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Abstract The catalogue of global constraints is reviewed, focusing on the graph-
based description of global constraints. A number of possible enhancements are
proposed as well as several research paths for the development of the area.
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1 Introduction

The term “Global Constraint”. The term global constraint originally appeared in
the late ’80s in a thesis [81] dealing with house floor-plan design problems. A global
constraint “rooms must fill the house” was incorporated into a generator of house
floor-plans. Later on, the term global constraint was reused at the European Com-
puter Research Centre, with a specific constraint taking into account the interaction
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between several alldifferent constraints for handling orthogonal Latin squares
problems [4].1

In [20], Bessière and Van Hentenryck proposed several definitions of the notion
of globality. They introduced the notion of semantic globality (expressiveness),
operational globality (quality of filtering), and algorithmic globality (computational
efficiency of the filtering). As they mention, “globality is often discussed in an
operational context with a consistency notion in mind” (i.e., globality refers to some
aspect of the filtering).

This article aims to stress the fact that global constraint can be used beyond
filtering. For this reason, the term global constraint should be understood here as
an expressive and concise condition involving a non-fixed number of variables. This
informal definition does not make any assumption about the potential use of a global
constraint. Indeed, defining the concept of global constraint in terms of its potential
uses simply “dries up” this concept.

The Area of Global Constraints: Current Status. Global constraints were initially
introduced in industrial solvers [31, 62] for solving recurring problems in dedicated
application areas. From an early time, global constraints have been used for their
strong pruning power thanks to efficient specialised filtering algorithms that take
advantage of the structure of the constraints they consider (see for instance, the
filtering algorithms proposed for the alldifferent constraint [24, 29, 52, 53, 56,
63, 68]). More recently, it became clear that global constraints are not only useful
for their deductive power, but that they also have a central role to play in modelling
languages for problem solving [77], in local search [78], in symmetry breaking [65],
in visualisation tools for debugging constraint programs [74], in linear programming
tools [46] or in deriving efficient heuristics [41] based on their internal status.

The Essence of Constraint Programming: An Engineering or an Academic Field?
Global constraints are recognised as a mean to accelerate the convergence between
Constraint Programming and Operations Research [57]. As a consequence of this
current convergence, a common opinion is that Constraint Programming is becoming
a sub-field of Operations Research: Constraint Programming provides a collection
of new techniques that can be added or combined with, for instance, classical
techniques from Linear Programming or Metaheuristics. By adopting this point of
view, Constraint Programming is reduced more to an engineering field than to a basic
science field with a core question to address [45]. However, the Holy Grail [38, 76]
was quite clear right from the beginning of Constraint Programming:

Specify a problem in a declarative way, and let the machine solve it in an efficient
way.

Actually, no paradigm usually attached to Operations Research has addressed
such a question. On one hand, many efficient solution methods have been developed
in Operations Research, but they often are very specialised to handle one given prob-
lem. On the other hand, the declarative modelling aspect distinguishes Constraint

1i.e., alldifferent constraints, enforcing that all variables be pairwise different, as well as
generalised alldifferent constraints, enforcing that all pairs of variables be pairwise different.
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Programming from systematic solution approaches of Operations Research, such as
Linear Programming.

For both practical and theoretical reasons, the core question of Constraint Pro-
gramming should be pursued:

– From a practical point of view, the question of the applicability of Constraint
Programming has been raised by one of the main providers of Constraint
Programming tools at the CP’2004 conference [64]: as more and more efficient
ad hoc methods are involved, the technique gets more and more difficult to
use in practice. In a sense, Constraint Programming is joining established fields
(e.g., logic, linear programming, algorithmic, group theory) whose techniques
require a strong expertise only to be used.

– From a theoretical point of view, the question is to come up, not just with efficient
solution methods dedicated to specific problems, but with a theory allowing to
automatically generate efficient solution methods from the explicit description of
the problems.

Systematic description and filtering of global constraints. This article aims to show
how one can start to address the previous core question in the context of global
constraints. The key idea is that global constraints have two sides: a declarative side
describing the meaning of the global constraint, and a procedural side corresponding
to the code that actually performs a typical task as, for example, the filtering of the
constrained variable domains. In this context, the questions to address are:

– Find ways that allow to explicitly define the meaning of global constraints.
– Find processes that allow to synthesize code from the description of a global

constraint.

One may wonder how one can ever hope to generate any efficient code from
a declarative description. This question is even more relevant if one thinks about
all the specialized filtering algorithms that were gradually developed over the past
10 years for specific global constraints like alldifferent [24, 52, 53, 56, 63, 68],
global_cardinality [47, 48, 66, 67, 69], cumulative [27, 35, 50] or tree [13].

Even if we do not have any definitive answer to this difficult question, we provide
the first framework that allows to get a filtering scheme from a declarative description
of a global constraint. Within this framework, global constraints are described in
terms of graphs satisfying given properties. The properties relate satisfiable values
for usual graph parameters. Filtering consists then in maintaining bounds on these
values and enforcing the graph properties.

Beyond Filtering. As evocated above, the notion of global constraint may be useful
in a context where we are not interested at all in any filtering. For instance, in
the context of local search [78], we are only interested in evaluating how much
the condition associated with a global constraint is violated. In the context of
debugging [30], we would like to have an insightful visual representation [25] of the
global constraints of the problem during the solution search (i.e. when variables are
not all yet fixed).

Actually, the procedural side of a global constraint may be any code for detecting
the constraint infeasibility or for filtering the variable domains, but also, for gener-
ating a graphical representation [74], for constructing a heuristic based on the global
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constraint description, for evaluating the cost violation [7] associated with a ground
instance...

The ability of deriving different codes directly from the description of a global
constraint, has motivated our choices for such a declarative description. Besides the
graph property-based representation, we also present a second description of global
constraints in terms of automata.

Aim and Organisation of the Article. This article has two complementary aims
regarding the field of global constraints:

– To review the work already done with the catalogue [11] and to provide a first
generic filtering scheme combining existing and new techniques based on graph
properties.

– To make a series of suggestions for advancement of the field. They are interspersed
in the next sections and have one of the following forms:

• Proposed Enhancements (PE) suggest ways to improve specific parts of the
catalogue of global constraints. Their purpose is to draw attention to general
questions related to potential uses of global constraints in different contexts.

• Research Paths (RP) draw attention to key issues related to the synthesis of
code for global constraints. They typically are long-term goals.

The article is organised as follows:

– Section 2 gives the motivations behind the catalogue of global constraints [11].
– Section 3 presents the description of global constraints in terms of graph proper-

ties as well as in terms of automata. It also suggests research paths related to this
second representation.

– Section 4 summarises the results obtained so far related to the systematic graph
property-based filtering. It shows how to reformulate a global constraint into a
satisfaction problem according to its graph description. Then it presents a first
filtering for this reformulation, by computing tight bounds on graph parameter
values [15] and by using graph invariants [12].

– Section 5 sketches a natural continuation of this work. It illustrates how to
filter by enforcing graph properties according to the parameter bounds, and
shows how to tighten those bounds for specific graph classes. Then, we present
the generic graph-based filtering scheme, which puts together all the elements
introduced in Sections 4 and 5. Finally, we show how to retrieve existing filtering
algorithms for global constraints such as alldifferent and proper_forest,
with this scheme, and how to adapt it in the context of CP(Graph) [32].

– Section 6 gives several research paths, beyond filtering, related to the graph-
based representation of global constraints.

– Section 7 concludes.

2 Motivations

This section presents our motivations for an explicit description of the meaning of
global constraints. A current trend in the field of global constraints is to use natural
language to describe the meaning of a global constraint, and then, to work out a
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specialised filtering algorithm. Describing all potential global constraints with this
approach is an endless task, when one considers the many ways of combining global
constraints.

This is even worse if, in the long term, we aim at providing other services such
as visualisation [74], explanations [73], soft global constraints [7, 60, 80], learning
implied global constraints [21], or specialised heuristics for each global constraint.

These considerations motivates the use of a composable mathematical language
for explicitly describing the meaning of global constraints. The CP(Graph) frame-
work [32], for instance, proposes a restricted form of second order predicate calculus.
However, when it comes to filtering algorithms, this model is not used any more.2 For
such a reason, Prolog was restricted to Horn clauses for which one had a reasonable
solving mechanism.

Through this example, we want to stress the fact that a declarative description
is really useful only if it also provides some hints about how to deal with that
description.

2.1 Graph-based Description

We first proposed a description of global constraints in terms of graphs satisfying
some graph properties that are given by formulae. This choice was influenced by the
following observations:

– The concept of graph has its roots in the area of mathematical recreations (see
for instance Euler [36], Dudeney [33], Lucas [54] and Kirkman [49]), which was
somehow the ancestor of combinatorial problems.

– In one of the first books introducing graph theory [19], Berge presents graph
theory as a way of grouping apparently diverse problems and results. This was
also the case for global constraints.

– The parameters associated with graphs are concrete and concise (e.g., the
number of arcs, the maximum size of connected components,...). Moreover a lot
of results about graphs can be expressed in terms of graph invariants involving
various graph parameters, that are valid for specific graph classes. In essence,
formulae are a kind of declarative statement that is much more suited for creating
a knowledge data base in combinatorics than algorithms. In fact, as we will
see in Section 5.1, quite often significant parts of filtering algorithms can be
reinterpreted as a compiled form of a graph invariant I , which enforces the
validity of I .

– Finally, it is well known that graph theory is an important tool [55] with respect
to the development of efficient filtering algorithms [9, 47, 56, 67–70, 72, 79].

The question of how to automatically generate efficient code from the description of
a problem was already identified as the core question by forerunners in Constraint
Programming like Pitrat [61] and Laurière [51]. Both promote an approach based
on meta-programming but did not address the question of the relation between the
combinatorial aspect of constraints and graph theory. In Operations Research, we

2One could perhaps use a system like MONA [43] for getting a constraint checker in the context of
CP(Graph).
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can cite a work of Hansen related to this article [42]. He addresses the question of
the automatic generation of graph invariants that can potentially be used in branch
and bound methods.

2.2 Automaton-based Representation

Our second choice of an automaton-based representation has been motivated by
the following observation. Writing a constraint checker is a straightforward task.
The corresponding program can usually be turned into an automaton. Of course,
an automaton is typically used on a fixed sequence of symbols. But, in the context of
filtering algorithms, we have to deal with a sequence of variables. For this purpose,
we have shown [8] for some automata how to decompose them into a conjunction of
smaller constraints. In this context, a global constraint can be seen as a hypergraph
corresponding to its decomposition.

Note that, in the context of global constraints on a finite sequence of variables, the
regular constraint by Pesant [59] also uses a finite automaton for representing the
solution set.

3 Summary of the Framework

This section summarises the representation of global constraints as graph properties
introduced in [5] or as a hypergraph of constraints associated with an automaton [10].
It illustrates this framework with the nvalue [23] and the group [12] constraints.

3.1 Graph-based Description

Let C(V1, . . . , Vp, x1, . . . , xn) be a global constraint with domain variables3

V1, . . . , Vp, and domain or set variables4 x1, . . . , xn. When it exists, a graph-based
description of C is given by one (or several) network(s) GR = (X, ER) of binary
constraints over X = {x1, . . . , xn} in association with a set GPR = {Pl opl Vl | l =
1, . . . , p} of graph properties and, optionally, a graph class cR, where:

– The constraints defining digraph GR = (X, ER) share the same semantics (typ-
ically it is an equality, an inequality or a disequality). Let x jRxk denote the so-
called arc constraint between the ordered pair of variables (x j, xk) ∈ ER (or the
unary constraint if j = k).

– Pl opl Vl expresses a graph property comparing the value of a graph parameter
Pl to the value of variable Vl . The comparison operator opl is either ≥, ≤, =,
or �=. Among the most usual graph parameters Pl , let NARC denote the number
of arcs of a graph, NVERTEX the number of vertices, NCC the number of
connected components, MIN_NCC and MAX_NCC the numbers of vertices of
the smallest and the largest connected components respectively.

3A domain variable D is a variable ranging over a finite set of integers dom(D). min(D) and max(D)

respectively denote the minimum and maximum values in dom(D).
4A set variable S is a variable that will be assigned to a finite set of integer values. Its domain is
specified by its lower bound S, and its upper bound S, and contains all sets that contain S and are
contained in S.



Global Constraint Catalogue: Past, Present and Future 27

Fig. 1 a Initial digraph GR associated with the nvalue(N, {x1, x2, x3, x4}) constraint. b Final digraph
G f of the ground solution nvalue(3, {5, 8, 1, 5}). c Digraph corresponding to a partial assignment:
dom(x1) = {5}, dom(x3) = {1}, dom(x4) = {5} and dom(x2) = {5, 8}

– cR corresponds to recurring graph classes that show up for different global con-
straints. For example, we consider graphs in the classes acyclic, symmetric,
bipartite.

GR is called the initial digraph. When all variables x are instantiated, the subgraph
of GR, obtained by removing all arcs corresponding to unsatisfied constraints x jRxk

as well as all vertices becoming isolated,5 is called a final digraph (associated with the
instantiation) and is denoted by G f = (X f , E f ).

The relation between C and its graph-based description is stated as follows:

Proposition 1 A complete assignment of variables V1, . . . , Vp, x1, . . . , xn is a solution
of C iff the final digraph associated with the assignment of x1, . . . , xn, satisfies all graph
properties Pl opl Vl in GPR and belongs to the graph class cR.

Example 1 Consider the nvalue(N,VARIABLES) constraint, where N and
VARIABLES = {x1, ..., xm} are domain variables. The nvalue constraint holds
iff the number of distinct values assigned to the variables in VARIABLES is equal
to N. Parts a and b of Fig. 1 respectively show the initial digraph GR generated
for the nvalue constraint with VARIABLES = {x1, x2, x3, x4} and the final digraph
G f associated with the ground solution nvalue(3, {5, 8, 1, 5}). Each vertex of GR
depicts a variable. All arcs corresponding to equality constraints that are not satisfied
are removed to obtain G f from GR. Each vertex of G f depicts the value assigned
to its corresponding variable. The nvalue constraint is defined by the graph
property NSCC = N, which means that a complete instantiation satisfies constraint
nvalue iff the associated final digraph is made up of exactly N strongly connected
components. The nvalue(3, {5, 8, 1, 5}) constraint holds since G f contains three
strongly connected components. Part c of Fig. 1 will be referenced in Example 4.

Example 2 Consider the group(NGROUP, MIN_SIZE, MAX_SIZE, MIN_DIST,
MAX_DIST, NVAL, VARIABLES, VALUES) constraint, where the first six parameters
are domain variables, while VARIABLES is a sequence of domain variables and
VALUES a finite set of integers. Let m denote the number of variables of the
sequence VARIABLES. Let xi, xi+1, . . . , x j (1 ≤ i ≤ j ≤ m) be consecutive variables

5A few constraints of the catalogue like common, same or used_by, which all use the graph
parameter NSINK or NSOURCE, rely on the fact that isolated vertices are removed from the final
digraph (i.e., this way, isolated vertices are neither counted as sources nor sinks).
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Fig. 2 Initial (a) and
final digraphs (b,c) of
group(2, 2, 4, 1, 2, 6, 〈0, 0,

1, 3, 0, 2, 2, 2, 3〉, {1, 2, 3})

of the sequence VARIABLES such that all the following conditions simultaneously
apply: (1) all variables xi, . . . , x j take their value in the set of values VALUES, (2)
either i = 1, or xi−1 does not take a value in VALUES, (3) either j = m, or x j+1 does
not take a value in VALUES. We call such a set of variables a group. The constraint
group is fulfilled if all the following conditions hold:

– there are exactly NGROUP groups of variables,
– MIN_SIZE and MAX_SIZE are the number of variables of the smallest and largest

group,
– MIN_DIST and MAX_DIST are the minimum and maximum number of variables

between two consecutive groups or between one border and one group,
– NVAL is the number of variables taking their value in the set VALUES.

group(2, 2, 4, 1, 2, 6, 〈0, 0, 1, 3, 0, 2, 2, 2, 3〉, {1, 2, 3}) holds since the sequence 〈0, 0,

1, 3, 0, 2, 2, 2, 3〉 contains two groups 〈1, 3〉 and 〈2, 2, 2, 3〉 of non-zero values of size 2
and 4, two groups 〈0, 0〉 and 〈0〉 of zeros, and six non-zero values. The graph-based de-
scription of the group constraint uses two graph constraints which respectively men-
tion the graph properties NCC = NGROUP, MIN_NCC = MIN_SIZE, MAX_NCC =
MAX_SIZE, NVERTEX = NVAL and MIN_NCC = MIN_DIST, MAX_NCC =
MAX_DIST. Figure 2 depicts the initial digraph as well as the two final digraphs
associated with the two graph constraints of the example given for the group
constraint. The group constraint will also be used in Section 3.2 for illustrating the
automaton-based description.

3.2 Automaton-based Representation

Currently, the catalogue of global constraints contains more than 100 constraints that
can be described with one or several automata. We first illustrate this on the example
of the group [12] constraint introduced in the previous section and then present the
different constraint network structures we have identified. Finally, we suggest some
research paths related to the use of automata in the context of global constraints.

Example 3 Parts a, b, c and d of Fig. 3 respectively depict the automata associated
with the graph parameters NCC, MIN_NCC, MAX_NCC and NVERTEX of the
first graph constraint described in the last paragraph of Example 2. Each automaton
is applied to the sequence of variables corresponding to the VARIABLES parameter.
A transition with a standard line depicts the fact that a variable takes its value in the
set VALUES, while a thick line denotes the fact that a variable does not take its value
in VALUES. Finally, a transition with a dashed line indicates the end of the sequence
of variables. Since all the four automata use counters, we indicate how these counters
are initialised in the initial state s, how a counter is unified to an argument of
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Fig. 3 Automata associated with the graph parameters ofthe group constraint

the group constraint in the final state t, and how they are possibly updated on a
given transition. When there are several transitions between a given pair of states,
we indicate with a dotted line or a standard line its type (see for instance the two
transitions between s and s of the automaton depicted by Part c). The automata
associated with MIN_NCC = MIN_DIST and with MAX_NCC = MAX_DIST are
similar to the automata depicted by Parts b and c, except that we change a thick
line to a standard line and vice versa.

In the catalogue of global constraints we have identified the following recurring
classes of constraint network structures, depicted in Fig. 4:

– Berge-acyclic constraint network,
– Alpha-acyclic constraint network,
– Sliding cyclic constraint network,
– Circular sliding cyclic constraint network,
– Centered cyclic constraint network.

Fig. 4 The different classes of constraint networks; a 1 represents one single variable, while letters
a, b , c respectively stand for a, b and c distinct variables; bold and italic styles respectively depict
variables that originally occur in the global constraint or that were introduced for modelling the
behaviour of the automaton; all constraint networks mention only two distinct constraints C1 and C2
respectively outlined with a thick and a dashed line. The constraint networks associated with the four
automata of Fig. 3 correspond to Alpha-acyclic constraint networks
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Even if the area of constraint network is a well established topic of Constraint
Programming, almost nothing is known6 when the networks are highly structured
and non-binary, as is actually the case for global constraints. Moreover we are not
interested in pruning all the variables of the network but only the variables that
belong to the original global constraint from which the network was derived. This
suggests the following research path.

RP 1. Investigate the topic of structured constraint networks and the relations
between the type of consistency one can achieve and the properties of the
hyperedges as well as the overall structure of the constraint network.

A significant number of important global constraints like alldifferent,
global_cardinality or nvalue can only be modelled in a compact way by
using automata together with arrays of counters, which are modified while triggering
some transitions. However, it is not currently known how to perform any filtering
for this class of automaton. This suggests the following question.

PE 1. Come up with reformulation and/or filtering algorithms for handling automata
with arrays of counters.

4 Results to Date

This section gives an overview of the results obtained so far in relation with the use
of the graph-based description of global constraints for filtering. The next section
presents refinements and further researches on this topic.

All filtering presented in these two sections rely on the automatic reformulation of
most global constraints into a satisfaction problem based on the graph representation
presented in Section 3.1 and including domain variables Pl (1 ≤ l ≤ n) associated
with each graph parameter Pl . The reformulation is presented in Section 4.1. Tight
estimations of the bounds of variables Pl are given in Section 4.2, for the general
case, and in Section 5.2 for a specific class of graph. A first way of filtering is to
enforce the consistency of the mathematical constraints involving Pl . Sections 4.3
and 4.4 respectively show how to filter from graph property constraints and from
graph invariant constraints. Conversely, Section 5.1 shows how to filter back from the
bounds of Pl to the variables of the global constraint. A complete filtering algorithm
including all these techniques is given in Section 5.3.

4.1 Graph-based Reformulation

According to Definition 1, any global constraint C(V1, . . . , Vp, x1, . . . , xn) holding a
graph-based description can be reformulated as follows:

Proposition 2 Define additional variables attached to each constraint network GR =
(X, ER): to each vertex x j and to each arc e jk of GR correspond 0-1 variables

6Beside the results on Berge-acyclic and alpha-acyclic constraint networks.
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respectively denoted vertex j and arc jk. Vertex and Arc denote these sets of variables.
Last, let Gf denote the subgraph of GR, whose vertices and arcs correspond to the
variables vertex j and arc jk set to 1. Then constraint C holds iff the following constraints
hold:

arc jk = 1 ⇔ x jRxk, ∀e jk ∈ ER (1)

vertex j = min
(

1,
∑

{k | e jk∈ER} arc jk + ∑
{k | ekj∈ER} arckj

)
, ∀x j ∈ X (2)

ctrPl (Vertex, Arc, Pl), ∀(Pl opl Vl) ∈ GPR (3)

Pl opl Vl, ∀(Pl opl Vl) ∈ GPR (4)

ctrcR(Vertex, Arc) (5)

where Constraint (3) is satisfied when Pl is equal to the value of the corresponding
parameter Pl in G f and graph-class constraint (5) is satisfied if Gf belongs to the graph
class cR.

Filtering domains of variables V and x according to C can be achieved by enforcing
alternatively, and for each constraint network GR, the five sets of constraints of
this reformulation. Enforcing constraints (1), (2), (4) and (5) is mostly trivial since
these constraints are elementary arithmetic constraints. The generic graph-based
filtering then mainly relies on maintaining consistency according to constraints (3),
from the arc and vertex variables to the bounds of the graph parameter variables
Pl , and conversely. In [15] it was presented, for some usual graph parameters, how
to estimate their minimal (Pl) and maximal (Pl) values in the final digraphs Gf ,
given the current state of the arcs and vertices of GR. Section 4.3 shows how in
turn, the status of some arcs and vertices can be determined according to a graph
parameter variable when it is set to one of its extreme values (i.e. dom(Pl) = {Pl} or
dom(Pl) = {Pl}).

Hence, the approach relies on identifying the possible final digraphs in GR that
minimise or maximise a given graph parameter. Any final digraph contains (resp.
does not contain) the arcs and vertices corresponding to arc and vertex variables fixed
to 1 (resp. to 0). Since it has no isolated vertices, we assume that the normalisation
constraints (2) are enforced before estimating a graph parameter.

Since the proposed reformulation applies to many global constraints for which
enforcing AC is proven to be NP-hard (e.g. nvalue), we cannot expect to get AC
in general. Even with a complete characterisation of all feasible values of a graph
parameter and of all corresponding unfeasible arcs (arcs that do not belong to final
digraphs satisfying a parameter value), we cannot enforce AC in general because of
the inter-dependency of constraints (1) : the arc variables are not independent of
each other.

As for the graph-based description of any global constraint, we aim at providing
a catalogue of generic filtering rules related to the bounds of graph parameters. In
order to formalise this, we first need to introduce a number of notations.

Let GR be an initial digraph associated with the graph-based description of a
global constraint. The current domains of variables arc and vertex of the reformu-
lation correspond to a unique partitioning of the arc and vertex sets of GR, denoted
as follows:
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Notation 1 A vertex x j or an arc e jk of GR is either true (T), false (F), or unde-
termined (U) whether the corresponding variable vertex j or arc jk is fixed to 1, fixed
to 0 or yet unfixed (with domain {0, 1}). This leads to the partitioning of the vertex
set of GR into XT ∪̇ XF ∪̇ XU and to the partitioning of the edge set of GR into
ET ∪̇ EF ∪̇ EU .

For two distinct elements Q and R in {T, U, F}, let XQR denote the vertex subset
XQ ∪̇ XR, and EQR denote the arc subset EQ ∪̇ ER.

Once the normalisation constraints are enforced, subgraph (XT , ET) is well
defined and is included in any final digraph. (XTU , ETU ) is also a subgraph of GR,
called the intermediate digraph, and any final digraph is derived from this by turning
each U-arc and U-vertex into T or F.7 We aim at identifying the final digraphs
in which a graph parameter P reaches its lower value P or its upper value P. An
estimated bound is said to be sharp if for any intermediate digraph, there exists
at least one final digraph where the parameter takes this value. To estimate these
bounds, we deal with different digraphs derived from the intermediate digraph:

Notation 2 For any subsets Q, R and S of {T, U, F}, XQ and XS are vertex subsets
and ER is an arc subset of the initial digraph, and:

– XQ,R (resp. XQ,¬R) denotes the set of vertices in XQ that are extremities of at
least one arc (resp. no arc) in ER.

– XQ,R,S (resp. XQ,R,¬S) denotes the set of vertices in XQ,R that are linked to at
least one vertex (resp. to no vertex) in XS by an arc in ER.

– XQ,¬R,S (resp. XQ,¬R,¬S) denotes the set of vertices in XQ,¬R that are linked to
at least one vertex (resp. to no vertex) in XS by an arc in ETU .

– ER,Q is the set of arcs in ER that are incident on at least one vertex in XQ.
– ER,Q,S is the set of arcs in ER that are incident on one vertex in XQ and on one

vertex in XS.

Notation 3 Given a digraph G and subsets X of vertices and E of arcs:

–
−→
G (X , E) denotes the induced subgraph of G containing all vertices in X and all
arcs of E having their two extremities in X .

–
←→
G (X , E) denotes the corresponding undirected graph: to one edge (u, v) corre-

sponds at least one arc (or loop) (u, v) or (v, u) in
−→
G (X , E).

Example 4 Consider again the nvalue(N,VARIABLES) constraint introduced in
Example 1, and assume that not all variables of VARIABLES = {x1, x2, x3, x4} are
fixed: dom(x1) = {5}, dom(x2) = {5, 8}, dom(x3) = {1}, dom(x4) = {5}. Furthermore
w.l.o.g. assume that, for an equality constraint ec associated with an arc of the
initial digraph GR of nvalue, entailment is only detected when the two variables
occurring in ec are fixed. This leads to partition the arcs of GR in the fol-
lowing three sets ET = {(x1, x1),(x1, x4),(x3, x3),(x4, x1),(x4, x4)}, EU = {(x1, x2),

7In the context of CP(Graph) [32], these two digraphs respectively correspond to the lower and
upper bounds of a graph variable. Note that, as a consequence, our approach can easily be adapted
to provide a generic filtering for CP(Graph).
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(x2, x1),(x2, x2),(x2, x4),(x4, x2)} and EF = {(x1, x3),(x2, x3),(x3, x1),(x3, x2), (x3, x4),

(x4, x3)}. The status of the vertices is initially set undetermined (i.e., XU =
{x1, x2, x3, x4}) and Part c of Fig. 1 shows the current status of arcs and vertices
of a partial assignment (intermediate digraph). A solid line depicts a T-vertex or a
T-arc, while a dashed line indicates a U-vertex or a U-arc. The same style will be
used in all other figures of this article in order to depict T-vertices, T-arcs, U-vertices
and U-arcs.

Computing lower and upper bounds of graph parameters can essentially be seen
as computing some other graph parameters on the graphs introduced above. For this
purpose, we define the following notations for a digraph G.

Notation 4 vertex(G), cc(G), scc(G), sink(G) and source(G) respectively denote the
set of vertices, connected components, strongly connected components, sinks and
sources of G. Similarly, in order to restrict to specific subsets of elements satisfying
a given condition cond, we use the following notation: vertex[cond](G), cc[cond](G),
scc[cond](G), sink[cond](G) and source[cond](G).

Example 5 For instance, the set of connected components of
−→
G (XTU , ETU ) contain-

ing at least one T-arc is denoted by cc[|ET |≥1](
−→
G (XTU , ETU )).

4.2 Bounds of Graph Parameters

In the constraint system of Proposition 2, the domain of a graph parameter variable
P must contain the values the graph parameter takes in any final digraph reachable
from the current status of arcs and vertices. A way to estimate the bounds of the
domain of P is to consider the minimum and the maximum values taken by P
after setting all undecided variables arc jk and vertex j to 0 or 1 according to the
normalisation constraints (2). This section shows how to approximate these minimum
and maximum values efficiently for the common graph parameters introduced in
Section 3. Let P and P denote such bounds. When the approximation is equal to
the effective optimum value, i.e. if for any intermediate digraph, there exists at least
one final digraph where the parameter takes this value, the bound is sharp.

For computing these bounds, we will deal with digraphs derived from the in-
termediate digraph with different sets of arcs and vertices. Section 4.2.1 describes
the obtained bounds. Section 4.2.2 puts in perspective these results. We previously
introduce some notions of graph theory, which are used in the bound computations.

Definition 1 Graph theoretic terms:

– Given a digraph G, a sequence (a1, a2, . . . , ak) of arcs of G such that, for each arc
ai (1 ≤ i < k) the end of ai is equal to the start of the arc ai+1, is called a path. A
path where all vertices are distinct is called an elementary path. Each equivalence
class of the relation “ai is equal to a j or there exists a path between ai and a j”
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is a strongly connected component of G. The reduced digraph of G is defined as
follows: to each strongly connected component of G corresponds a vertex of the
reduced digraph. To each arc of G that connects different strongly connected
components corresponds an arc in the reduced digraph (multiple arcs between
the same pair of vertices are merged).

– Given an undirected graph G, a sequence (e1, e2, . . . , ek) of edges of G such that
each edge has a common vertex with the previous edge, and the other vertex
common to the next edge is called a chain. A chain where all vertices are distinct
is called an elementary chain. An articulation point (resp. a bridge) of G is a vertex
(resp. an edge) whose removal increases the number of connected components.
A matching of G is a set of edges, excluding loops, of G such that no two edges
have a vertex in common. A maximum matching is a matching of maximum
cardinality (i.e., maximum number of edges). μ(G) denotes the cardinality of
a maximum matching of G. If loops are allowed in the matching then it is called
a l-matching and the maximum cardinality of a l-matching in G is denoted by
μl(G).

– Given a bipartite graph G((Y, Z ), E), a hitting set of G((Y, Z ), E) is a subset Z ′
of Z such that for any vertex y ∈ Y there exists an edge in E connecting y to a
vertex in Z ′. h(G) denotes the cardinality of a minimum hitting set of G.

4.2.1 Bound Computations

The bounds of the graph parameters are briefly presented and illustrated by exam-
ples. Proofs are available in [16].

Estimating NARC and NVERTEX Setting all U-vertices and U-arcs to true leads
to a final digraph that does not violate the normalisation constraints (2). Hence, the
maximum number of arcs and vertices are given by these formula:

NARC = |ETU | NVERTEX = |XTU |

Estimating NARC Because of the normalisation constraints (2), any final digraph Gf

has to contain all T-arcs as well as U-arcs in order to connect the isolated T-vertices
(i.e., vertices in XT,¬T). The minimum number of such required U-arcs is equal to
the number of isolated T-vertices minus the number of arcs that can be saved by
connecting these vertices together in a maximum matching.

NARC = |ET | + |XT,¬T | − μ(
←→
G (XT,¬T , EU ))

Example 6 Figure 5 shows how to compute the lower bound of NARC according
to the intermediate digraph

−→
G (XTU , ETU ) given by Part a. Part b shows the

corresponding undirected graph
←→
G (XT,¬T , EU ) used for computing the car-

dinality of a maximum matching. We have ET = {(1, 1), (1, 2), (5, 1)}, EU =
{(1, 5), (2, 6), (3, 4), (4, 4), (5, 6), (6, 7), (7, 3)}, XT,¬T ={4, 6, 7}, |ET |=3, |XT,¬T |=3,

μ(
←→
G (XT,¬T , EU )) = 1, thus NARC = 3 + 3 − 1 = 5. Part c provides a final digraph

where this lower bound of five arcs is reached.
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Fig. 5 a Intermediate digraph and b undirected graph used to compute the cardinality of a maximum
matching for estimating NARC. c Example of a final digraph achieving the lower bound

Estimating NVERTEX Because of the normalisation constraints (2), any final
digraph Gf has to contain all T-vertices as well as some U-vertices that are linked
to some T-vertices that are not linked to any T-vertices (i.e., vertices in XT,¬T,¬T).
The minimum number of such required U-vertices is equal to the cardinality of a
minimum hitting set in an undirected subgraph of the intermediate digraph (see
Part b of Fig. 6).

NVERTEX = |XT | + h(
←→
G ((XT,¬T,¬T , XU,¬T,T), EU,T))

Example 7 Figure 6 shows how to compute the lower bound of NVERTEX ac-
cording to the intermediate digraph depicted by Part a of Fig. 6. Part b illus-
trates the corresponding bipartite graph

←→
G ((XT,¬T,¬T , XU,¬T,T), EU,T) used for

computing the cardinality of the minimum hitting set. We have XT = {1, 3, 6},
EU,T = {(1, 1), (1, 2), (3, 4), (5, 1), (5, 6), (6, 7), (7, 3)}, XT,¬T,¬T = {3, 6}, XU,¬T,T =
{2, 4, 5, 7}, |XT | = 3 and h(

←→
G ((XT,¬T,¬T , XU,¬T,T),EU,T)) = 1 (i.e., 7 allows to cover

both 6 and 3), thus NVERTEX = 3 + 1 = 4. Part c provides a final digraph where this
lower bound of four vertices is reached.

Estimating NCC The connected components of the intermediate digraph can obvi-
ously not be merged in any final subgraph. Furthermore, the connected components
containing no T-vertex can be safely removed without violating constraints (2).

NCC = |cc[|XT |≥1](
−→
G (XTU , ETU ))|

Fig. 6 a Intermediate digraph and b undirected graph used to compute the cardinality of a minimum
hitting set for estimating NVERTEX. c Example of a final digraph achieving the lower bound



36 N. Beldiceanu, et al.

Fig. 7 a Intermediate digraph and b undirected graph
←→
G rem used for estimating NCC. c Example

of a final digraph achieving the upper bound

Estimating NCC If we except T-vertices with no incident T-arcs we are able to
count in

−→
G (XT , ET) a certain number of connected components. By definition,

augmenting any of these connected components by new arcs cannot increase
their number. Therefore, the intuitive idea for estimating NCC is first to count
these connected components, to remove them from the intermediate digraph,
and then to estimate the maximum number, rem, of connected compo-
nents that may exist in the remaining digraph. For this purpose, we
introduce

←→
G rem, which denotes the induced subgraph of the undirected graph←→

G (XTU , EU ) obtained by removing all vertices present in cc[|ET |≥1](
−→
G (XT , ET))

and then by removing all vertices becoming isolated in the remaining undirected
graph. Since loops are allowed, rem corresponds to the maximum cardinality of a
l-matching on this graph.

NCC = |cc[|ET |≥1](
−→
G (XT , ET))| + μl(

←→
G rem)

Example 8 Figure 7 shows how to compute the upper bound of NCC according
to the intermediate digraph

−→
G (XTU , ETU ) depicted by Part a of Fig. 7. In Part a,

C1 and C2 correspond to the connected components of
−→
G (XT , ET) that have at

least one T-arc (i.e., cc[|ET |≥1](
−→
G (XT , ET))). Part b illustrates the corresponding

undirected graph
←→
G rem on which we compute a maximum l-matching. We have

|cc[|ET |≥1](
−→
G (XT , ET))| = 2, μl(

←→
G rem) = 2, thus NCC = 2 + 2 = 4. Part c provides

a final digraph where this upper bound of four connected components is reached.

Estimating NSCC First observe that two T-vertices that belong to two distinct
strongly connected components of the intermediate digraph also belong to dis-
tinct strongly connected components of any final digraph Gf . Therefore NSCC ≥
|scc[|XT |≥1](

−→
G (XTU , ETU ))|. Then, because of the normalisation constraints (2), a

T-vertex that is not connected to any strongly connected component that includes
at least one T-vertex requires the creation of some extra strongly connected compo-
nent. The total number of such strongly connected components is equal to the cardi-
nality of a minimum hitting set on the following bipartite graph GNSCC((Y, Z ), E):

– To each strongly connected component of scc[|XT |=1∧|ETU |=0](
−→
G (XTU , ETU )) that

does not have as successor or predecessor a vertex belonging to a strongly
connected component of scc[|XT |≥1](

−→
G (XTU , ETU )), corresponds a vertex in Y.
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– To each strongly connected component of
−→
G (XTU , ETU ) that is linked by an arc

to a strongly connected component associated with an element of Y, corresponds
a vertex of Z .

– Given a vertex y ∈ Y and a vertex z ∈ Z , (y, z) ∈ E iff there is an arc between a
vertex of the strongly connected component associated with Y and a vertex of the
strongly connected component associated with Z in the digraph

−→
G (XTU , ETU ).

NSCC = |scc[|XT |≥1](
−→
G (XTU , ETU ))| + h(GNSCC((Y, Z ), E))

Example 9 Figure 8 shows how to compute the lower bound of NSCC according
to the intermediate digraph

−→
G (XTU , ETU ) depicted by Part a. All the strongly

connected components C1, C2, . . . , C9 of this intermediate digraph are enclosed in
a dotted rectangle. Part b shows the corresponding bipartite graph GNSCC((Y, Z ), E)

and outlines one of its minimum hitting set with thick lines. Since five strongly
connected components of

−→
G (XTU , ETU ) contain at least one T-vertex (i.e., C3,

C5, C6, C7, C8) and since the cardinality of a minimum hitting set on the bipartite
graph GNSCC((Y, Z ), E) is equal to 1 (i.e., we need one extra strongly connected
component in order to connect the vertices of C6 and C7) we have NSCC = 5 + 1 =
6. Part c provides a final digraph where this lower bound of six strongly connected
components is reached.

Estimating NSCC The maximum number of strongly connected components is
obtained by counting all strongly connected components of

−→
G (XT , ET) and all

U-vertices (since U-vertices can be incorporated without creating any circuit by
constructing a spanning forest).

NSCC = |scc(
−→
G (XTU , ET))|

Example 10 Parts a and b of Fig. 9 illustrate how to compute the upper bound
of NSCC according to the intermediate digraph

−→
G (XTU , ETU ) depicted by Part a.

Fig. 8 a Intermediate digraph and b corresponding bipartite graph used to compute the cardinality
of a minimum hitting set. c Example of a final digraph achieving the lower bound
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Fig. 9 a Intermediate digraph and b graph used for estimating NSCC. c Example of a final digraph
achieving the upper bound

Part b gives the corresponding digraph
−→
G (XTU , ET), which has seven strongly con-

nected components, thus NSCC = 7. Part c provides a final digraph where this upper
bound of seven strongly connected components is reached.

Estimating NSINK The minimum number of sinks of any final digraph is equal to the
number of T-vertices that are sinks in the intermediate digraph plus the minimum
number of U-sink vertices necessary to turn into T-vertices in order to hinder non-
sink T-vertices. This last quantity is equal to the cardinality of a minimum hitting set
on the following bipartite graph G′

r((Y, Z ), E) stemming from the reduced digraph

of
−→
G (XTU , ETU ) in the following way:

– Y denotes the set of strongly connected components
scc[|XT |=1∧|ETU |=0] (

−→
G (XTU , ETU )) such that:

• For all y ∈ Y, y is not a sink in the reduced digraph.
• All descendants in the reduced digraph of a vertex y ∈ Y correspond to

strongly connected components of
−→
G (XTU , ETU ) reduced to one single U-

vertex with no incident arc, that is, belonging to scc[|XT |=0∧|XU |=1∧|ETU |=0]
(
−→
G (XTU , ETU )).

– Z denotes the set of strongly connected components in scc[|XT |=0∧|XU |=1∧|ETU |=0]
(
−→
G (XTU , ETU )) that are sinks in the reduced digraph.

– An edge e = (y, z), y ∈ Y, z ∈ Z belongs to E iff there is a path from y to z in the
reduced digraph.

NSINK = |sink[|XT |=1](
−→
G (XTU , ETU ))| + h(G′

r((Y, Z ), E))

Example 11 Figure 10 illustrates how to compute the lower bound of NSINK ac-
cording to the intermediate digraph

−→
G (XTU , ETU ) depicted by Part a. Part b gives

the corresponding bipartite graph G′
r((Y, Z ), E), where Y = {6, 7}, Z = {14, 15} and

E = {(6, 14), (7, 14), (7, 15)}. Since
−→
G (XTU , ETU ) contains a single T-vertex that is

a sink, sink[|XT |=1](
−→
G (XTU , ETU )) = {{13}} and thus |sink[|XT |=1](

−→
G (XTU , ETU ))| =

1. The cardinality of the minimum hitting set, h(G′
r((Y, Z ), E)), is equal to 1. As a

consequence NSINK = |sink[|XT |=1](
−→
G (XTU , ETU ))| + h(G′

r((Y, Z ), E)) = 2. Part c
provides a final digraph where this lower bound of two sinks is reached.
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Fig. 10 a Intermediate digraph, b corresponding bipartite graph used to compute the cardinality of
a minimum hitting set. c Example of a final digraph achieving the lower bound

Estimating NSINK In
−→
G (XTU , ETU ), let XP denote the set of U-vertices that are not

sources and such that at least one successor is a sink having one single predecessor.
We can remove from |sink(

−→
G (XT , ET))| + |XU | the number of U-vertices that are

sources in the intermediate digraph. Moreover, a pending vertex in
−→
G (XTU , ETU )

and its predecessor cannot both be sinks in a final digraph. Therefore we can also
remove |XP|.

NSINK = |sink(
−→
G (XT , ET))| + |XU | − |source[|XU |=1](

−→
G (XTU , ETU ))| − |XP|

Example 12 Figure 11 illustrates how to compute the upper bound of NSINK
according to an intermediate digraph. Since we do not have any T-vertex,
|sink(

−→
G (XT , ET))| = 0. Since the number of sources is equal to 3 and since XP = {3}

we have |sink(
−→
G (XT , ET))| + |XU | − |source[|XU |=1](

−→
G (XTU , ETU ))| − |XP| = 0 +

9 − 3 − 1 = 5. But we can only get a maximum of four sinks since the leftmost and
rightmost connected components can respectively generate at most two and two (and
not three as suggested by the upper bound) sinks.

4.2.2 Synthesis

Table 1 recapitulates the different bounds. Except the upper bound on NSINK,
all bounds are sharp [15]. Regarding complexity, the three non-polynomial bounds
are the lower bounds of NVERTEX, NSCC and NSINK since they all involve the
minimum hitting set [40] problem.8 Note that many of the digraphs that express

Fig. 11 An example of
intermediate digraph for which
the upper bound is not sharp

8As a consequence a lower bound of the minimum hitting set should be considered in practice.
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Table 1 Bounds of the different graph parameters

Graph parameter Bound Sharpness Complexity

NARC |ET | + |XT,¬T | − μ(
←→
G (XT,¬T , EU )) yes P

NARC |ETU | yes P

NVERTEX |XT | + h(
←→
G ((XT,¬T,¬T , XU,¬T,T ), EU,T )) yes NP-complete

NVERTEX |XTU | yes P

NCC |cc[|XT |≥1](
−→
G (XTU , ETU ))| yes P

NCC |cc[|ET |≥1](
−→
G (XT , ET ))| + μl(

←→
G rem) yes P

NSCC |scc[|XT |≥1](
−→
G (XTU , ETU ))| + h(GNSCC((Y, Z ), E)) yes NP-complete

NSCC |scc(
−→
G (XTU , ET ))| yes P

NSINK |sink[|XT |=1](
−→
G (XTU , ETU ))| + h(G′

r((Y, Z ), E)) yes NP-complete

NSINK |sink(
−→
G (XT , ET ))| + |XU |

− |source[|XU |=1](
−→
G (XTU , ETU ))| − |XP| no P

a global constraint belong to specific graph classes for which such a problem,
NP-hard in the general case, becomes polynomial. Section 5.2 shows how to simplify
the formula in the context of a typical graph class that arises in practice.

The bounds min(P) and max(P) of the variable P of a graph parameter P involved
in the description of a global constraint are respectively initialised to P and P.

4.3 Filtering on Graph Properties

Given a graph property P op V occurring in the description of a global constraint,
Table 2 gives the standard propagation rules for reducing the domains of V and P in
order to enforce constraint P op V (4) of the reformulation.

4.4 Filtering on Graph Invariants

Quite often, it happens that one wants to enforce the final digraph Gf of a global
constraint C to satisfy more than one graph property. In this context, these graph

Table 2 Rules for reducing the domain of variables V and P involved in a graph property P op V

P ≤ V min(V) ← max(min(P), min(V))

max(P) ← min(max(V), max(P))

P ≥ V max(V) ← min(max(P), max(V))

min(P) ← max(min(V), min(P))

P = V min(V) ← max(min(P), min(V)) ∧ max(V) ← min(max(P), max(V))

min(P) ← max(min(V), min(P)) ∧ max(P) ← min(max(V), max(P))

P �= V min(P) = max(P) ⇒ dom(V) ← dom(V) \ {min(P)}
min(V) = max(V) ⇒ dom(P) ← dom(P) \ {min(V)}
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properties involve several graph parameters that cannot vary independently. So, in
order to get stronger necessary conditions for the feasibility of C we can search for
graph invariants that link the different graph parameters. These graph invariants are
typically inequalities between one graph parameter and an arithmetic expression
mentioning other graph parameters.9 In this context, each graph invariant will be
used in order to adjust the minimum min(P) and the maximum max(P) values of its
graph parameter. Remember that these values were initialised by using the formula
of Section 4.2.

Furthermore, it happens quite often that the final digraph Gf associated with a
global constraint has a regular structure, which comes from its initial digraph or
from a property of its arc constraint ctr. According to a given graph class, initial
graph parameters bounds can be refined, as shown in Section 5.2. Similarly, tighter
graph invariants holding for a graph class can be used as additional constraints in the
reformulation of Section 4.1, in order to improve the filtering.

Example 13 Consider again the nvalue constraint introduced in Example 1.
Bessière et al. [23] give a necessary condition based on a result by Turán [75]. For the
final digraph Gf of the nvalue constraint, which is symmetric, reflexive and transi-
tive,10 this necessary condition11 links the number of strongly connected components,

the number of vertices and the number of arcs of Gf : NSCC ≥
⌈

NVERTEX2

NARC

⌉
. This

allows to evaluate the minimum number of distinct values according to the number
of variables of the nvalue constraint (i.e., NVERTEX, which is fixed to the number
of variables of the nvalue constraint since each vertex of the initial digraph belongs
to the final digraph) and to the maximum number of arcs of its intermediate digraph
(i.e., NARC).

To conclude this section, we propose the following research path, which is closely
related to the third research path proposed in [42].

RP 2. Organise a site for interactive addition to and consultation of a database of
graph invariants as well as bounds of graph parameters. These invariants and bounds
might be valid for all digraphs,12 digraphs with no isolated vertex13 or specific graph
classes that show up in the context of global constraints.

Such a data base could constitute an important resource for dealing with the
combinatorial aspect of global constraints.

9See Chapter 3 of [11] for a collection of about 200 graph invariants.
10Gf consists of one or several cliques.
11We recast the original condition given in [23] to the context of the intermediate digraph of the
nvalue constraint.
12This is the case of the CP(Graph) framework [32].
13This is actually the case for the global constraint catalogue [11].
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5 Toward Graph-based Filtering

The work presented in the previous section constitutes a first attempt in the direction
of generic filtering algorithms. The goal of this section is to highlight natural enhance-
ments and to show how they could be combined with previous work: Section 5.1 first
shows how to filter according to the lower and upper bounds of a graph parameter;
We then discuss in Section 5.2 the need for considering specific graph classes in order
to simplify the lower and upper bounds presented in the previous section; Finally,
Section 5.3 presents the structure of a generic filtering scheme that combines all the
elements introduced in Sections 4 and 5. All this will be done by considering small
concrete examples.

5.1 Filtering According to Bounds of Graph Parameters

Maintaining constraints (3) of the reformulation leads to filtering arc and vertex
variables (arc jk and vertex j) according to the minimum and maximum values of a
graph parameter. In other words, we aim at determining the status of U-vertices and
U-arcs of the intermediate digraph so that no final digraph contains more than (resp.
less than) a given fixed number of arcs, vertices, connected components, strongly
connected components, or sinks. In principle one could use shaving, i.e., fix the status
of each U-vertex and each U-arc and check if the formulae of Section 4.2 do not
lead to a contradiction. Since this is very costly in practice, one should rather try to
characterise the propagation that can be achieved when a graph parameter variable P
is fixed to one of its extreme values P or P. In order to illustrate this idea we consider
the formula giving the lower and upper bounds of NCC. Filtering for the other
usual graph parameters NARC and NVERTEX are presented in [17]. Propositions 3
and 4 correspond to the case where the number of connected components is equal
to the values, respectively, NCC and NCC given in Table 1. The proofs of these
propositions are available in Part A of the Appendix. Proposition 3 reuses the graph←→
G rem introduced in Section 4.2.1 for computing NCC.

Proposition 3 If dom(NCC) = { NCC }, with NCC = |cc[|ET |≥1](
−→
G (XT , ET))| +

μl(
←→
G rem), then:

1. All U-arcs joining two T-vertices belonging to two distinct connected components
of cc[|ET |≥1](

−→
G (XT , ET)) can be turned into F-arcs.

2. For all edges in
←→
G rem that do not belong to any maximum l-matching of

←→
G rem,

the corresponding U-arcs can be turned into F-arcs.
3. All arcs e = (u, v) ∈ EU such that u belongs to a connected component of

cc[|ET |≥1](
−→
G (XT , ET)) and v is saturated in all maximum l-matchings of

←→
G rem

can be turned into F-arcs.
4. All vertices v of

←→
G rem that belong to all maximum l-matchings of

←→
G rem can be

turned into T-vertices.
5. For all edges e belonging to all maximum l-matchings of

←→
G rem, if a unique U-arc

in
−→
G (XTU , EU ) corresponds to e then this arc can be turned into a T-arc.
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Fig. 12 Illustration of Proposition 3

Proposition 4 If dom(NCC) = { NCC }, with NCC = |cc[|XT |≥1](
−→
G (XTU , ETU ))|,

then:

1. All U-arcs and U-vertices in
−→
G (XTU , ETU )) that belong to a connected com-

ponent involving neither T-vertices nor T-arcs, can be turned into F-arcs and
F-vertices.

2. All U-vertices that are articulation points of
←→
G (XTU , ETU ) and that belong to an

elementary chain between two T-vertices can be turned into T-vertices.
3. For all edges e of

←→
G (XTU , ETU ) that are bridges belonging to an elementary chain

between two T-vertices, if a unique U-arc in
−→
G (XTU , ETU ) corresponds to e then

this U-arc can be turned into a T-arc.

We illustrate these propositions on two examples. In illustrative figures, U-vertices
and U-arcs for which the status is determined are systematically depicted with the
number of the corresponding item and their new status. As for the previous section,
we assume that the intermediate digraph

−→
G (XTU , ETU ) is normalised according to

constraints (2).

Example 14 Part a of Fig. 12 illustrates Proposition 3 according to the hypoth-
esis that the final digraph should contain at least six connected components.
cc[|ET |≥1](

−→
G (XT , ET)) consists of the two connected components {2, 3} and {4, 5, 6}.

Part b illustrates the undirected graph
←→
G rem, where thick lines correspond to a

maximum l-matching of cardinality 4, and grey vertices are vertices that are saturated
in all maximum l-matchings. Since the precondition of Proposition 3 holds, Items 1, 2
and 3 respectively turn the U-arcs in {(4, 3)}, {(9, 7), (9, 10), (10, 9)} and {(4, 8), (7, 5)}
into F-arcs. Item 4 turns the U-vertices {8, 13} into T-vertices. Finally, Item 5 turns
the U-arcs {(7, 8), (9, 9)} into T-arcs.

Example 15 Part a of Fig. 13 illustrates Proposition 4 according to the hypothesis
that the final digraph should contain no more than one connected component. Part b
represents the undirected graph

←→
G (XTU , ETU ), where grey vertices correspond

to articulation points and thick lines correspond to bridges. Since
−→
G (XTU , ETU )
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Fig. 13 Illustration of Proposition 4

contains one single connected component involving at least one T-vertex the pre-
condition of Proposition 4 holds. Since the connected component of

−→
G (XTU , ETU )

corresponding to U-vertices 4 and 9 does not contain any T-vertex, then from Item 1,
U-vertices 4 and 9 as well as U-arcs (4, 4) and (9, 4) are turned into F-vertices and
F-arcs. From Item 2, the two U-vertices 7 and 8, which are articulation points of←→
G (XTU , ETU ) belonging to an elementary chain between two T-vertices (3 and 6),

are turned into T-vertices. From Item 3, among the three bridges of
←→
G (XTU , ETU )

belonging to an elementary chain between two T-vertices (3 and 6), the arcs
(3, 8) and (7, 6) are turned into T-arcs since their respective counterpart (8, 3) and
(6, 7) does not belong to

−→
G (XTU , ETU ).

To conclude, we present a research path that considers the problem of a modular
implementation of such bound-based filtering algorithms. Unlike graph invariants,
which can be directly modelled by arithmetic constraints, the filtering rules associated
with each bound of each graph parameter seem to require ad hoc developments.
This would be contradictory to the goal of synthesising filtering algorithms. However,
most existing graph-based filtering algorithms rely on:

– A restricted number of graph transformations (e.g., union of graphs, induced
graph, reduced digraph, . . . ),

– And a limited set of basic graph algorithms to apply to these transformations.
They typically compute a graph parameter (e.g., cardinality of a maximum
matching, maximum flow, . . . ) or identify subsets of vertices and arcs with given
properties (e.g., bridges, edges and/or vertices saturated in every maximum
matching, . . . ).

This suggests the following research path.

RP 3. Design a compositional language and find out the set of basic graph transfor-
mations and algorithms that are required in order to describe a lot of graph-based
filtering algorithms. Create an abstract machine that can evaluate such a language.

5.2 Bounds for Special Graph Classes

For specific graph classes that arise in practice the lower bound or the upper bound
of a given graph parameter can usually be greatly simplified. This can typically lead
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Table 3 Simplified bounds of the different graph parameters in the context of the PATH arc-
generator

Graph parameter Bound Sharpness Complexity

NARCPAT H |ET | + ∑
i∈cc(

−→
G (XT,¬T ,EU ))

� |vertex(i)|+1
2 � yes P

NVERTEXPAT H
NSCCPAT H |XT | + ∑

i∈cc(
−→
G (XT,¬T,¬T ∪XU,U,¬U ,EU ))

� |vertex[|XT |=1](i)|+1
2 � yes P

NCCPAT H

NSINKPAT H |cc[|ET |≥1](
−→
G (XT , ET ))| + ∑

i∈cc(
←→
G rem)

� |vertex(i)|
2 � yes P

NSCCPAT H |XTU | yes P

NSINKPAT H |cc[|XT |≥1](
−→
G (XTU , ETU ))| yes P

to more efficient algorithms for evaluating these bounds. We illustrate this point in
the following context:

– When the final digraph corresponds to a set of cliques. This is the case for
constraints such as alldifferent and nvalue.

– When the final digraph has to be a subgraph of an elementary path.14 In Table 3,
we revisit the bounds of Table 1 that cannot be evaluated in linear time (i.e., all
bounds except NARC, NVERTEX and NCC).

5.2.1 A Set of Cliques

When the initial digraph is a clique and when the arc constraint defines an equiva-
lence relation R (e.g. an equality constraint), then a final digraph is a set of cliques,
where each clique represents an equivalence class of R. This is for instance the case
for the alldifferent, the not_all_equal or the nvalue constraints, which all
involve the graph parameter NCC. Assume now that you want to evaluate the max-
imum number of connected components within the context of this class of graphs.
The upper bound of NCC we gave early (|cc[|ET |≥1](

−→
G (XT , ET))| + μl(

←→
G rem)) is still

valid but not sharp anymore. But we can get back to a sharp bound by computing the
cardinality of a maximum matching of the following bipartite graph:

– To each variable associated with a vertex of the initial digraph we create a vertex.
To each equivalence class defined by R we also create a vertex.

– There is an edge between a variable and an equivalence class if and only if the
variable can be assigned to a value that belongs to that equivalence class.

14This is actually the case when we use the PATH arc-generator described in [11] for generating the
initial digraph associated with a global constraint.
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5.2.2 A Set of Elementary Paths

Given a graph parameter P, the new lower (resp. upper) bound of P is denoted
by PPATH (resp. PPATH). Proofs are available in Part B of the Appendix. Graph
parameters NSCCPAT H and NVERTEXPAT H are identical in the context of a set
of elementary paths, as well as NSINKPAT H and NCCPAT H . Observe that all these
bounds are sharp and can be evaluated in O(n) where n is the number of vertices
of the initial digraph. This is a big improvement over the general bounds given by
Table 1 since:

– The three non-polynomial bounds involving the minimum hitting set problem
and the two bounds involving a matching have been simplified.

– The bound on the maximum number of sinks is now sharp.

Example 16 Figure 14 illustrates the formula introduced in Table 3 for computing
the minimum number of arcs, the minimum number of vertices and the maximum
number of connected components according to the intermediate digraph depicted by
Part a, where the status of each vertex is given on top or below it:

– Part b1 shows the graph
−→
G (XT,¬T , EU ), which has four connected components

respectively involving four, two, one and one vertices. Since the intermediate
digraph contains one T-arc we get a minimum number of arcs equal to 1 +
� 4+1

2 � + � 2+1
2 � + � 1+1

2 � + � 1+1
2 � = 6. Part b2 provides a final digraph where this

lower bound of six arcs is reached.
– Part c1 shows the graph

−→
G (XT,¬T,¬T ∪ XU,U,¬U , EU ) which has two connected

components respectively involving zero and two T-vertices. Since the intermedi-
ate digraph contains ten T-vertices we get a minimum number of vertices equal
to 10 + � 0+1

2 � + � 2+1
2 � = 11. Part c2 gives a final digraph where this lower bound

of 11 vertices is reached.

Fig. 14 a Intermediate digraph and corresponding graphs b1
−→
G (XT,¬T , EU ), c1

−→
G (XT,¬T,¬T ∪

XU,U,¬U , EU ), d1
−→
G (XT , ET ), d2

←→
G rem. Examples of final digraphs achieving a minimum number

of arcs b2, a minimum number of vertices c2, and a maximum number of connected components d3
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– Parts d1 and d2 respectively depict the graphs
−→
G (XT , ET) and

←→
G rem. Since−→

G (XT , ET) contains one single connected component containing at least one T-
arc, and since

←→
G rem has two connected components respectively involving five

and eight vertices we get a maximum number of connected components equal to
1 + � 5

2� + � 8
2� = 7. Part d3 gives a final digraph where this upper bound of seven

connected components is reached.

5.2.3 Research Improvement

To conclude this section we suggest the following research improvement.

PE 2. Similarly to what we just did for the PATH arc-generator, come up with
simplified bounds for other graph classes, described in Section 3.2.1 of the global
constraint catalogue [11].

5.3 Putting Everything Together

In the context of graph-based filtering, this section shows how to put together the
different pieces that were previously introduced in order to get a first generic filtering
scheme from the graph-based representation of a global constraint. W.l.o.g. we
assume that the global constraint C(V1, . . . , Vn, x1, . . . , xm) under consideration is
defined as a conjunction of graph properties of the form Pl opl Vl (1 ≤ l ≤ n) on a
single initial digraph GR. c denotes the graph class associated with the final digraph
of the constraint C, and ctr represents the binary constraint associated with any arcs
in Ei. The generic filtering scheme given below implements the reformulation stated
by Proposition 2.

Algorithm 1 Implementing Proposition 2.

01 for the initial digraph Gi = (Xi, Ei) of C do
02 for each arc e jk ∈ Ei do
03 Create a 0-1 variable arc jk;
04 Post the arc-constraint arc jk = 1 ⇔ ctr(x j, xk);
05 for each vertex v j ∈ Xi do
06 Create a 0-1 variable vertex j;
07 Post the normalisation constraint

vertex j = min(1,
∑

{k | e jk∈Ei}; arc jk + ∑
{k | ekj∈Ei} arckj);

08 for each graph parameter Pl (1 ≤ l ≤ n) do
09 Create the variable Pl ;
10 Post the graph property constraint Pl opl Vl ;
11 Renormalises according to the possible graph-class c of C;
12 for each graph parameter Pl (1 ≤ l ≤ n) do
13 Post the graph parameter constraint ctrPl (Vertex, Arc, Pl);
14 Post all graph invariants involving parameters from {P1,P2, . . . ,Pn};

Algorithm 1 introduces new domain variables and posts various propagators on
those variables. It consists of the following parts:
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– An initialisation phase (lines 01–10) creates the vertex and arc variables (respec-
tively denoted by Vertex and Arc) associated with the initial graph and states the
arc constraints (1) as well as the normalisation constraints (2). It also posts all
graph property constraints (4) Pl opl Vl , which link a graph parameter variable
Pl to a variable Vl of the global constraint C (see Table 2).

– A renormalisation phase (line 11): For each specific graph class c, an additional
renormalisation constraint depending of c is stated. For instance, if the final
digraph has to be symmetric, we post for each arc ejk ∈ Ei constraint arcjk = arckj.

– A local propagation phase15 (lines 12,13) posts for each graph parameter Pl (1 ≤
l ≤ n) a constraint (3) corresponding to ctrPl (Vertex, Arc, Pl). Algorithm 2 shows
how such a propagator is implemented: we first evaluate the lower and upper
bounds P and P of the graph parameter P , update the minimum and maximum
value of P and possibly identify vertex and arc variables to fix in order to enforce
that P ∈ [P, P].

– A global propagation phase16 (line 14) posts all graph invariants involving several
graph parameters from {P1,P2, . . . ,Pn}.

Algorithm 2 Propagator associated with a graph parameter constraint ctrP (Vertex,

Arc, P).

01 Evaluate P and P according to the intermediate digraph;
02 min(P) ← max(P, min(P));
03 max(P) ← min(P, max(P));
04 if min(P) = max(P) = P then
05 Identify some vertex and arc-variables to fix in order to avoid P < P;
06 if min(P) = max(P) = P then
07 Identify some vertex and arc-variables to fix in order to avoid P > P;

5.4 Linking Up with Ad hoc Filtering

One may wonder whether the generic graph-based filtering is not too theoretical in
order to have any practical interest. We show that we can in fact retrieve several ad
hoc algorithms that were constructed for specific global constraints. For this purpose,
we first consider the proper_forest constraint for which a specialised filtering
algorithm was recently proposed in [18]. After recalling the different steps of this
algorithm, we “deconstruct” this algorithm and reinterpret its parts in terms of the
generic graph-based filtering. Similarly, we consider the alldifferent constraint.
Note that in [17], we also considered the among constraint introduced in [6]: we
then retrieved the specialised filtering algorithm that was proposed by Bessière et al.
in [22].

5.4.1 Retrieving the Filtering Algorithm of proper_forest

Example 17 Consider the proper_forest(NTREE,VER) constraint introduced
in [18], which takes a domain variable NTREE and an initial digraph GR described

15We call it local since it involves one single graph parameter.
16We call it global since it involves several graph parameters.
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Fig. 15 a A digraph and b a solution with three proper trees for the proper_forest constraint
corresponding to parts a and b of Table 4

by a collection of vertices VER. The proper_forest(NTREE,VER) constraint parti-
tions the vertices of GR into a set of vertex-disjoint proper trees (i.e., trees that have
at least two vertices each). Each item v ∈ VER has the following attributes:

– I is an integer between 1 and m (i.e., the total number of vertices of GR), which
can be interpreted as the label of v.

– N is a set variable whose elements are integers (vertex labels) between 1 and m.
The lower and upper bounds of N can respectively be interpreted as the set of
mandatory neighbours and the set of mandatory or potential neighbours of v.

Part a of Fig. 15 shows the initial digraph GR. Part b of the figure shows a possible
solution on this digraph with three proper trees.

We now describe the proper_forest constraint in terms of graph properties. A
final digraph Gf of the proper_forest constraint belongs to the class of symmetric
graphs17 and has no loop. Moreover Gf has to fulfill the following graph properties
on NVERTEX, NARC and on NCC: NVERTEX = m (since we have a vertex
portioning problem, all vertices of the initial digraph should belong to the final
digraph18), NARC = 2 · (m − NTREE) (2 since Gf is symmetric, and m − NTREE
since we have NTREE acyclic connected digraphs) and NCC = NTREE.

Table 4 Domains of the variables for the proper_forest constraint corresponding to parts a and
b of Fig. 15

i dom(VER[i].N) (A) dom(VER[i].N) (B) i dom(VER[i].N) (A) dom(VER[i].N) (B)

1 {2, 3} {2} 6 {5, 7, 8} {5, 7}
2 {1, 3, 4} {1} 7 {5, 6, 9} {6}
3 {1, 2, 4, 5} {4} 8 {6, 9} {9}
4 {2, 3} {3} 9 {7, 8} {7, 8}
5 {3, 6, 7} {6}

17A digraph is symmetric iff, if there is an arc from u to v, there is also an arc from v to u.
18Since the initial digraph does not contains any loops and since isolated vertices are forbidden in a
final digraph, each vertex of the initial graph belongs to a connected component of the final digraph
involving at least two vertices.
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The specialised filtering algorithm of the proper_forest constraint is made up
from the following steps:

1. Renormalise
−→
G (XTU , ETU ) according to the fact that the final digraph has to be

symmetric.
2. Check the feasibility of the proper_forest constraint:

(a) The intermediate digraph has no isolated vertex.
(b) There is no cycle made up from T-arcs.
(c) NTREE has at least one value in [MINTREE,MAXTREE] where MINTREE

is the number of connected components of the intermediate digraph and
MAXTREE is the number of connected components of

−→
G (XT , ET) plus the

cardinality of a maximum cardinality matching in the subgraph induced by
the vertices that are not incident on any T-vertices.

3. Every U-arc that would create a cycle of T-vertices is turned into an F-arc.
4. The minimum and maximum values of NTREE are respectively adjusted to

MINTREE and MAXTREE.
5. When NTREE is fixed to MINTREE all U-arcs corresponding to bridges of−→

G (XTU , ETU ) are turned into T-arcs.
6. When NTREE is fixed to MAXTREE each U-arc (u, v) satisfying one of the

following conditions is turned into an F-arc:

(a) Both u and v belong to two distinct connected components of
−→
G (XT , ET)

involving more than one vertex.
(b) (u, v) does not belong to any maximum matching in the subgraph induced

by the vertices that are not incident on any T-vertices.
(c) u is the extremity of a T-arc and v is saturated in every maximum matching

in the subgraph induced by the vertices that are not incident on any
T-vertices.

7. Every U-arc involving a source or a sink is turned into a T-arc.

By considering the generic graph-based reformulation of Proposition 2 on the
graph property NTREE = NCC, we retrieve almost all the steps of the previous
algorithm (except steps 2(b) and 3, which come from the invariant linking two graph
parameters NARC = 2 · (m − NCC)):

– Item (1) corresponds to posting the renormalisation constraints (5) according
to the possible graph-class c of C (in the context of proper_forest, the final
digraph has to be symmetric).

– Item (2.a) corresponds to posting the normalisation constraints (2).
– Item (2.c) corresponds to checking the graph property constraint NCC =

NTREE (4). MINTREE and MAXTREE respectively correspond to the general lower
and upper bounds of NCC given in Table 1 and deduced from constraint (3).

– Item (4) corresponds to the propagation induced by the graph property con-
straint (4).

– Item (5) and Item (6) correspond to propagating constraint (3) on the graph
parameter NCC: Item (5) is the specialisation of Theorem 4, namely its third
item (since the first two items of Theorem 4 are irrelevant because

−→
G (XTU , ETU )

does not contain any U-vertex). Item (6) corresponds to Theorem 3.
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– Finally, Item (7) corresponds to the propagation obtained by the graph-class
constraint (5), which avoids the creation of any isolated vertex in the symmetric
graph.

5.4.2 Retrieving the Filtering Algorithm of alldifferent

The alldifferent(V1,V2, . . . ,Vn) enforces all variables of V1, V2, . . . , Vn to be as-
signed to distinct values. Its initial digraph is a clique where each vertex corresponds
to a variable of V1, V2, . . . , Vn. An equality constraint is associated to each arc and
consequently the final digraph is a set of cliques where each clique corresponds to the
variables that are assigned to the same value. The graph property NCC = n is used
in order to have n distinct values. Since NCC cannot exceed n it remain to enforce
that NCC ≥ n. For this purpose, we have to evaluate an upper bound of NCC. We
just saw in Section 5.2.1 how this turned out to evaluate the cardinality of a maximum
matching within a specific bipartite graph.

5.5 Adaptation to CP(Graph)

The CP(Graph) framework [32] introduces graph variables as well as constraints
on these variables for representing some constraints related to graphs. Similarly to
what was presented for the graph-based representation, the CP(Graph) framework
represents a global constraint as the search for a subgraph of an initial digraph, so
that this subgraph satisfies some graph properties. In this context, the lower and
upper bounds of a graph variable of the CP(Graph) framework can be respectively
reinterpreted as the graphs

−→
G (XT , ET) and

−→
G (XTU , ETU ).

A first minor difference between the two approaches is that the graph-based
representation forbids isolated vertices in the final digraph, which is not the case
for CP(Graph). A second difference is that no binary constraint is associated with
each arc, as is currently the case for the graph-representation (see constraints (1) of
Proposition 2).

From a filtering perspective, both the CP(Graph) framework and the graph-based
representation have to find out which arcs and vertices will effectively belong to the
final digraph. We now show how one can easily adapt the results of Sections 4 and 5.3
to the context of CP(Graph). Assume that a graph variable is represented by a set of
set variables (one set variable S j for each vertex v j of the initial digraph). The lower
and upper bounds of such a variable S j represents the mandatory successors as well as
the potential successors of v j. Within Proposition 2, we have to replace constraints (1)
by arc jk = 1 ⇔ k ∈ S j. Since isolated vertices are now allowed and since if an arc
exists, then its endpoints must also exist, we have also to replace the symbol =
of constraints (2) by ≥. We keep unchanged the other items of Proposition 2.
Regarding the bound computations, we have now to consider that isolated vertices
may belong to the final digraph. All bounds of Section 4.2.1 can be easily adapted to
this requirement. This leads to simplified bounds summarised in Table 5. All previous
bounds are sharp. Regarding complexity, all the bounds are polynomial but NSINK.

Graph invariants can also be used, provided that one revisits the data base of graph
invariants in order to sort out which invariants are still valid and which invariants
need to be adapted to the context of isolated vertices. Finally, the generic filtering
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Table 5 Bounds of the different graph parameters in the context of CP(Graph)

Graph parameter Bound Sharpness Complexity

NARC |ET | yes P

NARC |ETU | yes P

NVERTEX |XT | yes P

NVERTEX |XTU | yes P

NCC |cc[|XT |≥1](
−→
G (XTU , ETU ))| yes P

NCC |cc(
−→
G (XT , ET ))| + |XU | yes P

NSCC |scc[|XT |≥1](
−→
G (XTU , ETU ))| yes P

NSCC |scc(
−→
G (XTU , ET ))| yes P

NSINK |sink[|XT |=1](
−→
G (XTU , ETU ))|+h(G′

r((Y, Z ), E)) yes NP-complete

NSINK |sink(
−→
G (XT , ET ))| + |XU | yes P

scheme introduced in Section 5.3 still applies, modulo some minor modifications of
Algorithm 1 (i.e., replace line 04 by arc jk = 1 ⇔ k ∈ S j, and remove line 07).

6 Other Research Lines Closely Related to the Catalogue

This section presents different lines of research that could be built on top of the
existing catalogue of global constraints. These lines of research deal respectively with
constraint reformulation, constraint visualisation, constraint-oriented heuristics, and
constraint seeker. We now successively go through these four topics.

6.1 Constraint Reformulation

Constraint reformulation has been identified as a key technique that is required in
order to ease the use of Constraint Programming technology. Modelling a specific
problem is not an easy task and can dramatically affect the performance. An
additional difficulty stems from the fact that modelling is not independent of the
targeted constraint system. As a consequence a lot of effort was devoted to develop
various modelling techniques for specific problems.19 As a matter of fact these
techniques are currently disseminated in the head of constraint experts and/or in
articles and are only used on a case by case basis. Only recently some effort was
devoted into the development of automatic reformulation techniques and concrete
system as well as to the automatic compilation from high-level modelling languages
to a given constraint system [21, 28, 39, 44]. But the use of global constraints was
not yet considered in such a system. This is quite surprising since the concept of
global constraint seems to be a good support for automatic constraint reformulation:
in fact, quite a lot of global constraints have been introduced in order to handle

19In fact an annual workshop is devoted to this topic (i.e., see http://4c.ucc.ie/~brahim/cp05ws/).

http://4c.ucc.ie/~brahim/cp05ws/
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a conjunction of constraints that occur in a recurring way.20 This was for instance
the case of the alldifferent constraint, which replaces a clique of disequality
constraints. But this was also the case of the lex_chain_less [26], the diffn [6]
or the colored_matrix [71] constraints, which can respectively be decomposed as
a conjunction of lexicographic ordering constraints, of non-overlapping constraints
or of global_cardinality [69] constraints. In fact lexicographic ordering, non-
overlapping or global_cardinality constraints are much more known than their
global counterparts lex_chain_less, diffn or colored_matrix.

The concept of global constraint can also catch well-known necessary conditions
that are widespread all over scientific articles. We illustrate this by the following
examples:

– Consider the cumulative [1] constraint. A well-know necessary condition is
obtained by extracting all disjunctive tasks and stating explicitly that they are in
disjunction. A first simple extraction method is to consider all tasks that use more
than the half of the resource limit. More sophisticated methods are available
when we have more than one cumulative resource [2, 3].

– Consider the two-dimensional case of the diffn constraint, which allows for
expressing the fact that a set of rectangles do not pairwise overlap. A well-known
necessary condition based on the cumulative constraint is depicted in [1].

– Consider systems of alldifferent constraints [34] (i.e., several
alldifferent constraints sharing some variables). It is sometimes possible
to get stronger propagation, which catches the interaction of several
alldifferent constraints by using other global constraints such as
nvalue [58] or same_and_global_cardinality [14].

In order to integrate global constraints into an automatic reformulation process,
a possibility is to associate to each global constraint a set of transformation rules.
These rules would allow for expressing a given global constraint in terms of others,
or would permit generating necessary conditions expressed as a conjunction of
constraints for the feasibility of a given global constraint. Then transformation
rules could be gradually incorporated into the catalogue of global constraints. This
suggests the following research path.

RP 4. Investigate in which form transformation rules should be given: ideally,
they should both allow for writing down programs that derive implied global
constraints as well as be used in two directions.21 Finally, come up with compilers
that use these rules in order to automate the process of moving from a model to a
description designed for efficient solution and/or specific constraint system target.
These compilers should also deal with the problem of extracting global constraints
from matrix models [37].

20This is usually done in order to get more pruning and/or to use less memory.
21From a set of disequality constraints one should be able to extract cliques of disequalities, and from
an alldifferent constraint it should be possible to generate a clique of disequalities.
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6.2 Constraint Visualisation

Constraint visualisation has been recognised as a key topic for debugging constraint
programs [30]. One typical aspect of Constraint Programming is that, quite often, we
initially have inefficient correct programs. This leads to the notion of performance
debugging (i.e., try to enhance the performance of a constraint program that is
already correct). Global constraints have been found useful in this context since:

– Programs that use global constraints usually involve much fewer constraints.
– Quite often, it turns out that global constraints are much more application

oriented than primitive constraints.22 For instance associating a Gantt chart to
a cumulative constraint allows to have a first graphical interface that can be
immediately understood.

Until now, specific visualisation tools have been independently developed for
each global constraint. This was for instance the case in the DISCIPL project where
visualisation tools were developed for the cumulative, the cycle and the diffn
constraints [74]. However, in the context of the global constraint catalogue, this is
clearly not a feasible approach since we have too many global constraints. Currently,
the global constraint catalogue contains a generic graphical representation, which is
systematically used. This representation displays the final digraph associated with a
ground instance of a global constraint: according to the graph parameters used in
the graph-based representation of the global constraint we give the values actually
taken by these graph parameters and outline these graph parameters (for instance
for MIN_NCC we outline the smallest connected component of the final digraph).
This representation is automatically synthesised from the graph-based description.23

Even if this constitutes a generic approach, this graph-based visualisation is far
from being satisfactory. This can be observed from the fact that, for quite a lot
of global constraints, the catalogue provides additional figures that represent the
constraint in a more appropriate graphical form (see for instance the cumulative,
the cumulative_two_d, the nvalue or the orchard constraints). This suggests
the following line of research.

RP 5. From the graph-based representation of global constraints, investigate how to
derive more appropriate graphical representations related to frequent graph classes.
Moreover these graphical representations should cope with large data sets.

6.3 Constraint-oriented Heuristics

When it comes to the point of solving concrete problems, global constraints require
to use a heuristic that explores the search space by gradually adding bactrackable

22Especially in the context of commercial solvers that have global constraints dedicated to certain
application areas.
23For this purpose, we use the open source graph drawing software Graphviz available from AT&T
(http://www.research.att.com/sw/tools/graphviz).

http://www.research.att.com/sw/tools/graphviz
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constraints24 until all variables of the problem get fixed. Constraint systems usually
offer three ways for expressing heuristics:

– General purpose heuristics mostly based on the domain of the variables (i.e., the
number of values in the domain, the smallest or largest values, the difference
between the second smallest value and the smallest value, the number of
holes, . . . ) as well as on the number of constraints mentioning a given variable.

– Basic primitives for creating a choice point or for assigning a value to a variable.
These primitives are provided for programming specific heuristics.

– Predefined constraint-oriented heuristics that are based on the internal state of a
global constraint. For instance, in the context of a cumulative constraint, one
may want to base a heuristics on the cumulated profile of compulsory parts25

already built. But, in the context of an alldifferent or a cycle constraints,
one may want to build a heuristics based on the perfect matching computed by
the filtering algorithm in order to check feasibility.

Using heuristics that are related to the structure of a problem is of great im-
portance and, in fact, quite common in Operations Research. But currently, in the
context of Constraint Programming, the situation is difficult since:

– By definition, predefined constraint-oriented heuristics are ad hoc. This con-
cretely means that it is almost sure that available predefined constraint-oriented
heuristics will not fit the exact requirement of a user dealing with a specific
problem. Unless he has access to the source code of the filtering algorithm
he will not be able to take advantage of the information available inside the
global constraint. But even if the source code is available, understanding all the
subtleties of the internal implementation of a global constraint will usually be far
too difficult.

– Since they typically are available in only one solver, predefined constraint-
oriented heuristics hinder the compatibility between solvers. This concretely
means that, even when two constraint systems offer the same set of constraints,
a source to source translation of a model from a first system to a second system
will be quite impossible when predefined constraint-oriented heuristics are used.
It is also very unlikely that reformulation tools could take advantage of such
predefined constraint-oriented heuristics in a systematic way.

– Finally, the declarative semantics of predefined constraint-oriented heuristics
is usually not fully documented. This make such extensions quite dirty from a
language perspective: hooks to the internal data structure have to be provided.

This suggests the following research path.

RP 6. Use the graph-based description of global constraints in order to come up with
a clean and concise way to express graph-based heuristics. The key point would be
to allow for expressing a graph property depicting what we want to select first (and
not how to compute the things we want to select first).

24Usually an equality constraint between a variable and a constant.
25The compulsory part of a task corresponds to the intersection of all feasible instances of a task.
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6.4 Constraint Seeker

The catalogue of global constraints contains more than 250 global constraints.
Retrieving easily a global constraint in the catalogue or finding out that a global
constraint does not exist may be quite complex:

– The user may not be aware of the name of the global constraint he is looking for.
In fact, the name of a global constraint usually reflects a particular interpretation
of the utilisation of that constraint, which makes it hard to come up with names
that reflect all potential usage of a global constraint.

– The user may also not know in which order he has to provide the different argu-
ments of a global constraint. This gets even worse as the number of arguments of
a global constraint increases (e.g., the group constraint has 8 arguments).

– Some global constraints have an argument that corresponds to a collection of
items where each item consists of several attributes. For instance, in the context
of the cumulative constraint, the first argument is a collection of tasks, where
each task has an origin, a duration, a height and an end attribute. Again
it is unrealistic to expect that the user knows the name of the attributes and the
order in which they are defined. Things get even worse when we consider the fact
that some attributes may not need to be explicitly defined.

– An additional problem is that the user may look for a global constraint that is
very close to an existing global constraint of the catalogue.

All these points suggest the following enhancement.

PE 3. Organise a site for interactive consultation of the catalogue of global con-
straints where global constraints can be searched (without knowing neither their
name nor the syntax of their parameters) by providing ground instances correspond-
ing to solutions and/or non-solutions.

7 Conclusion

In Operations Research it is a well-known fact that good bounds are a key element
for efficient problem solving. In Operations Research as well as Constraint Program-
ming, it is also known that necessary conditions (that can be checked efficiently) for
the realisability of a problem are extremely important. Despite these facts, bounds
and necessary conditions are currently used in an ad hoc way in both Operations
Research and Constraint Programming: given a problem or a global constraint, one
investigates how to find bounds and necessary conditions for this problem or that
constraint.

In this article we have proposed the first systematic approach where a constraint
is described in terms of graph properties that are used for searching in a data base of
bounds and graph invariants the relevant formula and components for synthesising a
filtering algorithm. Two points are critical in this approach:

– In the short term, the approach relies mostly on the availability of a large data
base of bounds and invariants for a significant number of graph classes that arise
in practice. Even if building such a huge data base requires a significant amount
of work beyond the capability of one single person, this kind of work is typically
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incremental and could be done in parallel. Such a data base could surely benefit
the Operation Research26 as well as the Constraint Programming communities.

– In the long term, one would also like to address the research path RP 3 cor-
responding to the design of a compositional language for expressing most graph
algorithms and the creation of an abstract machine for evaluating expressions of
such a language. Again this would benefit both the Operations Research and the
Constraint Programming communities.

Finally, we also hope that we have raised the interest of using global constraints in
a systematic way for dealing with such topics as constraint reformulation, constraint
visualisation, constraint-oriented heuristics, and constraint seeker.

Appendix

A Omitted Proofs of Propositions 3 and 4

Proof of Proposition 3 μl(
←→
G rem) is the maximum possible number of new connected

components that could be present in Gf in addition to the current number of
connected components involving at least one T-arc. If one arc joins two connected
components in cc[|ET |≥1](

−→
G (XT , ET)) then the number of connected components

of the final digraph will be strictly less than |cc[|ET |≥1](
−→
G (XT , ET))| + μl(

←→
G rem),

a contradiction. Therefore Item 1 holds.
Similarly, U-arcs corresponding to edges in

←→
G rem that do not belong to at least

one maximum l-matching of
←→
G rem cannot belong to the final digraph because their

presence would decrease the number of new connected components. Therefore
Item 2 holds.

Furthermore, no U-arc that joins a connected component in cc[|ET |≥1](
−→
G (XT ,

ET)) with a vertex saturated in all maximum matchings of
←→
G rem can be turned into

a T-arc. Therefore Item 3 holds.
On the contrary, U-vertices saturated in all maximum matchings of

←→
G rem and

U-arcs belonging to all such maximum matchings must necessarily belong to Gf .
Items 4 and 5 hold. ��

Proof of Proposition 4 A subpart of each connected component in
cc[|XT |≥1](

−→
G (XTU , ETU )) will necessarily belong to a distinct connected component

of Gf . By definition, no additional connected component of
−→
G (XTU , ETU )) can

belong to Gf . As a consequence Item 1 holds. Moreover, existing connected compo-
nents containing a T-arc should not be split. Therefore some U-vertices and U-arcs
should necessarily belong to Gf . Items 2 and 3 hold. ��

B Omitted Proofs of Table 3

Property 1 NARCPAT H ≥ |ET | + ∑
i∈cc(

−→
G (XT,¬T ,EU ))

� |vertex(i)|+1
2 �

26In fact P. Hansen is calling for such a development in one recent article [42].
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Proof Since no T-vertex is isolated in
−→
G (XTU , ETU ), any T-vertex in

−→
G (XT,¬T , EU )

is the extremity of one or two arcs in EU . Therefore, the corresponding undirected
graph

←→
G (XT,¬T , EU ) is a set of mutually disjoint elementary chains. For a given

elementary chain i (that is, a connected component), the cardinality of a minimum
edge cover is � |vertex(i)|+1

2 �. By Table 1 the property holds. ��

Property 2 The lower bound provided by Property 1 is sharp.

Proof When GR is generated by using PATH,
←→
G (XTU , ETU ) is a set of

mutually disjoint elementary chains.
∑

i∈cc(
−→
G (XT,¬T ,EU ))

� |vertex(i)|+1
2 � = |XT,¬T | −

μ(
←→
G (XT,¬T , EU )). By Table 1 the property holds. ��

Property 3 NVERTEXPATH ≥ |XT | +∑
i∈cc(

−→
G (XT,¬T,¬T∪XU,U,¬U ,EU,T ))

� |vertex[|XT |=1](i)|+1
2 �

Proof All T-vertices will belong to the final digraph Gf . Therefore, NVERTEXPATH
≥ |XT |. Some of them are linked to U-vertices only. Since there is no loop and no
isolated vertices in Gf , a certain number of these U-vertices must belong to Gf .
Consider the connected components that are exclusively composed by T-vertices
not linked to any other T-vertex, the U-vertices that are linked to them, and all
the U-arcs incident on a T-vertex. Each of these connected components, which we
denote by i, is such that by definition neither two T-vertices nor two U-vertices are
consecutive. Thus, for each i, the minimum number of U-vertices required to prevent
all T-vertices from being isolated is exactly � |vertex[|XT |=1](i)|+1

2 �. The property holds. ��

Property 4 The lower bound provided by Property 3 is sharp.

Proof For the arc-generator PATH, the quantity
∑

i∈cc(
−→
G (XT,¬T,¬T∪XU,U,¬U ,EU ))

� |vertex[|XT |=1](i)|+1
2 � is equal to the cardinality of the minimum hitting set involved in

the general bound of Table 1. It is possible to derive from
−→
G (XTU , ETU ) a final di-

graph where NVERTEXPATH = |XT | + ∑
i∈cc(

−→
G (XT,¬T,¬T∪XU,U,¬U ,EU ))

� |vertex[|XT |=1](i)|+1
2 �

by turning exactly one U-arc to a T-arc for each isolated T-vertex in each connected
component of cc(

−→
G (XT,¬T,¬T ∪ XU,U,¬U , EU )). The property holds. ��

Property 5 NCCPATH ≤ |cc[|ET |≥1](
−→
G (XT , ET))| + ∑

i∈cc(
←→
G rem)

� |vertex(i)|
2 �

Proof
←→
G rem is a set of elementary chains disjoint from one another. For a subgraph

consisting of one chain, the cardinality of a maximum matching is equal to the floor
of the number of vertices divided by two. μl(

←→
G rem) = ∑

i∈cc(
←→
G rem)

� |vertex(i)|
2 �. From

the general bound of Table 1 the property holds. ��

Property 6 The lower bound provided by Property 5 is sharp.

Proof By proof of Property 5 and by Table 1. ��
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Property 7 NVERTEXPATH = NSCCPATH

Proof Given an arc (u, v) in
−→
G (XTU , ETU ), by definition of the PATH arc-

generator, (v, u) does not belong to
−→
G (XTU , ETU ). Therefore the set of strongly

connected components is the set of vertices. ��

Property 8 NCCPATH = NSINKPATH

Proof By definition of the PATH arc-generator all connected components are
elementary paths. ��
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