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Abstract. k-consistency operations in constraint satisfaction problems (CSPs) render constraints more

explicit by solving size-k subproblems and projecting the information thus obtained down to low-order

constraints. We generalise this notion of k-consistency to valued constraint satisfaction problems ( VCSPs) and

show that it can be established in polynomial time when penalties lie in a discrete valuation structure.

A generic definition of consistency is given which can be tailored to particular applications. As an example,

a version of high-order consistency (face consistency) is presented which can be established in low-order

polynomial time given certain restrictions on the valuation structure and the form of the constraint graph.
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1. Valued Constraint Satisfaction

The Valued Constraint Satisfaction Problem ( VCSP) is a generalisation of the classic

CSP in which the user can express preferences between satisfying assignments in under-

constrained problems or between near-miss assignments in over-constrained problems.

Preferences are expressed by specifying penalties on assignments to subsets of the

variables. In Mathematical Programming penalties traditionally lie in < [ 1f g.
However, a great diversity of problems can be modelled by varying the range of

possible penalties and the operator which is used to aggregate them. The notion of

valuation structure [20] captures the minimal set of properties that a set of penalties must

satisfy.

Definition 1.1 A valuation structure is a tuple bE, �, QÀ such that

� E is a set, whose elements are called valuations, which is totally ordered by Q, with a

maximum element denoted by B and a minimum element denoted by ?;

� E is closed under a binary operation � that satisfies:

Y 8�, � 2 E, � � � = � � �; ( commutativity )

Y 8�, �, � 2 E, � � (� � �) = (� � � ) � �; ( associativity )

Y 8�, �, � 2 E, � Q � Á (� � � ) Q (� � �); ( monotonicity )

Y 8� 2 E, � � ? = �; ( neutral element )

Y 8� 2 E, � � B = B. ( annihilator )

A valuation structure is a positive totally ordered commutative monoid, also known as

a positive tomonoid. Note that in the semi-ring based constraint satisfaction problem
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(SCSP), valuations satisfy the same properties except that they are only partially ordered

[2].

Definition 1.2 An operator � is idempotent if 8� 2 E, � � � = �. It is strictly monotonic

if 8�, �, � 2 E, (� 9 � ) $ (� 6¼ B) Á � � � 9 � � �.

Note that the only possible idempotent operator in a valuation structure is max [2].

Examples of strictly monotonic aggregation operators include addition in the non-

negative reals with infinity, multiset union in the case of the leximin version of the Fuzzy

CSP [14] and the operator p � q = 1 j (1 j p )(1 j q ) in the probabilistic CSP [13]. We

call a valuation structure idempotent (strictly monotonic) if its operator is idempotent

(strictly monotonic).

Define the addition-with-ceiling operator +m as follows:

8a; b 2 0; 1; : : : ;mf g aþm b ¼ min aþ b;mf g

Then for m 9 1, Sm = b{0,1, . . . , m}, +m, QÀ is a valuation structure in which +m is neither

idempotent nor strictly monotonic, since ( m j 1) G ( m j 1) +m ( m j 1) = m = B =

m +m ( m j 1). In a bounded version of MAX-CSP (known as B-MAX-CSP in this

paper), penalties lie in the valuation structure Sm [16]. It is a version of MAX-CSP in

which all solutions which violate m or more constraints are considered equally bad. This

is a situation which applies, for example, at a node of a branch and bound search tree on

a MAX-CSP problem where m is the number of constraints violated by the best solution

found so far.

Definition 1.3 In a valuation structure bE, �, Q À, � 2 E is an idempotent valuation if � �
� = �.

In the conjunctive version of the Fuzzy CSP [18] all valuations are idempotent. If the

aggregation operator � is strictly monotonic, then the only idempotent valuations are ?
and B. Idempotent valuations can always be propagated since this does not alter the

valuation of any solution.

Definition 1.4 [9] In a valuation structure bE, �, QÀ, if �,� 2 E, � e � and there exists

a valuation � 2 E such that � � � = �, then � is known as a difference of � and �.

The valuation structure is fair if for any pair of valuations �, � 2 E, with � e �, there

exists a maximum difference of � and �. This unique maximum difference of � and � is

denoted by � � �.

For example, if � is addition in <þ [1, then � is subtraction of real numbers (with
1 � 1 = 1). If � is max, then � is also max [19]. If � is +m, then � is jm given by

8�, � 2 {0, 1 , . . . , m} such that m 9 � Q �, � jm � = a j b and 8� 2 {0, 1 , . . . , m},

m j � = m [16, 17].
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Definition 1.5 [9] A Valued Constraint Satisfaction Problem ( VCSP) is a tuple bN, D, C,

S À where N is a set of n variables N = {1, . . . , n}, each variable i 2 N has a domain of

possible values di 2 D, C is a set of constraints and S = bE, �, QÀ is a valuation structure.

Each constraint in C is defined over a set of variables P � N (its scope) as a function �P

from the cartesian product of the domains di ( i 2 P ) to E.

Purely for notational convenience, we suppose that no two constraints have the same

scope. This allows us to identify C with the set of scopes P of constraints �P in the

VCSP.

Notation For P � N we denote the cartesian product of the domains di ( i 2 P ) (i.e., the

set of possible labellings for the variables in P ) by L ( P ). It is important that L ( P ) be

non-empty even when P is the empty set. Thus L(;) = {ðÞ} where ðÞ represents the

labelling of 0 variables.

Notation Let P � Q � N with Q = { i1, . . . , iq} and P = { j1, . . . , jp}. Then, given an

assignment t ¼ ti1 ; : : : tiq

� �
2 L Qð Þ, �Pt denotes the subassignment of t to the variables

in P, i.e., tj1 ; . . . ; tjp
� �

:

Definition 1.6 In a VCSP V = bN, D, C, S À, the valuation of an assignment t 2 L ( N )

is defined by

ValV tð Þ ¼ �
P2C

�P �Ptð Þ½ �

To solve a VCSP we have to find an assignment t 2 L ( N ) with a minimum valuation.

A CSP can be viewed as a VCSP over the idempotent valuation structure b{0,1}, +, QÀ.

MAX-CSP, the problem of maximising the number of satisfied constraints in an over-

constrained CSP, is a VCSP over the valuation structure bN ? {1}, +, QÀ in which the

constraint functions can only take on the values 0 or 1. We denote by1-MAX-CSP the

equivalent problem in which constraint functions can take on values 0,1 or 1 (thus

allowing the possibility of completely inconsistent tuples). B-MAX-CSP (Bounded

MAX-CSP) is MAX-CSP over the valuation structure Sm.

1.1. Some Basic Definitions and Properties of VCSPs

The following theorem, proved in the Appendix, effectively shows that we need never

consider valuation structures with idempotent valuations other than ? and B.

Theorem 1.7 Any fair VCSP V can be solved by (1) solving a single conjunctive Fuzzy

CSP, and (2) solving a single VCSP over a valuation structure with only two idempotent

valuations ?, B.

It is well known that a conjunctive Fuzzy CSP can be solved by binary search in its

valuation structure, which consists in solving a logarithmic number of CSPs [6].
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Definition 1.8 A valuation structure bE, �, QÀ is discrete if for each � 2 E such that � G B
there is a finite number of � 2 E such that � e �.

MAX-CSP,1-MAX-CSP and B-MAX-CSP have discrete valuation structures. If V =

bN, D, C, S À is a VCSP over a discrete valuation structure S, then there are only a finite

number of distinct VCSPs V 0 which are equivalent to V. This is because the constraint

functions of V 0 can only take on valuations in {� : Mt 2 L ( N )(� e ValV ( t ) G B)} ?

{B}, of which there are only a finite number since S is discrete. It is this property of

discreteness which provides a guarantee that the consistency-enforcing algorithms

described in this paper terminate. Note that neither <þ [ 1f g;þ;�
� �

nor the valuation

structure of the leximin version of the FCSP [14] are discrete. The following theorem,

proved in the Appendix, provides a characterisation of discrete fair valuation structures.

Theorem 1.9 I f a valuation structure S = bE, �, QÀ is discrete, fair and has only two

idempotent valuations ?, B, then it is isomorphic to either N ? {1} or Sm for some

m 2 N.

Theorems 1.7 and 1.9 tell us that if we restrict ourselves to discrete fair valuation

structures, then we need only provide consistency algorithms for VCSPs over the

valuations structures N ? {1} and Sm.

Definition 1.10 Two VCSPs V1 = bN, D, C1, S À, V2 = bN, D, C2, S À are equivalent if

8t 2 L Nð ÞValV1
tð Þ ¼ ValV2

tð Þ:

Definition 1.11 The subproblem of a VCSP bN, D, C, S À on Q � N is the problem

VCSP( Q ) = bQ, DQ, CQ, S À, where DQ = { di : i 2 Q} and CQ = { P 2 C : P � Q}.

Definition 1.12 For a VCSP bN, D, C, S À, an equivalence preserving transformation

( EPT ) on Q � N is an operation which transforms the subproblem VCSP( Q ) into an

equivalent VCSP.

Definition 1.13 If �P, �Q are two constraint functions with scopes P, Q (respectively),

then their sum � = �P � �Q is the constraint function with scope P ? Q such that

8t 2 L P [ Qð Þ � tð Þ ¼ �P �Ptð Þ � �Q �Qt
� �

If Q � P then the difference  = �P � �Q has scope P and is given by

8t 2 L Pð Þ  tð Þ ¼ �P tð Þ � �Q �Qt
� �

Definition 1.14 If �J is a constraint function with scope J and I � J , then the projection

 = PROJI�J of �J onto I is the constraint function with scope I such that

8t 2 L Ið Þ  tð Þ ¼ MIN �J zð Þ : z 2 L Jð Þ ^ �I z ¼ tf g
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Note that when I is the empty set, the projection  of �J onto I is the nullary

constraint given by the constant  = MIN{�J ( z ) : z 2 L ( J )}.

Definition 1.15 A VCSP is known as binary if none of its constraint scopes has car-

dinality greater than 2.

Definition 1.16 If V is VCSP, then its constraint graph has a node for each variable and

an edge joining each pair of distinct nodes i, j for which there is a constraint �P in V with

i, j 2 P.

Definition 1.17 If P, Q � N, then t 2 L ( P ) is compatible with y 2 L ( Q ) if �P7Q t =

�P7Q y.

Note that, if P 7 Q = ;, then every t 2 L ( P ) is compatible with every y 2 L ( Q ).

The following properties of valuation structures were proved in [9].

Lemma 1.18 Let S = bE, �, QÀ be a fair valuation structure and let �, � 2 E. Then

(a) � � � is the maximum idempotent valuation less than or equal to �.

(b) if either � or � is idempotent, then � � � = max{�, �}.

Lemma 1.19 Let S = bE, �, QÀ be a fair valuation structure and let �, � 2 E. Then either

(� � � ) � � = � or (� � � ) � � = (� � � ) � (� � � ) which is idempotent and

strictly greater then �.

The following two lemmas are essential for the proof of correctness of the consistency

algorithms presented in this paper.

Lemma 1.20 Let S = bE, �, QÀ be a fair valuation structure and let �, �, � 2 E. If � �
� e � then � � (� � � ) e � � �.

Proof: By definition of �, we have � = (� � (� � � ))� (� � �) = ((� � (� � �))� � �
�. By maximality of � � �, we can deduce that (� � (� � �)) � � e � � �. Thus, by

monotonicity, � � (� � �) e (� � (� � �)) � � e � � �. Í
Lemma 1.21 Let S = bE, �, QÀ be a fair valuation structure and let �, � 0, � 2 E. If � 0 e
�, then (� 0 � � ) � � 0 e (� � � ) � �.

Proof: By Lemma 1.19, either (i) (� 0 � � ) � � 0 = � or (ii) (� 0 � � ) � � 0 = (� 0 � � ) �
(� 0 � � ) which is idempotent and strictly greater than �. Now, again by Lemma 1.19, (�
� � ) � � Q �. Thus, in case (i), (� 0 � � ) � � 0 e (� � � ) � � and we are done. In case

(ii), (� 0 � � ) � � 0 = (� 0 � � ) � (� 0 � � ) e (� � � ) � (� � � ) (by Lemma 1.18 (a)

since � 0 � � e � � � by monotonicity). But (� � � ) � (� � � ) e (� � � ) � � (by

Lemma 1.20 with � = � � �, � = �, � = � ). Í
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2. High-Order Consistency in VCSPs

Given the importance of different forms of consistency in CSPs, a natural goal is to

generalise the notion of consistency to valued constraints. The different forms of

consistency which have already been defined for VCSPs include arc consistency [9, 19],

(full) directional arc consistency [6] and cyclic consistency [7].

Arc consistency not only propagates total inconsistencies (as in CSPs), but also

projects down weights from binary to unary constraints. Directional arc consistency

attempts to concentrate weights on the same variables by shifting weights towards earlier

variables in a given variable-ordering. Full directional arc consistency (FDAC) is simply

arc consistency and directional arc consistency applied simultaneously. Maintaining

FDAC during branch and bound search was found to be the most efficient pruning

technique based on arc consistency operations in experimental trials on hard instances of

MAX-CSP [17]. Cyclic consistency re-assigns weights on binary and unary constraints

around a cycle of variables. In binary MAX-CSP, it is known that an order-3 cyclic

consistency closure is in-scope optimal, in the sense that the lower bound on valuations

of solutions thus obtained cannot be locally improved by any form of order-3 consistency

operation which does not create ternary constraints [7].

In this section, we give a generic definition of consistency in VCSPs which allows us

to define complete k-consistency, where k = 3 is any positive integer. In particular, when

k = 3 this provides a form of 3-consistency which is strictly stronger than order-3 cyclic

consistency at the cost of extra space complexity, since all ternary constraints may be

created. (Note, however, that it is possible to avoid explicitly storing order-3 constraints

when the valuation structure is strictly monotonic [8], based on an idea already applied to

arc consistency in VCSPs [9]). Our generic definition of consistency also allows us to

define a restricted form of higher-order consistency which can be applied in low-order

polynomial time on certain forms of planar constraint graphs.

Notation Let C be a set of scopes (i.e., subsets of N ). Then maximal ( C ) denotes the set

of elements of C which are maximal with respect to subset inclusion, i.e., maximal ( C ) =

{ J 2 C : GK 2 C such that J � K )}.

Notation ValJ
e i is the valuation function of the subproblem of VCSP( J ) consisting of

constraints of order no greater than i, i.e.,

8z 2 L Jð Þ Val�i
J zð Þ ¼ �

P2C ^ P � J ^ Pj j � i

�P �Pzð Þ

ValJ
>i is defined similarly and ValJ is simply the valuation function of the subproblem

VCSP( J ):

8z 2 L Jð Þ ValJ zð Þ ¼ �
P 2 C ^ P � J

�P �Pzð Þ

Consistency in a fair VCSP V corresponds to a state in which, after solving a given set

of subproblems of V, idempotent valuations have been propagated as much as possible
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and all valuations have been projected down to lower-order constraints. In particular,

complete k-consistency can be established by solving all size-k subproblems, propagating

any resulting idempotent valuations, projecting down weights onto subproblems of these

size-k subproblems and repeating these operations until convergence. We give a generic

definition of consistency as a function of a set C of scopes (which in complete k-con-

sistency will simply be all sets of at most k variables).

Definition 2.1 A fair VCSP is C-consistent if 8J 2 maximal ( C ), 8I 2 C such that I � J ,

�I ¼ �I � PROJI ValJ � Val
� Ij j
J

� �

Definition 2.2 A fair VCSP is complete k-consistent if it is C-consistent for C = { J � N :

| J | e k}.

Definition 2.2 differs from the definition of k-consistency in CSPs [3] and the

definition of arc consistency in VCSPs given in previous papers [6, 9, 19] in that there is

a constraint with an empty scope (since C includes all subsets of size less than or equal to

k, including the empty set). A constraint with an empty scope, known as the nullary

constraint and denoted simply by �, has proved useful in arc consistency [16], soft MAC

[17] and cyclic consistency enforcing [7]. Our previous definition of arc consistency [9]

in VCSPs corresponds therefore to C-consistency with C = { J � N : 1 e | J | e 2}.

If � is idempotent, then ValJ � ValJ
e | I | = ValJ and �I = �I � PROJIValJ iff �I =

PROJIValJ . Thus, in CSPs, complete k-consistency imposes the classic notion of strong

k-consistency which says that 8I � J � N such that | J | = k, any consistent labelling for

I can be extended to a consistent labelling for J . Definition 2.2 also imposes the

condition that inconsistent labellings for J be eliminated (whereas strong k-consistency

does not, since it is not necessary to explicitly store order-k constraints). Note that, when

� is not idempotent, an increase in �I is compensated by a decrease in �J and hence

order-k constraints must be stored.

If � is addition of real numbers and all valuations are finite (as is the case in MAX-

CSP), then ValJ � ValJ
e | I | = ValJ

9 | I | , the valuation function of the subproblem of

VCSP( J ) involving only constraints of order greater than | I | , and �I = �I �
PROJIValJ

9 | I | iff PROJIValJ
9 | I | = 0. This corresponds to a situation in which all

labellings t for I can be extended to a labelling for J at no extra cost in terms of higher-

order constraints.

To establish complete k-consistency in VCSPs we propagate non-idempotent weights

from �P to �J (where P � J ) only if this can lead to an increase in �I for some I � J

such that | I | G | P | . Since | I | G | P | G | J | , this means that it is impossible to check

complete k-consistency by tests on pairs of constraint functions �I , �J such that | J | =

| I | + 1, as is the case in CSPs (in which complete k-consistency is equivalent to

i-consistency for 1 e i e k ).

As an example of complete 3-consistency, consider the VCSP V shown in Figure 1(a).

Each oval represents a variable domain. In fact, each domain is Boolean and is
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represented in Figure 1 by {T, F}. A number 1 next to a value a in the domain of Xi

represents a cost of 1 (i.e., �i ( a ) = 1). Each line joining a in the domain of Xi with b in

the domain of Xj represents a cost of 1 (i.e., �ij ( a, b ) = 1). V corresponds to an instance

of MAX-SAT in which the aim is to satisfy the maximum number of the following

constraints: KX1 ¦ KX2; KX1 ¦ X2; KX2; KX3; X2 ¦ X3; X1 ¦ KX4; X2 ¦ X4; X3 ¦ X4. V

is not complete 3-consistent: for example, if  2 denotes PROJ{2} Val{1, 2, 4}
91 = PROJ{2}

(�12 � �14 � �24), then  2 (F ) = 1 9 0. Note that Val{1, 2, 4}
91 is the sum of all constraints

�P such that P � {1, 2, 4} $ | P | 9 1, including P = {1, 4} which does not actually

intersect {2}.

When the operator � is not idempotent, the complete k-consistency closure is not

necessarily unique. To illustrate this, consider the VCSP V of Figure 1. Figures 1(b) and

(c) show two distinct complete 3-consistency closures of V. In both cases the resulting

VCSP consists not only of the unary and binary constraints shown diagrammatically but

also the nullary constraint � and a single ternary constraint (for which we only indicate

the non-zero penalties).

The valuation � is a natural lower bound on the valuation of any solution. Indeed,

producing a tight lower bound for use in branch and bound search is the principal reason

for applying consistency operations. For example, between the two complete 3-con-

Figure 1. (a) A VCSP V; (b), (c) two distinct complete 3-consistency closures of V.
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sistency closures given in Figure 1(b) and (c), the former is preferable to the latter since

the lower bound � is greater. Note that finding a complete k-consistency closure for

which � is maximal is known to be NP-hard in the case of MAX-CSP, even for k = 2 [9].

The generic definition of consistency in Definition 2.1 allows us to define restricted

forms of higher-order consistency which are more time and space efficient than complete

k-consistency. If the constraint graph G of a binary VCSP is planar, then an obvious

choice for the set of scopes C is the set of nodes, edges and faces of G.

Definition 2.3 A fair binary VCSP V whose constraint graph G is planar is face consistent

if V is C-consistent for C = {;}?{{ v} : v 2 N } ? E ? F, where N, E, F are

respectively the nodes, edges and faces of G (where a face is understood to mean the set

of nodes on its boundary) and ; is the empty set.

Imagine the problem of colouring the nodes of a planar graph G such that the minimum

number of pairs of adjacent nodes are assigned the same colour. This is an optimisation

version of the well-known graph-colouring problem. Suppose that only two colours

(black and white) are available and that G is the graph shown in Figure 2(a). An optimal

colouring is obtained, for example, by colouring all nodes on the same bottom-left-to-

top-right diagonal the same colour, with alternating black and white diagonals (as in-

dicated in Figure 2(a)). In the face-consistency closure illustrated in Figure 2(b), the

value of the nullary constraint � is 4 which is, in fact, the valuation of an optimal

solution. In this case, face-consistency finds the lower bound of 1 for the number of pairs

of adjacent nodes assigned the same colour in each of the 4 shaded triangles in Figure 2(b).

In each shaded triangle, the three Bnot-equal-to^ constraints (given by �12(B,W) = �12(W,

B) = 0; �12(B, B) = �12(W,W) = 1) are replaced by a nullary constraint � = 1 and a

ternary Bnot-all-equal^ constraint (given by �123(B, B, B) = �123(W,W,W) = 2; �123 ( x,

y, z ) = 0 otherwise).

We should mention that other face-consistency closures exist for the problem in

Figure 2(a). One example is illustrated in Figure 2(c) where � = 2, the number of shaded

triangles. In all face-consistency closures, 2 e � e 4. On a general 2n 	 2n triangular

grid, the lower bound � found by face consistency (if the triangles are visited in the

natural left-to-right top-to-bottom order) is 4n2, which is the value of an optimal solution.

The lower bound found by face consistency is at worst 2n2, which is obtained only if the

triangles are visited in a rather unnatural order. The corresponding face consistency

closures on a 2n 	 2n grid can be represented by tesselating the plane with the patterns

of Figures 2(b) and (c).

Figure 2. (a) A graph G to be coloured with just two colours (an optimal colouring is shown); (b), (c) after

applying face-consistency � is the number of shaded triangles.
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It is worth noting that both full directional arc consistency [6, 9] and 3-cyclic

consistency [7] are completely ineffective on this problem instance since they both

produce a lower bound of � = 0. For this particular problem, face consistency not only

produces an excellent lower bound, it can also clearly be established in linear time.

As an example of face consistency on a classical CSP, consider the fragment of a line

drawing of a polyhedra in Figure 3. The line drawing labelling problem can be expressed

as a CSP with a variable Xj corresponding to each junction j in the drawing. The domain

of Xj is the list of legal labellings of the lines meeting at j. For example, one legal

labelling of a Y-junction is (+++) representing three convex edges (such as the corner of

a cube from a viewpoint at which all three faces which intersect at the corner are visible).

On the other hand, the labelling (++) is illegal for an L-junction. There is a binary

constraint between each pair of adjacent junctions j, k: the line joining junctions j and k

must be assigned the same label in the labellings Xj and Xk. Under the assumptions of a

general viewpoint and trihedral vertices, a Y-junction has no legal labelling involving a

convex edge other than the labelling (+++). It is easy to deduce that the labelling (+++)

for junction A in Figure 3 would imply that junctions B, C, D should also be labelled

(+++). But then this is a contradiction, since the labelling (++) is illegal for the

L-junction E. Face consistency therefore tells us that (+++) is an illegal labelling for A.

3. Enforcing Consistency

In this section we present a generic algorithm GC to establish C-consistency.

Definition 3.1 For I, J 2 C, such that I � J, and for t 2 L (P ), a VCSP is said to be C-

consistent at ( I , t, J ) if �I ( t ) = �I ( t ) � PROJI ( ValJ � ValJ
e | I | ) ( t ).

The algorithm GC, given in Figure 4, keeps a list L of triples (I , t, J ) which need to be

checked for C-consistency. At any moment during the execution of GC the VCSP is

C-consistent except possibly at those ( I , t, J ) 2 L.

Figure 3. A fragment of a line drawing labelling problem.
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PValDiff ( I , t, J ) returns the value of PROJI ( ValJ �ValJ
e | I | ) at t. When an incon-

sistency is detected, C-consistency is re-established by the subroutine Re-establish,

given in Figure 5, which first shifts weights from constraint functions �P (for | P | 9 | I | )

up to to �J , and then projects down weights to �I . Remember that L ( P ) represents the

set of labellings for P and that y 2 L ( P ) is said to be compatible with t 2 L ( I ) iff y and

t agree on variables P 7 I .

Extend and Propagate both shift penalties up to the constraint �J so that a penalty

of � can then be projected down from �J onto �I ( t ). Optimisations of GC are possible.

For example, it is not necessary to call Extend ( P, y, J , min(�P ( y ), � )) in Re-establish

( I , t, J , � ) if �P ( y ) � �I ( t ) = �I ( t ). (In MAX-CSP this occurs if �P ( y ) = 0). As

another example, in MAX-CSP it is not necessary to call Propagate (since the only

idempotent valuation is 0) and we need only add those ( I 0, t 0, J 0) to L in GC which also

satisfy ( | I 0 | G | I | ) ¦ ( I 0 � J 0 = J ) (since �I and �J are the only constraint functions

which may have increased).

Consider the execution of GC on the VCSP given in Figure 1(a) in order to establish

complete 3-consistency. In this case, C is the set of all subsets of { X1, X2, X3, X4} and

maximal(C) = {{ X1, X2, X3}, { X1, X2, X4}, { X1, X3, X3}, {X2, X3, X4}}. Suppose that,

after execution of the first line of GC, the list L begins as follows L = {(;,ðÞ, {X1, X2,

X3}), ({ X1}, ( T ), { X1, X2, X3}), . . .}. Then, during the first iteration of the while loop,

( I , t, J ) = (;, ðÞ, { X1, X2, X3}). Since MIN{ValJ ( z ) : z 2 L ( J )} = 1 and the initial value

of the nullary constraint is 0, we have

� ¼ PValDiff ;; ðÞ; X1;X2;X3f gð Þ ¼ 1

Now clearly 1 � 0 9 0 (the nullary constraint being equal to 0). Thus GC has detected an

inconsistency. Re-establish (;, ðÞ, { X1, X2, X3},1) first calls Extend which shifts all

weights up to �123 from all �P for P � { X1, X2, X3}) and | P | 9 0. Re-establish then

calls Project which assigns 1 to the nullary constraint � and reduces �123 ( z ) by 1 for all

Figure 4. A generic algorithm to establish C-consistency.
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z 2 L({ X1, X2, X3}). Note that we now have � = 1 but �P ( y ) = 0 for all P such that ; �
P � J and all y 2 L ( P ). The resulting VCSP is illustrated in Figure 6(a).

On subsequent iterations, some of the weights now stored in �123 will be projected

down to constraint functions �P where P � { X1, X2, X3}. For example, when ( I , t, J ) =

({ X1}, ( T ), { X1, X2, X3}), GC calculates

� ¼ PValDiff X1f g; Tð Þ; X1;X2;X3f gð Þ

¼ PROJ X1f g Val X1;X2;X3f g � Val�1
X1;X2;X3f g

� �
Tð Þ

¼ min 1; 1; 1; 2f g ¼ 1

and thus detects another inconsistency. Re-establish calls Extend to shift all weights up to

�123 from all �P ( y ) such that P � { X1, X2, X3}, | P | 9 1 and y compatible with X1 = T.

Figure 5. Re-establish and its subroutines.

294 M. C. COOPER



In fact, there are no non-zero weights to be shifted up. Re-establish then calls Project

which assigns 1 to �1( T ) and reduces �123 ( z ) by 1 for all z such that �X1
z ¼ T . The

resulting VCSP is given in Figure 6(b). In a subsequent iteration of the while loop, with

( I , t, J ) = ({ X2, X3}, (T, T),{ X1, X2, X3}), Re-establish projects down a weight of 1

from �123 onto �23(T, T). The result is shown in Figure 6(c).

The next iteration of the while loop of GC which detects an inconsistency occurs

when ( I , t, J ) = ({ X4}, ( F ), { X1, X2, X3}). The result of Re-establish ({ X4}, ( F ), { X1,

X2, X3}, 1) is shown in Figure 6(d). Note that all the non-zero weights on the three binary

constraints �23, �34, �24 must be shifted up to �234 in order to be able to project a weight

of 1 down to �4( F ). A final inconsistency is detected by GC when ( I , t, J ) = (;, ðÞ, { X1,

X4}) since, for all labellings ( t1, t4) of { X1, X4}, �1 ( t1) � �4 ( t4) � �1,4 ( t1, t4) Q 1. The

complete 3-consistency closure shown in Figure 1(b) is then obtained by applying Re-

establish (;, ðÞ, { X1, X4}, 1).

Figure 6. The intermediate results of applying GC to the VCSP of Figure 1 (a), after re-establishing

consistency at (a) ( I , t, J ) = (;, ðÞ, { X1, X2, X3}); (b) ( I , t, J ) = ({ X1}, ( T ), { X1, X2, X3}); (c) ( I , t, J ) =

({ X2, X3}, (T,T), { X1, X2, X3,}); (d) ( I , t, J ) = ({ X4}, ( F ), { X2, X3, X4}).
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3.1. Correctness of the Consistency-Enforcing Algorithm

In order to show that GC is correct we have to show that it is an EPT (equivalence-

preserving transformation) and that on termination the resulting VCSP is C-consistent.

We first show that each of the subroutines of GC are EPTs.

Lemma 3.2 Propagate( I , t, J ) is an EPT on VCSP ( J ) if J 2 C, t 2 L ( I ) and I � J .

Proof: Consider some z 2 L ( J ) compatible with t 2 L ( I ) and let � represent the value

of ValJ ( z ) before the call of Propagate ( I , t, J ). Then after this call of Propagate,

ValJ ( z ) = � � ( � � � ) = � and hence is invariant. Í
Lemma 3.3 Project ( I , t, J , � ) is an EPT on VCSP ( J ) provided that I, J 2 C, t 2 L ( I ),

I � J and � e MIN{�J ( z ) : z 2 L ( J ) compatible with t 2 L ( I )}.

Proof: The result follows from the fact that, for all z 2 L ( J ) compatible with t 2 L ( I ),

�J zð Þ � �I �I zð Þ ¼ �J zð Þ � �I tð Þ

is an invariant of Project ( I , t, J , � ) since (�J ( z ) � � ) � (�I ( t ) � � ) = ((�J ( z ) �
� ) � �) � �I ( t ) = �J ( z ) � �I ( t ), and hence ValJ ( z ) is also an invariant. If, on the

other hand, z 2 L (J ) is not compatible with t 2 L ( I ), then clearly Project ( I , t, J , � )

does not modify ValJ ( z ). Í
Lemma 3.4 Extend( P, y, J , � ) is an EPT on VCSP ( J ) if P, J 2 C, y 2 L ( P ), P �
J and � e �P ( y ).

Proof: As in the proof of Lemma 3.3, this follows from the fact that 8w 2 L ( J ), �J ( w )

� �P (�Pw ) = �J ( w ) � �P ( y ) is an invariant of Extend ( P, y, J , � ), and hence

ValJ ( w ) is also an invariant. Í
Lemma 3.5 Re-establish( I , t, J , � ) is an EPT on VCSP ( J ) when I, J 2 C, t 2 L ( I ),

I � J and

� ¼ min ValJ zð Þ � Val
�jI j
J zð Þ : z 2 L Jð Þ compatible with t 2 L Ið Þ

n o

Proof: First of all, consider the case in which � is idempotent. In this case, Re-

establish ( I , t, J , � ) simply adds � to �I ( t ). But 8z 2 L ( J ) compatible with t 2 L ( I ),

ValJ ( z ) � ValJ
e | I | ( z ) Q �. Therefore ValJ ( z ) Q � � ValJ

e | I | ( z ) Q � by monotonicity.

Therefore ValJ ( z ) � ValJ( z ) since � is idempotent, by Lemma 1.18(b). Thus, when �
is idempotent, adding � to �I ( t ) leaves ValJ ( z ) invariant for all z 2 L ( J ) and hence

Re-establish ( I , t, J , � ) is an EPT on VCSP( J ).

Now consider the case in which � is not idempotent. We can assume that I � J ,

since if I = J then � = ValJ ( z ) � ValJ ( z ), for some z 2 L ( J ), which is idempotent by

Lemma 1.18(a).
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Knowing that Propagate, Extend and Project are EPTs, to show that Re-establish is

also an EPT it only remains to show that whenever Project ( I , t, J , � ) is called the

condition of Lemma 3.3 is verified, namely

8z 2 L Jð Þ compatible with t 2 L Ið Þ; �J zð Þ � � ð1Þ

Consider some z 2 L ( J ) compatible with t 2 L ( I ). Since I � J , this implies that �1z = t.

At the end of the calls to Extend in Re-establish ( I , t, J , � ), �J ( z ) = Val0J
9 | I | ( z ),

where Val0 represents the valuations of the VCSP before the call to Re-establish ( I , t, J , � ).

Now, by the definition of � in the statement of the lemma, � e Val0J ( z ) �
Val0J

e | I | ( z ). Setting � = Val0J
9 | I | ( z ) and 	 = Val0J

e | I | ( z ), we can write this as � e

(� � 	) � 	. By Lemma 1.19, either

(i) (� � 	) � 	 = � or

(ii) (� � 	) � 	 = (� � 	) � (� � 	)

By monotonicity, � � ((� � 	) � (� � 	)) Q max{�, (� � 	) � (� � 	)} Q (� � 	) �
	 in both case (i) and case (ii). After the call of Propagate ( I , t, J ), �J ( z ) = � �
( Val0J ( z ) � Val0J ( z )) = � � ((� � 	) � (� � 	)) Q (� � 	) � 	 Q �. Thus we have

shown that equation (1) holds when Project ( I , t, J , � ) is called. Í
Having shown that Re-establish is an EPT, we now turn our attention to the invariant

of the while loop in GC.

Lemma 3.6 Suppose that P � J , H � K , P, H 2 C, J , K 2 maximal(C ), J 6¼ K , y 2
L ( P ), z 2 L ( H ) and � e �P ( y ). I f the VCSP is C-consistent at ( H , z, K ), then it

remains C-consistent at ( H , z, K ) after Extend ( P, y, J , � ) is called.

Proof: C-consistency on ( H , z, K ) depends only on the values of �Q (v) for Q � K and

v 2 L ( Q ) compatible with z 2 L ( H ). Extend ( P, y, J , � ) only modifies �J and �P ( y ).

Since J 6¼ K and J , K 2 maximal ( C ), we cannot have J � K . We also assume that P �
K and z 2 L ( H ) is compatible with y 2 L ( P ), otherwise the result is trivial. Thus P,

H � K and P � J .

Suppose that the VCSP is C-consistent at ( H , z, K ) before the call of Extend ( P, y, J ,

� ). Then there exists w 2 L ( K ) compatible with (i.e., an extension of ) z 2 L ( P ) such

that

�H zð Þ ¼ �H zð Þ � ValK � Val
�jH j
K

� �
wð Þ ð2Þ

Let �, � 0 be (respectively) the values of ValK
9 | H | ( w ) before and after the call of

Extend ( P, y, J , � ). Clearly � 0 e �. (In fact, we can only have � 0 6¼ � if | P | 9 | H | ). Let

� and � 0 be (respectively) the values of ValK
e | H | ( w ) before and after Extend ( P, y, J ,

� ) is called. Clearly � 0 e �. (In fact, we can only have � 0 6¼ � if | P | e | H | ). Let � and

� 0 be (respectively) the values of �H ( z ) before and after Extend ( P, y, J , � ) is called.

(In fact, we can only have � 6¼ � 0 in the case P = H ).
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Equation (2) can be written as � = � � ((� � � ) � � ). From the definition of � � � as

a maximal difference, this implies that (� � � ) � � e � � �. Since � 0 e �, Lemma 1.21

tells us that (� 0 � � ) � � 0 e (� � � ) � � e � � �. Since � 0 e �, by monotonicity, (� 0 �
� 0) � � 0 e (� 0 � � ) � � 0 e � � �. Now, if P 6¼ H then � 0 = � and if P = H then, by the

definition of Extend, � 0 = (� � � ) Q (� � � ) since by hypothesis � e �P ( y ) = �H ( z ) =

�. From Lemma 1.18(a) it follows that (� 0 � � 0) Q (� � � ) Q (� 0 � � 0) � � 0. It follows

from monotonicity that � 0 = � 0 � (� 0 � � 0) Q � 0 � ((� 0 � � 0) � � 0) Q � 0, and hence

� 0 = � 0 � ((� 0 � � 0) � � 0). In other words, the VCSP is C-consistent at ( H , z, K ) (since

equation (2) still holds) after the call of Extend ( P, y, J , � ). Í
Theorem 3.7 I f GC terminates then it establishes C-consistency.

Proof: To demonstrate partial correctness it is clearly sufficient to show that GC is an

EPT and that the resulting VCSP is C-consistent. That GC is an EPT follows directly

from Lemma 3.5. To show that the resulting VCSP is C-consistent, we only need prove

that INV (which says that the VCSP is C-consistent except possibly at ( I , t, J ) 2 L ) is an

invariant of the while loop. The only constraint functions modified during an iteration of

the while loop in which ( I , t, J ) is processed are �I , �J and �P for P � J . Lemma 3.6

tells us that the reductions to �P (for P � J ) by Extend ( P, y, J , � ) cannot lead to C-

inconsistencies. Thus Re-establish ( I , t, J , � ) can only destroy C-consistency at those

triples ( I 0, t 0, J 0) such that I , I 0 � J 0, I 0 2 C, I 6¼ ;, J 0 2 maximal ( C ) and t 0 2 L ( I 0).
But these are exactly the tuples added to L after the call of Re-establish ( I , t, J , � ), and

hence INV is an invariant of the while loop. Í
Total correctness of GC, when the valuation structure of the VCSP is N ? {1} or Sm

(for m 2 N ), follows from the analysis of its time complexity in the following section.

3.2. Complexity of Establishing Consistency

Theorem 3.8 I f k is a constant and 8I 2 C, | I | e k, then C-consistency can be

established by GC in polynomial time on all instances of1-MAX-CSP and B-MAX-CSP.

Proof: Consider first the execution of GC on an instance of MAX-CSP. Let Ni be the

total number of times Re-establish ( I , t, J , � ) is called for some I such that | I | e i.

Since Re-establish ( I , t, J , � ) clearly has polynomial time complexity, it is sufficient to

show that Nk is polynomially-bounded.

The value of �I ( t ) necessarily increases each time Re-establish ( I , t, J , � ) is called.

Note that Re-establish ( I , t, J , � ) may be called many times for the same pair ( I , t ), not

least because �I ( t ) may also decrease (for | I | 9 0).

For all I � N and for all t 2 L ( I ), �I ( t ) is bounded above by the maximum valuation

of any solution, which for MAX-CSP is c, the number of constraints. In particular, the

nullary constraint � is bounded above by c. Since � is never decreased by GC, we can

deduce that N0 e c.
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Re-establish ( I , t, J , � ) increases �I ( t ) by �, but may also decrease �P( y ) by � for all

( y, p ) such that y 2 L ( P ), | I | G | P | and P � J : a total decrease which is nevertheless

bounded above by
Pk

p¼ 1 C
p
k dp� ¼ 1þ dð Þk� (since | J | e k ). Thus, for 0 G i e k,

Ni � cdiCi
n þ 1þ dð ÞkNi
1

since there are diCn
i values �P ( y ) (with | P | e i and y 2 L ( P )) each bounded above by

c and each increase in some �I ( t ) where | I | G | P | may provoke at most (1 + d )k

decreases in some �P ( y ).

Since N0 e c, it is easy to show by induction that

Ni � c dnþ 1þ dð Þk
� �i

and hence that Nk is polynomially-bounded under the assumption that k is a constant.

When the VCSP is an instance of 1-MAX-CSP or B-MAX-CSP, then the above

argument can be used to show that Nk
0 is polynomially-bounded, where Ni

0 is the number

of times Re-establish ( I , t, J , � ) is called for some I such that | I | e i with � G B. The

result follows from the fact that Re-establish ( I , t, J , � ) is called at most once with � = B
for each pair ( I , t ) since constraint values �I ( t ) = B are never decreased by GC. Í
Theorem 3.9 I f k is a constant and 8J 2 C, | J | e k, then C-consistency can be

established in polynomial time on all instances of VCSP over the valuation structures

N ? {1} and Sm ( for m 2 N ).

Proof: Let I be a VCSP instance over the valuation structure N ? {1}, and let M be

the maximum finite valuation taken on by the constraint functions in I . Define I1 to be a

copy of I in which each constraint function �J
1 in I1 is related to the corresponding

constraint function �J in I by the rule �J
1 = �J mod 2. The function mod is understood in

its normal sense except that B mod 2 is defined and is equal to B.

Let �
1

J be the constraint functions of I1 after establishment of C-consistency. Then

�
1

J mod 2 is the least significant bit of a C-consistent VCSP which is equivalent to I .

Now, define each I i (for i Q 2) to be a copy of I with constraint functions �J
i given by

�i
J ¼ ðð�J þ �

i
 1

J Þ div 2i
 1Þ mod 2

where �
i
1

J is the result of applying C-consistency to I ij 1. The function div is integer

division, except that B div 2ij 1 = B. The function �
i
 1

J is the Bcarry^ from I ij 1. After

establishing C-consistency in I i, the resulting constraint functions are �
i

J . The value

(�
i

J mod 2) represents the ith least significant bit of the constraint functions of �I, a

C-consistent VCSP equivalent to the original instance I . Note that each I i is an instance

of 1-MAX-CSP or B-MAX-CSP since all valuations are either 0,1 or B.

The maximum finite valuation of the constraint functions after establishing C-

consistency is bounded by the sum of the finite valuations in the original VCSP I , which

is at most cM. The number of iterations of the above procedure (i.e., the largest value of
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i for which we need to calculate I i) is thus O(log( cM )). This is O(log c + b ) where b is

the maximum number of bits required to store the valuations in the original VCSP I .

The result follows directly from Theorem 3.8 for the case in which the valuation

structure is N ? {1}. For a VCSP over the valuation structure Sm, we can use the above

algorithm except that each time some �J ( t ) becomes B we restart the whole algorithm.

The number of such restarts is bounded by cd k. Hence the total complexity is again

polynomial. Í
Corollary 3.10 I f k is a constant, then complete k-consistency can be established in

polynomial time by GC on all instances of VCSP over the valuation structures N ? {1}

and Sm ( for m 2 N).

Note that the average-case time complexity of establishing consistency can be

expected to be much less than the worst-case upper bound given in the proof of Theorem

3.8. Moreover, there is no obligation to apply consistency operations until complete

convergence.

To demonstrate that practical versions of C-consistency exist, we give below a result

which is proved in detail in [8], concerning the complexity of face consistency. We say

that a graph is degree-bounded if the maximum node-dregree is a constant. This is the

case, for example, in the line drawing labelling problem for drawings of objects with

trihedral vertices [4, 5], where the maximum node-degree is 3.

Theorem 3.11 In an instance of binary 1-MAX-CSP on a planar degree-bounded

constraint graph G, face consistency can be established in O(nd 6k 2) time and O(nd 2)

space, where k is the maximum number of nodes on the boundary of a face.

Again, we should note that O ( nd 6k 2) is a pessimistic worst-case upper bound on time

complexity which is unlikely to be attained in practice. The O ( nd 2) space complexity

comes from the fact that it is unnecessary to store the constraint functions �P for faces P.

Instead we store the net sum of the valuations projected from �R to �P for all nodes and

edges R, based on a technique already used in soft arc consistency enforcing [9]. The fact

that the time complexity is linear in n is simply due to the fact that a planar graph of n

nodes has O ( n ) edges and faces. A naive algorithm would have an exponential time

complexity in k, the maximum number of nodes per face, but, by using the fact that a

face is a partial 2-tree, it is well known that this can be avoided [1, 12].

4. Discussion

In the special case of k = 3, the definition of complete k-consistency for VCSPs given in

this paper leads to a generalisation of path consistency in CSPs to the valued constraint

framework. An alternative generalisation of path consistency, called 3-cyclic consisten-

cy, was presented in a previous paper [7]. The essential difference is that 3-cyclic

consistency does not allow the creation of order-3 constraints. This means that, on a
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3-variable problem, 3-cyclic consistency is weaker than complete 3-consistency.

However, when applying complete 3-consistency, weights that are shifted up to an

order-3 constraint �ijk are no longer available for use on other size-3 subproblems; this

simply cannot occur in 3-cyclic consistency. Thus these two generalisations of path

consistency should be considered as complementary. If we apply both 3-cyclic

consistency and complete 3-consistency operations, it is preferable to apply 3-cyclic

consistency operations first, so that weights are shifted up to order-3 constraints only as a

last resort. Note that 3-cyclic consistency can be established in O ( d3n4) time on an

instance of MAX-CSP [7].

In this paper we have given a polynomial-time algorithm to establish complete k-

consistency in VCSPs, where k is any constant. Polynomial-time algorithms exist to

simultaneously establish arc consistency and directional arc consistency [6, 17]. It is an

open theoretical question whether a form of directional k-consistency can be established

in polynomial time for k 9 2.

The SIP (Semi-Independent Partitioning) approach of Larkin [15] (a strict generalisa-

tion of the mini-bucket approach of Dechter [10, 11]) produces a lower bound for a

VCSP by completely solving a sequence of subproblems C1, C2, . . . each of whose

constraint graphs has induced width w* e k for some constant k. For i = 1, 2, . . . , the

constraints in the subproblem Ci are replaced by a single order-k valued constraint

�Pi
¼ PROJPi

ValCi
, representing the solutions to Ci projected onto some set Pi of k

variables. One can view the calculation of �Pi
¼ PROJPi

ValCi
(and hence the whole SIP

algorithm) as the application of a sequence of variable eliminations and each variable

elimination as a k-consistency operation. If this same sequence of k-consistency oper-

ations were applied to the original problem, the lower bound could, in fact, be improved

since no constraints are actually eliminated (as they are in SIP). Furthermore, since

consistency operations are equivalence-preserving transformations, it is clear that many

different SIPs could be applied (without actually eliminating constraints) to try to

improve the lower bound. We make these remarks simply to illustrate that different

heuristics to determine a lower bound can be improved by a greater theoretical under-

standing of high-order consistency operations in VCSPs.

Face consistency can be used in a similar way when the constraint graph of a VCSP

V is not planar. If V1, V2, . . . are subproblems of V such that the constraint graph of each

Vi is planar and degree-bounded, then face consistency can be applied successively to

each Vi [8]. Full directional arc consistency [6], 3-cyclic consistency [7], face con-

sistency and a SIP-like k-consistency approach (as described above) are complementary

consistency methods for finding a lower bound, and hence could all be applied to the

same problem.

5. Conclusion

We have shown that we only need to consider consistency algorithms over two types of

discrete valuation structures. A generic definition of high-order consistency has been

given together with a polynomial-time algorithm to enforce it for these two types of
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valuation structures. This generic definition of consistency in VCSPs provides the

possibility of tailoring consistency to particular applications.

One specific version of consistency, called face consistency, has been defined for which

an efficient enforcing algorithm exists [8]. Face consistency, applied to subproblems

whose constraint graph is planar, provides a level of consistency which may be applied

when the cost of establishing complete k-consistency proves to be prohibitive.

Appendix A: Characterisation of Fair Valuation Structures

The following result follows directly from results proved in [9]. It implies that

idempotent valuations divide a valuation structure into independent slices.

Lemma A.1 Let S = bE, �, QÀ be a fair valuation structure. Let �, � 2 E, � e � and

let �0, �1 2 E be idempotent valuations such that �0 e � e �1. Then �0 e (� � � ) e �1

and �0 e (� � � ) e �1. Furthermore, if � e �0 then � � � = � � � = �.

Definition A.2 The underlying FCSP (fuzzy constraint satisfaction problem) of a fair

VCSP = bN, D, C, S À is a VCSP VF = bN, D, C 0, S 0À in which each constraint function

�P of V has been replaced by �P
0 where

8t 2 L Pð Þ; �0P tð Þ ¼ �P tð Þ � �P tð Þ

over the valuation structure S 0 = b{�P ( t ) � �P ( t ) : P 2 C $ t 2 L ( P )} ? {?, B},

MAX, QÀ.

By Lemma 1.18, � � � is a maximal idempotent lower bound for �. If � and � share

the same maximal idempotent lower bound (i.e., � � � = � � � ), then we say that they

belong to the same slice. As we will show below, solving the underlying FCSP of a

VCSP V tells us in which slice to look to solve V.

Notation If � 2 E is idempotent, then the interior of its slice I� is {� 2 E : (� � �) =

� G �}, the set of non-idempotent valuations whose maximal idempotent lower bound

is �.

Definition A.3. In a fair valuation structure S = bE, �, QÀ, if � 2 E is idempotent then the

�-clipping function  � : E! E is given by

 � �ð Þ ¼
> if � � � > �
? if � � �
� otherwise

8
<

:

for all � 2 E.
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The �-clipping function preserves valuations in I�, transforms valuations above I� to

B and those below I� to ?.

Definition A.4. The slice VCSP of a fair VCSP V = bN, D, C, bE, �, QÀÀ at level � 2 E

(where � is idempotent) is the VCSP V� ¼ N ;D;C�; S�h i in which each constraint
function �P of V has been replaced in V� by �0P ¼ �P �  �, i.e.,

�0P tð Þ ¼
> if �P tð Þ � �P tð Þ > �
? if �P tð Þ � �
�P tð Þ otherwise

8
<

:

over the valuation structure S� ¼ E�;��;�h i, where E� ¼ I� [ ?;>f g and �� is given
by 8�; � 2 E�

� �� � ¼
> if � � �ð Þ � � � �ð Þ > �

� � � otherwise

�

The following lemma is essential to show that a VCSP can be decomposed into its

underlying fuzzy CSP and its slice VCSPs.

Lemma A.5 In a fair valuation structure S = bE, �, QÀ, for all �, �, � 2 E,

 � � � �ð Þ ¼  � �ð Þ ��  � �ð Þ

Proof: By symmetry, we only need consider three cases: (a)  � �ð Þ ¼  � �ð Þ ¼ ?,

(b)  � �ð Þ ¼ >, (c)  � �ð Þ ¼ � ^  � �ð Þ G >.

Case (a) In this case, both � and � are less than or equal to � which is idempotent.

Hence, by Lemma A.1, � � � e � and  � � � �ð Þ ¼ ? ¼ ?�� ? ¼  � �ð Þ ��  � �ð Þ.
Case (b) It follows from Lemma 1.18(a) that (� � � ) � (� � � ) Q � � �. Thus, since

 � (�) = Õ, (� � � ) � (� � � ) Q � � � 9 � and hence  � (� � � ) = Õ = Õ��  �(� )

=  � (�) ��  �(� ).

Case (c) Since  � �ð Þ ¼ �, we have � 9 � and hence � � � 9 �. Thus

 � � � �ð Þ ¼ > if � � �ð Þ � � � �ð Þ > �
� � � otherwise

�

If  � �ð Þ ¼ � then, by definition of ��,

 � �ð Þ ��  � �ð Þ ¼
> if � � �ð Þ � � � �ð Þ > �
� � � otherwise

�

and we are done. If, on the other hand,  � �ð Þ ¼ ?, then � e � and by Lemma A.1, � �
� = �. Hence, knowing that � � � e � since  � �ð Þ ¼ �, we can deduce that

 � � � �ð Þ ¼ � ¼ � �� ? ¼  � �ð Þ ��  � �ð Þ. Í
The following result follows immediately from repeated applications of Lemma A.5.
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Lemma A.6 In a fair VCSP bN, D, C, bE, �, QÀÀ, 8� 2 E, 8t 2 L ( N ),

ValV� tð Þ ¼  � ValV tð Þð Þ

Theorem A.7 Any fair VCSP V can be solved by (1) solving the underlying FCSP, and

(2) solving a single slice VCSP.

Proof: Let y be an optimal solution to the underlying FCSP VF and let ValVF
( y ) = �

(which is necessarily idempotent from the definition of VF). Then let t be an optimal

solution to the slice VCSP V� and let ValV� tð Þ ¼ 
. We will show that (1) if 
 G B then

t is an optimal solution to V, and that (2) if 
 = B then y is an optimal solution to V.

(1) From the definition of the underflying FCSP VF, 8z 2 L ( N ), ValVF
( z ) =

MAX{�P(�Pz ) � �P (�Pz ) : P 2 C} e � P2C �P (�Pz ) = ValV ( z ). From the optimality

of y, 8z 2 L ( N ), � = ValVF
( y ) e ValVF

( z ) e ValV ( z ). Therefore, if ValV ( t ) = � then

clearly t is an optimal solution to V. Thus it only remains to consider the case ValV ( t ) 9 �.

Since, by Lemma A.6,  � ValV tð Þð Þ ¼ ValV� tð Þ ¼ 
G>, we can deduce from the

definition of  � that  � ValV tð Þð Þ ¼ ValV tð Þ. Since t is an optimal solution to V�, 8z 2
L ( N ), ValV� zð Þ � ValV� tð Þ, and hence, by Lemma A.6,  �(ValV(z)) Q  �(ValV(t)) =

(ValV(t)) = ValV(t) 9 �. By the definition of  �, either  � ValV zð Þð Þ ¼ ValV zð Þ � ValV tð Þ
or ValV ( z ) � ValV ( z ) 9 �. In the latter case, knowing that ValV ( t ) � ValV ( t ) = �
(since  � ValV tð Þð ÞG >), we can deduce from Lemma 1.18(a) that ValV ( z ) 9 ValV ( t ).

Thus, in all cases 8z 2 L ( N ), ValV (z) Q ValV ( t ) and hence t is an optimal solution to V.

(2) By the optimality of t as a solution to V�, we must have 8z 2 L ( N ), ValV� zð Þ �
ValV� tð Þ ¼ 
 ¼ >. This implies, by Lemma A.6, that  � ValV zð Þð Þ ¼ >, i.e., that �z 9 �,

where �z = ValV ( z ) � ValV ( z ). Then, by the definition of the underlying FCSP VF,

ValVF
yð Þ ¼ MAX �P �Pyð Þ � �P �Pyð Þ : P 2 Cf g ¼ �G�z. We can deduce from Lemma

1.18(a) that 8P 2 C, �P (�Py ) G �z , since �z is idempotent. By Lemma A.1, ValV ( y ) =

� P2C�P (�Py ) e �z = ValV ( z ) � ValV ( z ). Thus, by monotonicity, 8z 2 L (N ),

ValV ( y) e ValV (z), and hence y is an optimal solution to V. Í
Note that a slice VCSP has the property that the only idempotent valuations in its

valuation structure are ? and B.

Theorem A.8 I f a valuation structure S = bE, �, QÀ is discrete, fair and has only two

idempotent valuations ?, B, then it is isomorphic to either N ? {1} or Sm for some

m 2 N.

Proof: If E = {?, B}, then S is isomorphic to S1. So suppose M� 2 E such that B 9 � 9?.

Let �1 = MIN{� 2 E : � Q � 9 ?} (which exists by discreteness). Define the valuations

�i recursively as follows: �0 = ?, �i = �ij 1 � �1 (for i Q 2). Now, suppose there exists

� 2 E such that 8i 2 N, � 6¼ �i and � 6¼ B.

If �i G � G �i + 1 then ? G � � �i G �1 since �i � ? = �i G � and �i � �1 = �i + 1 9 �.

But this contradicts the definition of �1.

304 M. C. COOPER



If, on the other hand, 8i 2 N, � 9 �i, then this contradicts the discreteness of the

valuation structure, unless there are only a finite number of distinct �i. If �m = �p, for

some p 9 m Q 1, then �m e �m + 1 e �p = �m and hence �m + 1 = �m. It follows by an easy

inductive argument that 8i Q 0, �m + i = �m. Thus �m � �m = �2m = �m and hence �m is

idempotent. Since �m Q �1 9 ?, by the hypothesis of the theorem, we must have �m = B.

But then � 9 �m is a contradiction.

We can therefore deduce that the valuation structure is the set {�i : i 2 N} ? {B}

which is isomorphic to N ? {1} or Sm (where m is the smallest integer for which �m is

idempotent). Í
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