Constraints (2006) 11: 315-333
DOI 10.1007/s10601-006-9003-7

A Cost-Regular Based Hybrid Column Generation
Approach

Sophie Demassey - Gilles Pesant -
Louis-Martin Rousseau

Published online: 21 October 2006
© Springer Science + Business Media, LLC 2006

Abstract Constraint Programming (CP) offers a rich modeling language of con-
straints embedding efficient algorithms to handle complex and heterogeneous com-
binatorial problems. To solve hard combinatorial optimization problems using CP
alone or hybrid CP-ILP decomposition methods, costs also have to be taken into
account within the propagation process. Optimization constraints, with their cost-
based filtering algorithms, aim to apply inference based on optimality rather than
feasibility. This paper introduces a new optimization constraint, cost -regular. Its
filtering algorithm is based on the computation of shortest and longest paths in a
layered directed graph. The support information is also used to guide the search for
solutions. We believe this constraint to be particularly useful in modeling and solving
Column Generation subproblems and evaluate its behaviour on complex Employee
Timetabling Problems through a flexible CP-based column generation approach.
Computational results on generated benchmark sets and on a complex real-world
instance are given.

Keywords optimization constraints - hybrid OR/CP methods - CP-based column
generation - branch and price - employee timetabling

A preliminary version of this paper appeared as [7]. This research was supported by the
Mathematics of Information Technology and Complex Systems (MITACS) Internship program
in association with Omega Optimisation Inc. (CA).

S. Demassey (<)
Ecole des Mines de Nantes, LINA FRE CNRS 2729, FR-44307 Nantes, France
e-mail: sophie.demassey@emn.fr

G. Pesant - L.-M. Rousseau

Centre for Research on Transportation, Ecole Polytechnique de Montréal, C.P. 6128, succ.
Centre-ville, Montreal H3C 3J7, Canada

e-mail: gilles.pesant@polymtl.ca

L.-M. Rousseau
e-mail: louis-martin.rousseau@polymtl.ca

@ Springer

316 S. Demassey, G. Pesant et al.

1 Introduction

Constraint Programming based column generation is a decomposition method that
can model and solve very complex optimization problems. The general framework
was first introduced in [16]. It has since been applied in areas such as airline crew
scheduling [11, 23], vehicle routing [22], cutting-stock [12], and employee timetabling
[15].

All these optimization problems may be decomposed in a natural way. They may
be viewed as selecting a subset of individual patterns within a huge pool of possible
and weighted patterns. The selected combination is the one with the lowest cost to
fulfill some given global requirements. The selection problem can be formulated
as an integer linear program with one column for each possible pattern and a
corresponding integer variable representing the number of times the pattern should
be selected. The design of the possible patterns is itself a hard constrained satisfaction
problem and its solution set may be too large to be written out explicitly. Delayed
column generation is then the only way to address such a formulation (see, for
example, [5] for details on the approach). The LP-relaxation of the integer program,
the master problem, is solved iteratively on a restricted set of columns. At each
iteration, the pricing problem is to generate new entering columns, i.e., new possible
patterns, which may improve the current solution of the master problem.

In this approach, the pattern design subproblem is then solved several times. Each
time, it is preferable to compute several solutions at once to limit the number of
iterations of the column generation process. Also, an optimization variant of the
problem should be considered since the expected patterns (i.e., the most improving
columns) are the ones with the most negative reduced costs in the master problem.

In routing, crew scheduling or employee timetabling applications, the rules defin-
ing the allowed individual patterns are often multiple and complex. Traditionally,
they have been handled by dynamic programming techniques [8]. The use of a
constraint programming solver instead to tackle the pricing problem adds flexibility
to the whole solution procedure. For its modeling abilities, CP is more suited as rules
are often prone to change.

Hence, CP-based column generation is an easily adaptable solution method: the
problem decomposition makes the pattern design subproblem independent from the
global optimization process, leaving the CP component alone to handle variations
within the definition of the patterns. The recent introduction of both ergonomic and
effective optimization constraints in the CP component can have a great impact on
the success of this approach to solve various large-size optimization problems.

In this paper, we address a general class of employee timetabling problems with
a CP-based column generation approach. The pattern design subproblem is then
to build legal schedules with lowest costs for the employees. Legal schedules are
defined as time-indexed activity sequences complying with a number of ordering or
cardinality rules. We present the new optimization constraint cost-regular cap-
turing both the cost and the feasibility specifications of a sequence. This constraint,
alone or supported by some side constraints, allows to define efficient and flexible
CP algorithms for such optimum-cost sequence design problems. Firstly, it models
together and in a handy way various complex sequencing rules (all described by
a single deterministic automaton) and cost structures. Secondly, it simultaneously
filters on feasibility and optimality criteria, making use of an efficient propagation

@ Springer

A Cost-Regular Based Hybrid Column Generation Approach 317

(and back-propagation from the cost) algorithm. Lastly, its underlying support
information serves as a helpful cost-based guiding heuristic for the search process.
The contributions of this paper thus lie in the extension of the regular constraint
[18] to handle efficiently cost information and in the hybrid column generation model
it allows to define.

The paper is organized as follows: the next section reviews the work on optimiza-
tion constraints while Section 3 presents cost -regular. In Section 4 we present the
Employee Timetabling Problem and describe how hybrid column generation based
on cost-regular can be used to solve it. Finally, Section 5 evaluates the proposed
method on different instances, both simulated and real. The generated instances are
designed to evaluate the behaviour of CP based column generation in a reasonably
complex work environment with multiple activities. The real-life instance we present
was actually one of the main motivations behind this research. It comes from the
regional branch of a major bank comprising four service points. The main difficulty
of this instance comes from the complex rules that regulate the multiples breaks,
meals, and change of activity or service point during the day. The solution of this
complex problem has a direct impact on the financial institution’s payroll and the
quality of service it provides.

2 Optimization Constraints

Before discussing optimization constraints, let us first define the following notation.
Let S be the set of feasible solutions of a satisfaction problem. An instance of an
optimization variant of this problem, at least in the mono-objective case, is given by
an objective function f defined on a superset of S and taking its values in a totally
ordered set, say R. The problem is to find the minimal value z* the function f takes
on S and an element v* in S where f takes this value: f(v*) = z*.

In Constraint Programming, the optimization criterion is generally taken into
account by adding to the initial satisfaction model a cost variable z with interval
domain. Additional constraints, modeling condition z <= f(v)Yv € §, link the cost
variable to the decision variables X. Constraint programming optimization algo-
rithms solve a succession of satisfaction problems. Each time a new best solution
is found, the upper bound of z’s domain is reduced to match its value.

Optimization constraints, by merging both feasibility and optimization conditions,
are more efficient. They aim to filter from the decision variable domains, values
appearing in no solution v € § or whose cost f(v) does not belong to the current
domain of z. Hence, domain reductions are also propagated from the bounds of the
cost variable to the decision variables.

Optimization constraints also reduce the domain of z by computing a good
evaluation of its lower bound. Constraint propagation can then detect inconsistency
on this variable in the same way a traditional OR branch-and-bound method does.
Moreover, since it is often preferable to guide the search towards regions which are
likely to contain low cost solutions, optimization constraints may compute additional
information that can act as good variable-value selection heuristics or as regret
notions (such as an optimal solution to a relaxation of the original problem). We
refer to Focacci et al. [14] for a further discussion about optimization-oriented global
constraints. Several contributions have been made to the domain of optimization

@ Springer

318 S. Demassey, G. Pesant et al.

constraints. In general, the cost of an instantiation of the decision variables is
computed as the sum of the costs ¢;; of each assignment X; = j.

Existing contributions hold mainly on weighted assignment constraints such as the
weighted all-different constraint [4, 13, 24], the global-cardinality with costs constraint
[21], the sum of weights of distinct values [3]. Among the other contributions, note
the ones on the shorter path constraint [16, 25] which bears some similarities with the
cost-regular constraint presented thereafter.

The cost-based filtering algorithms consist of propagating deduction rules [3] or
applying OR solution techniques to the optimization problem or to a relaxation.
Notable works in this domain are based on linearization and reduced-cost consid-
erations [13, 14, 17, 26] or on graph algorithms [16, 21]. Remark that it is possible
to achieve generalized arc-consistency in polynomial time for some constraints (for
example, the weighted all-different [21]) while for NP-hard problems only relaxed
consistency can be envisaged (see [12, 25]). In fact, optimization constraints merely
share for now, cost-based filtering of the decision variable domains and one side-
bounding of the cost variable domain. Much of these constraints concentrate on
computing a tight lower bound of the cost to minimize but do not provide an upper
bound ([3, 21] are among the exceptions). One reason is that lower and upper
bounding are not always dual problems. Also only some of these constraints (e.g.,
[4, 14]) return information about the relaxed optimal solution computed during
filtering (i.e., the solution corresponding to the lower bound). Such precomputed
informations would yet be very useful to guide the search towards minimal solutions
in a backtracking algorithm.

Note that cost-based filtering algorithms are also used in soft-constraints [1, 19,
27], where we wish to minimize a violation measure captured by a violation variable.

3 Cost-Regular

As the cost-variant of regular [18], constraint cost-regular(X, I, z, C) holds
if the values taken by the sequence of finite domain variables X spell out a word
belonging to the regular language associated to the deterministic finite automaton IT,
and if z, a bounded-domain continuous variable, is equal to the sum of the variable-
value assignment costs given by cost matrix C.! The filtering algorithm associated to
this constraint is based on the computation of paths in a directed weighted layered
graph. We show in this section how, by maintaining shortest and longest paths, the
filtering algorithm of cost-regular provides: pruning on the lower and the upper
bounds of the cost variable’s domain; cost-based pruning on the decision variables’
domains; and information to guide the search for solutions.

3.1 The Filtering Algorithm

A regular constraint is specified using a deterministic finite automaton that
describes the regular language to which the sequence must belong. That automaton

INote that we could refine the costs further by associating one to every combination of variable,
value, and state of the automaton.

@ Springer

A Cost-Regular Based Hybrid Column Generation Approach 319

is then unfolded into a layered directed graph where vertices of a layer correspond
to states of the automaton and arcs represent variable-value pairs. This graph has the
property that paths from the first layer to the last are in one-to-one correspondence
with solutions of the constraint. The existence of a path through a given arc thus
constitutes a support for the corresponding variable-value pair [18].

Instead of simply maintaining paths, the filtering algorithm for cost-regular
must consider the length of these paths, defined as the sum of the costs of individual
arcs. Since an arc corresponds to a variable-value pair, its cost is given by cost matrix
C. Supports do not come from just any path but rather from a path whose length
falls within the domain of z. To check this efficiently, it is sufficient to compute and
maintain shortest and longest paths from the first layer to every vertex and from
every vertex to the last layer: if the shortest way to build a path through a given arc
is larger than the upper limit of the interval for z, the arc cannot participate in a
solution and can thus be removed; if the longest way to build a path through a given
arc is smaller than the lower limit of that interval, the arc can again be removed. In
this way, domain consistency is achieved for the variables of X. The domain of z can
also be trimmed using the shortest and longest paths from the first to the last layer,
achieving bounds consistency for z.

Figure 1 gives a layered directed graph built for the constraint on five variables.
There are six layers, N; to Ng, and vertices within a layer correspond to states of the
automaton. An arc joining a vertex of layer N; to another of layer N;;; represents a
feasible value for variable x;: the arc’s color stands for the value and its label, the cost.
If, for example, the domain of z is [—12, —1], the topmost arc between layers N, and
Ns, among others, will be removed because the shortest path through it has length 2.
Similarly, the third arc from the top between layers N, and N, will be removed be-
cause the longest path through it has length —14 and furthermore since it is the only
arc of this color for x;, the corresponding value is removed from its domain. Sup-
pose now that the domain of z is [—o0, 5]: that domain will be trimmed to [—14, 3] sin-
ce the shortest and longest paths in that graph are respectively of length —14 and 3.

The time complexity for the initial computation of the graph, including shortest
and longest path lengths, is linear in the size of X and in the number of transitions

Fig. 1 The layered directed Xy Xy
graph built for a 0 0
cost-regular constraint on 4
five variables. Arc labels
represent costs 10 0

2

0

OF

@ Springer

320 S. Demassey, G. Pesant et al.

appearing in the automaton, due to the special structure of the graph—the analysis is
the same as in [18]. Essentially, one forward and one backward sweep of the graph
are sufficient.

Subsequently, the graph structure is updated incrementally as the domains of
variables change. If that variable belongs to X, the time complexity is linear in
the number of changes to the data structure and each such change requires time
proportional to the (in- or out-)degree of the related vertex, looking for the new best
path. If that variable is the cost variable z, we require the same work as above but
here each arc must be reconsidered since the length of the paths through it may no
longer fall within the domain of z. In either situation, the total amount of work in the
worst case is bounded above by the size of the graph (though it often is much less).

3.2 Search Guiding Heuristic

The shortest and longest paths maintained by the filtering algorithm are two
constraint solutions with, respectively, minimal and maximal costs. Such internal
information from the cost-regular constraint provides a direct and efficient
value ordering heuristic. When solving by branch-and-bound a minimization (resp.
maximization) problem including a cost-regular constraint, it makes sense to
visit first the region of the search space where such an optimal but partial or relaxed
solution is located.

To reach the constraint solution with minimum cost for example, the heuristic
selects for a variable X; the value corresponding to the #-th arc on a shortest path in
the layered digraph.

4 Employee Timetabling Problems

Employee Timetabling Problems (ETP) constitute a general class of combinatorial
problems widely encountered in industries and service organizations. An ETP is the
problem of designing employee schedules over a given time horizon in order to cover
the estimated workforce requirements of the organization. The timetabling attempts
to optimize some performance criteria such as to minimize the overall labor cost or,
alternately, to maximize quality of service. See [11] and [12] for extensive review on
the subject.

In this paper, we address a general form of ETP. The main assumptions are that
the time horizon is discrete and that the costs are additive along this horizon. The
proposed solution method is applied to timetabling problems where employees are
interchangeable (i.e., they may be assigned to any legal schedule). However, the
method can easily be adapted to problems within the non-anonymous, personalized
ETP class [7].

The following terminology and notation is used hereafter. The planning horizon
(e.g., one day) is partitioned as a sequence of T consecutive elementary time periods
te{l,..., T}. We denote by W the set of work activities to perform. The workforce
requirements specify the minimal number r, of workers required to achieve work
activity a € W at period ¢ € {1, ..., T}. A cost c, is associated to the assignment of
one worker to activity a at period ¢. Regulations often constrain the specific periods
during which an employee is not assigned any work activity. To model these different

@ Springer

A Cost-Regular Based Hybrid Column Generation Approach 321

constraints, additional activities (such as break, lunch or rest) are considered. These
activities are not subjected to costs nor requirements (for notational convenience,
we still define and set to 0 a cost ¢, for each non-work activity a and each period
t). Let A denote the entire set of work and non-work activities. A schedule is an
assignment s : [1..7] — A where s(f) stands for the activity to perform at period
t. Alternatively, schedule s can be expressed by a binary matrix A® = (8),)ac A re[1..7)
where 8}, = 1 if s(tf) = a and &%, = 0 otherwise. Let S denote the set of legal schedules
or shifts which satisfy all the regulation constraints. Usual objectives in ETP are
the minimization of the overall cost or the maximization of employee satisfaction.
These criteria can be formulated by considering the cost ¢* for the company of
allocating schedule s to an employee. Such a cost can also represent the degree of
dissatisfaction for an employee being assigned to schedule s. The objective is then
to minimize the sum of the costs of the schedules assigned to each employee. In the
latter, ¢’ is computed as the sum of the costs of performing activity s(¢) at period
t. ¢’ = ZITz | Cs(oi- In some ETP formulations, the cost of the staff timetabling may
include penalties due to overcoverage or undercoverage. For each activity a e W
and period ¢, let ¢, and ¢, be the additional cost when the timetabling covers the
workforce demand r,; with, respectively, one more employee and one less employee.

At the core of timetabling problems are various regulation constraints (e.g.,
restraining work duration to exactly 8 h a day, imposing a 15 min break between
two different work activities, permitting a variable lunch time, changing work places)
which arise in real world instances. Their number and complexity quickly make the
subproblem of generating one legal schedule quite challenging.

4.1 CP-Based Column Generation for Timetabling

ETP are often solved in two steps. The first step consists of designing the possible
shifts according to the regulation constraints. The optimization criterion is con-
sidered next by selecting the optimal subset of shifts to assign to the employees.
However in many cases, the whole set of possible shifts is too huge to be processed at
once. A column generation approach offers a way to solve ETP without generating
the entire set of shifts. Following the same natural decomposition, shift generation is
handled as the pricing subproblem while the selection problem is set as the master
linear program. One legal shift corresponds to one variable or column in the master
program.

This section presents a generic CP-based column generation approach for Em-
ployee Timetabling Problems. We consider here the anonymous case of ETP with
minimum workforce requirements and with general work rules. The approach
applies also to the personalized case or if additional over- and under-coverage costs
are specified (see [7]). Since these variants hold on the selection subproblem alone,
they require a slight modification of the master linear program but do not change the
pricing problem. On the other hand, work rules intervene only for shift generation.
Specific rules may then be added as new constraints within the pricing subproblem
without changing the overall procedure. Column generation ends as soon as reaching
an optimal fractional solution of the master program. We discuss in Section 4.3 about
ways of finalizing the search to get either feasible or optimal integer solutions.

@ Springer

322 S. Demassey, G. Pesant et al.

4.2 LP model and Column Generation

The integer linear formulation (P) of the considered ETP turns into a generalized
set-covering problem [6] with non-binary variables:

min Zc’xs 1)
seS

St Y 8X > ra Yae W, Vtell,..., T},)
seS

Xs >0 VseS, (3)

Xy € Z VseS. 4)

A non-negative integer variable x; is associated to each legal schedule s € S, standing
for the number of employees assigned to schedule s. Constraints 2 ensure to cover
the minimum requirements for each work activity, at each period. The objective (1)
is to minimize the sum of the costs for any working employees.

Being indexed by S, the set of variables of this linear formulation has order of
|A|T. It can then generally not be computed at once. A way of getting around this,
is to solve the LP-relaxation (P) of (P) (obtained by dropping constraints (4)) with
the delayed column-generation technique. Hence, only a subset of legal schedules
in S is produced and considered in (P). At each iteration of the procedure, new
schedules are generated and the corresponding variables are added to the master
linear program, only if they may improve its current solution. Here, the pricing
problem of generating entering columns is to compute legal schedules s € S with
negative reduced cost rcy. If this problem has no solution then the current solution of
(P)is optimal. Given dual values (A4)wx1.... 7y associated to the cover constraints (2)
of the master program (P) at the current iteration, the reduced cost rc, of a schedule
s equals to:

T
> s (5)
=1

where ¢, is defined for all activity a € A and for all period ¢ € {1, ..., T}, as:
wt — A if w
A P ®)
0 otherwise.

4.3 Integer Solutions and Branch-and-Price

Column generation applies to the LP-relaxation of the original integer program.
The fractional solution returned at the end of the procedure corresponds to the
assignment of an optimal selection of shifts to fractions of employees. Its cost gives a
lower bound of the optimal timetabling cost.

Rounding up the fractional optimal solution of (P) leads to a feasible solution
of the ETP but its cost is likely far from the integer optimum. In the present
application, (P) may contain numerous cover constraints. Moreover, each cover
constraint involves a large number (order of |A|7~") of non-zero values x;. The

@ Springer

A Cost-Regular Based Hybrid Column Generation Approach 323

high density of the LP matrix makes the increased cost of this heuristic solution not
negligible.

Another heuristic solution is given by solving at optimality the integer program
(P) on the sole restricted set of generated columns. However, set-covering remains
an NP-hard problem. In our test cases, even with only one working activity and few
columns, such integer programs were mostly too dense to be solved by a basic branch-
and-bound (at least by the default procedure of Ilog Cplex).

Branch-and-price [2] is then the only alternative to compute an optimal integer
solution and to prove its optimality. At each node of the tree search, a branching
decision is added to the master program and column generation is invoked again to
generate missing shifts and to evaluate the node.

It is known that associating a branching strategy with column generation is
not straightforward. In the present case, the conventional branching strategy for
generalized set-covering models (separation on the domains of the pattern variables
X,) is mostly deficient. The search tree is clearly unbalanced (decision x; < k is much
weaker than x; > k + 1). The efficiency of the procedure depends heavily on the
order of selection of the variables. The model admits lots of symmetries and optimal
solutions since many legal schedules are strongly similar. Lastly, when branching on a
decision x < k, the pricing problem has to be explicitly constrained not to generate
schedule s* anymore. Indeed, given s > 0 a dual value of the branching constraint
in the master program, then the non-negativity of the reduced cost of the schedule
rcg + g > 0 does not prevent reg < 0.

Robust branch-and-price procedures, where branching does not increase the com-
plexity of the pricing subproblem, have been proposed for several related problems,
such as the capacited vehicle routing problem or the bin packing problem. These
procedures, based on reformulations of the master program as a flow model, consist
of branching on aggregated sum of variables. Such a reformulation applies to the
master program considered here:

min X (7)
seS
s.t. Zf;bzra[YaeW,Vtell,..., T}, (8)
beW
=D 88)X Va,b e WVtell,..., T},)
seS
Xs>0,x, €7 VsesS, (10)
t>0, i, €L Ya,b e W,¥Vte{l,..., T} (11)

In this LP, flow variable f!, identifies the number of employees assigned to activity
a at period ¢ and to activity b at period ¢+ 1. Branching on flow variables leads
effectively to a more robust and balanced branch-and-price. Nevertheless, the usual
arguments proving the completeness of such a branching scheme cannot be invoked
here because of the integrality of both variables (not binary) and demands (not
unary). Indeed, it is easy to find cases where all flow variables f are integer but
not variables x. Consider for example, T =4 and four schedules (a,, as, a;, a3),
(a1, a3, @z, a3), (a2, a3, a1, az), (a2, as, a,, as) each assigned to exactly 0.5 employee.

@ Springer

324 S. Demassey, G. Pesant et al.

Even if the completeness is not guaranteed, this latter branching scheme can
advantageously be used on top of the search, then eventually completed by branching
on a remaining fractional x variable each time all f variables are integer.

4.4 Shift Scheduling: A General CP Model

The pricing problem within the proposed approach can be referred to as a Shift
Scheduling Problem. The solutions of this problem are scheduless : {1,..., T} — A
satisfying to all the regulation constraints and whose reduced cost rc, at the current
iteration of the column generation procedure is negative.

4.4.1 Regulation Constraints

The regulation constraints occurring in ETP usually fall into one of the five following
classes of constraints:

— Allowed/forbidden assignments: only activities in A; € A may be performed at
period ¢. Such constraint avoids, for example, to schedule lunch before 1 pm.

— Cardinality rules: they specify the minimal /&t 4» and the maximal /& 4,» numbers of
periods assigned to activities in A" € A. They may constrain, for example, the
work duration or the allowed number of break periods.

— Stretch rules: they specify the minimal i, and the maximal A, number of
consecutive periods assigned to activity a € A. They may constrain, for example,
the lunch duration or the minimal duration of a work activity.

— Sequencing rules: they specify the allowed and forbidden activity changes. They
may force, for example, a break period between two different work activities.

— Conditional rules: these are logical combinations of rules of the four preceding
classes. For example: a lunch of 1 h is required if the work duration is greater
than 3 h a day.

The Shift Scheduling Problem can be modeled as a Constraint Satisfaction
Problem based on a sequence of 7 decision variables sy, ss,...,s7 with finite
discrete domains Di, D, ..., D7, initialized to A. There is an obvious one-to-one
correspondence between complete instantiations of these variables and schedules by
setting s(¢) = s, for all periods ¢. Assignment s, = a means that activity a is performed
at period t.

According to the first rule class, each domain D, may initially be restricted to
A,. The rules of the other classes need to be modelled as constraints whose support
includes all the decision variables. Fortunately, several existing global constraints
are dedicated to handle such rules. Hence, having an overall viewpoint on the
problem, the constraint propagation within such global constraints is likely to be
quite effective.

For the cardinality rules, a global cardinality (gcc) constraint [20] can be used to
constrain, for all the activities, their number of occurrences in the schedule. For each
activity a € A, a domain variable o, with domain [/i,; i,] is added to the model.

gece(< 81, ...,87 >, < 04la e A >). (12)

@ Springer

A Cost-Regular Based Hybrid Column Generation Approach 325

This constraint holds if each value a € A is taken by exactly o, variables among

§1,...,s7. All other cardinality rules on subset A’ of activities can be modeled using
a domain variable o4 with domain [t 4/; 1 4] and an arithmetic constraint
Op == Z 0g. (13)
ac A’

Note that usually, an ETP contains few rules of that kind.

Stretch and sequencing rules may be handled together with one or several
regular global constraints [18]. Indeed, such rules define sequences of values which
can be taken by the sequence of variables (sy, s, ..., s7). It is generally straightfor-
ward to represent all these allowed patterns by a deterministic finite automaton IT
whose transitions are labeled by the values (examples are given in [7, 18] and in
Section 5.2). Note that, since the complexity of the filtering algorithm of regular
is dependent of both the number of variables and the size of the automaton, one
may envisage sometimes to have recourse to conjunctions of regular, with small
automata, in order to model all the stretch and sequencing rules. Nevertheless,
pruning is more efficient if all the rules are handled by one constraint alone.
Furthermore, the complexity of the algorithm remains linear in those sizes and is
able to tackle large-size instances. In our experiments, we used then only one such
constraint (see Section 5):

regular(< sy,...,st >, II). (14)

Conditional rules can be formulated as logical constraints (and, or, not) in the CP
model. These side constraints are highly dependent of the context of application. We
considered various and complex ones in our experiments (see Section 5). A particular
attention should be given to these constraints since they may considerably complicate
the solution procedure. Indeed generally, such constraints propagate poorly and it
can be advantageous to fix them in the first branches of the search tree.

4.4.2 Optimization Criterion

The constraints given above constitute a reasonable framework for a CP formulation
of the Shift Scheduling Problem. As we consider the pricing problem of the column
generation approach, costs have to be incorporated in order to generate only legal
schedules with reduced costs. According to 5 and the correspondence between
schedules and complete instantiations of (sy, 52, ..., s7), the relation to model is

T

/
s1=a,$=a,...,Sp=ar) — E Ca,t<0'
=1

This relation can be inefficiently modeled using T global constraints element. As
discussed in Section 2, with such a formulation, cost pruning could mainly occur only
once the feasibility part of the problem is solved.

Our goal is to use the negative cost criterion to prune the solution space earlier
during the search. To achieve this, we propose to replace in the model the regular
constraint (14) by its cost variant:

cost-regular(<sy,...,s7 >,I1,z,c). (15)

@ Springer

326 S. Demassey, G. Pesant et al.

with initial domain] — oo, O[for z. By pruning both the lower bound LB and the
upper bound UB of the domain of z, this constraint ensures that, at any current
state of the search, there exist possible (according to IT) instantiations of variables
(s1, 82, ...,87) whose cost ZIT:] cﬁm is equal to LB or UB. Hence, if the instantiation is
complete, z is equal to its cost. Conversely, any instantiation of the decision variables
to values in their current domain is ensured to have a cost between LB and UB.

In the column generation procedure, this model of the pricing problem is solved
with a backtracking algorithm. One solution corresponds to one entering column in
the master program. In fact, we aim to generate several solutions at once. In the
backtracking algorithm, the search is run until the expected number of solutions is
found. Furthermore, we aim to generate solutions with the most negative reduced
costs. Considering an optimization criterion within the model in order to find such
optimal solutions could be clearly time-consuming since the whole search tree should
be considered (implicitly though) before deciding if a feasible solution found is
optimal. It is known that, in column generation procedures, looking systematically
for the minimal reduced cost solutions of the pricing problem is not necessarily
beneficial (at least when pricing is a hard problem).

Hence, rather than adding to the model a minimization criterion on z, we keep
solving the satisfaction model but we use the heuristic returned by cost-regular
to drive the search (Section 3.2). This heuristic does not ensure that the first complete
instantiation found by the backtracking algorithm is optimal. Nevertheless, the
principle of the heuristic makes us expect to find near optimal solutions.

We have experimented this strategy on the benchmark instances presented in an
earlier paper [7]. A quick comparison of the computational results obtained leaves
no doubt on the great efficiency of this strategy, as shown in Section 5.1.

5 Case Study

To evaluate the effectiveness of the proposed framework, we present computational
results on a set of generated ETPs as well as a real world problem taken from the
data of a large bank. We present here the problem details and discuss the results
obtained on these instances.

The whole algorithm was implemented in C++ on top of libraries Ilog Cplex 9.0
and Solver 6.0. Experiments were run on an Opteron 250 under Gnu/Linux 2.6 and
g++3.3.

5.1 Generic Benchmark Data

We based our first experiments on the benchmark data sets described in [7].
Although these instances are randomly generated, the benchmarks are based on
data and rules from a real-world timetabling problem as the demand curves where
obtained from a retail store.

5.1.1 Problem Details

Tensets (ETP,),—1....10 of ten instances each are available, parameter n indicating the
number of work activities (|W| = n). The planning horizon is one day decomposed

@ Springer

A Cost-Regular Based Hybrid Column Generation Approach 327

into periods of 15 min (7 = 96), and the work rules need the definitions of three
non-work activities:

A = WU {p (break), o (rest), [(lunch)}

—

Some activities a € F; are not allowed to be performed at some periods ¢.

s covers between 3 and 8 h of work activities.

If s is worked for at least 6 h, then it includes exactly two breaks and one lunch
break of 1 h. Else, it includes only one break and no lunch is envisaged.

If performed, the duration of an activity a € W is at least 1 h.

A break (or lunch) is necessary between two different work activities.

Rest shifts have to be assigned only at the beginning and at the end of the day.
Work activities must be inserted between breaks, lunch and rest stretches.

The maximum duration of a break is 15 min.

w

NN

The first condition simply consists of removing the forbidden activities F; from the
initial domain of each variable s;: D, = A\ F,.

The next two regulation constraints need the definition of additional decision
variables. They can then be modeled as explicit constraints as well as, implicitly,
by restricting the initial domain of the variables. One way of modeling the second
condition is to use one additional variable o, for each work activity a € W, with
domain {0, 1, ..., 32} and representing the number of periods assigned to activity
a, as well as a variable o with domain {12, ..., 32}, standing for the total number of
working periods. Variables o, and s, may be linked by the gcc. In the same manner,
we define cardinality variables o,, 0, and o; for the non-working activities (break,
rest and lunch, respectively). To model the third condition, the domains of ¢; and
o, are initialized to {0, 4} and {1, 2}, respectively. We can also logically deduce from
the whole set of conditions that any valid schedules contain a number of rest periods
between 58 and 83. As redundant constraints, we can then reduce the initial domain
of o, to {58, ..., 83}.

The last five constraints can be modeled with the help of only one regular con-
straint. Indeed, the values permitted by these constraints together for the sequence
of variables (sy, ..., s7) can be described by a single automaton I1. Figure 2 depicts
such an automaton when W contains two activities a and b.

Given automata I1, the shift scheduling problem described above can be formu-
lated by the following Constraint Satisfaction Problem (C P):

gee(<oylae A>,<aeA>,<s1,...,57>) (16)
o == ZG” (17)
acW
0<24= (op==0n0,==1) (18)
0>24= (0g==4AN0,==2) 19)
regular(<si,...,st >, II) (20)
sse A\F, Yi=1,...,T (1)
0a€{0,...,32), Vae W, o e {12,32) (22)
01 €1{0.4}, 0, € {1.2}, 0, € {58,....83} (23)

@ Springer

328 S. Demassey, G. Pesant et al.

Fig. 2 An automaton for two
work activities a and b. The
leftmost circle represents the
initial state and shaded circles
correspond to accepting states

5.1.2 Computational Results

Table 1 provides details of the CP-based column generation algorithm execution
on each problem set ETP,. The huge difference between these results and the
preliminary ones presented in [7] (and reported in Table 2) is entirely due to the
search heuristic used within the CP backtracking algorithm. Indeed, no other changes
were made neither in the algorithm’s implementation nor in the execution phase.
In the present experiments, we used the variable-value ordering heuristic based
on cost-regular (Section 3.2), while in [7], the heuristic used was the minimal
reduced cost first (instantiate first s = a* such that (a*, ") = argmin{ ¢}, | (a,?) €
A x {l,..., T}}). The goal was indeed to compute solutions with low cost.

Table 1 Column generation algorithm results on the generated instances using information from
cost-regular to guide the search

Group nb ALB/UB #iter #col CPU (s)
Av. Max Av. Av. Av. Max CPav.
(%) (%)
ETP; 10 25 (6.9) 19 889 04 (1.2) 0.02
ETP, 10 2.8 9.2) 48 2,340 3.7 (28.0) 0.03
ETP3 10 2.3 (6.4) 52 2,550 2.0 (2.9) 0.03
ETP, 10 33 (6.1) 103 5,063 12.5 (90.5) 0.04
ETPs 10 5.1 (10.4) 86 4288 62 (11.3) 0.04
ETPs 10 4.7 (11.1) 130 6,493 13.8 (31.3) 0.05
ETP; 10 6.1 (84) 137 6,839 18.4 (30.6) 0.06
ETPs 10 6.0 (8.6) 155 7,736 25.4 (41.8) 0.07
ETPy 10 7.3 (10.9) 155 7,741 259 (31.9) 0.07
ETPjo 10 8.7 (11.7) 179 8,974 42.0 (44.5) 0.09

@ Springer

A Cost-Regular Based Hybrid Column Generation Approach 329

Table 2 Column generation algorithm results on the generated instances using minimum reduced
cost value to guide the search

Group nb ALB/UB #iter #col CPU (s)
Av. Max Av. Av. Av. Max CPav.
(%) (%)
ETP, 10 4.9 (16.6) 20 914 1.9 (5.7) 0.1
ETP, 10 5.6 (15.6) 51 2,466 6.1 (12.0) 0.1
ETP; 10 5.5 9.2) 76 3,749 16.7 (45.6) 0.2
ETP, 10 4.6 8.7) 137 6,818 92.9 (452.4) 0.6
ETP;s 10 5.4 (12.6) 132 6,558 108.4 (354.4) 0.7
ETP¢ 10 5.0 (11.0) 203 10,103 355.6 (884.6) 1.6
ETP; 9 5.6 (7.9) 244 12,186 793.6 (2,115.1) 3.1
ETPg 9 5.4 (8.5) 296 14,776 950.3 (2,531.2) 3.0

Hence, the major difference within these results intervene in the computation time
of the pricing subproblem solved by the CP backtracking algorithm. In Tables 1 and
2, column (CPav) gives for each set, the computation time of one pricing problem
solution averaged over the number of iterations and the ten instances. The average
time is now lower than 0.1 s while it varied with the preceding heuristic from 0.1 to
3 s on average for the instances. In Table 2 none of the instances from group ETPy
and ETP,y were solved within the 1 h time frame, we thus omitted these results.

In fact, with the former heuristic, CP backtracking was able to find 50 negative
reduced cost solutions at almost every iteration (the CP search stopped after 5 s if it
found at least one solution). But at the latest iterations, it was very slow to find the
first (required) negative solution or to prove that none existed (it took up to 2,500 s
for ETPg instances).

Choosing first the lowest cost assignments is indeed a clearly bad heuristic when
no more negative solution exists. Conversely, the cost-regular based heuristic is
effective at each iteration of the column generation procedure: both when numerous
negative solutions exist (in the first iterations), or to prove that no such solution exists
(in the last iteration).

Another interesting conclusion coming from the comparison of these results is
about the quality of the generated solutions. Indeed the average number of iterations
(column (#iter.) in Table 1) is lower with the new heuristic than with the former one
in Table 2. This has an impact on the number of columns required by the master
program to reach the optimality (column (#col.) gives the average number on each
instance set). This has also an impact on the total computation time (columns (CPU
av.) et (CPU max.)).

Since the pricing problem returned about the same number of solutions, whatever
the chosen heuristic (50 solutions an iteration, less in the very last iterations), the
explanation of this difference is the higher quality of the solutions returned by the
new heuristic.

The two first columns of Tables 1 and 2 give the average and maximum deviation
of the lower bound LB computed by the column generation procedure (i.e., the
fractional optimum) to an upper bound UB. We computed UB by running the default
branch-and-bound of Cplex on the sole generated columns. UB is the value of the
best integer solution found after 1 h. As previously said, the density of the LP-matrix

@ Springer

330 S. Demassey, G. Pesant et al.

makes difficult the IP processing. Even for instances in ETP;, where the average
number of the IP variables is 889, the Cplex branch-and-bound cannot complete the
search in 1 h except for two instances. For these two instances, the integrality gap
is not closed (LB < UB). This indicates that either the lower bound is not tight or
columns entering in an optimal integer solution are missing.

We ran the branch-and-price approach described in Section 4.3 on the instance
sets. Nevertheless, in 2 h, the method was only able to solve instances with less
than three activities: eight instances in ETP; and ETP, and four instances in ETP;
(respectively, in 144,394, and 1,592 s, in average). These results lead to an interesting
question since for these 20 instances, the branch-and-price proved in fact that the LB
is also the integer optimum.

5.2 A Real-World Case

The approach was also evaluated on a real-life employee timetabling instance
submitted by a Canadian bank. The local company’s subsidiary, considered here,
consists of one central establishment, including front desk and back office, and three
branches. In a same day, employees may be allocated to several places. Each of these
five places is then viewed as a work activity. Rules are also defined on four non-work
activities: rest, lunch, dinner and transfer (from a branch to the central desk).

The contractual regulations may differ for employees working full-time (35 h a
week) or part-time (between 20 and 30 h a week). Since there is an additional cost
for the company due to part-time workers, the timetabling must be set up on a weekly
basis.

An estimation of the required number of employees is given on a 15 min basis
for each activity. Overcoverage and undercoverage are allowed, but at least one
employee must be present (m, = 1) at all time but without exceeding the available
space M.

The linear model (P) has to be modified to take these additional costs into account
but, since the new constraints (26) and (27) do not hold on the pattern variables x;,
the pricing problem remains the same.

T
min Z Cst + Z Z(éat-%at + éat-szat) (24)
seS aeW t=1
St Y 88X+ X — Rt = Vae W,Vte[l.T], (25)
seS
Xat < My —ry Yae W,Vte[l.T], (26)
Xt < Far — My Yae W,Vte[l.T], (27)
Xs € Ly VseS, (28)
Xa €Ly, Xy € Loy Yae W,Vtel[l.T]. (29)

Note that the cost of a schedule s is no longer the sum of the costs of the activity-
period assignments since it also depends on work duration: ¢’ = Z,T:, Csae + V7,
where y* can take one of two distinct values depending on whether s is a full-time
work schedule or not.

@ Springer

A Cost-Regular Based Hybrid Column Generation Approach 331

The work rules in this problem are quite complex. Allowed sequencing and stretch
patterns are given on a daily basis, but may be altered depending on the type of
schedule. For example, lunch and dinner durations differ for full-time and part-time
schedules. More complicated still: no employee may work after 5 pM more than one
day in a week, and a part-time employee who works between 5 and 6 h a day has
to take a non-paid break of 15 min in the day. Another difficulty comes from the
location considerations: a worker cannot do more than one transfer a day, and always
from a branch to the center. In the center, no more than one activity change (between
front desk and back office) is allowed per day. The automaton used to model this
problem (shown in Fig. 3) gives an idea of difficulties presented by this application.

Furthermore, since we are constructing a weekly schedule, we need to introduce
five cost-regular constraints in the model each modeling a day. This unfortu-
nately reduces the effectiveness of the cost -regular constraint (both for filtering
and guiding) but defining an automaton covering the whole week made the resolution
intractable as the number of states made the whole filtering process too long. This
limitation reduces the efficiency of the pricing subproblem, as it only has a myopic
view of the whole subproblem. In particular it has some difficulty in deciding which
night of the week should be worked (recall that there can be only one) and in
balancing the number of hours worked across the different days. One could always
implement a set of specialized search heuristics to address this problem, but it would
limit the generic aspect of the method.

Transfart

yaysueL

Fig. 3 An automaton for the work and rest activities in a complex industrial timetabling problem

@ Springer

332 S. Demassey, G. Pesant et al.

Since the column generation process does not converge in a reasonable time, we
need to interrupt it at some point in order to get a feasible solution to this complex
instance. In this case however, Cplex is always able to solve the integer problem
associated with the available columns very quickly. The solutions obtained were
comparable to those generated manually by the bank administration.

6 Conclusion

This paper presented a generic CP-based column-generation approach for Em-
ployee Timetabling Problems. In this approach, pricing is processed by solving a
flexible CP formulation of the Minimal Cost Shift Scheduling Problem based on
the new optimization constraint cost -regular. As other optimization constraints,
cost-regular provides cost-based filtering of the decision variable domains as
well as a tight lower bound of the problem. In a backtracking algorithm, the relaxed
solution associated to this lower bound gives effective and direct information to
drive the search towards near optimal solutions. The filtering algorithm associated
to cost-regular also computes an upper bound which acts as a heuristic value
computed at each node of the search tree, and then improves the pruning of the
search space. The design of optimization constraints is rather recent. Such constraints
could be very effective in solving optimization problems, if they provide together:
cost-based filtering on the decision variables, filtering of both the lower and the
upper bound of the cost variable domain, and the internal information computed
by the filtering algorithm to be reused as search heuristic. Optimization constraints
would be then entirely combinable, making the propagation more effective via the
cost variable as it does on the decision variables, and improving search by selecting
the most promising branching decision according to the heuristics returned by the
constraints.

Acknowledgements The authors wish to thank Alexandre le Bouthillier and Marc Brisson from
Omega Optimisation Inc. for financial and technical support and also Andrea Lodi and Nicolas
Beldiceanu for discussions and comments on parts of this paper.

References

1. Baptiste, P., Le Pape C., & Peridy L. (1998). Global constraints for partial CSPs: A case-study of
resource and due date constraints. Constraints, 87-102.

2. Barnhart, C., Johnson, L., Nemhauser, G., Savelsbergh, M., & Vance, P. (1998). Branch-and-
Price: Column generation for solving huge integer programs. Operations Research, 46, 316-329.

3. Beldiceanu, N., Carlsson, M., & Thiel, S. (2002). Cost-filtering algorithms for the two sides of the
Sum of the weights of distinct values constraint. Technical Report SICS T2002:14.

4. Caseau, Y., & Laburthe, F.(1997). Solving various weighted matching problems with constraints.
In Proceedings Of The 3rd International Conference on Principles and Practice of Constraint
Programming—CP’97 LNCS 1330 (pp.17-31). Berlin Heidelberg New York: Springer.

. Chvatal, V. (1983). Linear Programming. New York: Freeman.

. Dantzig, G. (1954). A comment on Edie’s traffic delays at toll booths. Operations Research, 2,
339-341.

7. Demassey, S., Pesant, G., & Rousseau, L.-M. (2005).Constraint programming based column
generation for employee timetabling. In Proceedings of 2nd International Conference on Inte-
gration of Al and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems—CPAIOR’05 LNCS 3524 (pp.140-154). Berlin Heidelberg New York: Springer.

AN

@ Springer

A Cost-Regular Based Hybrid Column Generation Approach 333

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Desrosiers, J., Dumas, Y., Solomon, M.M., & Soumis, F. (1995). Time constrained routing
and scheduling. In M.O. Ball, T.L. Magnanti, C.L. Monna & G.I. Nemhauser (Eds.), Network
Routing, Handbooks in Operations Research and Management Science (pp.35-139).

. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Owens, B., & Sier, D. (2004). An annotated bibliog-

raphy of personnel scheduling and rostering. Annals of Operations Research, 127, 21-144.

Ernst, A.T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling and rostering:
A review of applications, methods and models. European Journal of Operational Research, 153,
3-27.

Fahle, T., Junker, U., Karisch, S.E., Kohl, N., Vaaben, B. & Sellmann, M. (2002). Constraint
programming based column generation for crew assignment. Journal of Heuristics, 8, 59-81.
Fahle, T., & Sellmann, M. (2002). Cost based filtering for the constrained knapsack problem.
Annals of Operations Research, 115, 73-93.

Focacci, F., Lodi, A., & Milano, M. (1999). Cost-based domain filtering. In Proceedings of 5th
International Conference on Principles and Practice of Constraint Programming—CP’99 LNCS
1713, (pp-189-203). Berlin Heidelberg New York: Springer.

Focacci, F., Lodi, A. & Milano, M. (2002). Optimization-oriented global constraints. Constraints,
7,351-365.

Gendron, B., Lebbah, H., & Pesant, G. (2005). Improving the cooperation between the master
problem and the subproblem in constraint programming based column generation. In Proceed-
ings of 2nd Internationl Conference on Integration of AI And OR Techniques in Constraint
Programming for Combinatorial Optimization Problems—CPAIOR’05 LNCS 3524 (pp.217-
227). Berlin Heidelberg New York: Springer.

Junker, U, Karish, S.E., Kohl, N., Vaaben, N., Fahle, T., & Sellmann, M. (1999). A framework
for constraint programming based column generation. In Proceedings of 5th International Con-
ference on Principles and Practice of Constraint Programming—CP’99 LNCS 1713 (pp.261-274).
Berlin Heidelberg New York: Springer.

Ottosson, G., & Thorsteinsson, E.S. (2000). Linear relaxation and reduced-cost based prop-
agation of continuous variable subscripts. In Proceedings of International Workshop on Inte-
gration of Al and OR Techniques in Constraint Programming For Combinatorial Optimiza-
tion Problems—CPAIOR’00 (pp.129-138). Paderborn Center for Parallel Computing, Technical
Report tr-001-2000.

Pesant G. (2004). A regular language membership constraint for finite sequences of vari-
ables. In Proceedings of 10th International Conference on Principles and Practice of Constraint
Programming—CP’04 LNCS 3258 (pp.482-495). Berlin Heidelberg New York: Springer.

Petit, T., Régin, J.-C., & Bessiere, C. (2001). Specific filtering algorithms for over constrained
problems. In Proceedings of 7th International Conference on Principles and Practice of Constraint
Programming—CP’01 LNCS (pp.451-463). Berlin Heidelberg New York: Springer.

Régin J.-C. (1996). Generalized arc consistency for global cardinality constraints. In Proceedings
of AAATI’96 (pp.209-215). Cambridge, Massachusetts: MIT.

Régin J.-C. (2002). Cost-based arc consistency for global cardinality constraints. Constraints, 7,
387-405.

Rousseau, L.-M., Gendreau, M., Pesant, G., & Focacci, F. (2004). Solving VRPTWs with con-
straint programming based column generation. Annals of Operations Research, 130, 199-216
Sellmann, M., Zervoudakis, K., Stamatopoulos, P., & Fahle, T. (2002). Crew assignment via
constraint programming: integrating column generation and heuristic tree search. Annals of
Operations Research, 115,207-225.

Sellmann, M. (2002). An arc-consistency algorithm for the minimum weight all different con-
straint. In Proceedings of 8th International Conference on Principles and Practice of Constraint
Programming—CP’02 LNCS 2470 (pp.744-749). Berlin Heidelberg New York: Springer.
Sellmann, M. (2003). Cost-based filtering for shorter path constraints. In Proceedings of 9th
International Conference on Principles and Practice of Constraint Programming—CP’03 LNCS
2833, (pp.694-708). Berlin Heidelberg New York: Springer.

Sellmann, M. (2004). Theoretical foundations of CP-based Lagrangian relaxation. In Proceedings
of 10th Internatioanl Conference on Principles and Practice of Constraint Programming—CP’04
LNCS 3258, (pp.634-647). Berlin Heidelberg New York: Springer.

van Hoeve, W.-]J., Pesant, G., & Rousseau, L.-M. (2006). On global warming: flow based soft
constraints. Journal of Heuristics 12(4-5), 347-373.

@ Springer

	A Cost-Regular Based Hybrid Column Generation Approach
	Abstract
	Introduction
	Optimization Constraints
	Cost-Regular
	The Filtering Algorithm
	Search Guiding Heuristic

	Employee Timetabling Problems
	CP-Based Column Generation for Timetabling
	LP model and Column Generation
	Integer Solutions and Branch-and-Price
	Shift Scheduling: A General CP Model
	Regulation Constraints
	Optimization Criterion

	Case Study
	Generic Benchmark Data
	Problem Details
	Computational Results

	A Real-World Case

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /Gautami
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kartika
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /Latha
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Mangal-Regular
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MVBoli
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Raavi
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SpsFont4Medium
 /SPSFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Sylfaen
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Tunga-Regular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /Vrinda
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

