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Abstract. COMET is an object-oriented language supporting a constraint-based architecture for local search

through declarative and search components. This paper proposes three novel and lightweight control

abstractions for the search component, significantly enhancing the compositionality, modularity, and reuse of

COMET programs. These abstractions, which includes events and checkpoints, rely on first-class closures as the

enabling technology. They are especially useful for expressing, in a modular way, heuristic and meta-heuristics,

unions of heterogeneous neighborhoods, and sequential composition of neighborhoods.
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1. Introduction

Historically, most research on modeling and programming tools for combinatorial

optimization has focused on systematic search, which is at the core of branch & bound

and constraint satisfaction algorithm. It is only recently that more attention has been

devoted to programming tools for local search and its variations (e.g., [6, 12, 15, 24, 28,

29]).

COMET [14] is a novel, object-oriented, programming language specifically designed to

simplify the implementation of local search algorithms. Comet supports a constraint-

based architecture for local search organized around two main components: a declarative

component which models the application in terms of constraints, functions, and

invariants, and a search component that specifies the search heuristic and meta-heuristic.

Constraints, which are a natural vehicle to express combinatorial optimization problems,

are differentiable objects in COMET: They maintain a number of properties incrementally

and they provide algorithms to evaluate the effect of various operations on these

properties. Differentiable objects are typically implemented using invariants, a de-

clarative abstraction for incremental data structures pioneered in [15]. The search

component then uses these functionalities to guide the local search using multidimen-

sional, possibly randomized, selectors and other high-level control structures. The

architecture enables local search algorithms to be high-level, compositional, and

modular. It is possible to add new constraints and to modify or remove existing ones,

without having to worry about the global effect of these changes. COMET also separates

the modeling and search components, allowing programmers to experiment with

different search heuristics and meta-heuristics without affecting the problem modeling.
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This separation of concerns gives COMET some flavor of aspect-oriented programming

[10] and feature engineering [25], since constraints represent and maintain properties

across a wide range of objects. COMET has been applied to many applications and can be

implemented to be competitive with tailored algorithms, primarily because of its fast

incremental algorithms [14].

This paper focuses on the search component and aims at fostering the composition-

ality, modularity, and genericity of COMET. It introduces three novel control abstractions

whose main benefit is to separate, in the source code, components which are usually

presented independently in scientific papers. Indeed, most local search descriptions cover

the neighborhood, the search heuristic, and the meta-heuristic separately. Yet typical

implementations of these algorithms exhibit complex interleavings of these indepen-

dent aspects and/or require many intermediary classes and/or interfaces. The resulting

code is opaque, less extensible, and less reusable. The new control abstractions address

these limitations and reduce the distance between high-level descriptions and their

implementations.

The first abstraction, events, enables programmers to isolate the search heuristic from

the meta-heuristic, as well as the algorithm animation from the modeling and search

components. The second abstraction, neighbors, aims at expressing naturally unions of

heterogeneous neighborhoods, which often arise in complex routing and scheduling

applications. It allows programmers to separate the neighborhood definition from its

exploration, while keeping move evaluation and execution textually close. The third

abstraction, checkpoints, simplifies the sequential composition of neighborhoods, which

is often present in large-scale neighborhood search.

These three control abstractions, not only share the same conceptual motivation, but

are also based on a common enabling technology: first-class closures. Closures make it

possible to separate the definition of a dynamic behavior from its use, providing a simple

and uniform implementation technology for the three control abstractions. Once closures

are available, the control abstractions really become lightweight extensions, which is part

of their appeal.

The rest of this paper is organized as follows. Section 2 briefly reviews the local

search architecture and its implementation in COMET. Section 3 gives a brief overview of

closures. Sections 4, 5, and 6 present the new control abstractions and sketches their

implementation. Section 7 presents some experimental results showing the viability of

the approach. Section 8 concludes the paper.

2. The Constraint-Based Architecture for Local Search

This section is a brief overview of the constraint-based architecture for local search and

its implementation in COMET. See [14] for more detail. The architecture consists of a

declarative and a search component organized in three layers. The kernel of the

architecture is the concept of invariants over algebraic and set expressions [15].

Invariants are expressed in terms of incremental variables and specify a relation which

138 P. VAN HENTENRYCK AND L. MICHEL



must be maintained under modifications to its variables. Once invariants are available,

it becomes natural to support the concept of differentiable objects, a fundamental

abstraction for local search programming. Differentiable objects maintain a number of

properties (using invariants) and can be queried to evaluate the effect of local moves on

these properties. They are fundamental because many local search algorithms evaluate

the effect of various moves before selecting the neighbor to visit. Two important classes

of differentiable objects are constraints and functions. A differentiable constraint

maintains properties such as its satisfiability, its violation degree, and how much each

of its underlying variables contribute to the violations. It can be queried to evaluate the

effect of local moves (e.g., assignments and swaps) on these properties. Differentiable

objects also capture combinatorial substructures arising in many applications and are

appealing for two main reasons. On the one hand, they are high-level modeling tools

which can be composed naturally to build complex local search algorithms. As such,

they bring into local search some of the nice properties of modern constraint satisfaction

systems. On the other hand, they are amenable to efficient incremental algorithms that

exploit their combinatorial properties. The use of combinatorial constraints is also

advocated in [3, 7, 18, 29].

These first two layers, invariants and differentiable objects, constitute the declarative

or modeling component of the architecture. The third layer of the architecture is the

search component which aims at simplifying the implementation of heuristics and meta-

heuristics, another critical aspect of local search algorithms. It does not prescribe any

specific heuristic or meta-heuristic. Rather, it features high-level constructs and ab-

stractions to simplify the neighborhood exploration and the implementation of meta-

heuristics. These includes several multidimensional selectors, abstractions to manipulate

solutions, and advanced simulation techniques.

Observe also that the declarative component can be further extended to support

vertical extensions that simplify significant classes of implementation. Such a vertical

extension for scheduling, which was introduced in [27], provides significant abstractions

for both the modeling and the search components.

Figure 1 illustrates the architecture, and its COMET implementation, on the queens

problem. The COMET algorithm is based on the max/min-conflict heuristic inspired by

[17]. The algorithm starts with an initial random configuration. Then, at each iteration, it

chooses the queen violating the largest number of constraints and moves it to a position

minimizing its violations. This step is iterated until a solution is found. Since a queen

must be placed on every column, the algorithm uses an array queen of variables and

queen[i] denotes the row of the queen placed on column i. Lines 1Y4 declare a

range, a local solver, a uniform distribution, and an array of incremental variables for

representing the row of each queen. The modeling component is given in Lines 5Y9. Line

5 declares a constraint system and lines 6Y8 add the three traditional alldifferent

constraints, showing how COMET supports Bglobal^ combinatorial constraints for local

search. The search component is given in lines 10Y16. It iterates lines 12Y15 until the

constraint system is true, i.e., no constraint is violated. Line 12 selects a most violated

queen, while line 13 selects a new value v for the selected queen. The value is selected to

minimize the number of violations of the selected queen. To implement this min-conflict

CONTROL ABSTRACTIONS FOR LOCAL SEARCH 139



heuristic, COMET queries the constraint system, a differential object, to find out the effect

of assigning queen q to each row. Line 14 simply executes the move, automatically

updating all invariants and constraints. The operator := assigns values to incremental

variables (unlike operator = which is the traditional assignment operator). The use of the

counter it will become clear later in the paper.

Observe that the search and declarative components are clearly separated in the pro-

gram. It is thus easy to modify one of them (e.g., adding a constraint and/or changing

the search heuristic) without affecting the other. Although the two components are

physically separated in the program code, they closely collaborate during execution. The

declarative component is used to guide the search, while the assignment queen[q] := v

starts a propagation phase which updates all invariants and constraints. This compo-

sitionality and clear separation of concerns are some of the appealing features of the

architecture. This is precisely such properties which this paper tries to foster further.

Note also that the declarative component only specifies the properties of the solutions, as

well as the data structures to maintain. It does not specify how to update them, which is

the role of the incremental algorithms in the COMET runtime system.

3. Closures in COMET

Closures are the common enabling technology behind all three control abstractions

introduced in this paper. A closure is a piece of code together with its environment.

Closures are ubiquitous in functional programming languages, where they are first-class

Figure 1. The queens problem in COMET.
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citizens. They are rarely supported in object-oriented languages however. To illustrate

the use of closures in COMET, consider the following class

Method print receives an integer i and returns a closure which, when executed,

prints i on the standard output. The following snippet shows how to use closures in

COMET: the snippet displays 5, 9, and 5 on the standard output. Observe that closures are

first-class citizens: They can be stored in data structures, passed as parameters, and

returned as results. The two closures created in the example above share the same code

(i.e., cout GG i GG end1), but their environments differ. Both contain only one entry

(variable i), but they associate the value 9 (closure c1) and the value 5 (closure c2) to

this entry. When a closure is created, its environment is saved and, when a closure is

executed, the environment is restored before, and popped after, execution of its code.

Closures can be rather complex and have environments containing many parameters and

local variables, as will become clear later on. It is also worth mentioning that closures

can be viewed as first-order functions with no parameters, which is exactly what is

needed for the abstractions described later in the paper.

4. Events for Modularity, Compositionality, and Reuse

One of the fundamental benefits of COMET is its ability to separate problem modeling

from search. This separation of concerns is made possible by incremental variables,

invariants, and differential objects. However, practical applications typically involve

other components which would also benefit from such modularity. One such component

is algorithm animation, which is valuable early in the development process to visualize

the local search behavior. Another component is the meta-heuristic which is often

orthogonal and independent from the search heuristic. This section introduces the

concept of publish/subscribe events in COMET, which make this separation of concerns

possible. Informally speaking, classes can publish events, which can be subscribed by

event-handlers elsewhere in the code. Methods in the classes can then notify these

events, which triggers the event-handler behavior. We first focus on how to use events

for animation and meta-heuristic. We then show how to publish and notify events.

4.1. Events for Animation

Consider a graphical animation for the n-queens problem and assume the existence of an

Animation class handling the graphics and providing a method updateQueen(int
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q,int r) to display the queen on column q and row r. Such an animation is obtained

by inserting

just before the search component (between lines 9 and 10). The core is an event-handler

that specifies that, whenever the value of queen[q] changes from o to n, the code

animation.updateQueen(q,n) must be executed. This event-handler is installed

for all queens.

There are a few important points to highlight here. First, the animation code is

completely separated from both the modeling and the search components. The glue

between the components is the event changes on incremental variables which is

notified whenever a variable is assigned a new value. The code achieves the same effect

as calling animation.updateQueen(q,n) after the assignment of queens, while

clearly separating the two aspects and avoiding to clutter the heuristic with animation

code. This makes the code more readable and easier to modify and extend. Second,

observe that the event-handler behavior animation.updateQueen(q,n) is a clo-

sure which depends on the value of q in the environment and is created when the event

is subscribed to. Closures make the animation code more natural, avoid the definition

of intermediary classes, and feature a textual proximity between the event-handler

condition (e.g., the queen is assigned a new value) and its behavior (e.g., update the

display of the queen). In traditional object-oriented languages, event conditions and

behaviors are separated, which complicates reading and requires new class definitions to

store the information necessary to execute the behavior. Finally, observe that events are

statically and strongly typed: they enable information to be transmitted from the notifier

(e.g., the incremental variable) to the event-handler in a safe fashion with no downcasting.

Events are also compositional. Consider, for instance, adding the functionality of

coloring the queens differently according to their number of violations. It is sufficient to

add the instructions

This code fragment declares an array of incremental variables maintaining the number of

violations of each queen, and updates the color of a queen each time its number of

violations is updated. Note that the number of violations of a queen may change even

when the queen is not moved. Hence, it is not possible to insert the behavior elsewhere in

the program, while remaining incremental, i.e., only considering the queens whose

number of violations was modified. This example shows the strengths of events in

COMET: they enable elegant animation codes, which would require complex control

flows, the creation of intermediary classes, and/or less incrementality in other languages.
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4.2. Events for Meta-Heuristics

Events are also beneficial to separate the search heuristic and the meta-heuristic (e.g.,

tabu-search). They make it possible to divide the statement into modeling, search, and

meta-heuristic components. For illustration purposes, consider upgrading the queen

algorithm with a tabu-search strategy, which would make a queen tabu for a number of

iterations, each time a queen is moved. The tabu-list management can be almost entirely

separated from the search heuristic. For instance,

shows a simple management of the tabu list, which we now explain in detail. The code

declares a set tabu to store the tabu queens and features two nested event-handlers. The

outermost event-handler is notified each time a queen is moved. It inserts the queen in

the tabu set and installs the second event-handler (lines 5Y6) whose goal is to remove q

from the tabu set after tLen iterations, where tLen is the length of the tabu list. This

second handler is interesting in several ways. First, it features a key-event, i.e., an event

which is parameterized by a specific key which is in between brackets in the code. Here

the key is an iteration number and the handler will be notified when the counter it will

reach or exceed the value it+tLen, i.e., the value of the counter when the handler is

installed (subscription time) plus the length of the tabu-list. Second, the handler uses the

when construct, which means that it will be notified only once.

Once this code is in place, the only modification in the search heuristic consists in

selecting the queen with the largest number of violations among the non-tabu queens

(instead of among all queens). As a consequence, the Bglue^ between the components

(i.e., the counter and the tabu-set) is minimal and the proper behavior is achieved without

interleaving the heuristic and the meta heuristic in the source code. Note that, in complex

applications, this glue can be anticipated in the first place by assuming that moves are

always selected from a restricted set specified by the modeling and/or meta-heuristic

components.

4.3. Event Specification and Notification

The examples above focused on the event-handler (the subscription part) and showed

how the when and whenever are used to register a behavior. Since they only used

primitive objects, no explicit specification and notification of events (the publish part)

was necessary. Of course, COMET makes it possible to define new events. Each class may

publish some events or key-events by declaring them. Its methods are then responsible to
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notify these events appropriately. To illustrate event specification and notification, con-

sider a possible implementation of the class Counter in COMET:

l

The class declares an incremental variable _cnt, an event changes with two para-

meters, a key-event reaches with no parameter, the constructor and the operator. The

implementation of the operation (on the right part) notifies the changes events, passing

the old and new values of the incremental variable. It also notifies all the key-events

reaches, whose keys are smaller or equal to the value of _cnt. These notifications

triggers all the event-handlers associated with these events, i.e., it executes the closures

which were registered at subscription time by the when and whenever instructions. In

aspect-oriented terms, the notify instructions are joint-points and when and when-

ever statements are dynamic aspects, i.e., aspects associated with instances, not with

classes as is typical in aspect-oriented languages.

4.4. Implementation of Events

Conceptually, the implementation of events is close to the OBSERVER design pattern. An

event is compiled into virtual machine instructions which explicitly use closures as

shown below:

The virtual machine is a JVM-like stack machine and x and the closure are retrieved

from the stack in subscribeEvent. At the instance level, each event corresponds to a

data structure which collects all the subscribers. Upon notification, the appropriate

subscribers are executed, i.e., their parameters are properly initialized and their closures

are executed.

5. Union of Heterogeneous Neighborhoods

Many complex applications in areas such as scheduling and routing use complex

neighborhoods consisting of several heterogeneous moves. For instance, the elegant

tabu-search of Dell’Amico and Trubian [5] consists of the union of the subneighbor-

hoods, each of which consisting of several types of moves. Similarly, many advanced
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vehicle routing algorithms [2, 4, 11] use a variety of moves (e.g., swapping visit orders

and relocating customers on other routes), each of which may involve a different number

of customers and trucks.

The difficulty in expressing these algorithms come from the temporal disconnection

between the move selection and execution. In general, a tabu-search or a greedy local

search algorithm first scans the neighborhood to determine the best move, before

executing the selected move. However, in these complex applications, the exploration

cannot be expressed using a (multidimensional) selector, since the moves are heter-

ogeneous and obtained by iterating over different sets. As a consequence, an implemen-

tation would typically create classes to store the information necessary to characterize

the different types of moves. Each of these classes would inherit from a common abstract

class (or would implement the same interface). During the scanning phase, the algorithm

creates instances of these classes to represent selected moves and stores them in a

selector whenever appropriate. During the execution phase, the algorithm extracts the

selected move and applies its execute operation. The drawbacks of this approach are

twofold. On the one hand, it requires the definition of a several classes to represent the

moves. On the other hand, it fragments the code, separating the evaluation of a move

from its execution in the program source. As a result, the program is less readable and

more verbose.

5.1. The neighborneighborneighborneighbor Construct

COMET supports a neighbor construct, which relies heavily on closures and eliminates

these drawbacks. It makes it possible to specify the move evaluation and execution in

one place and avoids unnecessary class definitions. More important, it significantly

enhances compositionality and reuse, since the various subneighborhoods do not have to

agree on a common interface. They key idea is to view a neighbor as a pair bd : int,

move : ClosureÀ and to have neighbor constructs of the form

where M is a move, d is its evaluation, and N is a neighbor selector, i.e., a container

object to store one or several moves and their evaluations. COMET supports a variety of

such selectors and users can define their own, since they all have to implement a

common interface. For instance, a typical neighbor selector for tabu-search maintains the

best move and its evaluation. The execution of the neighbor instruction queries

selector N to find out whether it accepts a move of quality d, in which case the closure of

M is submitted to N.

5.2. Jobshop Scheduling

We now illustrate how the neighbor construct significantly simplifies the implemen-

tation of the tabu-search algorithm of Dell’Amico and Trubian (DT) for jobshop

scheduling. We first review the basic ideas behind the DT algorithm and then sketch
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how the neighborhood exploration is expressed in COMET. Algorithm DT uses neigh-

borhood NC = RNA [ NB, where RNA is a neighborhood swapping vertices on a

critical path (critical vertices) and NB is a neighborhood where a critical vertex is moved

toward the beginning or the end of its critical block. More precisely, RNA considers

sequences of the form bp, v, sÀ, where v is a critical vertex and p, v, s represent

successive tasks on the same machine, and explores all permutations of these three

vertices. Neighborhood NB considers a maximal sequence bv1, . . . vi, . . . , vnÀ of criti-

cal vertices on the same machine. For each such subsequence and each vertex vi,

it explores the schedule obtained by placing vi at the beginning or at the end of the

block, i.e.,

vi; v1; . . . ; vi�1; viþ 1; . . . ; vnh i _ v1; . . . ; vi� 1; viþ 1; . . . ; vn; vih i

Since these schedules are not necessarily feasible, NB actually considers the leftmost and

rightmost feasible positions for vi (instead of the first and last position). NB is connected

which is an important theoretical property of neighborhoods.

Before presenting excerpts of the neighborhood code, it is useful to present the model

in this scheduling application. The model, depicted in Figure 2, uses the scheduling

abstractions presented in [27]. It first declares the modeling objects, i.e., the disjunctive

schedule, a fundamental concept in jobshop scheduling [21], the activities, the resources,

and the jobs. Lines 6Y7 declare the resource constraints, while lines 8Y9 specify the

precedence constraints. The objective function, the makespan, is declared in Line 10.

Both the disjunctive schedule and the makespan are differentiable objects: together they

maintain the release and tail dates of all vertices, as well as the critical paths, under

various operations on the disjunctive graph.

Figure 2. Jobshop schedulling: The model.
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We are now in position to show excerpts of the neighborhood implementation in

COMET. The top-level methods are as follows:

Method executeMove creates a selector, explores the neighborhood, and executes the

best move (if any). Method exploreN explores the neighborhood and illustrates the

compositionality of the approach: It is easy to add new neighborhoods without modifying

existing code, since the subneighborhoods do not have to agree on a common interface or

abstract class. The implementation of exploreRNA and exploreNB is of course

where the neighbor construct is used.
Figure 3 gives the implementation of method exploreNB. The code of method

exploreRNA is similar in spirit, but somewhat more complex, since it involves 5 diffe-

rent moves, as well as additional conditions to ensure feasibility. Method exploreNB

iterates over all critical activities. For each activity (line 3), it finds the leftmost feasible

insertion point in its critical block (line 4). If such a feasible insertion point exists (line 5),

it evaluates the move (line 5) and then tests if the move is acceptable (line 6). In the DT

algorithm, this involves testing the tabu status, a cycling condition, and the aspiration

criterion. If the move is acceptable, the neighbor instruction is executed. The move

itself consists of moving activity v by lm positions backwards on its machine (i.e., its

disjunctive resource) and update the tabu list. Note that, although the move is specified in

the neighbor instruction, it is not executed. Only the best move is executed and this

takes place in method executeMove once the entire neighborhood has been explored.

The remaining of method exploreNB handles the symmetric forward move. It is also

worth emphasizing that the move itself refers to activity act and to lm, both of which will

be modified during the subsequent iterations. As a consequence, it should be clear that the

code of the move must be a closure.

The neighborhood exploration is particularly elegant (in our opinion). Although a

move evaluation and its execution take place at different execution times, the

neighbor construct makes it possible to specify them together, significantly enhancing

clarity and programming ease. The move evaluation and execution are textually adjacent

and the logic underlying the neighborhood is not made obscure by introducing

intermediary classes and methods. More precisely, this textual proximity has three main

benefits.

1. They make the code more readable, since move evaluations and executions are

specified in a single location.
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2. They simplify code maintenance, since a single location in the code must be altered

when removing, modifying, or adding a move. There is no need to modify code that

is spread out in different places.

3. They allow the moves in implicit neighborhoods to resemble explicit moves, which

do not separate move evaluations and executions.

It is also important that this proximity between evaluation and execution is similar in

essence to events, where the event condition and the event execution are specified

together.1

Compositionality is another fundamental advantage of the code organization. As

mentioned earlier, new moves can be added easily, without affecting existing code.

Equally or more important perhaps, the approach separates the neighborhood definition

(method exploreN) from its use (method executeMove in the DT algorithm). This

makes it possible to use the neighborhood exploration in many different ways without

any modification to its code. For instance, a semi-greedy strategy, which selects one of

the k-best moves, only requires to use a semi-greedy selector. Similarly, method

exploreN can be used to collect all neighbors which is useful in intensification

strategies based on elite solutions [19].

Figure 3. Exploration of neighborhood NB in COMET.
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5.3. Implementation of Neighbor

The neighbor construct is only syntactic sugar once closures are available. Indeed, the

syntactic form is rewritten as shown below:

The rewriting uses method accept on the selector to determine whether to accept a

move. It also ensures that closures are constructed lazily.

6. Sequential Composition of Neighborhoods

This section discusses the use of checkpoint to express the sequential composition

concisely. Sequential composition is often fundamental in very large neighborhood

search, which explores sequences or trees of (possibly heterogeneous) moves and selects

the best encountered neighbor (e.g., [1, 9]). This section illustrates these concepts using

variable-depth neighborhood search (VDNS) [9], which was shown very effective on

graph-partitioning and traveling salesman problems.

6.1. Variable-Depth Neighborhood Search

VDNS consists of exploring a sequence of moves and moving to the state with best

evaluation in the sequence. By exploring sequences which include degrading moves,

VDNS may avoid being trapped in poor local optima.

Consider Figure 4 which plots the quality of a sequence of moves. Each node in the

graph corresponds to a computation state and two successive nodes are neighbors in the

transition graph of the local search. VDNS explores the whole sequence and then returns

to the best computation state, i.e., the before-last node.

Figure 4. A sequene of moves.
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6.2. Checkpoints

Checkpoints are a simple conceptual abstraction to express VDNS algorithms. A

checkpoint is simply a data structure that implicitly represents the computation state of a

local solver, i.e., the state of all incremental variables and data structures of the solver.

Whenever a local solver is in checkpointing mode, checkpoints can be saved and, later,

restored in order to reset all incremental variables, constraints, and data structures to their

earlier states. Checkpoints are first-class citizens in COMET. They also encapsulate

incremental algorithms to avoid saving entire computation states.

6.3. Variable-Depth Neighborhood Search in COMET

We now illustrate how to express VDNS in COMET for graph partitioning [9], where

moves consists of swapping two vertices, one from each set in the partition. The snippet

shows the core of the search procedure in COMET. In the snippet, ls is the local solver,

nb is the number of vertices, cost is the cost of the partition, gain[v] denotes the

gain of changing the set of v, and mark[v] holds if v has already been considered in

the VDNS step. The move computes the vertices with maximal gain in each of the

partition sets. It then selects a maximal vertex a in one of the sets and selects the

maximal vertex b in the other set such that swapping a and b minimizes the cost of

the partition. The two vertices are then swapped by instruction a :=:b. They are also

marked to avoid considering them again in this VDNS step. The selectBest function

is the cornerstone of the VDNS implementation. It receives four arguments: the local

solver, the length of the sequence, the function to minimize (an incremental variable),

and a closure representing the move.

Figure 5 depicts the implementation of function selectBest. It uses the with

checkpoint(ls) statement to indicate the use of checkpointing inside the enclosed

block. It saves the current state in variable chp using instruction Checkpoint
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chp(ls). The forall loop explores a sequence of l moves, storing the best

computation state in variable chp. After this exploration, instruction chp.restore()

restores the best computation state encountered (possibly the initial state). Note that

COMET supports the syntactic rewriting from f(a1,...,an) S to f(a1,...,an,new

closure {S}) when the last argument of function f is a closure. The VDNS

implementation has a number of interesting features. First, it is entirely generic and

reusable: It can be applied to an arbitrary move and separates search heuristic and the

meta-heuristic. Second, checkpoints specify what to maintain, i.e., the Bbest^ computa-

tion states, but not how to save or restore it. The implementation uses incremental

algorithms to do so, but this is abstracted from programmers. Finally, observe the role of

closures for the genericity of the VDNS implementation.

6.4. Implementation of Checkpoints

We now discuss the checkpoint implementation. The key to an incremental imple-

mentation lies in a representation of computation states as sequences of primitive moves

from an initial state (i.e., the state when the checkpoint statement is executed). In other

words, a state s is a sequence bm0 , . . . , mkÀ where mi is a primitive move. A primitive

move in COMET is a function f : State Y State from computation states to computation

states which is invertible, i.e., there exists a function f j1 such that f ( f j1(s)) = s. For

instance, a move x[i] := j corresponds to a function f (s) = s{x[i] / j} where s{y / v}

represents the state s where y is assigned the value v. The inverse move is of course

f j1(s) = s{x[i] / lookup(s0, x[i])} where s0 is the computation state before executing the

Figure 5. The implementation of VDNS in COMET.
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move, and lookup reads the value of a variable in a computation state. Consider now how

to restore a state sr from a state sc where

sc ¼ m0; . . . ;mn;m
0
n þ 1; . . . ;m0k

� �

sr ¼ m0; . . . ;mn;m
00
n þ 1; . . . ;m00lh i:

The COMET implementation exploits the common prefix of the two states. It undoes

the suffix bm0n + 1, . . . , m0kÀ by using the inverse moves, and then executes the moves

bm00n + 1, . . . , m00l À. This implementation has several properties. First, its memory require-

ments are independent of the size of the computation states. Only moves are memorized

and the size of a checkpoint c only depends on the length of the sequence from the initial

state to c. Second, the runtime requirements are also minimal, since they either reexecute

a subsequence executed before or they execute the inverse of such a subsequence. For

VDNS, for instance, restoring the best state does not change the asymptotic complexity: in

the worst case, restoring the checkpoint involves as much work as exploring the sequence.

The checkpoint implementation is related to techniques underlying generic search

strategies (e.g., [16, 20, 23]). However, it does not use backtracking and/or trailing.

Rather, it makes heavy use of inverse moves, which is efficient because the invariant

propagation algorithm never updates the same incremental variable twice [15] (which is

not the case in constraint satisfaction algorithms in general). Our implementation thus

combines low memory requirements with incrementality, which is critical for many local

search applications.

7. Experimental Results

This section describes some preliminary experimental results to demonstrate that

neighbors and checkpoints can be implemented efficiently.

Table 1. Computational results on the tabu-search algorithm (DT)

DT DT* KS KS* CO

ABZ5 139.5 6.2 7.8 4.6 5.9

ABZ6 86.8 3.8 8.2 4.8 5.7

ABZ7 320.1 14.2 20.7 12.2 11.7

ABZ8 336.1 15.1 23.1 13.6 9.9

ABZ9 320.8 14.2 20.3 11.9 9

MT10 155.8 6.9 8.7 5.1 6.7

MT20 160.1 7.1 16.4 9.6 9.8

ORB1 157.6 7.0 9.2 5.4 5.6

ORB2 136.4 6.0 7.8 4.6 4.8

ORB3 157.3 7.0 9.3 5.5 5.6

ORB4 156.8 6.9 8.5 5.0 6.3

ORB5 140.1 6.2 8.1 4.8 6.5
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7.1. Neighbors

This section compares the original results [5], a C++ implementation [22], and the COMET

implementation of the tabu search algorithm DT (the goal, of course, is not to compare

various scheduling algorithms). The quality of the solutions is similar for all the

algorithms (although individual runs may vary due to the randomized selections.)

Table 2. Computational results on the graph partitioning

Benchmark minSA minKL mSA mKL #SA #KL

Breg500.0 0 0 0 10.6 50 44

Breg500.12 12 12 12 43 50 26

Breg500.16 16 16 16 42.4 50 26

Breg500.20 20 20 20.1 52.5 48 22

Cat.1052 13 31 18.8 45.4 4 4

Cat.352 3 11 5.8 14.9 10 12

G1000.0025 98 116 104 128.9 1 2

G1000.005 450 473 455.5 498.1 2 2

G1000.01 1363 1398 1370.7 1432.9 3 2

G1000.02 3384 3417 3393.7 3468 2 2

G250.01 29 30 31.4 35.2 8 2

G250.02 114 114 115 121 21 2

G250.04 357 359 359.3 367.6 4 2

G250.08 828 828 829.5 841.6 26 4

G500.005 51 58 55.2 65.4 2 2

G500.01 218 229 221.6 243.8 6 2

G500.02 627 635 630.1 653.5 5 2

G500.04 1744 1752 1750.6 1776.8 1 2

Grid.4920 66 60 141.4 60 1 50

Grid.900 30 30 36.3 30 1 50

Grid100.10 10 10 10 10.4 50 46

Grid1000.20 20 20 28.7 20 4 50

Grid500.21 21 21 22.7 21 18 50

Grid5000.50 53 50 126 50 1 50

RCat.134 1 3 2.8 5.1 12 20

RCat.554 3 7 12.1 35.8 6 2

RCat.994 5 5 24.3 52.8 1 2

U1000.05 20 43 36.2 71.2 1 4

U1000.10 50 99 105.4 159.5 1 4

U1000.20 222 222 280.4 278.4 1 4

U1000.40 741 737 1038.8 822.5 1 12

U500.05 7 17 18.6 33.8 1 2

U500.10 26 30 58.1 86.8 2 2

U500.20 178 178 203.2 215.3 2 2

U500.40 442 412 532.6 425.5 1 40

W-grid1000.40 44 40 46.3 40 21 50

W-grid500.42 42 42 44.5 44.9 35 32

W-grid5000.100 108 100 153.9 100 1 50
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Table 1 presents the results corresponding to Table 3 in [5]. Since DT is actually faster

on the LA benchmarks (Table 4 in [5]), these results are representative. In the table, DT

is the original implementation on a 33 mhz PC, DT* is the scaled times on a 745 mhz

PC, KS is the C++ implementation on a 440 MHz Sun Ultra, KS* are the scaled times on

a 745 mhz PC, and CO are the COMET times on a 745 mhz PC. Scaling was based on the

clock frequency, which is favorable to slower machines (especially for the Sun). The

Table 3. Runtime results on the graph partitioning

Benchmark minSA (s.) minKL (s.) mSA (s.) mKL (s.)

Breg500.0 2.79 2.91 2.36 3.3

Breg500.12 3 3.12 2.81 3.96

Breg500.16 3.06 3.16 2.53 4.43

Breg500.20 3.16 3.25 2.61 4.78

Cat.1052 6.87 7.11 14.3 20.19

Cat.352 1.71 1.8 1.64 2.23

G1000.0025 9.01 9.42 10.32 20.63

G1000.005 12.29 12.79 10.08 17.89

G1000.01 18.09 18.7 9.9 17.66

G1000.02 28.72 29.9 13.31 21.74

G250.01 1.67 1.76 0.66 0.95

G250.02 2.09 2.23 0.73 1.11

G250.04 3.06 3.32 1.04 1.46

G250.08 4.94 5.24 1.38 1.89

G500.005 3.9 4.02 2.12 3.82

G500.01 4.83 5.26 2.25 3.22

G500.02 7.44 7.92 2.65 3.84

G500.04 12.89 13.33 4.28 6.6

Grid.4920 44.44 47.64 361.96 433.51

Grid.900 6.73 7 6.06 7.5

Grid100.10 0.37 0.4 0.15 0.18

Grid1000.20 7.35 7.73 7.64 8.92

Grid500.21 3.28 3.43 1.8 2.04

Grid5000.50 44.29 48.58 346.24 441.51

RCat.134 0.47 0.5 0.34 0.41

RCat.554 2.87 3.18 4.3 4.55

RCat.994 5.79 6.82 14.83 15.51

U1000.05 9.08 9.38 8.75 14.63

U1000.10 10.33 11.27 9.04 12.01

U1000.20 11.99 14.17 11.65 13.66

U1000.40 14.98 22.7 16.28 18.46

U500.05 4.22 4.59 1.88 2.79

U500.10 4.89 5.41 2.19 2.79

U500.20 5.98 6.67 3.38 4.2

U500.40 7.05 8.38 5.15 5.86

W-grid1000.40 8.31 8.74 8.67 10.41

W-grid500.42 4.01 4.23 2 2.39

W-grid5000.100 50.34 54.44 334.44 494.6
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times corresponds to the average over multiple runs (5 for DT, 20 for KS, and 50 for

CO). The COMET code was compiler with the just-in-time compiler and the results for

COMET includes garbage collection. The results clearly indicate that COMET can be im-

plemented to be competitive with specialized programs. Note also that the C++ imple-

mentation is more than 4,000 lines long, while the COMET program has about 400 lines.

7.2. Checkpoints

Table 2 and 3 report experimental results on graph partitioning problems. In particular, it

compares the simulated annealing algorithm of [8] with the variable neighborhood search

of [9]. Again, the objective is not to produce the best possible algorithms but rather to

indicate that a generic variable-depth search procedure can be implemented efficiently.

The two algorithms were evaluated on standard benchmarks from the DIMACS chal-

lenge and include various classes and sizes of graphs. Table 2 indicates the best and

average solution quality for each algorithm as well as its robustness, i.e., how many runs

(out of 50) found the smallest value. Both algorithms produce high-quality solutions in

general. The VDNS algorithm is in general comparable to simulated annealing, but it

typically produces better solutions on the largest graphs. Table 3 reports the running

times (in seconds) and shows that they are usually of the same order of magnitude except

on the largest instances. All the benchmarks were executed with the same parameters.

Both algorithms use the same parameters on all benchmarks. For simulated annealing,

the initial temperature was set at 10 with a cooling ratio of 0.99 (very slow to get high

quality solutions). The VDNS algorithm used a maximum of 20 stable iterations as a

termination criterion. All the results were obtained on a 2.4 Ghz Pentium 4 processor.

These results clearly indicate the practicability of the extensions.

8. Conclusion

This paper presented three novel control abstractions for COMET, which significantly

enhance the compositionality, modularity, and reuse of COMET. These abstractions may

significantly improve conciseness, extensibility, and clarity of the local search imple-

mentations. They all rely on first-class closures as the enabling technology and can be

implemented efficiently.

One of the most appealing features of COMET is its small number of fundamental

concepts, as well as their generality. First-class closures simplify many applications

beyond local search (e.g., [13]) and are ubiquitous in functional programming. Events are

related to many constructs in the logic and functional communities (e.g., delay

mechanisms and reactive functional programming). Invariants (one-way constraints)

and constraints are widely recognized as natural vehicles for many applications. These

concepts provide significant support for local search, and may significantly reduce the

distance between high-level descriptions of the algorithms and their actual implementa-

tions. Yet they are non-intrusive and impose minimal Bconstraints^ on programmers,
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who retain control of their algorithms and their code organization. An interesting topic

for future research is to study how to unify the COMET architecture with the tree-search

models proposed in [12, 24], since both approaches have orthogonal strengths.
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Note

1. Note also that move evaluations can never be separated from move executions. It

would make it impossible to retrieve the move leading to that evaluation.
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