)
,
(
g̃ ∨ ¬g̃1

)
,. . . ,

(
g̃ ∨ ¬g̃n

)

g := and(g1, . . . , gn)
(¬g̃ ∨ g̃1

)
,. . . ,

(¬g̃ ∨ g̃n
)
,
(
g̃ ∨ ¬g̃1 ∨ · · · ∨ ¬g̃n

)

g := not
(
g1

) (¬g̃ ∨ ¬g̃1
)
, (g̃ ∨ g̃1)

〈g, t〉 ∈ τ
(
g̃
)

〈g, f〉 ∈ τ
(¬g̃

)

330 Constraints (2009) 14:325–356

Fig. 2 The constrained
Boolean circuit
circuit({{a, b}, {a,¬b},
{¬a, b}, {¬a,¬b}})

AND

OR OROR

NOT

OR

NOT

t

a b

variable x ∈ vars(F), a not-gate g¬x with each x ∈ vars−(F), an or-gate gCi with each
clause Ci ∈ F, an and-gate gF with F, and by setting τ = {〈gF , t〉} and

C := {
gF := and(gC1 , . . . , gCk)

} ∪ {
g¬x := not(x) | x ∈ vars−(F)

}

∪ {
gCi := or(α(li,1), . . . , α(li,ni)) | Ci = {

li,1, . . . , li,ni

} ∈ F
}

where α(¬x) = g¬x and α(x) = x for each x ∈ vars(F).

Example 2 The constrained Boolean circuit circuit(F) for the unsatisfiable CNF
formula F = {{a, b}, {a,¬b}, {¬a, b}, {¬a, ¬b}} is shown in Fig. 2.

3 Proof systems for CNF formulas

In this section we discuss the propositional proof systems of interest in the context
of this work, with known results on their relative efficiency. First, we formally define
propositional proof systems and the necessary proof complexity theoretic notions.
We then review the well-known Resolution proof system and some of its refinements.
After this, we concentrate on the Davis–Putnam–Logemann–Loveland (or DPLL)
procedure [16, 17] and the additional techniques applied in typical DPLL-based
SAT solvers today—most importantly, clause learning. In doing so, we go through
characterizations of DPLL (with and without clause learning) as proof systems, which
we will apply in the theoretical part of the work.

3.1 Propositional proof systems and complexity

Formally, a propositional proof system [13] is a polynomial-time computable predi-
cate S such that a propositional formula F is unsatisfiable if and only if there is a proof
p for which S(F, p) holds. Thus a proof p of F is a certificate of the unsatisfiability
of F, and a proof system is a polynomial-time procedure for checking the validity of
proofs in a certain format.

Constraints (2009) 14:325–356 331

While proof checking is efficient, finding short proofs may be difficult, or, gener-
ally, impossible since short proofs may not exist for too weak a proof system. As a
measure of hardness of proving unsatisfiability of a CNF formula F in a proof system
S, the (proof) complexity CS(F) of F in S is the length of the shortest proof of F
in S. For a family {Fn} of unsatisfiable CNF formulas over an increasing number of
variables, the (asymptotic) complexity of {Fn} is measured with respect to the number
of clauses in Fn.

For two proof systems, S and S′, we say that S′ (polynomially) simulates S if for
all families {Fn} there is a polynomial p such that CS′(Fn) ≤ p(CS(Fn)) for all Fn. If
S simulates S′ and vice versa, then S and S′ are polynomially equivalent. If there
is a family {Fn} for which S′ does not polynomially simulate S, we say that {Fn}
separates S from S′. If S can be separated from S′ and vice versa, then S and S′
are incomparable. Notice that polynomial simulation gives a partial order for proof
systems based on their relative power.

With these definitions, in order to show that a proof system S cannot simulate
another system S′, it suffices to exhibit an infinite family {Fn} of unsatisfiable formulas
over an increasing number of variables, such that the minimum length proofs in S for
{Fn} are asymptotically superpolynomially longer than the minimum length proofs
in S′ with respect to the number of clauses in Fn. It is worth noticing that, from this
basic proof complexity theoretic point of view only unsatisfiable formulas (and hence
proofs of unsatisfiability) are of interest. Although exponential lower bounds for
DPLL on families of satisfiable formulas have been shown in restricted probabilistic
contexts [1, 2, 4, 41], a satisfying truth assignment acts as a polynomial length witness
for the satisfiability of an arbitrary satisfiable formula F.

3.2 Resolution

The well-known Resolution proof system [44] (RES) is based on the resolution rule.
Let C, D be clauses, and x a Boolean variable. The resolution rule is

{x} ∪ C {¬x} ∪ D
C ∪ D

or, in other words, we can directly derive C ∪ D from {x} ∪ C and {¬x} ∪ D by
resolving on x. For a given CNF formula F, a RES derivation of a clause C from
F is a sequence of clauses π = (C1, C2, . . . , Cm = C), where each Ci, 1 ≤ i ≤ m, is
either (i) a clause in F (an initial clause), or (ii) directly derived with the resolution
rule from two clauses C j, Ck where 1 ≤ j, k < i (a derived clause). The length of π is
m, the number of clauses occurring in it. A RES proof (for the unsatisfiability) of a
CNF formula F is any RES derivation of the empty clause ∅ from F.

Any RES derivation π = (C1, C2, . . . , Cm) can be presented as a directed acyclic
graph, in which the leafs are initial clauses and the other nodes represent derived
clauses. The edge relation is defined so that there are edges from Ci and C j to Ck,
if and only if Ck has been directly derived from Ci and C j using the resolution rule.
Many refinements of Resolution, in which the structure of RES proofs is restricted,
have been proposed and studied. Here of particular interest is Tree-like Resolution
(T-RES), with the requirement that proofs are representable as trees. This implies
that a derived clause, if used multiple times in the proof, must be derived anew each
time starting from initial clauses.

332 Constraints (2009) 14:325–356

3.2.1 Lower bounds in RES and its refinements

Super-polynomial (and even exponential) lower bounds on proof lengths in RES
have been shown for various families of CNF formulas, see [3, 6, 7, 11, 15, 24, 47, 48]
for examples. Among the most studied such families is the pigeon-hole principle,
which states that there is no injective mapping from an m-element set into an
n-element set if m > n (that is, m pigeons cannot sit in fewer than m holes so that
every pigeon has its own hole). We will consider the case m = n + 1 encoded as the
CNF formula

PHPn+1
n :=

n+1∧

i=1

⎛

⎝
n∨

j=1

pi, j

⎞

⎠ ∧
n∧

j=1

n∧

i=1

n+1∧

i′=i+1

(¬pi, j ∨ ¬pi′, j
)
,

where each pi, j is a Boolean variable with the interpretation “pi, j is t if and only if
the ith pigeon sits in the jth hole”.

Theorem 1 ([24]) There is no polynomial length RES proof of PHPn+1
n .

It is also known that T-RES is a proper refinement ofRES in the sense that T-RES
cannot polynomially simulate RES.

Theorem 2 ([21, 49]) T-RES cannot polynomially simulate RES.

This originates from the facts that regular resolution cannot simulate RES [5, 21],
and T-RES in turn cannot simulate regular resolution [49].

3.3 The Davis–Putnam–Logemann–Loveland procedure

Most modern complete SAT solvers are based on the Davis–Putnam–Logemann–
Loveland (or DPLL) procedure [16, 17]. Given a CNF formula F as input, DPLL is
a depth-first search procedure building a partial assignment τ for the variables in
F through (i) branching and (ii) unit propagation (UP). In branching, the current
assignment τ is extended with the assignment (decision) 〈x, v〉, where v is either f or
t, for some unassigned variable x. Unit propagation refers to applying the unit clause
rule. The unit clause rules states that if there is a clause (l1 ∨ · · · ∨ lk ∨ l) ∈ F such
that τ(li) = f for each 1 ≤ i ≤ k, the current partial assignment τ can be extended
with 〈l, t〉.

An assignment is extended until (i) some variable x would be assigned both f and t
(a conflict is reached, with x as the conflict variable) or (ii) τ satisfies F (in which case
DPLL terminates). In case (i), non-clause learning DPLL solvers backtrack to the last
branching decision which has not been backtracked upon, undoing all assignments
made by UP after the particular decision, and flip the decision. DPLL terminates on
an unsatisfiable CNF formula when there are no untried branches left.

From the proof theoretic point of view, DPLL can be seen as a tableau proof
system with two rules: the branching rule and the unit clause rule. The branching rule,
corresponding to branching on a variable x, extends the branch into two branches,

Constraints (2009) 14:325–356 333

one of which is extended with the entry x and the other with ¬x. The unit clause rule,
defined above, is similarly applied by extending the branch with l. As typical, a branch
is (fully) extended until we have both of the entries x and ¬x for some variable,
or no new entries can be generated with the branching and unit clause rules. From
an algorithmic point of view, the choice of in which order branches are extended
is part of the solver strategy, and based on a decision heuristic. The other branch
resulting from the particular application of the branching rule is handled through
backtracking. With this intuition, it is clear that a search tree traversed by a DPLL
algorithm corresponds to a binary tableau proof, having the form of a binary tree,
with all branches fully extended. Hence, a DPLL proof will here be such a tableau
proof. The length of a DPLL proof is defined as the number of applications of the
branching rule in the proof.

One-step lookahead (see, e.g., [37]) is an often implemented technique in (non-
clause learning) DPLL algorithms. In one-step lookahead, if there is an assignment
v to a currently unassigned variable x such that the current assignment τ with the
addition of 〈x, v〉 leads to a conflict using unit propagation, then x is immediately
assigned the value ¬v. This technique does not add to the strength of DPLL, since
the same effect can obviously be accomplished by branching on x.

It is well-known that DPLL and T-RES can polynomially simulate each other
(see [8] for example). One can show that for any unsatisfiable CNF formula, a
minimum length DPLL proof, with applications of the unit clause rule “simulated
by branching”, always corresponds one-to-one with a minimum length T-RES proof,
and vice versa.

Fact 1 DPLL and T-RES are polynomially equivalent.

3.3.1 Implication graphs

Implication graphs capture the ways of deriving values for variables with the unit
clause rule from assignments made by branching. We will apply this concept in
the following for defining clause learning. However, first we need some additional
terminology.

A stage of DPLL on a CNF formula F is characterized by the decision literals in
the branch. Considering an arbitrary branch, the variables assigned by branching are
called decision variables and those assigned values by UP are implied variables, with
analogous definitions for decision literals and implied literals. The decision level of a
decision variable x is one more than the number of decision variables in the branch
before branching on x. The decision level of an implied variable x is the number of
decision variables in the branch when x is assigned a value. The decision level of
DPLL at any stage is the number of decision variables in the branch.

For a given CNF formula F and a set of literals L, we denote by F, L �UP l the
fact that l can be deduced from F and L by iteratively applying the unit clause rule.

Definition 1 For a CNF formula F, the implication graph G = 〈V, E〉 at a given stage
of DPLL with the set of decision literals D is a directed graph. The set of nodes is
defined as

V = {�} ∪ D ∪ {l | F, D �UP l},

334 Constraints (2009) 14:325–356

where � is a special conflict node, and the edge relation is

E = {〈¬li, l 〉 | {l1, . . . , lk, l } ∈ F and ¬l1, . . . ,¬lk ∈ V}
∪ {〈x, �〉, 〈¬x, �〉 | x,¬x ∈ V}.

For a given implication graph, a variable x with both x,¬x ∈ V is called a conflict
variable, and x, ¬x are conflict literals. An implication graph contains a conflict if it
contains a conflict variable; DPLL has a conflict at a given stage if the implication
graph at the stage contains a conflict.

3.4 DPLL with clause learning and modern SAT solvers

Clause learning DPLL algorithms differ from non-clause learning algorithms in what
happens when reaching a conflict. If a conflict is reached without any branching,
DPLL (with or without clause learning) determines the formula F unsatisfiable. In
other cases, non-clause learning DPLL algorithm perform simple backtracking as
previously explained. In clause learning DPLL algorithms, however, the conflict is
analyzed, and a learned clause (or conflict clause), which describes the “cause” of the
conflict, is added to F. After this the search is continued typically by applying non-
chronological backtracking (or conflict-driven backjumping) for backtracking to an
earlier decision level that “caused” the conflict. Conflict-driven backjumping results
in the fact that, as opposed to the basic backtracking in DPLL, the other branch
(opposite value) of decision variables is not necessarily forced systematically when
backtracking. In other words, branching in clause learning DPLL is seen simply as
assigning values to unassigned variables, rather than as a branching rule in which by
branching on a variable x the current branch is always extended into two branches,
one with x and the other with ¬x.

3.4.1 Conflict graphs and conflict analysis

Similarly as withDPLL, the stage of a clause learningDPLL algorithm is characterized
by the set of decision literals. At a given stage of a clause learning DPLL algorithm, a
clause is called known if it either appears in the original CNF formula F or has been
learned earlier during the search. Conflict analysis is based on a conflict graph, which
captures one way of reaching the conflict at hand from the decision variables by using
the unit clause rule on known clauses.

Definition 2 Given an implication graph G, a conflict graph H = (V, E) based on G
is any acyclic subgraph of G having the following properties.

1. H contains � and exactly one conflict literal pair x, ¬x.
2. All nodes in H have a path to �.
3. Every node l ∈ V \ {�} either corresponds to a decision literal or has precisely

the nodes ¬l1, ¬l2, . . . ,¬lk as predecessors where {l1, l2, . . . , lk, l} is a known
clause.

A conflict graph describes a single conflict and contains only decision and implied
literals that can be used in reaching the conflict when applying the unit clause rule in
some order. Hence the way of implementing unit propagation in a solver has an effect

Constraints (2009) 14:325–356 335

x13@5

x4@5

x7@5

x2@5

x5@5

x3@1

x9@2

Λ

2-UIP/last UIP cut

1-UIP cut

x5 x8 x3 x12
x4 x8 x12

x12@2

x8@3

x13@5

Fig. 3 Example of a conflict graph, and two possible conflict cuts

on the choice of the conflict graph. The acyclicity of conflict graphs results from the
fact that unit propagation is not used to rederive already assigned literals.

Conflict clauses are associated with cuts in a conflict graph. Fix a conflict graph
contained in an implication graph with a conflict. A conflict cut is any cut in the
conflict graph with all the decision variables on one side (the reason side) and, in
addition to �, at least one conflict literal on the other side (the conflict side). Those
nodes on the reason side with at least one edge going to the conflict side in a conflict
cut form a cause of the conflict. With the associated literals set to t, UP can arrive at
the conflict at hand. The disjunction of the negations of these literals form the conflict
clause associated with the conflict cut. The strategy for fixing a conflict cut is called the
learning scheme. A learning scheme which always learns a currently unknown clause
is called non-redundant.

Example 3 A hypothetical conflict graph is illustrated in Fig. 3. Decision literals are
represented with filled circles, and implied literals with hollow circles. The decision
level d of each literal l is presented with the label l@d. For example, the conflict
variable x13 is at decision level 5. Notice that since the literals at decision level 4 are
missing from this conflict graph, they are not part of the reason for the particular
conflict. In the figure two possible conflict cuts are shown with the associated conflict
clauses.

3.4.2 Unique implication points, conflict-driven backjumping, and CL proofs

Typically implemented clause learning schemes are based on unique implication
points (UIPs) [39]. A UIP in a conflict graph is a node u on the maximum decision
level d such that all paths from the decision variable x at level d to � go through u.

336 Constraints (2009) 14:325–356

Such a u always exists as x satisfies this condition. Intuitively, u is a single reason
for the conflict at level d. Thus one can always choose a conflict cut that results in
a conflict clause with a UIP as the only variable from the maximum decision level.
Such a conflict clause has the property that the UIP variable can be immediately
set to the value opposite to the current assignment using the unit clause rule when
backtracking (the phrase “the UIP is asserted” is sometimes used). Furthermore,
UIP learning schemes enable conflict-driven backtracking (or backjumping), in which
DPLL backtracks to the maximum decision level of the variables other than the UIP
in a conflict clause. A popular version of UIP learning is the 1-UIP scheme, where
a conflict cut is chosen so that the UIP closest to � will be in the associated conflict
clause. Different learning schemes are evaluated in [52], showing the robustness of
the 1-UIP scheme in practice.

Example 4 Recall the conflict graph in Fig. 3. The 1-UIP in this graph is the literal
x4. One conflict cut corresponding to the 1-UIP learning scheme is the cut labeled
“1-UIP cut”. The cut labeled “2-UIP cut/last UIP cut” can result from applying the
second UIP scheme in which a conflict clause with the UIP second closest to � is
chosen. In this example, the “2-UIP cut” is at the same time a cut that can result
from applying the last UIP scheme in which a cut with the decision literal on the
maximum decision level as the UIP is chosen.

For investigating the efficiency of clause learning DPLL in proof complexity
theoretic terms, we need to have a proof system characterization of clause learning
DPLL algorithms. We will use the following characterization, referred to as the CL
proof system. Here we loosely follow the characterization of [9]. A clause learning
proof (or CL proof) induced by a learning scheme S is constructed by applying
branching and the unit clause rule, using S to learn conflict clauses when conflicts
are reached, so that in the end, a conflict can be reached at decision level zero. When
a conflict cut with a UIP is selected, it is possible to apply conflict-driven backjumping
based on the conflict clause. Otherwise, simple backtracking is applied. Notice that
this definition allows even the most general nondeterministic learning scheme [9], in
which the conflict cut is selected nondeterministically from the set of all possible
conflict cuts related to the conflict graph at hand.

Hence, a CL proof can be seen as a tree in which the traversal order is marked in
the nodes. Each leaf node in the tree is labeled with a conflict graph, a conflict cut
in the graph, and the decision level onto which to backjump. Now, the proof system
CL consists of CL proofs under any learning scheme. The length of a CL proof is the
number of branching decisions.

While the practical efficiency gains of implementing clause learning into DPLL-
based algorithms are well-established, the first formal study on the power of clause
learning is [9]: CL can provide exponentially shorter proofs than T-RES even if no
restarts are allowed. Thus we have the following corollary.

Corollary 1 (of Theorem 1 in [9]) DPLL cannot polynomially simulate CL.

3.4.3 Restarts and the CL- - proof system

Restarting is an additional technique often implemented in modern solvers. When a
restart occurs, the decisions and unit propagations made so far are undone, and the

Constraints (2009) 14:325–356 337

search continues from decision level zero. The clauses learned so far remain known
after the restart. Intuitively, restarts help in escaping from getting stuck in hard-to-
prove sub-formulas. In practice, the choice of when and how often to restart is part of
the strategy of a solver. When any number of restarts are allowed during search, we
say that CL has unlimited restarts. For a recent investigation into the effect of restarts
on the efficiency of clause learning DPLL algorithms, see [25].

Beame et al. [9] defineCL- - asCLwith branching allowed also on already assigned
values. Although being non-typical in practice, this enables creating immediate
conflicts at will. Although it is not known whether CL can simulate RES, it has been
shown that this is true for CL- - using unlimited restarts.

Theorem 3 ([9]) RES and CL- - with unlimited restarts and any non-redundant
learning scheme are polynomially equivalent.

We note that the proof of this theorem in [9] relies on the fact that unit propa-
gation is seen as applications of the unit clause rule, and hence the rule can also be
left unapplied when convenient. This is non-typical for implementations of clause
learning DPLL; they usually apply unit propagation eagerly whenever possible.

4 Relating CNF proof systems and circuit structure

A key element in this work is the tight correspondence between a constrained
Boolean circuit C τ and its CNF translation cnf(C τ). In this section we review details
on the correspondence of deduction in the CNF translation of a Boolean circuit
with the original circuit structure, and on how branching in DPLL and CL can be
restricted based on the original circuit structure. These details play an integral role
in the theoretical results presented in the next section.

4.1 Unit propagation on the level of circuits

As there is a one-to-one relationship between the gates in a constrained Boolean
circuit C τ and the variables in the corresponding CNF formula cnf(C τ), the variables
can be thought to inherit the structural properties of the gates. For example, an input
variable is a variable that corresponds to an input gate in the original Boolean circuit,
and we will take the liberty of using the terms “gate” and “variable” synonymously.
Furthermore, since the CNF translation in Table 1 encodes in a natural way the
semantics of the gates, unit propagation in the CNF formula can be seen as working
on the level of the circuit. A further discussion on this can be found e.g. in [29], using
a unit propagation equivalent characterization of Boolean constraint propagation
as deduction rules for circuits [31]. Basically, such circuit level Boolean constraint
propagation can set a value on a gate if and only if unit clause propagation can set a
value on the corresponding Boolean variable in the CNF translation. For example,
consider the gate g := and(g1, g2) and its CNF translation (¬g̃ ∨ g̃1) ∧ (¬g̃ ∨ g̃2) ∧
(g̃ ∨ ¬g̃1 ∨ ¬g̃2). Now whenever the gate g2 is assigned to f, the gate g can be
propagated to f by the semantics of and. On the CNF level, we can equivalently
propagate the variable g̃ to f by applying the unit clause rule whenever the variable g̃2

is assigned to f through the clause (¬g̃ ∨ g̃2). The same kind of equivalent behaviour

338 Constraints (2009) 14:325–356

is noticed in a “top-down” fashion when assigning the gate g to t: on the circuit-level,
the gates g1 and g2 can be propagated to t, and on the CNF level we can equivalently
propagate the variables g̃1 and g̃2 to t through the clauses (¬g̃ ∨ g̃1) and (¬g̃ ∨ g̃2),
respectively, by applying the unit clause rule whenever the variable g̃ is assigned to t.

Hence we will also take the liberty of saying that unit propagation sets a value on a
gate when referring to unit propagation setting a value on the corresponding Boolean
variable in the CNF translation. Similarly, we branch on a gate when referring to
branching on the corresponding Boolean variable. Correspondingly, a DPLL or CL
proof of a constrained circuit C τ means a proof of the translation cnf(C τ).

Since unit propagation can be also seen as Boolean constraint propagation
on the level of constrained circuits, DPLL can also be implemented as a circuit
level procedure, see, e.g., [31, 35, 38, 46]. Since conflict graphs are based on how
the unit clause rule is applied, clause learning can also be incorporated in such
circuit level DPLL-based solvers [35, 46]. Thus the results in this paper concerning
the relative power of input-restricted clause learning DPLL hold for such circuit
level approaches, too. Finally, we note that for instance [35] does not consider
input-restricted branching but applies a top-down branching based on justification
frontiers. The relative proof complexity theoretic power of the related top-down
branching restrictions is analyzed in [28, 29].

4.2 Restricting branching in DPLL and CL to inputs

In structured application domains of SAT solvers, such as automated planning and
bounded model checking of hardware and software, the problem at hand is based on
a transition relation, where the behavior of the underlying system is dependent solely
on the input of the system. In the Boolean circuit encoding C τ of such a structured
problem, the input is represented by the set of input gates of the circuit, inputs(C).
Since the values of the other gates in the circuit can be evaluated when all the gates
in inputs(C) have values, branching in DPLL with unit propagation can be restricted
to the variables associated with inputs(C) without losing completeness. Intuitively,
the idea is that since the number of input gates |inputs(C)| is often much less than the
total amount |G| of gates in C , the search space size is reduced from 2|G| to 2|inputs(C)|,
where |inputs(C)| � |G|.

By allowing branching in the DPLL and CL proof systems on input gates only,
we arrive at the proof systems DPLLinputs and CLinputs, respectively. From the view
of proof complexity, however, in [29] a formal study on the effect of restricting
branching in DPLL (without clause learning) to inputs(C) reveals that this weakens
the proof system considerably.

Theorem 4 ([29]) DPLLinputs cannot polynomially simulate DPLL.

In the following section, we investigate the proof complexity theoretic effect
of input-restricted branching in the context of clause learning DPLL-based SAT
solving, which is posed as an open question in [29]. In Section 6 we complement
this theoretical study by providing an experimental evaluation of the effect of input-
restricted branching.

Constraints (2009) 14:325–356 339

5 Restricted branching and proof complexity

We will now consider the relative proof complexity theoretic power of input-
restricted and unrestricted branching CL and DPLL. This will result in the refined
relative efficiency hierarchy of DPLL and CL shown in Fig. 4. An arrow without a
slash from system S to S′ means that S can polynomially simulate S′, and with a slash
that S cannot simulate S′. Arrows labeled with a ∗ are due to trivial subsumption.
The new results, detailed in the following, are represented by dashed arrows. The
missing arrows, disregarding those implied by the transitivity of the results, represent
questions which are open to the best of our knowledge.

The main result of this paper is characterized by the following theorem.

Theorem 5 DPLL and CL- -inputs (with or without restarts) are incomparable.

This is a direct corollary of the forthcoming Lemmas 1 and 3. Thus we get the
following as a direct corollary.

Corollary 2 CL- -inputs with unlimited restarts cannot polynomially simulate CL.

We now proceed by proving Theorem 5 in two parts. First we show by a simple
argument why DPLL cannot simulate CLinputs. We then discuss further the difference
between CLinputs and DPLLinputs by exhibiting an example of a family of Boolean
circuits on which CLinputs can simulate CL, while DPLLinputs cannot simulate DPLL.
The motivation here is two-fold. On one hand, this shows the power of clause
learning even when branching is restricted to inputs. On the other hand, the example
gives an intuitive explanation of why the result in [29] on the power of DPLLinputs
with respect to DPLL cannot be directly adapted for proving the analogous result for
CLinputs. Although CLinputs can simulate CL on this particular family of circuits, this is
not the case in general for other families. After the example, we proceed by showing
that in fact, CL- -inputs, even with conflict-driven backjumping and unlimited restarts,
cannot even simulateDPLL. The proof relies on so called redundant gates, and applies
known results on the very powerful Extended Resolution proof system [47].

- -

- -

[29] [9]
[9]

Fact 1

corollary of [21,49]

*

*

*

*

**

*

Fig. 4 A refined relative efficiency hierarchy for the proof systems considered in this work

340 Constraints (2009) 14:325–356

5.1 DPLL cannot simulate CLinputs

We now show that DPLL cannot simulate CLinputs. This results from the fact that
DPLL cannot simulateCL by additionally noticing thatCL andCLinputs are equivalent
when considering circuits representing CNF formulas.

Lemma 1 There is an infinite family of constrained Boolean circuits for which DPLL
has superpolynomially longer minimum proofs than CLinputs.

Proof Take any infinite family {Fn} of CNF formulas that is a witness of
Corollary 1 stating that DPLL cannot simulate CL. Define the family of Boolean cir-
cuits {circuit(F) | F ∈ {Fn}}. The simplified CNF formula resulting from applying unit
propagation to cnf(circuit(F)) is effectively the same as the simplified CNF formula
resulting from applying unit propagation to F; especially, the or-gate variables in
cnf(circuit(F)) that represent the clauses in F are all assigned to t. Thus CL will only
branch on the variables in cnf(circuit(F)) that are associated with the input gates of
circuit(F) or their negations. ThusCLinputs can simulateCL on cnf(circuit(F)), and the
claim follows by Corollary 1. ��

As a direct corollary, we have

Corollary 3 Neither DPLL nor DPLLinputs can polynomially simulate CLinputs.

Before considering whether CLinputs can simulate CL or DPLL, we next give
a motivating example which illustrates why the results in [29] on the power of
DPLLinputs with respect toDPLL cannot be directly adapted for proving the analogous
result for CLinputs.

5.2 A further motivating example

To highlight the strength of clause learning even when branching is restricted to
input gates, we now give an example of a family, {UNSAT-2PARn} where n ≥ 3,
of Boolean circuits on which CLinputs can simulate CL applying the 1-UIP learning
scheme, although DPLLinputs cannot simulate DPLL on the family. The circuit

UNSAT-2PARn := UNSAT ∪ 〈
PARa

n ∪ PARb
n , ∅〉

consists of two parts:

– the constant size circuit

UNSAT := circuit ({{a, b}, {a,¬b}, {¬a, b}, {¬a,¬b}}) , and

– two copies (for a and b , ρ ∈ {a, b}) of the circuit structure

PARρ
n := {

ρ := xor
(
yρ

1 , xρ

1

)} ∪
n−3⋃

i=1

{
xρ

i := xor
(
yρ

i+1, xρ

i+1

)}

∪ {
xρ

n−2 := xor
(
yρ

n−1, yρ
n

)}
.

Constraints (2009) 14:325–356 341

Fig. 5 The constrained
Boolean circuit
UNSAT-2PARn for n = 4

Basically, PARρ
n computes the parity of the n input gates yρ

1 , . . . , yρ
n , evaluating

to true if and only if an odd number of them are true.

The circuit UNSAT-2PAR4 is shown in Fig. 5. Now, since unit propagation
will result in a conflict in the UNSAT sub-circuit for any value of the gate a,
UNSAT-2PARn yields a trivial (constant length) proof in DPLL. It is also easy to
see that minimum length proofs of UNSAT-2PARn are exponential with respect to
n in DPLLinputs. This is because, due to the structure of PARρ

n , in order to propagate
a value for the gate a or b , DPLLinputs has to branch on all of the inputs in the
corresponding PARρ

n sub-circuit. With the chronological backtracking process of
DPLL this implies that minimum length DPLLinputs proofs of UNSAT-2PARn are
exponential with respect to n.

However, CLinputs can produce linear length proofs on the family. In the following
we will say that CL (or DPLL) branches according to a sequence of assignments (x1 =
v1, x2 = v2, . . .), if it always branches by assigning the value to the variable given
by the next assignment in the sequence, i.e., we would first branch by assigning x1

the value v1, and so forth. Now, let CLinputs branch according to the sequence (ya
1 =

f, . . . , ya
n−1 = f). After this, unit propagation cannot still propagate a value on the

gate a, any of the xa
i gates, or any gate in the UNSAT sub-circuit. Then branch with

ya
n = f. Now unit propagation sets values for all xa

i gates without a conflict. The values
for xa

1 and ya
1 propagate the value f for a, which then propagates a conflict at a gate in

UNSAT. Notice that xa
1 and ya

1 are the only reasons for the value of a. In any conflict
graph associated with the branching sequence (ya

1 = f, . . . , ya
n = f), ¬a is a 1-UIP,

and, furthermore, constitutes a reason for the conflict on its own. Hence CLinputs can
learn as a unit clause the opposite value of a, and backjump to the decision level zero.

342 Constraints (2009) 14:325–356

This opposite value will then propagate a conflict without branching, and CLinputs
terminates.

It is interesting to notice how CLinputs can branch on (ya
1 = f, . . . , ya

n = f) and still
avoid backtracking on these decisions since there is the bottleneck at gate a due
to the construction of UNSAT-2PARn. This shows the strength of clause learning
with conflict-driven backjumping—even with input-restricted branching—due to its
ability to backjump over an exponential size search space by detecting small locally
inconsistent sub-formulas. With this intuition, it is evident that the results in [29] on
the power of DPLLinputs with respect to DPLL cannot be directly adapted for proving
the analogous result for CLinputs.

5.3 CL- -inputs cannot simulate DPLL

Although CLinputs can simulate CL on the {UNSAT-2PARn} family, this is generally
not the case for other families. In fact, it turns out that CL- -inputs cannot even simulate
DPLL, as detailed next.

We will apply the concept of redundant gates in constrained Boolean circuits.

Definition 3 A gate in a constrained Boolean circuit C τ is redundant if it is uncon-
strained and not a descendant of any constrained gate.

We will assume that circuits do not contain redundant input gates; such inputs
can always be assigned an arbitrary truth value without affecting satisfiability. As
shown next, when considering CL- -inputs, redundant gates cannot appear in conflict
graphs. Intuitively, this is because redundant gates can only have a value due to unit
propagation “upwards” (from child to parent) on the circuit structure in CL- -inputs;
as they, or any of their parents, are not constrained by definition, they cannot cause
a conflict or be a part of a unit propagation chain responsible for a conflict. As a
consequence of this, redundant gates can never appear in conflict clauses derived by
CL- -inputs.

Lemma 2 Let C τ be an arbitrary constrained Boolean circuit. Considering CL- -inputs
on input cnf(C τ), redundant gates do not occur in any conflict graph at any stage of
CL- -inputs. This holds whether or not restarts are allowed.

Proof Take any constrained Boolean circuit C τ . The stages in which CL- -inputs does
not have a conflict are trivial. Now assume that the lemma holds at a stage where
CL- -inputs has made m conflicts. Consider the stage producing the (m + 1)th conflict
and any conflict graph associated with the conflict. We next show that the conflict
graph contains no redundant gates. Take any redundant gate g in C τ . If it is not
assigned, it cannot appear in the conflict graph. Now assume that g is assigned. Since
g is redundant, it cannot be constrained by τ . Furthermore, g is not an input gate (by
the assumption we made above), and thus g is assigned not because it was branched
on. Therefore, g has been assigned by unit propagation. Now there are three cases.

– By the induction hypothesis, there are no known learned clauses containing
redundant gates before the (m + 1)th conflict, and therefore g is not assigned
by unit propagation on a learned clause.

Constraints (2009) 14:325–356 343

– The gate g is assigned because some of its children are assigned, i.e., by unit
propagation on one of the clauses in cnf(C τ) resulting from the equality g ⇔
f (g1, . . . , gn). Once g becomes assigned in this way, all these clauses become
satisfied. Therefore, the value assigned to g by unit propagation could not have
caused any of the children of g to be assigned.

– The gate g is assigned due to an assigned value on a parent g′ of g, i.e., by unit
propagation on one of the clauses in cnf(C τ) resulting from the equality g′ ⇔
f (. . . , g, . . .). Since g is redundant, g′ is also redundant. By the arguments above,
the only way for g′ to have been assigned in this situation is due to one of its
parents’ assigned value. Inductively, this leads to the fact that a redundant output
gate o should have been assigned by unit propagation because one of o’s parents
has been assigned. This is a contradiction, since output gates have no parents.
Therefore, the redundant gate g cannot be assigned because one of its parents is
assigned.

Hence, the only reason for a redundant gate to be assigned is that some of its
children are assigned. Furthermore, the value of an assigned redundant gate can only
propagate values to its parents (which are also redundant). On the other hand, since
redundant gates are not constrained by τ , g cannot act as the conflict variable in the
conflict graph. Therefore, there cannot be any path from g to the conflict node in the
implication graph which the conflict graph is based on. This proves that a redundant
gate cannot occur in the conflict graph. ��

Although redundant gates can be removed from any constrained Boolean circuit
without affecting its satisfiability, they may have an effect on the length of shortest
proofs. Cook [12] gives a way of introducing a polynomial number of clauses which
can be interpreted as redundant gates to circuit(PHPn+1

n) so that, contrarily to
circuit(PHPn+1

n), the extended circuit yields polynomial length proofs in RES. As a
circuit structure, this extension is defined as EXTn := ⋃n+1

l=3 EXTl , where

EXTl :=
l−1⋃

i=1

l−2⋃

j=1

{
ol−1

i, j := and
(

el
i,l−1, el

l, j

)
, el−1

i, j := or
(

el
i, j, ol−1

i, j

)}
,

and each en+1
i, j is the gate pi, j in circuit(PHPn+1

n). A part of EXTn is illustrated in Fig. 6.
The output gates of EXTn are e2

1,1 and e2
2,1, e3

3,2, . . . , en
n,n−1.

Due to the result in [12], we immediately have a polynomial lengthRES proof π =
(C1, . . . , Cm = ∅) of the extended PHPn+1

n formula cnf(circuit(PHPn+1
n) ∪ 〈EXTn,∅〉).

Intuitively, EXTl allows reducing PHPl+1
l to PHPl

l−1 with a polynomial number of
resolution steps. However, since in [12] such a proof is not given explicitly, we include
a detailed description of the proof in Appendix. For the following, what is most
important is that such a short proof π exists, not really the actual details of π .1 The
details of π , along with EXTn, are included here for the sake of concreteness and
illustration.

1See Remark 6 in Section 5.4 for more details.

344 Constraints (2009) 14:325–356

Fig. 6 Part of Cook’s
extension EXTn to PHPn+1

n
as a circuit

Using the above-described polynomial length RES proof π = (C1, C2, . . . , Cm =
∅) for cnf(circuit(PHPn+1

n) ∪ 〈EXTn,∅〉), we define the circuit construct

E(π) :=
m−1⋃

i=1

{
gCi := or

(
g1, . . . , g j, ĝ j+1, . . . , ĝk

) | Ci = {
g̃1, . . . , g̃ j, ¬g̃ j+1, . . . ,¬g̃k

}}

∪
m−1⋃

i=1

{
ĝ := not(g) | g̃ ∈ vars−(Ci)

}
.

That is, each clause Ci in the RES proof π is simply represented as a corresponding
or-gate.

This allows a simple polynomial length DPLL proof of

EPHPn+1
n := circuit(PHPn+1

n) ∪ 〈EXTn,∅〉 ∪ 〈E(π), ∅〉,

while there is no polynomial length proof of EPHPn+1
n in CL- -inputs. Intuitively this is

because E(π) allows DPLL to “verify” the resolution proof of PHPn+1
n extended with

EXTn step-by-step, while CL- -inputs cannot make use of the redundant gates of EXTn

and E(π). For a high-level view of the structure of EPHPn+1
n , see Fig. 7.

Fig. 7 High-level view
of EPHPn+1

n

Constraints (2009) 14:325–356 345

Lemma 3 For the infinite family {EPHPn+1
n } of constrained Boolean circuits,CL- -inputs

with unlimited restarts has superpolynomially longer minimum-length proofs than
DPLL.

Proof A polynomial length DPLL proof of EPHPn+1
n is witnessed by the branching

sequence (gC1 = f, gC2 = f, . . . , gCm−1 = f), as detailed next. By induction on i, we will
show that, if gC1 = t, . . . , gCi−1 = t, then branching with gCi = f results in a conflict by
unit propagation, and hence immediately sets gCi = t.

The base case. The gate gC1 represents the first clause C1 in π , and thus C1 must
belong to cnf(circuit(PHPn+1

n) ∪ 〈EXTn,∅〉). As C1 is a result of applying the cnf
translation to a gate g in circuit(PHPn+1

n) ∪ 〈EXTn,∅〉 (which is part of EPHPn+1
n),

setting gC1 = f will result in a conflict after unit propagation because the functional
definition or the constraint of the gate g is violated. For example, if g := or(g1, g2)

and C1 = (g̃ ∨ ¬g̃1), then gC1 := or(g, ĝ1) with ĝ1 := not(g1), and the assignment
gC1 = f will propagate g = f and g1 = t, violating the definition of g and thus resulting
in a conflict.

Now assume as the induction hypothesis that we have gCi′ = t for all 1 ≤ i′ < i.
Next branch with gCi = f. If the ith clause Ci in π belongs to cnf(circuit(PHPn+1

n) ∪
〈EXTn,∅〉), branching on gCi = f will result in a conflict after unit propagation as in
the base case. Otherwise Ci has been derived from two clauses, C j = C′

j ∪ {g̃} and
Ck = C′

k ∪ {¬g̃}, in π for 1 ≤ j, k < i, by resolving on the variable g̃. By the induction
hypothesis we have gC j = t and gCk = t. On the other hand, as gCi = f, all the
gates corresponding to the literals in C′

j ∪ C′
k are assigned to f by unit propagation,

implying that unit propagation will assign both g = t and g = f as gC j = gCk = t. Thus
a conflict is reached, closing the branch gCi = f, and gCi = t is set by backtracking.

Finally, since Cm = ∅ ∈ π , there are unit clauses C j = {
g̃
}

and Ck = {¬g̃
}

in π ,
where 1 ≤ j, k < m. Without loss of generality, assume that j < k. By induction, at
latest after branching with gCk = f and setting gCk = t by backtracking, we will have
gC j = gCk = t in the branch, and thus both g = t and g = f, a conflict. This closes the
last branch, and we have a linear size DPLL proof of EPHPn+1

n .
Now consider proofs of EPHPn+1

n inCL- -inputs. The non-input gates in 〈EXTn,∅〉 ∪
〈E(π),∅〉 are all redundant in EPHPn+1

n , and they cannot be part of a reason for
any conflict in CL- -inputs (Lemma 2). Thus any CL- -inputs proof of EPHPn+1

n contains
a CL- -inputs proof of PHPn+1

n , which cannot be of polynomial length (Theorems 1
and 3). ��

Theorem 5 now follows directly from Lemmas 1 and 3.

5.4 Additional remarks

Closely related to Lemma 3 and the applied construction EPHPn+1
n , we make the

following additional remarks.

1. Due to the fact that redundant gates do not occur in any conflict graph of
CL- -inputs, Lemma 3 covers all clause learning schemes based on conflict cuts,
including, for example, schemes which learn multiple clauses at each conflict [39].
Additionally, conflict clause forgetting schemes, which are applied in typical
clause learning solvers such as [18], do not affect this result.

346 Constraints (2009) 14:325–356

Fig. 8 Local change to the EPHPn+1
n circuit for removing redundancy of gates in E(π) and EXTn

2. We use redundant gates in the EPHPn+1
n construction for simplicity of the proof

of Lemma 3; by a simple modification of EPHPn+1
n one can construct as a witness

for Lemma 3 a constrained circuit with no redundant gates and a single output
as the only constrained gate. The basic idea, illustrated in Fig. 8, is to make a
small local change to the EPHPn+1

n circuit construct. In more detail, introduce the
or-gate o1 over the output gates e2

1,1, e2
2,1, . . . , en

n,n−1 in EXTn. Similarly, introduce
the or-gate o2 over the output gates gC1 , . . . , gCm−1 in E(π). Now, introduce an
or-gate over o1 and o2. Then, introduce a gate z that is the or of this gate and a
new gate not(o1). Finally, constrain the and of this gate and the output gate of
the unconstrained version of circuit(PHPn+1

n) to t. The resulting circuit family can
be used in proving Lemma 3 as the values propagated to the non-input gates in
EXTn and E(π) cannot be part of any conflict graph in CL- -inputs. This is because
the gate z always evaluates to t; it corresponds to a tautology of form ¬a ∨ (a ∨ b)

and thus effectively makes EXTn and E(π) redundant.
3. Since redundant gates can be removed from constrained Boolean circuits without

affecting the existence of satisfying assignments, such gates are typically removed
in practice before the CNF translation and SAT solving by using the so-called
cone-of-influence reduction [31]. However, applying the cone-of-influence reduc-
tion can have a drastic negative effect on minimum length proofs: if one applies
the cone-of-influence reduction to the circuit family EPHPn+1

n , one obtains the
family PHPn+1

n for which CL- - does not have polynomial length proofs although
the much weaker system DPLL has short proofs for the original family EPHPn+1

n
(as shown in the proof of Lemma 3).

4. It is interesting to notice that DPLL solvers with full one-step lookahead can
detect the small proofs of EPHPn+1

n witnessed by the branching sequence

Constraints (2009) 14:325–356 347

(gC1 = f, gC2 = f, . . . , gCm−1 = f). In particular, for each i, lookahead on gCi = f
when having gC j = t for all j < i in the branch will result in an immediate conflict
using unit propagation, as detailed in the proof of Lemma 3.

5. The Cook’s extension (a variant of EXTn) presented in [12] is motivated by
investigations into the power of the Extended Resolution proof system defined by
Tseitin [47]. Extended Resolution is the result of adding an extension rule toRES,
which allows for iteratively adding definitions of the form x ⇔ l1 ∧ l2 (or, as a set
of clauses, {{x,¬l1,¬l2}, {¬x, l1}, {¬x, l2}}) to the CNF formula, where x is a new
variable and l1, l2 are literals in the current formula. This is equivalent to adding
a redundant binary and gate of the literals l1, l2 to a constrained Boolean circuit.
Notably, it is known that Extended Resolution is among the most powerful proof
systems, and can simulate, e.g., Frege systems (see [34] for more details).

6. Instead of the pigeon-hole problem PHPn+1
n , Cook’s extension EXTn to it, and

the resolution proof π of their combination, one could use any CNF formula
F that (i) does not have a polynomial length resolution proof but (ii) has
a polynomial length extended resolution proof to prove a result similar to
Lemma 3. That is, for such formula F, DPLL has a polynomial length proof of
circuit(F) ∪ 〈EXTF ,∅〉 ∪ 〈E(πF),∅〉 while CL- -inputs does not, where EXTF is the
polynomial length extension of F and πF is a polynomial length resolution proof
of cnf(circuit(F) ∪ 〈EXTF ,∅〉).

7. The additional extension E(π) applied above is motivated by a similar construc-
tion which can be used for simulating Frege proofs with their tree-like variants
(see [34, Chapter 4]).

6 Experiments

We evaluate the effect of restricting branching to input variables on the functionality
of modern clause learning solver techniques. The set of benchmarks2 used in
the experiments consists of instances from various application domains, for which
Boolean circuits offer a natural representation form: super-scalar processor verifi-
cation [50], integer factorization based on hardware multipliers [43], equivalence
checking of hardware multipliers [26], bounded model checking (BMC) for dead-
locks in asynchronous parallel systems represented as labelled transition systems
(LTS) [32], and linear temporal logic (LTL) BMC of finite state systems with a
compact encoding [36]. We use standard PCs with 2-GHz AMD 3200+ processors
and two gigabytes of memory running Linux, and apply a timeout of one hour and a
memory limit of one gigabyte to each SAT solver execution.

For solving the Boolean circuit instances, we apply BCMinisat3 (version 0.26),
which we have modified in order to restrict branching to input variables. BCMinisat is

2The set of Boolean circuit benchmarks is available at http://www.tcs.hut.fi/~mjj/benchmarks/.
3Part of the BCTools package, http://www.tcs.hut.fi/~tjunttil/bcsat/.

http://www.tcs.hut.fi/~mjj/benchmarks/
http://www.tcs.hut.fi/~tjunttil/bcsat/

348 Constraints (2009) 14:325–356

a Boolean circuit front-end for the successful clause learning SAT solver Minisat [18]
(version 1.14). BCMinisat accepts as input Boolean circuits with various Boolean
functions allowed as gate types, performs circuit-level preprocessing, including
Boolean propagation, substructure sharing, and cone-of-influence reductions to the
circuit, normalizing the circuit into a form which can be translated into CNF applying
a standard translation in the style of cnf defined in Table 1. BCMinisat feeds the
resulting CNF translation and the input-restriction to Minisat, which then solves the
CNF. For each circuit, we obtain 15 CNF instances by permuting the CNF variable
numbering.

Minisat implements 1-UIP clause learning. After each conflict the heuristic value
of each variable on the conflict side and in the conflict clause is incremented by one,
and the values of all variables are decremented by 5%. To avoid hindering efficiency
by learning massive amounts of clauses, the solver also uses a scheme for forgetting
learned clauses that have not occurred on the conflict side in recent conflicts.

6.1 Results

Table 2 gives the minimum, median, and maximum number of decisions for
BCMinisat and input-restricted BCMinisat (BCMinisatinputs) for each benchmark
instance. For the instances based on hardware multiplication designs, for which the
number of unassigned input variables is 2% or less out of all unassigned variables,
BCMinisatinputs shows an advantage over BCMinisat with respect to the number of
decisions. However, for the hardware verification and BMC instances, the overall
performance of BCMinisatinputs is much worse, with timeouts on all verifica-
tion and half of the LTL BMC instances. The possible gains of applying input-
restricted branching seem to correlate with a very low relative number of input
variables. On the equivalence checking instances, we notice that the number of
decision for BCMinisatinputs is more than the brute-force upper bound, e.g., for
eq-test.atree.braun.10 around 1.4 − 1.8 × 106, compared to the brute-force
bound 220 ≈ 1.0 × 106. Considering that we are using a state-of-the-art clause learn-
ing solver, this surprising result is likely due to conflict clause forgetting;4 when
forgetting a conflict clause C, the solver may have to re-examine the search space
characterised as unsatisfiable by C. Figure 9 gives a cumulative plot of the number of
solved instances, showing a drastic decrease in performance for the input-restriction.

The effect of input-restriction varies depending on whether unsatisfiable or sat-
isfiable instances are considered (Fig. 10). For the unsatisfiable instances the plot
correlates well with Corollary 2, with timed out runs on the horizontal line. For
satisfiable instances, there seems to be no clear winner, although when selecting
from the relative small set of input variables, the probability of choosing a satisfying
assignment is intuitively greater.

We also observe that the VSIDS branching heuristics [40] applied in Minisat
might not work as intended with the input-restriction. The number of unbranchable
variables which have better heuristic values than the best branchable variable can be
high per decision (median of averages: ud in Table 2), e.g., for eq-test.atree.

4For more evidence corroborating this claim, see [30].

Constraints (2009) 14:325–356 349

T
ab

le
2

M
in

im
um

(m
in

),
m

ed
ia

n
(m

ed
),

an
d

m
ax

im
um

(m
ax

)
of

nu
m

be
r

of
de

ci
si

on
s

fo
r

B
C

M
in

is
at

an
d

B
C

M
in

is
at
in
pu
ts

,w
it

h
nu

m
be

r
of

ti
m

eo
ut

s
in

pa
re

nt
he

si
s

In
st

an
ce

sa
t

#i
np
ut
s

N
um

be
r

of
de

ci
si

on
s

B
C

M
in

is
at

B
C

M
in

is
at
in
pu
ts

m
in

m
ed

m
ax

m
in

m
ed

m
ax

ud
bb

Su
pe

r-
sc

al
ar

pr
oc

es
so

r
ve

ri
fic

at
io

n
f
v
p
.
2
.
0
.
3
p
i
p
e
.
1

N
o

18
6

(8
.2

)
61

53
1

38
43

86
12

25
13

4
–

(1
5)

–
(1

5)
–

(1
5)

–
–

f
v
p
.
2
.
0
.
3
p
i
p
e
_
2
_
o
o
o
.
1

N
o

30
5

(1
1.

7)
75

96
2

18
47

98
42

64
89

–
(1

5)
–

(1
5)

–
(1

5)
–

–
f
v
p
.
2
.
0
.
4
p
i
p
e
_
1
_
o
o
o
.
1

N
o

54
4

(1
0.

4)
18

89
92

20
90

48
27

19
82

–
(1

5)
–

(1
5)

–
(1

5)
–

–
f
v
p
.
2
.
0
.
4
p
i
p
e
_
2
_
o
o
o
.
1

N
o

54
7

(9
.8

)
10

33
60

7
20

94
61

7
52

41
78

1
–

(1
5)

–
(1

5)
–

(1
5)

–
–

f
v
p
.
2
.
0
.
5
p
i
p
e
_
1
_
o
o
o
.
1

N
o

84
5

(8
.9

)
33

62
81

74
62

31
18

38
59

9
–

(1
5)

–
(1

5)
–

(1
5)

–
–

E
qu

iv
al

en
ce

ch
ec

ki
ng

ha
rd

w
ar

e
m

ul
ti

pl
ie

rs
e
q
-
t
e
s
t
.
a
t
r
e
e
.
b
r
a
u
n
.
8

N
o

16
(2

.3
)

18
04

49
28

56
65

33
98

05
65

78
5

73
83

4
82

37
2

88
.5

0.
02

e
q
-
t
e
s
t
.
a
t
r
e
e
.
b
r
a
u
n
.
9

N
o

18
(2

.0
)

89
89

17
10

55
51

1
13

17
78

5
32

36
88

38
53

98
38

98
90

10
6.

6
0.

02
e
q
-
t
e
s
t
.
a
t
r
e
e
.
b
r
a
u
n
.
1
0

N
o

20
(1

.8
)

37
55

37
5

45
40

59
8

50
89

44
3

14
28

95
7

15
90

39
0

17
87

29
5

12
7.

9
0.

01

In
te

ge
r

fa
ct

or
is

at
io

n
a
t
r
e
e
.
s
a
t
.
3
4
.
0

Y
es

60
(0

.6
)

15
67

33
22

87
92

76
16

20
24

82
0

20
88

80
27

78
96

21
.9

0.
04

a
t
r
e
e
.
s
a
t
.
3
6
.
5
0

Y
es

64
(0

.6
)

25
12

18
72

14
74

93
71

52
31

65
90

57
15

33
78

87
62

18
.4

0.
04

a
t
r
e
e
.
s
a
t
.
3
8
.
1
0
0

Y
es

68
(0

.6
)

28
49

80
10

95
19

2
–

(1
)

19
03

30
49

80
92

10
82

72
9

–
–

a
t
r
e
e
.
u
n
s
a
t
.
3
2
.
0

N
o

57
(0

.7
)

14
14

19
16

35
08

18
09

73
12

35
02

13
87

97
16

25
46

15
.3

0.
04

a
t
r
e
e
.
u
n
s
a
t
.
3
4
.
5
0

N
o

60
(0

.6
)

24
83

71
28

73
51

40
44

18
22

31
30

24
43

82
30

14
64

18
.0

0.
04

a
t
r
e
e
.
u
n
s
a
t
.
3
6
.
1
0
0

N
o

64
(0

.6
)

52
72

37
62

38
89

91
58

10
43

15
76

48
04

69
57

83
31

19
.4

0.
03

b
r
a
u
n
.
s
a
t
.
3
2
.
0

Y
es

61
(2

.2
)

27
48

0
82

12
2

14
01

50
56

75
81

26
9

13
50

93
25

.6
0.

05
b
r
a
u
n
.
s
a
t
.
3
4
.
5
0

Y
es

65
(2

.1
)

30
71

7
15

22
24

35
34

64
43

92
4

11
06

14
22

33
06

25
.3

0.
05

b
r
a
u
n
.
s
a
t
.
3
6
.
1
0
0

Y
es

69
(2

.0
)

12
97

71
44

77
16

58
94

49
86

13
4

37
48

84
75

26
45

19
.4

0.
05

b
r
a
u
n
.
u
n
s
a
t
.
3
2
.
0

N
o

60
(2

.2
)

10
76

17
12

25
50

15
60

04
96

89
4

11
94

37
15

01
21

10
.4

0.
06

b
r
a
u
n
.
u
n
s
a
t
.
3
4
.
5
0

N
o

64
(2

.0
)

21
56

24
26

38
45

34
18

55
21

31
99

25
84

46
31

68
19

9.
1

0.
06

b
r
a
u
n
.
u
n
s
a
t
.
3
6
.
1
0
0

N
o

68
(1

.9
)

51
47

25
62

36
71

80
76

10
53

35
75

64
01

11
67

44
70

8.
9

0.
06

350 Constraints (2009) 14:325–356

T
ab

le
2

(c
on

ti
nu

ed
)

In
st

an
ce

sa
t

#i
np
ut
s

N
um

be
r

of
de

ci
si

on
s

B
C

M
in

is
at

B
C

M
in

is
at
in
pu
ts

m
in

m
ed

m
ax

m
in

m
ed

m
ax

ud
bb

B
M

C
fo

r
de

ad
lo

ck
s

in
L

T
Ss

d
p
_
1
2
.
i
.
k
1
0

N
o

48
0

(1
6.

0)
51

39
35

63
97

56
98

75
95

24
97

57
0

–
(1

0)
–

(1
0)

–
–

k
e
y
_
4
.
p
.
k
2
8

N
o

96
7

(1
0.

9)
12

15
52

14
70

63
16

93
86

13
83

61
18

48
75

22
01

07
3.

7
0.

53
k
e
y
_
4
.
p
.
k
3
7

Y
es

15
07

(9
.8

)
56

78
4

32
15

52
15

49
27

1
75

74
66

31
52

–
(1

)
–

–
k
e
y
_
5
.
p
.
k
2
9

N
o

12
12

(1
0.

7)
19

31
39

22
38

67
31

02
07

23
08

44
34

32
55

40
56

86
3.

9
0.

54
k
e
y
_
5
.
p
.
k
3
7

Y
es

17
96

(9
.8

)
10

44
96

42
13

24
15

40
17

4
19

02
7

10
41

80
7

–
(3

)
–

–
m
m
g
t
_
4
.
i
.
k
1
5

N
o

45
6

(1
0.

9)
21

02
88

28
75

99
45

70
09

58
29

98
11

05
98

6
21

70
04

8
4.

2
0.

41
q
_
1
.
i
.
k
1
8

N
o

56
6

(1
3.

1)
16

81
56

35
34

21
50

72
46

37
54

93
92

90
19

13
49

78
5

3.
7

0.
49

L
T

L
B

M
C

by
lin

ea
r

en
co

di
ng

1
3
9
4
-
4
-
3
.
p
1
n
e
g
.
k
1
0

N
o

18
45

(5
.6

)
14

18
22

15
52

95
16

49
00

13
84

68
14

85
45

15
68

39
6.

6
0.

34
1
3
9
4
-
4
-
3
.
p
1
n
e
g
.
k
1
1

Y
es

20
23

(5
.5

)
72

98
8

12
87

08
20

36
47

34
61

9
55

57
5

18
94

34
9.

0
0.

32
1
3
9
4
-
5
-
2
.
p
0
n
e
g
.
k
1
3

N
o

19
40

(5
.0

)
12

58
40

14
39

28
15

83
20

14
61

44
15

65
27

18
64

68
6.

7
0.

32
b
r
p
.
p
t
i
m
o
n
e
g
n
v
.
k
2
3

N
o

46
1

(6
.7

)
10

63
38

13
05

77
25

90
25

19
38

39
30

29
30

35
63

13
4.

1
0.

28
b
r
p
.
p
t
i
m
o
n
e
g
n
v
.
k
2
4

Y
es

48
1

(6
.7

)
43

01
3

96
77

5
16

21
14

13
69

9
74

90
7

26
04

81
5.

5
0.

27
c
s
m
a
c
d
.
p
0
.
k
1
6

N
o

17
94

(2
.9

)
22

91
92

31
60

82
37

62
80

26
95

20
34

17
51

38
12

48
4.

9
0.

28
d
m
e
3
.
p
t
i
m
o
.
k
6
1

N
o

63
75

(2
6.

3)
31

46
59

54
96

86
16

58
75

7
–

(1
5)

–
(1

5)
–

(1
5)

–
–

d
m
e
3
.
p
t
i
m
o
.
k
6
2

Y
es

65
06

(2
6.

3)
42

71
00

68
85

05
15

45
60

3
–

(1
5)

–
(1

5)
–

(1
5)

–
–

d
m
e
3
.
p
t
i
m
o
n
e
g
n
v
.
k
5
8

N
o

59
82

(2
6.

3)
32

47
70

56
88

64
96

29
67

–
(1

5)
–

(1
5)

–
(1

5)
–

–
d
m
e
3
.
p
t
i
m
o
n
e
g
n
v
.
k
5
9

Y
es

61
13

(2
6.

3)
30

39
21

48
00

73
11

36
93

8
–

(1
5)

–
(1

5)
–

(1
5)

–
–

d
m
e
5
.
p
t
i
m
o
.
k
6
5

N
o

10
75

0
(2

6.
8)

49
71

90
73

57
41

18
39

61
9

–
(1

5)
–

(1
5)

–
(1

5)
–

–

F
or

ea
ch

in
st

an
ce

,t
he

sm
al

le
r

of
th

e
tw

o
m

in
,m

ed
,a

nd
m

ax
va

lu
es

is
em

ph
as

iz
ed

T
he

sa
tc

ol
um

n
gi

ve
s

th
e

sa
ti

sfi
ab

ili
ty

of
th

e
in

st
an

ce
,a

nd
#i
np
ut
s

gi
ve

s
th

e
nu

m
be

r
of

un
as

si
gn

ed
in

pu
tv

ar
ia

bl
es

in
th

e
C

N
F

tr
an

sl
at

io
n

(p
er

ce
nt

ag
e

in
pa

re
nt

he
se

s)
.

F
or

ud
an

d
bb

,s
ee

th
e

te
xt

bo
dy

Constraints (2009) 14:325–356 351

Fig. 9 Comparison of
input-restricted branching
and unrestricted Minisat:
cumulative number of
solved instances

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000
#i

ns
ta

nc
es

 s
ol

ve
d

Time (s)

Minisat
Minisat on inputs

braun.10 on the average there are, per decision, over 100 unbranchable variables
with better heuristic scores than the best branchable one. From another point of view,
the fraction of increments on branchable variables from the number of all increments
to heuristic values during search can be in some cases even as low as 1% (median:
bb in Table 2)—running the risk of VSIDS degenerating into a random heuristic.
These observations imply that in order to incorporate branching restrictions in clause
learning solvers, the restriction itself should be taken into account in developing
suitable heuristics and learning schemes.

As a final remark, we refer to [30] for a more in-depth experimental investigation
into the effects of restricted branching—not limited to the input-restriction and hence
extending the experimental evidence provided here—on the efficiency of clause
learning solvers.

 10

 100

 1000

 10000

 10 100 1000 10000

M
in

is
at

 o
n

in
pu

ts
 (

s)

Minisat (s)

Unsatisfiable

 10

 100

 1000

 10000

 10 100 1000 10000

M
in

is
at

 o
n

in
pu

ts
 (

s)

Minisat (s)

Satisfiable

Fig. 10 Comparison of input-restricted branching and unrestricted Minisat as scatter plots: running
times on unsatisfiable (left) and satisfiable (right) instances

352 Constraints (2009) 14:325–356

7 Conclusions

We investigate the effect of restricting branching in clause learning SAT solving on
the efficiency of the underlying inference system from the view of proof complexity.
It is known that the unrestricted version of the considered variant of clause learning
can efficiently simulate general resolution, being thus very powerful compared to
the basic DPLL (with no clause learning). However, we show the surprising result
that input-restricted clause learning cannot even simulate the basic DPLL. This
implies that all implementations of clause learning, even with optimal heuristics, have
the potential of suffering a notable efficiency decrease if branching is restricted to
input variables. The experimental evidence shows that by restricting branching the
robustness of SAT solvers can decrease, and that input-restricted branching does not
go well with clause learning based heuristics of modern solvers.

Acknowledgements We thank Ilkka Niemelä for numerous discussions on the topic of this work,
and Emilia Oikarinen for help on the resolution proof construction in Appendix.

Appendix Polynomial length RES proof of EPHPn+1
n

The RES proof consists of four components, out of which the first three will be
applied iteratively in a level-wise fashion from l = n + 1 to l = 3. The intuitive idea is
that at level l we will derive PHPl−1

l−2 from PHPl
l−1 and EXTl in a polynomial number

of resolution steps.

1. Resolve on the gates ol−1
i, j , where i = 1, . . . , l + 1 and j = 1, . . . , l, using the

clauses in the CNF translation of el−1
i, j := or(el

i, j, ol−1
i, j) and ol−1

i, j := and(el
i,l−1, el

l, j).

2. Derive the long clause {el−1
i,1 , . . . , el−1

i,l−2} from {el
i,1, . . . , el

i,l−1} for each i =
1, . . . , l − 1.

3. Derive the short clauses of the form {¬el−1
i,k ,¬el−1

j,k } for 1 ≤ i, j ≤ l − 1 and 1 ≤
k ≤ l − 2.

4. After iterating steps 1-3 from l = n + 1 down to l = 3, derive the empty clause in
two step from the clauses in PHP2

1.

We will describe these steps now in more detail.

1. For each el−1
i, j := or(el

i, j, ol−1
i, j) we have the clauses

{
¬el−1

i, j , el
i, j, ol−1

i, j

}
,
{

el−1
i, j ,¬el

i, j

}
,
{

el−1
i, j , ¬ol−1

i, j

}
,

and for each ol−1
i, j := and(el

i,l−1, el
l, j) the clauses

{
ol−1

i, j ,¬el
i,l−1, ¬el

l, j

}
,
{
¬ol−1

i, j , el
i,l−1

}
,
{
¬ol−1

i, j , el
l, j

}
.

In particular, when resolving on the gate ol−1
i, j , we obtain from these clauses the

clauses
{
¬el−1

i, j , el
i, j, el

i,l−1

}
,
{
¬el−1

i, j , el
i, j, el

l, j

}
,
{

el−1
i, j ,¬el

i,l−1,¬el
l, j

}
.

Constraints (2009) 14:325–356 353

Fig. 11 How to derive
{el−1

i,1 , . . . , el−1
i,l−2} in a

polynomial number of
resolution steps using Cook’s
extension for PHPn+1

n

2. The derivation is described in Fig. 11. Notice that, at each step, the variable re-
solved upon is underlined. Recall that {en+1

i,1 , . . . , en+1
i,n } is the clause {pi,1, . . . , pi,n}

in PHPn+1
n .

3. Figure 12 shows how to derive the clauses of the form {¬el−1
i,k ,¬el−1

j,k }.
4. By recursively applying the derivations in Figs. 11 and 12 from l = n + 1 to l = 3,

one can thus derive the clauses {e2
1,1}, {e2

2,1}, and {¬e2
1,1,¬e2

2,1}. Finally, the empty
clause can be derived from these clauses with two resolution steps.

Fig. 12 How to derive {¬el−1
i,k ,¬el−1

j,k } in a polynomial number of steps using Cook’s extension for

PHPn+1
n

354 Constraints (2009) 14:325–356

However, one can see that derived clauses in each PHPl
l−1 are used multiple times in

the RES proof. For example, for each l, the clause {el
l,1, . . . , el

l,l−1} is used in the order
of l times in the derivation shown in Fig. 11. Hence the end result is not a T-RES
proof.

References

1. Achlioptas, D., Beame, P., & Molloy, M. (2004). Exponential bounds for DPLL below the satis-
fiability threshold. In J. I. Munro (Ed.), Proceedings of the 15th annual ACM-SIAM symposium
on discrete algorithms (SODA’04) (pp. 139–140). Philadelphia: SIAM.

2. Achlioptas, D., Beame, P., & Molloy, M. S. O. (2004). A sharp threshold in proof complexity
yields lower bounds for satisfiability search. Journal of Computer and System Sciences, 68(2),
238–268.

3. Alekhnovich, M. (2004). Mutilated chessboard problem is exponentially hard for resolution.
Theoretical Computer Science, 310(1–3), 513–525.

4. Alekhnovich, M., Hirsch, E. A., & Itsykson, D. (2005). Exponential lower bounds for the running
time of DPLL algorithms on satisfiable formulas. Journal of Automated Reasoning, 35(1–3),
51–72.

5. Alekhnovich, M., Johannsen, J., Pitassi, T., & Urquhart, A. (2002). An exponential separation
between regular and general resolution. In Proceedings on 34th annual ACM symposium on
theory of computing (STOC’02) (pp. 448–456). New York: ACM.

6. Beame, P., Culberson, J. C., Mitchell, D. G., & Moore, C. (2005). The resolution complexity of
random graph k-colorability. Discrete Applied Mathematics, 153(1–3), 25–47.

7. Beame, P., Impagliazzo, R., & Sabharwal, A. (2007). The resolution complexity of independent
sets and vertex covers in random graphs. Computational Complexity, 16(3), 245–297.

8. Beame, P., Karp, R. M., Pitassi, T., & Saks, M. E. (2002). The efficiency of resolution and Davis–
Putnam procedures. SIAM Journal on Computing, 31(4), 1048–1075.

9. Beame, P., Kautz, H. A., & Sabharwal, A. (2004). Towards understanding and harnessing the
potential of clause learning. Journal of Artificial Intelligence Research, 22, 319–351.

10. Biere, A., Cimatti, A., Clarke, E. M., Fujita, M., & Zhu, Y. (1999). Symbolic model check-
ing using SAT procedures instead of BDDs. In Proceedings of the 36th conference on design
automation (DAC’99) (pp. 317–320). New York: ACM.

11. Chvátal, V., & Szemerédi, E. (1988). Many hard examples for resolution. Journal of the ACM,
35(4), 759–768.

12. Cook, S. A. (1976). A short proof of the pigeon hole principle using extended resolution.
SIGACT News, 8(4), 28–32.

13. Cook, S. A., & Reckhow, R. A. (1979) The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44(1), 36–50.

14. Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, G., Tacchella, A., et al. (2001). Benefits
of bounded model checking at an industrial setting. In G. Berry, H. Comon, & A. Finkel (Eds.),
Proceedings of the 13th international conference on computer aided verification (CAV’01). Lecture
notes in computer science (Vol. 2102, pp. 436–453). New York: Springer.

15. Dantchev, S., & Riis, S. (2001). “Planar” tautologies hard for resolution. In Proceedings of
the 42nd IEEE symposium on foundations of computer science (FOCS’01) (pp. 220–229).
Los Alamitos: IEEE Computer Society.

16. Davis, M., Logemann, G., & Loveland, D. (1962). A machine program for theorem proving.
Communications of the ACM, 5(7), 394–397.

17. Davis, M., & Putnam, H. (1960). A computing procedure for quantification theory. Journal of the
ACM, 7(3), 201–215.

18. Eén, N., & Sörensson, N. (2004). An extensible SAT-solver. In E. Giunchiglia & A. Tacchella
(Eds.), Revised selected papers of the 6th international conference on theory and applications
of satisfiability testing (SAT’03). Lecture notes in computer science (Vol. 2919, pp. 502–518).
New York: Springer.

19. Giunchiglia, E., Maratea, M., & Tacchella, A. (2002). Dependent and independent variables in
propositional satisfiability. In S. Flesca, S. Greco, N. Leone, & G. Ianni (Eds.), Proceedings of

Constraints (2009) 14:325–356 355

the European conference on logics in artificial intelligence JELIA’02. Lecture notes in artificial
intelligence (Vol. 2424, pp. 296–307). New York: Springer.

20. Giunchiglia, E., Massarotto, A., & Sebastiani, R. (1998). Act, and the rest will follow: Exploiting
determinism in planning as satisfiability. In B. B. C. Rich, J. Mostow, & R. Uthurusamy (Eds.),
Proceedings of the 15th national conference on artificial intelligence (AAAI’98) (pp. 948–953).
Menlo Park: AAAI.

21. Goerdt, A. (1993). Regular resolution versus unrestricted resolution. SIAM Journal on Comput-
ing, 22(4), 661–683.

22. Goldberg, E., & Novikov, Y. (2002). Berkmin: A fast and robust SAT-solver. In Proceed-
ings of the 2002 design, automation and test in Europe conference (DATE’02) (pp. 142–149).
Los Alamitos: IEEE Computer Society.

23. Gomes, C. P., Selman, B., & Kautz, H. A. (1998). Boosting combinatorial search through
randomization. In B. B. C. Rich, J. Mostow, & R. Uthurusamy (Eds.), Proceedings of the 15th
national conference on artificial intelligence (AAAI’98) (pp. 431–437). Menlo Park: AAAI.

24. Haken, A. (1985). The intractability of resolution. Theoretical Computer Science, 39(2–3),
297–308.

25. Huang, J. (2007). The effect of restarts on the efficiency of clause learning. In M. M. Veloso
(Ed.), Proceedings of the 20th international joint conference on artificial intelligence (IJCAI’07)
(pp. 2318–2323). Menlo Park: AAAI.

26. Järvisalo, M. (2007). Equivalence checking multiplier designs. SAT Competition 2007 benchmark
description. http://www.tcs.hut.fi/~mjj/benchmarks/.

27. Järvisalo, M., & Junttila, T. (2007). Limitations of restricted branching in clause learning. In
C. Bessiere (Ed.), Proceedings of the 13th international conference on principles and practice of
constraint programming (CP 2007). Lecture notes in computer science (Vol. 4741, pp. 348–363).
New York: Springer.

28. Järvisalo, M., & Junttila, T. (2008). On the power of top-down branching heuristics. In Proceed-
ings of the 23rd AAAI conference on artificial intelligence (AAAI-08) (pp. 304–309). Menlo Park:
AAAI.

29. Järvisalo, M., Junttila, T., & Niemelä, I. (2005). Unrestricted vs restricted cut in a tableau method
for Boolean circuits. Annals of Mathematics and Artificial Intelligence, 44(4), 373–399.

30. Järvisalo, M., & Niemelä, I. (2008). The effect of structural branching on the efficiency of clause
learning SAT solving: An experimental study. Journal of Algorithms, 63(1–3), 90–113.

31. Junttila, T. A., & Niemelä, I. (2000). Towards an efficient tableau method for boolean circuit
satisfiability checking. In J. W. Lloyd, V. Dahl, U. Furbach, M. Kerber, K. K. Lau, C. Palamidessi,
et al. (Eds.), Proceedings of the 1st international conference on computational logic (CL’00).
Lecture notes in computer science (Vol. 1861, pp. 553–567). New York: Springer.

32. Jussila, T., Heljanko, K., & Niemelä, I. (2005). BMC via on-the-fly determinization. International
Journal on Software Tools for Technology Transfer, 7(2), 89–101.

33. Kautz, H. A., & Selman, B. (1992). Planning as satisfiability. In B. Neumann (Ed.), Proceedings
of the 10th European conference on artificial intelligence (ECAI’92) (pp. 359–363). New York:
Wiley.

34. Krajíček, J. (1995). Bounded arithmetic, propositional logic, and complexity theory. In Encyclo-
pedia of mathematics and its applications (Vol. 60). Cambridge: Cambridge University Press.

35. Kuehlmann, A., Ganai, M. K., & Paruthi, V. (2001). Circuit–based Boolean reasoning. In
Proceedings of the 38th design automation conference (DAC’01) (pp. 232–237). New York:
ACM.

36. Latvala, T., Biere, A., Heljanko, K., & Junttila, T. A. (2004). Simple bounded LTL model
checking. In A. J. Hu & A. K. Martin (Eds.), Proceedings of the 5th international conference
on formal methods in computer-aided design (FMCAD’04). Lecture notes in computer science
(Vol. 3312, pp. 186–200). New York: Springer.

37. Li, C. M., & Anbulagan (1997). Heuristics based on unit propagation for satisfiability problems.
In M. Pollack (Ed.), Proceedings of the 15th international joint conference on artificial intelligence
(IJCAI’97) (pp. 366–371). San Francisco: Morgan Kaufmann.

38. Marques-Silva, J., & Guerra e Silva, L. (2003). Solving satisfiability in combinational circuits.
IEEE Design & Test of Computers 20(4), 16–21.

39. Marques-Silva, J. P., & Sakallah, K. A. (1999). GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5), 506–521.

40. Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff: Engineering
an efficient SAT solver. In Proceedings of the 38th design automation conference (DAC’01)
(pp. 530–535). New York: ACM.

http://www.tcs.hut.fi/~mjj/benchmarks/

356 Constraints (2009) 14:325–356

41. Nikolenko, S. I. (2005). Hard satisfiable instances for DPLL-type algorithms. Journal of Mathe-
matical Sciences, 126(3), 1205–1209.

42. Papadimitriou, C. H. (1995). Computational complexity. Reading: Addison-Wesley.
43. Pyhälä, T. (2004). Factoring benchmarks for SAT-solvers. http://www.tcs.hut.fi/Software/

genfacbm/.
44. Robinson, J. A. (1965). A machine oriented logic based on the resolution principle. Journal of

the ACM, 12(1), 23–41.
45. Strichman, O. (2000). Tuning SAT checkers for bounded model checking. In E. A. Emerson &

A. P. Sistla (Eds.), Proceedings of the 12th international conference on computer aided verification
(CAV’00). Lecture notes in computer science (Vol. 1855, pp. 480–494). New York: Springer.

46. Thiffault, C., Bacchus, F., & Walsh, T. (2004). Solving non-clausal formulas with DPLL search.
In M. Wallace (Ed.), Proceedings of the 10th international conference on principles and practice
of constraint programming (CP’04). Lecture notes in computer science (Vol. 3258, pp. 663–678).
New York: Springer.

47. Tseitin, G. S. (1983). On the complexity of derivation in propositional calculus. In A. Slisenko
(Ed.), Studies in constructive mathematics and mathematical logic, part II. Seminars in mathe-
matics, V.A. Steklov mathematical institute, Leningrad (Vol. 8, pp. 115–125). Consultants Bureau
(1969). English translation appears in J. Siekmann and G. Wrightson, editors, Automation of
Reasoning 2: Classical Papers on Computational Logic 1967–1970 pages 466–483. New York:
Springer.

48. Urquhart, A. (1987). Hard examples for resolution. Journal of the ACM, 34(1), 209–219.
49. Urquhart, A. (1995). The complexity of propositional proofs. Bulletin of Symbolic Logic, 1(4),

425–467.
50. Velev, M. N., & Bryant, R. E. (1999). Superscalar processor verification using efficient reductions

of the logic of equality with uninterpreted functions to propositional logic. In L. Pierre & T.
Kropf (Eds.), Correct hardware design and verification methods, proceedings of the 10th IFIP WG
10.5 advanced research working conference (CHARME’99). Lecture notes in computer science
(Vol. 1703, pp. 37–53). New York: Springer.

51. Williams, R., Gomes, C. P., & Selman, B. (2003). Backdoors to typical case complexity. In
G. Gottlob & T. Walsh (Eds.), Proceedings of the eighteenth international joint conference on
artificial intelligence (IJCAI’03) (pp. 1173–1178). San Francisco: Morgan Kaufmann.

52. Zhang, L., Madigan, C. F., Moskewicz, M. W., & Malik, S. (2001). Efficient conflict driven
learning in a Boolean satisfiability solver. In Proceedings of the 2001 international conference
on computer-aided design (ICCAD’01) (pp. 279–285). New York: ACM.

http://www.tcs.hut.fi/Software/genfacbm/
http://www.tcs.hut.fi/Software/genfacbm/

	Limitations of restricted branching in clause learning
	Abstract
	Introduction
	Propositional satisfiability and constrained Boolean circuits
	Propositional satisfiability
	Constrained Boolean circuits
	Translating Boolean circuits to CNF
	CNF formulas as constrained circuits

	Proof systems for CNF formulas
	Propositional proof systems and complexity
	Resolution
	Lower bounds in RES and its refinements

	The Davis--Putnam--Logemann--Loveland procedure
	Implication graphs

	DPLL with clause learning and modern SAT solvers
	Conflict graphs and conflict analysis
	Unique implication points, conflict-driven backjumping, and CL proofs
	Restarts and the CL-- proof system

	Relating CNF proof systems and circuit structure
	Unit propagation on the level of circuits
	Restricting branching in DPLL and CL to inputs

	Restricted branching and proof complexity
	DPLL cannot simulate CLinputs
	A further motivating example
	CL--inputs cannot simulate DPLL
	Additional remarks

	Experiments
	Results

	Conclusions
	Appendix Polynomial length RES proof of EPHPnn+1
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

