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Abstract. This article deals with global constraints for which the set of solutions can be recognized by an

extended finite automaton whose size is bounded by a polynomial in n, where n is the number of variables of

the corresponding global constraint. By reducing the automaton to a conjunction of signature and transition

constraints we show how to systematically obtain an automaton reformulation. Under some restrictions on the

signature and transition constraints, this reformulation maintains arc-consistency. An implementation based on

some constraints as well as on the metaprogramming facilities of SICStus Prolog is available. For a restricted

class of automata we provide an automaton reformulation for the relaxed case, where the violation cost is the

minimum number of variables to unassign in order to get back to a solution.
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1. Introduction

Developing filtering algorithms for global constraints is usually a very work-intensive

and error-prone activity. As a first step toward a methodology for semi-automatic

development of filtering algorithms for global constraints, Carlsson and Beldiceanu

introduced [1] an approach to designing filtering algorithms by derivation from a finite

automaton. As quoted in their discussion, constructing the automaton was far from

obvious since it was mainly done as a rational reconstruction of an emerging

understanding of the necessary case analysis related to the required pruning. However,

it is commonly admitted that coming up with a checker which tests whether a ground

instance is a solution or not is usually straightforward. As shown by the following

chronological list of related work, automata were already used for handling constraints:

Y Vempaty introduced the idea of representing the solution set of a constraint network

by a minimized deterministic finite state automaton [2]. He showed how to use this

canonical form to answer queries related to constraints, as satisfiability, validity (i.e.,

the set of allowed tuples of a constraint), or equivalence between two constraints.
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This was essentially done by tracing paths in an acyclic graph derived from the

automaton.

Y Later, Amilhastre [3] generalized this approach to nondeterministic automata and

introduced heuristics to reduce their size. The goal was to obtain a compact

representation of the set of solutions of a CSP. That work was applied to

configuration problems in [4].

Y Boigelot and Wolper [5] also used automata for arithmetic constraints.

Y Within the context of global constraints on a finite sequence of variables, the recent

work of Pesant [6] also uses a finite automaton for representing the solution set. In

this context, it provides a filtering algorithm which maintains arc-consistency.

This article focuses on those global constraints that can be checked by scanning once

through their variables without using any extra data structure. As a second step toward a

methodology for semi-automatic development of filtering algorithms, we introduce a

new approach which only requires defining a finite automaton that checks a ground

instance. We extend traditional finite automata in order not to be limited only to regular

expressions. Our first contribution is to show how to reduce the automaton associated

with a global constraint to a conjunction of signature and transition constraints. We

characterize some restrictions on the signature and transition constraints under which the

filtering induced by this reduction maintains arc-consistency and apply this new

methodology to the following problems:

Y The design of automaton reformulations for a fairly large set of global constraints.

Y The design of automaton reformulations for handling the conjunction of several

global constraints.

Y The design of constraints between two sequences of variables.

While all previous related work (see Vempaty [2], Amilhastre et al. [4] and Pesant [6])

relies on simple automata and uses an ad-hoc filtering algorithm, our approach is based

on automata with counters and reformulation into constraints for which filtering

algorithms already exist. Note also that all previous work restricts a transition of the

automaton to checking whether or not a given value belongs to the domain of a variable.

In contrast, our approach permits to associate any constraint to a transition. As a

consequence, we can model concisely a larger class of global constraints and prove

properties on the consistency by reasoning directly on the constraint hypergraph. As an

illustrative example, consider the lexicographical ordering constraint between two

vectors. As shown by Figure 1, we come up with an automaton with two states where a

transition constraint corresponds to comparing two domain variables. Now, if we forbid

the use of comparison, this would lead to an automaton whose size depends of the

number of values in the domains of the variables.

Our second contribution is to provide for a restricted class of automata an automaton

reformulation for the relaxed case. This technique relies on the variable based violation

cost introduced in [7, 8]. This cost was advocated as a generic way for expressing the

violation of a global constraint. However, algorithms were only provided for the

soft_alldifferent constraint [7]. We come up with an algorithm for computing a

340 N. BELDICEANU ET AL.



sharp bound of the minimum violation cost and with an automaton reformulation for

pruning in order to avoid to exceed a given maximum violation cost.

Section 2 describes the kind of finite automaton used for recognizing the set of

solutions associated with a global constraint. Section 3 shows how to come up with an

automaton reformulation which exploits the previously introduced automaton. Section 4

describes typical applications of this technique. Finally, for a restricted class of automata,

Section 5 provides a filtering algorithm for the relaxed case.

2. Description of the Automaton Used for Checking Ground Instances

We first discuss the main issues behind the task of selecting what kind of automaton to

consider for concisely expressing the set of solutions associated with a global constraint.

We consider global constraints for which any ground instance can be checked in linear

time by scanning once through their variables without using any data structure. In order

to concretely illustrate this point, we first select a set of global constraints and write

Figure 1. Four checkers and their corresponding automata.
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down a checker for each of them.1 Observe that a constraint, like for instance the

cycle(n, [x1, x2 , . . . , xm]) constraint, which enforces that a permutation [x1, x2 , . . . , xm]

has n cycles, does not belong to this class since it requires to jump from one position to

another position of the sequence x1, x2 , . . . , xm. Finally, we give for each checker a sketch

of the corresponding automaton. Based on these observations, we define the type of

automaton we will use.

2.1. Selecting an Appropriate Description

As we previously said, we focus on those global constraints that can be checked by

scanning once through their variables. This is for instance the case of element [9],

minimum [10], pattern [11], global_contiguity [12], lexicographic

ordering [13], among [14] and inflexion [15]. Since they illustrate key points

needed for characterizing the set of solutions associated with a global constraint, our

discussion will be based on the last four constraints for which we now recall the

definition:

Y The global_contiguity(vars) constraint enforces for the sequence of 0Y1

variables vars to have at most one group of consecutive 1. For instance, the constraint

global_contiguity([0, 1, 1, 0]) holds since we have only one group of

consecutive 1.

Y The lexicographic ordering constraint x!�lex y! over two vectors of variables

x!¼ x0; . . . ; xn�1h i and y!¼ y0; . . . ; yn�1h i holds iff n = 0 or x0 G y0 or x0 = y0

and bx1 , . . . , xnj 1À elex by1 , . . . , ynj 1À.

Y The among(nvars, vars, values) constraint restricts the number of variables of the

sequence of variables vars that take their value from a given set values to be equal to

the variable nvars. For instance, among(3, [4, 5, 5, 4, 1], [1, 5, 8]) holds since

exactly 3 values of the sequence 45541 are in {1, 5, 8}.

Y The inflexion (ninf, vars) constraint enforces the number of inflexions of the

sequence of variables vars to be equal to the variable ninf. An inflexion is

described by one of the following patterns: a strict increase followed by a strict

decrease or, conversely, a strict decrease followed by a strict increase. For instance,

inflexion (4, [3, 3, 1, 4, 5, 5, 6, 5, 5, 6, 3]) holds since we can extract from the

sequence 33145565563 the four subsequences, 314, 565, 6556 and 563, which all

follow one of these two patterns.

Parts (A1), (B1), (C1) and (D1) of Figure 1 depict the four checkers respectively asso-

ciated with global_contiguity, elex, among and inflexion.2 For each checker

we observe the following facts:

Y Within the checker depicted by part (A1) of Figure 1, the values of the sequence

vars[0] , . . . , vars[nj1] are successively compared against 0 and 1 in order to check

that we have at most one group of consecutive 1. This can be translated to the

automaton depicted by part (A2) of Figure 1. The automaton takes as input the

sequence vars[0] , . . . , vars[nj1], and triggers successively a transition for each term
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of this sequence. Transitions labeled by 0, 1 and $ are respectively associated with

the conditions vars[i] = 0, vars[i] = 1 and i = n. Transitions leading to failure are

systematically skipped. This is why no transition labeled with a 1 starts from state z.

Y Within the checker given by part (B1) of Figure 1, the components of vectors x!
and y! are scanned in parallel. We first skip all the components that are equal and

then perform a final check. This is represented by the automaton depicted by part

(B2) of Figure 1. The automaton takes as input the sequence bx[0], y[0]À , . . . , bx[n j

1], y[n j 1]À and triggers a transition for each term of this sequence. Unlike the

global_contiguity constraint, some transitions now correspond to a condition

(e.g., x[i] = y[i], x[i] G y[i]) between two variables of the elex constraint.

Y Observe that the among(nvar, vars, values) constraint involves a variable nvar

whose value is computed from a given collection of variables vars. The checker

depicted by part (C1) of Figure 1 counts the number of variables of vars[0] , . . . ,

vars[n j 1] that take their value from values. For this purpose it uses a counter c,

which is eventually tested against the value of nvar. This convinced us to allow the

use of counters in an automaton. Each counter has an initial value which can be

updated while triggering certain transitions. The final state of an automaton can

enforce a variable of the constraint to be equal to a given counter. Part (C2) of Figure

1 describes the automaton corresponding to the code given in part (C1) of the same

figure. The automaton uses the counter c, initially set to 0, and takes as input the

sequence vars[0] , . . . , vars[n j 1]. It triggers a transition for each variable of this

sequence and increments c when the corresponding variable takes its value in values.

The final state returns a success when the value of c is equal to nvar. At this point we

want to stress the following fact: It would have been possible to use an automaton

that avoids the use of counters. However, this automaton would depend on the

effective value of the parameter nvar. In addition, it would require more states than

the automaton of part (C2) of Figure 1. This is typically a problem if we want to have

a fixed number of states in order to save memory as well as time.

Y As the among constraint, the inflexion (ninf, vars) constraint involves a variable

ninf whose value is computed from a given sequence of variables vars[0] , . . . ,

vars[nj1]. Therefore, the checker depicted in part (D1) of Figure 1 also uses a counter

c for counting the number of inflexions, and compares its final value to the ninf

parameter. This program is represented by the automaton depicted by part (D2) of

Figure 1. It takes as input the sequence of pairs bvars[0], vars[1]À, bvars[1],

vars[2]À , . . . , bvars[nj2], vars[nj1]À and triggers a transition for each pair. Ob-

serve that a given variable may occur in more than one pair. Each transition

compares the respective values of two consecutive variables of vars[0. . n j 1] and

increments the counter c when a new inflexion is detected. The final state returns a

success when the value of c is equal to ninf.

Synthesizing all the observations we got from these examples leads to the following

remarks and definitions for a given global constraint C:

Y For a given state, if no transition can be triggered, this indicates that the constraint C
does not hold.
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Y Since all transitions starting from a given state are mutually incompatible, all auto-

mata are deterministic. Let M denote the set of mutually incompatible conditions

associated with the different transitions of an automaton.

Y Let $0 , . . . , $mj 1 denote the sequence of sequences of variables of C on which the

transitions are successively triggered. All these subsets contain the same number of

elements and refer to some variables of C. Since these subsets typically depend on the

constraint, we leave the computation of $0 , . . . , $mj 1 outside the automaton. To

each subset $i of this sequence corresponds a variable Si with an initial domain

ranging over min; minþ Mj j � 1½ �, where min is a fixed integer. To each integer of

this range corresponds one of the mutually incompatible conditions of M. The

sequences S0 , . . . , Smj 1 and $0 , . . . , $mj 1 are respectively called the signature and

the signature argument of the constraint. The constraint between Si and the variables

of $i is called the signature constraint and is denoted by �C Si;�ið Þ.
Y From a pragmatic point the view, the task of writing a constraint checker is naturally

done by writing down an imperative program where local variables (i.e., counters),

assignment statements and control structures are used. This suggested us to consider

deterministic finite automata augmented with counters and assignment statements on

these counters. Regarding control structures, we did not introduce any extra feature

since the deterministic choice of which transition to trigger next seemed to be good

enough.

Y Many global constraints involve a variable whose value is computed from a given

collection of variables. This convinced us to allow the final state of an automaton to

optionally return a result. In practice, this result corresponds to the value of a counter

of the automaton in the final state.

2.2. Defining an Automaton

An automaton A of a constraint C is defined by a sextuple

Signature; SignatureDomain; SignatureArg; Counters; States; T ransitionsh i

where:

Y Signature is the sequence of variables S0 , . . . , Smj 1 corresponding to the signature

of the constraint C.
Y SignatureDomain is an interval which defines the range of possible values of the

variables of Signature.

Y SignatureArg is the signature argument $0 , . . . , $mj 1 of the constraint C. The link

between the variables of $i and the variable Si (0 e i G m) is done by writing down

the signature constraint �C Si;�ið Þ in such a way that arc-consistency is maintained.

In our context this is done by using standard features of the CLP(FD) solver of

SICStus Prolog [16] such as arithmetic constraints between two variables,

propositional combinators or the global constraints programming interface.
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Y Counters is the, possibly empty, list of all counters used in the automaton A. Each

counter is described by a term t (Counter, Initial Value, Final Variable) where

Counter is a symbolic name representing the counter, Initial Value is an integer

giving the value of the counter in the initial state of A, and Final Variable gives the

variable that should be unified with the value of the counter in the final state of A.

Y States is the list of states of A, where each state has the form source(id ), sink(id ) or

node(id ). id is a unique identifier associated with each state. Finally, source (id) and

sink(id ) respectively denote the initial and the final state of A.

Y T ransitions is the list of transitions of A. Each transition t has the form arc(id1, label,

id2) or arc(id1, label, id2, counters). id1 and id2 respectively correspond to the state

just before and just after t, while label depicts the value that the signature variable

should have in order to trigger t. When used, counters gives for each counter of

Counters its value after firing the corresponding transition. This value is specified by

an arithmetic expression involving counters, constants, as well as usual arithmetic

functions such as +, j, min or max. The order used in the counters list is identical to

the order used in Counters.

Example 1. As an illustrative example we give the description of the automaton asso-

ciated with the inflexion (ninf, vars) constraint. We have:

Y Signature ¼ S0; S1; . . . ; Sn � 2;
Y SignatureDomain ¼ 0::2;
Y SignatureArg ¼ vars 0½ �; vars 1½ �h i; . . . ; vars n� 2½ �; vars n� 1½ �h i;
Y Counters ¼ t c; 0; ninfð Þ;
Y States ¼ [source sð Þ; node ið Þ; node jð Þ; sink tð Þ];
Y T ransitions = [arc(s,1, s), arc(s, 2, i), arc(s,0, j), arc(s,$, t), arc(i,1, i), arc(i, 2, i),

arc(i,0, j,[c + 1]), arc(i, $, t), arc( j,1, j), arc( j,0, j), arc( j, 2, i,[c + 1]), arc( j, $, t)].

The signature constraint relating each pair of variables bvars[i], vars[i + 1]À to the

signature variable Si is defined as follows: �inflexion(Si, vars[i], vars[i + 1]) K vars[i] 9
vars[i + 1] , Si = 0 $ vars[i] = vars[i + 1] , Si = 1 $ vars[i] G vars[i + 1] , Si = 2.

The sequence of transitions triggered on the ground instance inflexion(4, [3, 3, 1,

4, 5, 5, 6, 5, 5, 6, 3]) is s
c ¼ 0

��������!3 ¼ 3, S0 ¼ 1
s��������!3 > 1, S1 ¼ 0

j��������!1 G 4, S2 ¼ 2

c ¼ 1 i��������!4 G 5, S3 ¼ 2

i��������!5¼ 5, S4 ¼ 1
i��������!5 G 6, S5 ¼ 2

i ��������!6 > 5, S6 ¼ 0
c ¼ 2 j ��������!5 ¼ 5, S7 ¼ 1

j��������!5 G 6, S8 ¼ 2

c ¼ 3
i��������!6> 3, S9 ¼ 0

c ¼ 4
j!$

t
ninf ¼ 4

. Each transition gives the corresponding condition and, eventually, the value of

the counter c just after firing that transition.

3. Automaton Reformulation

The automaton reformulation is based on the following idea. For a given global con-

straint C, one can think of its automaton as a procedure that repeatedly maps a current

state Qi and counter vector K
!

i, given a signature variable Si, to a new state Qi þ 1 and

counter vector K
!

i þ 1, until a terminal state is reached. We then convert this procedure
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into a transition constraint �C
�
Qi; K
!

i; Si;Qi þ 1; K
!

i þ 1

�
as follows. Qi is a variable

whose values correspond to the states that can be reached at step i. Similarly, K
!

i is a

vector of variables whose values correspond to the potential values of the counters at step

i. Assuming that the automaton associated with C has na arcs arc
�
q1; s1; q

0
1; f1
!�

K
!��

; . . . ;
arc
�
qna; sna; q

0
na; fna

�!�
K
!��

, the transition constraint has the following form:

_
na

j¼ 1
Qi ¼ q j

� �
^ Si ¼ sj

� �
^
�
Qiþ1 ¼ q0j

�
^
�

K
!

iþ1 ¼ fj

!�
K
!

i

��h i

Consider first the case when no counter is used, i.e., the constraint is effectively

�C Qi; Si;Qi þ 1ð Þ. This can be encoded with a ternary relation defined by extension (e.g.,

SICStus Prolog’s case [16, page 463], ECLiPSe’s Propia [17], or Ilog Solver’s table

constraint [18]). If that relation maintains arc-consistency, as does case, it follows that

�C maintains arc-consistency.

Consider now the case when one counter is used. Then we need to extend the ternary

relation by one argument corresponding to j. This argument can be used as an index into

a vector
�

f1
!�

K
!

i

�
; . . . ; fna

�!�
K
!

i

��
, selecting the value that K

!
iþ 1 should equal. Thus to

encode �C we need:

Y a 4-ary relation defined by extension,

Y na arithmetic constraints to compute the vector, and

Y an element constraint to select a value from the vector.

As an optimization, identical fj
!�

K
!

i

�
expressions can be merged, yielding a shorter vector

and fewer arithmetic constraints. In general, arc-consistency can not be guaranteed for

�C.
Finally, consider the case when two or more counters are used. This is a straight-

forward generalization of the single counter case.

We can then arrive at an automaton reformulation for C by decomposing it into a

conjunction of �C constraints, Bthreading[ the state and counter variables through the

conjunction. In addition to this, we need the signature constraints �C Si;�ið Þ 0 �ð i G mÞ
that relate each signature variables Si to the variables of its corresponding signature

argument $i. Filtering for the constraint C is provided by the conjunction of all signature

and transitions constraints, (s being the start state and t being the end state):

�C S0;�0ð Þ ^ �C s; K
!

0; S0;Q1; K
!

1

� �
^

�C S1;�1ð Þ ^ �C Q1; K
!

1; S1;Q2; K
!

2

� �
^

..

.

�C Sm � 1;�m � 1ð Þ ^ �C Qm � 1; K
!

m � 1; Sm � 1;Qm; K
!

m

� �
^

�C Qm; K
!

m; $; t; K
!

m þ 1

� �

A couple of examples will help clarify this idea. In these examples, the relation de-

fined by extension is depicted in a compact form as a decision tree. Note that the decision

tree needs to correctly handle the case when the terminal state has already been reached.
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Example 2. Consider a x!�lex y! constraint over vectors of length n. First, we need a

signature constraint �elex relating each pair of arguments x[i], y[i] to a signature variable

Si. This can be done as follows: �elex (Si, x[i], y[i]) K (x[i] G y[i],Si = 1) $ (x[i] =

y[i] , Si = 2) $ (x[i] 9 y[i] , Si = 3). The automaton of elex and the decision tree

corresponding to the transition constraint 6elex are shown in part (A) of Figure 2.

Example 3. Consider a among(nvar, vars, values) constraint. First, we need a signature

constraint �among relating each argument vars[i] to a signature letter Si. This can be

done as follows: �among(Si, vars[i], values) K (vars[i] 2 values , Si = 1) $ (vars[i] =2
values , Si = 0). The automaton of among and the decision tree corresponding to the

transition constraint 6among are shown in part (B) of Figure 2.

3.1. Complete Filtering when there is No Shared Variable Between

Signature Constraints

In the general case, local consistency such as arc-consistency is not sufficient to ensure

global consistency. In other words, there can be some locally consistent values that

cannot be extended to a complete solution, mainly because there can be some cycles in

the constraint graph. However, we will highlight some special cases where local

consistency can lead to global consistency: We consider automata where all subsets of

variables in SignatureArg are pairwise disjoint. As we will see in the section, many

constraints can be encoded by such automata.

Without Counters If there are no counters, the automaton reformulation maintains arc-

consistency on this kind of automata, provided that the filtering algorithms of the

signature and transition constraints also maintain arc-consistency. To prove this property,

consider the constraint hypergraph that represents the conjunction of all signature and

transition constraints (see Figure 3). It has two particular properties: there is no cycle in

Figure 2. Automata and decision trees for (A) elex and (B) among.
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the corresponding dual graph [19],3 and for any pair of constraints the two sets of

involved variables share at most one variable. Such a hypergraph is so-called Berge-

acyclic [21]. Berge-acyclic constraint networks were proved to be solvable polynomially

by achieving arc-consistency [22, 23]. Therefore, if all signature and transition

constraints maintain arc-consistency then we obtain a complete filtering for our global

constraint.

Among the 39 constraints studied in [24], eight (between, between_exact-

ly_one, global_contiguity, lex_different, lex_lesseq, pattern,

two_quad_ are_in_contact, and two_quad_do_not_overlap) have an

automaton leading to a Berge-acyclic hypergraph.

With Counters If there are counters, some pairs of constraints share more than one

variable. So, the hypergraph is not Berge-acyclic and the filtering performed may be no

longer optimal. However, achieving pairwise consistency on some pairs of constraints

leads to a complete filtering. To prove this, we will use the following well-know theorem

in database systems.

Definition 1 [25] A constraint network N ¼ X ;D; Cf g is pairwise consistent if and only

if 8Ci 2 C;Ci 6¼ ; and 8Ci;Cj 2 C;Ci sj ¼ Cjjs where is the set of variables shared by Ci

and Cj and Cijs is the projection of Ci on s.

Definition 2 [19] An edge in the dual graph of a constraint network is redundant if its

variables are shared by every edge along an alternative path between the two end points.

The subgraph resulting from the removal of the redundant edges of the dual graph is

called a join graph. A hypergraph has a join tree if its join graph is a tree.

Theorem 1 [25] A database scheme is a-acyclic [26] if and only if its hypergraph has a

join tree.

Theorem 2 [25] Any pairwise consistent database over an a-acyclic database scheme is

globally consistent.

Figure 3. Constraint hypergraph of the conjunction of transition and signature constraints in the case of disjoint

SignatureArg sets. The i-th SignatureArg set $i is denoted by {Xi, Yi, . . .}.
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If we translate these theorems we obtain the following corollary on constraint networks.

Corollary 1 If a constraint hypergraph has a join tree then any pairwise consistent

constraint network having this constraint hypergraph is globally consistent.

In the automata we consider here, there are no signature constraints sharing a variable.

So, the dual graph of the constraint hypergraph is a tree and the hypergraph has a join

tree. Therefore, the hypergraph is !-acyclic and if the constraint network is pairwise

consistent, the filtering is complete for our global constraint.

A solution to reach global consistency on the network representing our global

constraint is therefore to maintain pairwise consistency. In fact, if constraints share no

more than one variable, pairwise consistency is nothing more than arc-consistency [23].

So, pairwise consistency has to be enforced only on pairs of constraints sharing more

than one variable and only the transition constraints are therefore concerned. In the worst

case, pairwise consistency will have to consider all the possible tuples of values for the

set of shared variables. So, the pairs of constraints must not share too many variables if

we do not want the filtering to become prohibitive.

Among the 39 constraints studied in [24], seven (among, atleast, atmost, count,

counts, differ_from_atleast_k_pos, and sliding_card_skip0) require

only one counter, two (group, and group_skip_isolated_item) need two

counters and max_index requires three counters.

When the automaton involves only one counter, consecutive transition constraints

share two variables. The sweep algorithm presented in [27] can be used to enforce

pairwise consistency on each pair of transition constraints sharing two variables. Indeed,

the sweep algorithm on two constraints Ci and Cj will forbid the tuples for the variables

shared by Ci and Cj that cannot be extended on both Ci and Cj. To summarize, if the

automaton uses one single counter, the sweep algorithm must consider each pair of

transition constraints sharing variables, and arc-consistency on each constraint will lead

to a complete filtering for our global constraint.

3.2. Complexity

Our approach allows the representation of a global constraint by a network of constraints of

small arities. As seen in the previous section, the filtering obtained using this reformulation

of the global constraint depends on the filtering performed by the solver. If the solver

maintains arc-consistency using the general schema [28, 29], the complexity is in

O(er 2dr)4 where e is the number of constraints, r the maximum arity and d the size of the

largest domain. However, this is a rough bound and the practical time complexity can be

far from this limit. Indeed, the constraints have very different arities and some domains

involve only very few values. Furthermore, on some constraints a specialized algorithm

can be used to reduce the filtering cost. Finally, one would want to enforce only a partial

form of arc-consistency (a directional arc-consistency for example in the case of a Berge-

acyclic constraint network), or a stronger filtering (enforcing pairwise consistency for

example on a constraint network having a join tree). Both the pruning efficiency and the

complexity of the pruning rely on the filtering performed by the solver.
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3.3. Performance

It is reasonable to ask the question whether the automaton reformulation described

herein performs anywhere near the performance delivered by a specific implementation

of a given constraint. To this end, we have compared a version of the Balanced

Incomplete Block Design problem [30, prob028] that uses a built-in elex constraint to

break column symmetries with a version using our filtering based on a finite automaton

for the same constraint. In a second experiment, we measured the time to find all

solutions to a single elex constraint. The experiments were run in SICStus Prolog 3.11 on

a 600 MHz Pentium III. The results are shown in Table 1.

A third experiment was designed to measure the overhead of an automaton refor-

mulation wrt. decomposing into built-in constraints. To this end, we produced random

instances of the following constraints studied in [24]: among, between, lex_

lesseq. These constraints were chosen because their automata formulations maintain

the same consistency as their decomposed formulations, that is, they perform exactly the

same domain filtering. Hence, comparing the time it takes to compute all solutions

should give an accurate measurement of the overhead. among is not a built-in constraint;

it can be decomposed into a number of reified membership constraints and a sum con-

straint. It is worth noting that its automaton uses a counter. between, lex_lesseq

Table 1. Time in milliseconds for finding (A) the first solution of BIBD instances using built in vs. simulated

elex (BCS denotes time spent for breaking column symmetries: with respect to the first column, BCS

corresponds to the time spent in the built-in elex constraint), and (B) all solutions to a sinlge built-in vs.

simulated elex constraint

(A)

Problems v, b, r, k, 1 Built-in elex BCS/Other Simulated elex BCS/Other

6, 50, 25, 3, 10 70/170 250/170

6, 60, 30, 3, 12 120/110 50/110

8, 14, 7, 4, 3 10/80 50/80

9, 120, 40, 3, 10 480/1090 440/1090

10, 90, 27, 3, 6 550/90 1010/90

10, 120, 36, 3, 8 1400/2070 1040/2070

12, 88, 22, 3, 4 450/970 530/970

13, 104, 24, 3, 4 540/1230 540/1230

15, 70, 14, 3, 2 220/910 520/910

(B)

m Built-in elex Simulated elex

xi 2 0;m� 1½ �; yi ¼ m� i x!
�� �� ¼ y!

�� �� ¼ m
4 10 20

5 110 170

6 1640 2300

7 29530 39100
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can be expressed as built-in lex_chain constraints. The results are presented in three

scatter plots in Figure 4. Each graph compares times for finding all solutions to a random

constraint instance, using a randomly chosen labeling strategy. The X coordinate of each

point is the runtime for an automaton reformulation. The Y coordinate is the runtime for

Figure 4. Scatter plots for finding all solutions to random instances: automaton reformulation vs.

decomposition to built-ins.
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a decomposition into built-in constraints. A line, least-square fitted to the data points, is

shown in each graph. Runtimes are in seconds.

From these experiments, we observe that an automaton reformulation typically runs a

few times slower than its hard-coded counterpart, roughly the same ratio as between

interpreted and compiled code in a typical programming language. This slowdown is

likely to have much less impact on the overall execution time of the program. The

conclusion is that the automaton reformulation is a feasible and very reasonable way of

rapidly prototyping new global constraints, before embarking on developing a specific

filtering algorithm, should that be deemed necessary.

4. Applications of this Technique

4.1. Designing Automaton Reformulations for Global Constraints

We apply this new methodology for designing automaton reformulations for the

following fairly large set of global constraints. We came up with an automaton5 for

the following constraints:

Y Unary constraints specifying a domain like in [31] or not_in [32].

Y Channeling constraints like domain_constraint [33].

Y Counting constraints for constraining the number of occurrences of a given set of

values like among [14], atleast [32], atmost [32] or count [31].

Y Sliding sequence constraints like change [34], longest_change or smooth

[15]. longest_change (size, vars, ctr) restricts the variable size to the maximum

number of consecutive variables of vars for which the binary constraint ctr holds.

Y Variations around the element constraint [9] like element_greatereq [35],

element_lesseq [35] or element_sparse [32].

Y Variations around the maximum constraint [10] like max_index(vars, index).

max_index enforces the variable index to be equal to one of the positions of

variables corresponding to the maximum value of the variables of vars.

Y Constraints on words like global_contiguity [12], group [32], group_

skip_isolated_item [15] or pattern [11].

Y Constraints between vectors of variables like between [1], elex [13], lex_

different or differ_from_at_least_k_pos. Given two vectors x! and

y! which have the same number of components, the constraints lex_different

x!; y!
� �

and differ_from_at_least_k_pos k; x!; y!
� �

respectively enforce

the vectors x! and y! to differ from at least 1 and k components.

Y Constraints between n-dimensional boxes like two_quad_are_in_contact

[32] or two_quad_do_not_overlap [36].

Y Constraints on the shape of a sequence of variables like inflexion [15], top [37]

or valley [37].

Y Various constraints like in_same_partition (var1, var2, partitions), not_

all_equal(vars) or sliding_card_skip0(atleast, atmost, vars, values).
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in_same_partition enforces variables var1 and var2 to be respectively assigned

to two values that both belong to a same sublist of values of partitions.

not_all_equal enforces the variables of vars to take more than a single value.

sliding_card_skip0 enforces that each maximum non-zero subsequence of

consecutive variables of vars contain at least atleast and at most atmost values from

the set of values values.

4.2. Automaton Reformulation for a Conjunction of Global Constraints

Another typical use of our new methodology is to come up with an automaton re-

formulation for the conjunction of several global constraints. This is usually difficult

since it implies analyzing a lot of special cases showing up from the interaction of

the different considered constraints. We illustrate this point on the conjunction of the

between a!; x!; b
!� �

[1] and the exactly_one x!; values
� �

constraints for which

we come up with an automaton reformulation, which maintains arc-consistency. The

between constraint holds iff a!�lex x! and x!�lex b
!

, while the exactly_one

constraint holds if exactly one component of x! takes its value in the set of values values.

The left-hand part of Figure 5 depicts the two automata A1 and A2 respectively

associated with the between and the exactly_one constraints, ehile the right-hand

part gives the automaton A3 associated with the conjunction of these two constraints. A3

corresponds to the product of A1 and A2. States of A3 are labeled by the two states of A1

and A2 they were issued. Transitions of A3 are labeled by the end symbol $ or by a

conjuction of elementary conditions, where each condition is taken in one of the

following set of conditions {ai G xi, ai = xi, ai 9 xi}, {bi 9 xi, bi = xi, bi G xi}, {xi 2 values,

xi =2 values}. This makes up to 3 I 3 I 2 = 18 possible combinations and leads to the

Figure 5. Automata associated with between and exactly_one and the automaton associated with their

conjunction.
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signature constraint Cbetween$exactly_one(Si, ai, xi, bi, values) between the signature

variable Si and the i-th component of vectors a!, x! and b
!

:

Si ¼

0 if ai G xi ^ bi > xi ^ xi =2 values; 9 if ai G xi ^ bi > xi ^ xi 2 values;
1 if ai G xi ^ bi ¼ xi ^ xi =2 values; 10 if ai G xi ^ bi ¼ xi ^ xi 2 values;
2 if ai G xi ^ bi G xi ^ xi =2 values; 11 if ai G xi ^ bi G xi ^ xi 2 values;
3 if ai ¼ xi ^ bi > xi ^ xi =2 values; 12 if ai ¼ xi ^ bi > xi ^ xi 2 values;
4 if ai ¼ xi ^ bi ¼ xi ^ xi =2 values; 13 if ai ¼ xi ^ bi ¼ xi ^ xi 2 values;
5 if ai ¼ xi ^ bi G xi ^ xi =2 values; 14 if ai ¼ xi ^ bi G xi ^ xi 2 values;
6 if ai > xi ^ bi > xi ^ xi =2 values; 15 if ai > xi ^ bi > xi ^ xi 2 values;
7 if ai > xi ^ bi ¼ xi ^ xi =2 values; 16 if ai > xi ^ bi ¼ xi ^ xi 2 values;
8 if ai > xi ^ bi G xi ^ xi =2 values; 17 if ai > xi ^ bi G xi ^ xi 2 values;

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

In order to maintain arc-consistency on the conjunction of the between
�

a!; x!; b
!�

and the exactly_one x!; values
� �

constraints we need to have arc-consistency on

Cbetween$exactly_one(Si, ai, xi, bi, values). In our context this is done by using the

global constraint programming facilities of SICStus Prolog [31].6

Example 4. Consider three variables x 2 {0, 1}, y 2 {0, 3}, z 2 {0, 1, 2, 3} subject to the

conjunction of constraints between(b0, 3, 1À, bx, y, zÀ, b1, 0, 2À) $ exactly_one(bx,

y, zÀ, {0}). Even if both the between and the exactly_one constraints maintain

arc-consistency, we need the automaton associated with their conjuction to find out that

z m 0. This can be seen as follows: after two transitions, the automaton A3 will be either

in state ai or in state bi. However, in either state, a 0 must already have been seen, and

so there is no supporty for z = 0.

4.3. Designing Constraints Between Two Sequences of Variables

This section considers constraints of the form C(N, [VAR1, VAR2 , . . . , VARm]) for which

the corresponding automaton AC uses one single counter, which is incremented by

certain transitions and finally unified to variable N in the final state of AC . This

corresponds to constraints that count the number of occurrences of a given pattern in a

sequence VAR1 VAR2 . . . VARm. Each time the automaton recognizes a pattern in the

sequence, it increments its counter by +1. Given the automaton AC of such a constraint C

we will shoe how to create the automata associated to the following constraints:

Y synchronizedC([U1, U2 , . . . ,Um], [V1, V2 , . . . , Vm]) enforces that all positions where

the automaton AC recognizes a pattern in U1U2 . . . Um corresponds exactly to the

positions where AC recognizes a pattern in V1 V2 . . . Vm. In other words the positions

where both counters are incremented should coincide in both sequences.

Y distinctC([U1, U2 , . . . ,Um], [V1, V2 , . . . , Vm]) enforces that all positions where the

automaton AC recognizes a pattern in U1U2 . . . Um be distinct from all positions

where AC recogbizes a pattern in V1 V2 . . . Vm. This means that the positions where a

counter is incremented should all be distinct.
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Figure 6. Automaton associated to the peak constraint and derived automata.
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As an illustrative example, consider the peak constraint, which counts the number of

peaks of a sequence of variables where adjacent variables are not equal. The automaton

of this constraint is depicted by part (A) of Figure 6.

We explain how to derive the automaton associated to synchronizedC and to distinctC
from the automaton AC associated to C. Let A2

C , S ACð Þ and D ACð Þ respectively denotes

the automaton that is the product of AC and AC, the automaton associated to

synchronizedC, and the automaton associated to distinctC. Regarding the example of

the peak constraint A2
C is given by part (B) of Figure 6.

We compute S ACð Þ and D ACð Þ from A2
C . Within A2

C we partition its transitions into

the following 4 classes:

Y Those transitions that do not increment any counter,

Y Those transitions that only increment the counter associated to the sequence U1

U2 . . . Um

Y Those transitions that only increment the counter associated to the sequence V1

V2 . . . Vm.

Y Finally, those transitions that increment both counters.

S ACð Þ corresponds to A2
C from which we remove all transitions where only one single

counter is incremented, and D ACð Þ corresponds to A2
C from which we remove all

transitions where both counters are incremented. We also remove from the resulting

automata all counter variables. Coming back to the example of the peak constraint,

S ACð Þ and D ACð Þ respectively corresponds to part (C) and (D) of Figure 6.

5. Handling Relaxation for a Counter-Free Automaton

This section presents a filtering algorithm for handling constraint relaxing under the

assumption that we don’t use any counter in our automaton. It can be seen as a

generalization of the algorithm used for the regular constraint [6].

Definition 3 The violation cost of a global constraint is the minimum number of subsets

of its signature argument for which it is necessary to change at least one variable in order

to get back to a solution.

When these subsets form a partition over the variables of the constraint and when they

consist of a single element, this cost is in fact the minimum number of variables to unassign

in order to get to a solution. As in [7], we add a cost variable cost as an extra argument of

the constraint. Our filtering algorithm first evaluates the minimum cost valueMin. Then,

according to max(cost), it prunes values that cannot belong to a solution.

Example 5. Consider the constraint global_contiguity([V0, V1, V2, V3, V4, V5, V6])

with the following current domains for variables Vi: [{0, 1}, {1}, {1}, {0}, {1}, {0, 1},

{1}]. The constraint is violated because there are necessarily at least two distinct

sequences of consecutive 1. To get back to a state that can lead to a solution, it is enough
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to turn the fourth value to 1. One can deduce Min ¼ 1. Consider now the relaxed

form soft_global_contiguity([V0, V1, V2, V3, V4, V5, V6], cost) and assume

max(cost) = 1. The filtering algorithm should remove value 0 from V5. Indeed, selecting

value 0 for variable V5 entails a minimum violation cost of 2. Observe that for this

constraint the signature variables S0, S1, S2, S3, S4, S5, S6 are V0, V1, V2, V3, V4, V5, V6.

As in the algorithm of Peasant [6], our consistency algorithm builds a layered acyclic

directed multigraph G. Each layer of G contains a different node for each state of our

automaton. Arcs only appear between consecutive layers. Given two nodes n1 and n2 of

two consecutive layers, q1 and q2 denote their respective associated state. There is an arc

a from n1 to n2 iff, in the automaton, there is an arc arc(q1, v, q2) from q1 to q2. The arc a

is labeled with the valu v. Arcs corresponding to transitions that cannot be triggered

according to the current domain of the signature variables S0 , . . . , Smj 1 are marked as

infeasible. All other arcs are marked as feasible. Finally, we discard isolated nodes from

our layered multigraph. Since our automaton has a single initial state and a single final

state, G has one source and one sink, denoted by source and sink respectively.

Example 5 continued. Part (A) of Figure 7 recalls the automaton of the global_

contiguity constraint, while part (B) gives the multigraph G associated with the

soft_global_contiguity constraint previously introduced. Each node contains

the name of the corresponding automaton state. Numbers in a node will be explained

later on. Infeasible arcs are represented with a dotted line.

We now explain how to use the multigraph G to evaluate the minimum violation cost

Min and to prune the signature variables according to the maximum allowed violation

cost max(cost). Evaluating the minimum violation cost Min can be seen as finding the

path from the source to the sink of G that contains the smallest number of infeasible arcs.

This can be done by performing a topological sort starting from the source G. While

performing the topological sort, we compute for each node nk of G the minimum number

Figure 7. Relaxing the global_contiguity constraint.
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of infeasible arcs from the source G to nk. This number is recorded in before[nk].
7 At the

end of the topological sort, the minimum violation cost Min we search for, is equal to

before[sink].

Notation 1 Let i be assignable to a signature variable Sl. Mini
l denotes the minimum

violation cost value according to the hypothesis that we assign i to Sl.

To prune domains of signature variables we need to compute the quantity Mini
l.

In order to do so, we introduce the quantity after[nk] for a node nk of G: after[nk] is the

minimum number of infeasible arcs on all paths from nk to sink. It is computed by

performing a second topological sort starting from the sink of G. Let Ai
l denote the

set of arcs of G, labeled by i, for which the origin has a rank of l. the quantity

mina!b2Ai
l

before a½ � þ after b½ �ð Þ represents the minimum violation cost under the hypoth-

esis that Sl remains assigned to i. If that quantity is greater than thanMin then there is no

path from source to sink that uses an arc of Ai
l and that has a number of infeasible arcs

equal to Min. In that case the smallest cost we can achieve is Minþ 1. Therefore we

have:

Mini
l ¼ min

	
min

a!b2Ai
l

before a½ � þ after b½ �ð Þ;Minþ 1




The filtering algorithm is then based on the following theorem:

Theorem 3 Let i be a value from the domain of a signature variable Sl. If Mini
l9

max(cost) then i can be removed from Sl.

The cost of the filtering algorithm is dominated by the two topological sorts. They have a

cost proportional to the number of arcs of G, which is bounded by the number of

signature variables times the number of arcs of the automaton.

Example 5 continued. Let us come back to the instance of Figure 7. Beside the state’s

name, each node nk of part (B) of Figure 7 gives the values of before[nk] and of after[nk].

Since before[sink] = 1 we have that the minimum cost violation is equal to 1. Pruning can

be potentially done only for signature variables having more than one value. In our

example this corresponds to variables V0 and V5. So we evaluate the four quantities

Min0
0 ¼ min 0þ 1; 2ð Þ ¼ 1, Min1

0 ¼ min 0þ 1; 2ð Þ ¼ 1, Min0
5 ¼ min min 3þ 0; 1þ 1;ðð

1þ 1Þ; 2Þ ¼ 2,Min1
5 ¼ min min 3þ 0; 1þ 0ð Þ; 2ð Þ ¼ 1. If max(cost) is equal to 1 we can

remove value 0 from V5.The corresponding arcs are depicted with a thick line in Figure 7.

6. Conclusion and Perspectives

The automaton description introduced in this article can be seen as a restricted program-

ming language. This language is used for writing down a constraint checker, which
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verifies whether a ground instance of a constraint is satisfied or not. This checker

allows pruning the variables of a non-ground instance of a constraint by simulating all

potential executions of the corresponding program according to the current domain of

the variables of the relevant constraint. This simulation is achieved by encoding all

potential executions of the automaton as a conjunction of signature and transition

constraints and by letting the usual constraint propagation deducing all the relevant

information. We want to stress the key points and the different perspectives of this

approach:

Y Within the context of global constraints, it was implicitly assumed that providing

a constraint checker is a much easier task than coming up with a filtering algo-

rithm. It was also commonly admitted that the design of filtering algorithms is a

difficult task, which involves creativity and which cannot be automized. We have

shown that this is not the case any more if one can afford to provide a constraint

checker.

Y Non-determinism has played a key role by augmenting programming languages with

backtracking facilities [38], which was the original of logic programming. Non-

determinism also has a key role to play in the systematic design of filtering

algorithms: finding a filtering algorithm can be seen as a task of executing in a non-

deterministic way the deterministic program corresponding to a constraint checker

and to extract the relevant information that is common to all execution paths. This

can indeed be achieved by using constraint programming.

Y A natural continuation would be to extend the automaton description in order to get

closer to a classical imperative programming language. This would allow the direct

use of available checkers in order to systematically get an automaton reformulation.

Y Other structural conditions on the signature and transition constraints could be

identified to guarantee arc-consistency for the original globalo constraint.

Y An extension of our approach may give a systematic way to get an algorithm (not

necessarily polynomial) for decision problems for which one can provide a poly-

nomial certificate. From [39] the decision version of every problem in NP can be

formulated as follows: Given x, decide whether there exists y so that | y | e m(x) and

R(x, y). x is an instance of the problem; y is a short YES-certificate for this instance;

R(x, y) is a polynomial time decidable relation that verifies certificate y for instance x;

and m(x) is a computable and polynomially bounded complexity parameter that

bounds the length of the certificate y. In our context, if ªyª is fixed and known, x is

a global constraint and its | y | variables with their domains; y is a solution to that

global constraint; R(x, y) is an automaton, which encodes a checker for that global

constraint.
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Notes

1. We don’t skip the checker since, in the long term, we consider that the goal would be

to turn any existing code performing a check into a constraint.

2. Within the corresponding automata depicted by parts (A2), (B2), (C2) and (D2) of

Figure 1, we assume that firing a transition increments from 1 the counter i.

3. To each constraint corresponds a node in the dual graph and if two constraints have a

nonempty set S of shared variables, then there is an edge labelled S between their

corresponding nodes in the dual graph. The dual graph is also called intersection

graph in data base theory [20].

4. We assume here that the cost of a constraint check is linear in the constraint arity

while it is sometimes assumed to be constant.

5. These automata are available in the technical report [24]. All signature constraints

are encoded in order to maintain arc-consistency.

6. The corresponding code is available in the technical report [24].

7. The acyclic graph is layered and no transitive arcs exist. Therefore for each node nk

at a given layer k, the quantity before[nk] is computed from the nodes of layer k j 1

as follows: for each nkj 1 such that there exists an arc from nkj 1 to nk, we add 1 to

before[nkj 1] if it is an infeasible arc, and 0 if it is a feasible arc. Then before[nk] is

the minimum of such computed quantities.
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