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Abstract. Previous studies have demonstrated that designing special purpose constraint propagators can

significantly improve the efficiency of a constraint programming approach. In this paper we present an efficient

algorithm for bounds consistency propagation of the generalized cardinality constraint (gcc). Using a variety of

benchmark and random problems, we show that on some problems our bounds consistency algorithm can

dramatically outperform existing state-of-the-art commercial implementations of constraint propagators for the

gcc. We also present a new algorithm for domain consistency propagation of the gcc which improves on the

worst-case performance of the best previous algorithm for problems that occur often in applications.
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1. Introduction

Many interesting problems can be modeled and solved using constraint programming. In

this approach one models a problem by stating constraints on acceptable solutions, where

a constraint is simply a relation among several unknowns or variables, each taking a

value in a given domain. The problem is then usually solved by interleaving a back-

tracking search with a series of constraint propagation phases. In the constraint propaga-

tion phase, the constraints are used to prune the domains of the variables by ensuring that

the values in their domains are locally consistent with the constraints.

Previous studies have demonstrated that designing special purpose constraint prop-

agators for commonly occurring constraints can significantly improve the efficiency of a

constraint programming approach (e.g., [12, 16]). In this paper we study constraint

propagators for the global cardinality constraint (gcc). A gcc over a set of variables and

values states that the number of variables instantiating to a value must be between a

given upper and lower bound, where the bounds can be different for each value. This

type of constraint commonly occurs in rostering, timetabling, sequencing, and scheduling

applications (e.g., [2, 6, 14, 19]).
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Two constraint propagation techniques for the gcc have been developed. Régin [13]

gives an O(n2d ) algorithm for domain consistency of the gcc (where n is the number of

variables and d is the number of values) that is based on relating the gcc to flow theory.

As well, a gcc can be rewritten as a collection of Batleast^ and Batmost^ constraints, one

for each value, and constraint propagation can be performed on the individual constraints

[20]. However, on some problems the first technique suffers from its cubic run-time and

the second technique suffers from its lack of pruning power. An alternative which was not

explored with the gcc is bounds consistency propagation, a weaker form of consistency

than domain consistency. Bounds consistency propagation has already proven useful for

the alldifferent constraint [9, 15], a specialization of the gcc.

Independently to our work, Katriel and Thiel [7] enforce bounds consistency by using

the same technique as Régin but exploit the convexity of the graph to obtain an O(t +

n + d) algorithm where t is the time to sort n variable domains by lower and upper

bounds. Their algorithm also enforces bounds consistency on the cardinality variables

that restrict the number of variables that can be assigned to a same value. Quimper et al.

[11] proved that enforcing domain consistency on the same variables is NP-Hard.

In this paper we present an efficient algorithm for bounds consistency propagation of

the gcc. The algorithm runs in time O(t + n), where t is the time to sort the bounds of the

domains of the variables and n is the number of variables. Using a variety of benchmark

and random problems, we show that on some problems our bounds consistency algorithm

can dramatically outperform existing state-of-the-art commercial implementations of

constraint propagators for the gcc. We also present a new algorithm for domain con-

sistency propagation of the gcc which improves on the worst-case performance of

Régin’s algorithm for problems that occur often in applications.

2. Background

A constraint satisfaction problem (CSP) consists of a set of n variables, X = {x1, . . . , xn};

a set of d values, D = {v1, . . . , vd}, where each variable xi 2 X has an associated finite

domain dom(xi) � D of possible values; and a collection of m constraints, {C1, . . . , Cm}.

Each constraint Ci is a constraint over some set of variables, denoted by vars(Ci). Given

a constraint C, the notation t 2 C denotes a tuple tVan assignment of a value to each of

the variables in vars(C )V that satisfies the constraint C. The notation t[x] denotes the

value assigned to variable x by the tuple t. A solution to a CSP is an assignment of a

value to each variable that satisfies all of the constraints.

We assume in this paper that the domains are integers. The minimum and maxi-

mum values in the domain dom(x) of a variable x are denoted by min(dom(x)) and

max(dom(x)), and the interval notation [a, b] is used as a shorthand for the set of values

{a, a + 1, . . . , b}.

CSPs are usually solved by interleaving a backtracking search with constraint prop-

agation. The constraint propagation phase ensures that the values in the domains of the

unassigned variables are Blocally consistent^ with the constraints.
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Support Given a constraint C, a value a 2 dom(x) for a variable x 2 vars(C ) is said to

have:

(i) a domain support in C if there exists a t 2 C such that a = t[x] and t[y] 2 dom( y),

for every y 2 vars(C );

(ii) an interval support in C if there exists a t 2 C such that a = t[x] and t[y] 2
[min(dom(y)), max(dom(y))], for every y 2 vars(C ).

Local Consistency A constraint C is said to be:

(i) bounds consistent if for each x 2 vars(C ), each of the values min(dom(x)) and

max(dom(x)) has an interval support in C;

(ii) domain consistent if for each x 2 vars(C ), each value a 2 dom(x) has a domain

support in C.

A CSP can be made locally consistent by repeatedly removing unsupported values from

the domains of its variables.

A global cardinality constraint (gcc) is a constraint which consists of a set of variables

X = {x1, . . . , xn}, a set of values D = {v1, . . . , vd}, and for each v 2 D a pair [lv, uv]. A gcc

is satisfied iff the number of times that a value v 2 D is assigned to the variables in X is

at least lv and at most uv.

Example 1. Consider the CSP with six variables x1, . . . , x6 with domains, x1 2 [2, 2], x2 2
[1, 2], x3 2 [2, 3], x4 2 [2, 3], x5 2 [1, 4], and x6 2 [3, 4] and a single global cardinality

constraint gcc(x1, . . . , x6) with bounds on the occurrences of values,

Enforcing bounds consistency on the constraint reduces the domains of the variables as

follows: x1 2 [2, 2], x2 2 [1, 1], x3 2 [2, 3], x4 2 [2, 3], x5 2 [4, 4], and x6 2 [4, 4].

3. Local Consistency of the gcc

A gcc can be decomposed into two constraints: A lower bound constraint (lbc) which

ensures that all values v 2 D are assigned to at least lv variables, and an upper bound

constraint (ubc) which ensures that all values v 2 D are assigned to at most uv variables.

We will show how to make both constraints locally (bounds or domain) consistent and

prove that this is sufficient to make a gcc locally consistent.

v 1 2 3 4

lv 1 1 1 2

uv 3 3 3 3
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3.1. The Upper Bound Constraint (ubc)

The ubc is a generalization of the well studied alldifferent constraint (in the alldifferent

constraint uv = 1, for each value v). Some previous algorithms for bounds consistency of

the alldifferent constraint have been based on the concept of Hall intervals [4, 9, 10]. A

Hall interval is an interval H � D such that there are ªHª variables whose domains are

contained in H. The definition of a Hall interval can be generalized to sets by using the

notion of maximal capacity. Let C(S), S � D, be the number of variables whose domains

are contained in S. The maximal capacity (S 1 of a set S is the maximum number of

variables that can be assigned to the values in S; i.e., (S 1 =
P

v2 S uv.

Hall Set A Hall set is a set H � D such that there are (H 1 variables whose domains are

contained in H; i.e., H is a Hall set iff C(H ) = (H 1.

The values in a Hall set are fully consumed by the variables that form the Hall set and

unavailable for all other variables. Clearly, a ubc is unsatisfiable if there is a set S such

that C(S ) 9 (S 1. We show that the absence of such a set is a sufficient and necessary con-

dition for a ubc to be satisfiable.

Lemma 1 A ubc is satisfiable if and only if for any set S � D, C(S) e (S1.

Proof: We reduce a ubc to an alldifferent constraint. We first duplicate uv times each

value v in the domain of a variable, using different labels to represent the same value. For

example, the domain {1, 2} with u1 = 3 and u2 = 2 is represented by {1a, 1b, 1c, 2a, 2b}.

Clearly, this alldifferent constraint is satisfiable iff the ubc is satisfiable. In a ubc, the

maximal capacity of a set S is given by (S 1; in an alldifferent constraint, it is given by the

cardinality ªSª of the set. Hall [4] proved that an alldifferent constraint is satisfiable iff

for any set S, C(S) e ªSª. Thus, the result holds also for a ubc. Í

3.2. The Lower Bound Constraint ( lbc)

Next we define some concepts that will be useful for constructing a propagator for the

lbc. Let I(S) be the number of variables whose domains intersect the set S. The minimal

capacity )S2 of a set S is the minimum number of variables that must be assigned to the

values in S; i.e., )S2 =
P

v2 S lv.

Failure set A failure set is a set F � D such that there are fewer variables whose

domains intersect F than its minimal capacity; i.e., F is a failure set if I(F) G )F2.

Unstable set An unstable set is a set U � D such that there are the same number of

variables whose domains intersect U as its minimal capacity; i.e., U is an unstable set if

I(U ) = )U 2.
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Stable set A stable set is a set S � D such that there are more variables whose domains

are contained in S than its minimal capacity, and S does not intersect any failure or

unstable sets; i.e., S is a stable set if C(S) 9 )S2, S 7 U = ;;; and S 7 F = ;;; for all unstable

sets U and failure sets F.

In Example 1, the set {1, 4} is an unstable set since its lower capacity is 3 and only 3

variable domains (namely x2, x5, and x6) intersect it. The set {4} is also an unstable set

and {2, 3} is a stable set. There are no failure sets in the example but removing variable

x2 would create the failure set {1, 4}.

Failure, unstable, and stable sets are the main tools to understand how to make an lbc

locally consistent. Failure sets determine if an lbc is satisfiable, unstable sets indicate

where the domains have to be pruned, and stable sets indicate which domains do not

have to be pruned because all of their values have supports.

Lemma 2 An lbc is satisfiable if and only if it does not have a failure set.

Proof: To satisfy an lbc, we must associate at least lv different variables to each value

v 2 D such that every variable is assigned a single value from its domain. For each value

v 2 D, we construct lv identical sets Tv
i for i = 1, . . . , lv that contain the indices of the

variables that have v in their domain; i.e., Tv
i = { j || xj 2 X $ v 2 dom(xj)}. Let T be the

set of all sets Tv
i. To satisfy the lbc, we must select one variable index from each set Tv

i

such that all selected indices are different. The variables that are not selected can be

instantiated to any arbitrary value in their domain. This problem is known as the

complete set of distinct representatives problem and has been studied by Hall [4]. His

main result states that for any family of sets, a complete set of distinct representatives

exists if and only if the union of any k sets contains at least k elements. Formally the

problem is solvable if and only if ª[t 2 TtªQªTª holds for any T � T . Applying this

theorem here, we have that an lbc is satisfiable if and only if for any set S � D we have

I(S ) Q )S2. Hence, the absence of a failure set is a necessary and sufficient condition for

an lbc to be satisfiable. Í
Lemma 3 shows that a value in a domain that intersects an unstable set has an interval /

domain support only if the value also is in the unstable set.

Lemma 3 A variable whose domain intersects an unstable set cannot be instantiated to a

value outside of this set.

Proof: Let U be an unstable set and x a variable whose domain intersects U. If x is

instantiated to a value that does not belong to U then U becomes a failure set and the lbc

is no longer satisfiable by Lemma 2. Í
Lemma 4 A variable whose domain is contained in a stable set can be instantiated to

any value in its domain.

ALGORITHM FOR THE GLOBAL CARDINALITY CONSTRAINT 119



Proof: By definition, a stable set S does not intersect any unstable or failure set. Thus,

for any subset s of S, I(s) 9 )s2. If a variable whose domain is contained in S is assigned a

value, the function I(s) will decrease by at most one and therefore s will either stay a

stable set or become an unstable set. In both cases, no failure set is created and the lbc is

still satisfiable. Í
A satisfiable lbc has several interesting properties: (i) the union of two unstable sets

gives an unstable set, (ii) the union of two stable sets gives a stable set, and (iii) since

stable and unstable sets are disjoint, there exists a stable set S and an unstable set U that

forms a bipartition of D. The bipartition property implies that there are two types of

variables: those whose domains are fully contained in a stable set and those whose

domains intersect an unstable set.

Lemma 5 If there are no failure sets, the union of two unstable sets gives an unstable

set.

Proof: Let U1 and U2 be two unstable sets. We have that,

I U1 [ U2ð Þ ¼ I U1ð Þ þ I U2ð Þ � I U1 \ U2ð Þ ð1Þ

¼ U1b c þ U2b c � I U1 \ U2ð Þ: ð2Þ

Since there are no failure sets we have I(U1 [ U2) Q )U12 + )U22 j )U1 7 U22. We also

have I(U1 7 U2) Q )U1 7 U22. Substituting these two inequalities in Equation 2 gives

I(U1 [ U2) = )U1 [ U22. Í
Lemma 6 If there are no failure sets, there exists a bipartition bbbU, SÀÀÀ of D where U is

an unstable set and S is a stable set.

Proof: Let U be the union of all unstable sets. By Lemma 5, U is also an unstable set.

Since there are no failure sets we have I(D) Q )D2. Suppose that I(D) = )D2, then U = D

and S = ;;;. Now suppose that I(D) 9 )D2. We have that,

C D� Uð Þ ¼ Xj j � I Uð Þ

¼ Xj j � Ub c

> Db c � Ub c

> D� Ub c:

The set S = D j U is disjoint from all unstable sets and contains more variables than its

minimal capacity. It is therefore a stable set. Thus there is always a stable and an un-

stable set that forms a bipartition of D. Í
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3.3. An Iterative Algorithm for Local Consistency of the gcc

Suppose we have an algorithm A that makes a ubc locally consistent and suppose that we

have analgorithmB that makes an lbc locally consistent. To make a gcc locally consistent

we can decompose it, run A to prune the domains of the variables, and then run B to

further prune the domains. Since the domains can potentially be pruned each time either

algorithm is run, we alternatively run each algorithm until no more modifications occur.

In principle, we might need to repeat this process a large number of times. Surprisingly,

we prove that only one iteration is sufficient.

The outline of the proof is as follows. We first prove that if a ubc is satisfiable after

running A, the ubc is still satisfiable after running B. We then prove that the ubc is still

locally consistent after running B.

Theorem 1 If B is run after A , B never creates a set s such that there are more variables

whose domains are contained in s than its maximal capacity (s1.

Proof: Suppose that algorithms A and B do not return a failure. Then there are no failure

sets and there is an unstable set U and a stable set S that form a bipartition of D.

Algorithm B does not modify the domains of the variables that belong to a stable set.

Therefore we know that for all s � S we have C(s) e (s1 since the ubc is satisfiable

according to A.

We will show that for any set E � U [ S we have C(E) e (E 1 and therefore the ubc is

still satisfiable after running B. Assume, by way of contradiction, there is a set E that

exceeds its capacity; i.e., C(E) 9 (E 1. We divide this set into two subsets: let L = U 7 E

be the unstable values in E and F = S 7 E be the stable values in E. We also define R =

U j E as the unstable values that do not belong to E. We know that (F 1 Q C(F ) since F is

a subset of a stable set and we showed that the property holds for any such a set. We also

know that R is not a failure set and U is an unstable set. Therefore we have I(R) Q )R2 and

)L2 + )R2 = I(L [ R).

Fd e þ Lb c þ Rb c � Fd e þ Ld e þ Rb c
Fd e þ I L [ Rð Þ G C Eð Þ þ Rb c
Fd e þ I L [ Rð Þ G x 2 X dom xð Þ � E ^ dom xð Þ 6� Fjf gj j þ C Fð Þ þ Rb c
Fd e þ I L [ Rð Þ G x 2 X dom xð Þ \ L 6¼ ;;; ^ dom xð Þ \ R ¼ ;;;jf gj j þ C Fð Þ þ Rb c

Fd e þ I Rð Þ G C Fð Þ þ Rb c
Fd e G C Fð Þ

The last inequality is incompatible with the hypothesis hence the contradiction hypothesis

cannot be true. Notice that the proof holds for both bounds and domain consistency. Í
Theorem 2 If B is run after A, the ubc is still locally consistent after B is run.
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Proof: Suppose that A and B make the constraints locally consistent and neither returns

a failure. To prove that the ubc is still locally consistent, we have to show that all varia-

bles are still consistent with all Hall sets. By a variable being consistent with a Hall set H

we mean the following: for bounds consistency, the domain of the variable must have

either both or neither bounds in H; and for domain consistency, the domain of the

variable must be either fully included in or completely disjoint from H.

Since B did not return a failure, there is an unstable set U and a stable set S that form a

bipartition of D. Let H � D be a Hall set. We divide this Hall set into two subsets: F =

H 7 S contains the values of H that belong to a stable set and L = H 7 U contains the

values of H that belong to an unstable set. We also define R = U j L as the unstable

values that do not belong to H. Using these three sets, we will prove that all variables are

consistent with H.

The unstable set U can be expressed as the union of L and R and therefore we have

)L2 + )R2 = I(L [ R). Similarly, H is the union of F and L and implies (F1þ (L1 ¼
C(H) ¼ fx 2 X j dom(x) � H ^ dom(x) 6� Fgj j þ C(F). Therefore,

Fd e þ Lb c þ Rb c � Fd e þ Ld e þ Rb c

Fd e þ I L [ Rð Þ � x 2 X dom xð Þ � H ^ dom xð Þ 6� Fjf gj j þ C Fð Þ þ Rb c

Fd e þ I L [ Rð Þ � x 2 X dom xð Þ \ L 6¼ ;;; ^ dom xð Þ \ R ¼ ;;;jf gj j þ C Fð Þ þ Rb c

Fd e þ I Rð Þ � C Fð Þ þ Rb c

By Theorem 1 all we obtain C(F ) e (F 1 and since R is not a failure set, we have I(R) Q

)R2. Using these two inequalities, we find that R is an unstable set i.e., I(R) = )R2 and F is

a Hall set i.e., C(F ) = (F 1. Using this observation, we now show that all variables whose

domains are contained in S are consistent with H. The Hall set F is a subset of S and

since algorithm B does not modify any variables whose domains are contained in S,

algorithm A already identified F as a Hall set and made all variables consistent with it.

Since the variables whose domains are contained in S were not modified by B they are

still consistent with F. A variable whose domain intersects an unstable set like U and R

must have both bounds in this set. Since U = L [ R, a variable whose domain intersects

U must have both bounds in either L or R and therefore be consistent with the Hall set H.

Similarly, one can show the result also holds for domain consistency.

We have shown that any variable whose domain is either contained in S or intersects U

is consistent with H. Thus all variables are consistent with any Hall set and the ubc is still

locally consistent after running B. Í
Finally, we show that making the ubc and the lbc locally consistent is equivalent to

making the gcc locally consistent.

Theorem 3 A value v 2 dom(x) has a support in a gcc if and only if it has supports in the

corresponding lbc and ubc.
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Proof: Clearly, if there is a tuple t that satisfies the gcc such that t[x] = v, this tuple also

satisfies the lbc and the ubc. To prove the converse, we consider a value v 2 dom(x) that

has a support in the lbc and a (possibly different) support in the ubc. We construct a tuple

t such that t[x] = v that satisfies the gcc and therefore prove that v 2 dom(x) also has a

support in the gcc. We first instantiate the variable x to v. The lbc and ubc are still

satisfiable since the value has a support in both constraints. We now show how to

instantiate the other variables.

If there is an uninstantiated variable x whose domain does not intersect any unstable

set and is not contained in any Hall set, then the domain of x is necessarily contained in a

stable set. By Lemma 4 we can instantiate x to any value in its domain and keep the lbc

satisfiable. We therefore choose a solution of the ubc and instantiate x to the same value

as it is instantiated in the solution. This operation can create new unstable sets or new

Hall sets but keeps both the lbc and the ubc satisfiable. For all variables that intersect an

unstable set U, we choose a solution of the lbc and assign the variables to the same

values as the solution. We perform the same operation for the variables whose domain is

contained in a Hall set H using a solution of the ubc. There will be exactly lv or uv

variables assigned to a value v depending if the value belongs to U or H, which in either

case satisfies both the lbc and ubc. We repeat the above until all variables are instantiated.

The constructed tuple t satisfies the lbc and the ubc simultaneously and therefore also

satisfies the gcc. Í

4. Bounds Consistency

We present algorithms for making a ubc and an lbc bounds consistent.

4.1. The Upper Bound Constraint (ubc)

Finding an algorithm that makes a ubc bounds consistent is relatively straightforward if

we already know such an algorithm for the alldifferent constraint that uses the concept of

Hall intervals. If there is a variable whose domain is [a, b] and there is a Hall interval

[c, d ] such that c e a e d G b holds, the algorithm will update the domain of the variable

to [d + 1, b]. The algorithm introduced in [9] detects Hall intervals by checking if there

are d j c + 1 variables in an interval [c, d ]. We can adapt this algorithm to a ubc without

altering its complexity by finding a way to compute the maximal capacity of an interval

in constant time. We use a partial sum data structure, implemented as an array A containing

the partial sums of the maximal capacities A[i] ¼
Pi

j¼ 0 uj. The maximal capacity of an

interval I � D can be computed by subtracting two elements in A since we have (I 1 =

A[max(I)] j A[min(I) j 1]. Initializing the array A takes O(D) time to compute but this

is done once and is reused for any future calls to the propagator. The algorithm time

complexity is O(t + ªXª) where t is the time required for sorting the variable domains by

lower and upper bounds.
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4.2. The Lower Bound Constraint ( lbc)

We now present an algorithm (see Figure 1) that shrinks the lower bounds of the variable

domains received as input. The upper bounds can be updated symmetrically by a similar

algorithm and consequently make the lbc bounds consistent.

The initialization step assigns to each value v 2 D exactly lv empty buckets corre-

sponding to the minimal capacity to be filled for v and setting a failure flag which

indicates if v belongs to a failure set. The union-find data structure PS covers all values

in D and contains potential stable sets. If the greatest element of a set S 2 PS is in a

stable set then S is fully contained in this stable set. Stable sets are stored in the variable

Stable.

Our algorithm processes each variable x 2 X in nondecreasing order by upper bound.

Like the algorithm of Lipski et al. [8], it searches for the smallest value v 2 dom(x) that

has an empty bucket and fills it in with a token. If v 9 min(dom(x)) and v belongs to a

stable set then the interval I = [min(dom(x)), v] is contained in this stable set. The

algorithm regroups all values in I in its variable PS. If there are no empty buckets in

dom(x) then max(dom(x)) belongs to a stable set and so do all the values that belong to

the same set in PS.

The algorithm initially assumes that all values belong to a failure set. When processing

variable x, an interval I = [a, max(dom(x))] with no empty buckets contains the domains

of a least )I 2 variables and thus cannot be a failure set. The algorithm unsets the failure

flags for all values in I. If a value still has a failure flag set after processing all the

variables then the lbc is unsatisfiable.

Figure 1. Trace of Algorithm 1.
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Algorithm 1: Bounds consistency algorithm for the lbc

To shrink the domains, the algorithm stores in NewMin[i] the smallest value v 2
dom(xi) with a failure flag. If dom(xi) intersected an unstable set U, v would be the

smallest value in dom(xi) 7 U. If no values in dom(xi) have a failure flag, xi belongs to a

stable set and NewMin[i] remains undefined. After processing all variables, the algo-

rithm assigns the new lower bound NewMin to the variables that are not contained in a

stable set.

Correctness

We wish to show that the algorithm returns Success if and only if the lbc has a solution.

From the construction of the algorithm’s solution it follow trivially that it satisfies the lbc

constraint.

For the converse, first we observe that a satisfiable lbc constraint remains satisfiable if

we enlarge the domain of anyone variable, as the solution to the original lbc is also a solution

to the enlarged lbc.
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Now assume that lbc has a solution L; that is, L is a set of assignments of values to

variables that satisfy the lbc constraint. We compare L with the assignment computed by

the algorithm as it proceeds by order of upper bound. The algorithm processes x1, then x2

and so on. Every time the algorithm makes an assignment (i.e., places a token in a

bucket) we compare to see if L assigns the same value to this variable, until we are at

variable xi which is assigned a value vi by the algorithm, but is assigned to variable xj by

L. Now, since the algorithm processed xi before xj we know that max(dom(xj)) Q

max(dom(xi)).

Hence, L assigns vi to xj and assigns xi a larger value at a later time. The algorithm

instead assigns vi to xi and uses xj later. But since max(dom(xj)) Q max(dom(xi)), it

follows that the remaining lbc is also satisfiable as enlarging the domain leaves the lbc

solvable. We now rename the variable xj to xi and the algorithm continues. This situation

is repeated for any other variables which are assigned differently by the algorithm and L,

until all variables are assigned and hence our algorithm finds a solution if one exists.

Lastly, we shrink the domain of variables that intersect an unstable set. Recall that, by

Lemma 3, variables that intersect an unstable set cannot be assigned to values outside

this set. When we process a variable, we assume that it intersects an unstable set and

compute the new lower bound of the variable domain. All variables that have their

failure flag unset at the time of processing of the variable already belong to a set S that

contains at least as many variables as its minimal capacity; i.e., C(S) Q )S2. Hence, if the

algorithm processes a variable x that intersects such a set, it is clear that S is not an

unstable set and that x is not required by S to satisfy the lbc. We therefore store in

NewMin[x] the first element in dom(x) that still has its failure flag set. Later on we test to

see if this variable now intersects an unstable set U and must be shrunk.

Example 2. Figure 1 shows a trace of the algorithm on the CSP introduced in Example 1.

Initially, all buckets are empty and all values are marked with a failure flag. Figure 1

shows the data structures as the algorithm iterates through the variables. The circles

represent the buckets, a letter f symbolizes a failure flag, and the state of the variables PS

and Stable are also represented by the sets of values. Upon completion of the algorithm,

the new domains of the variables are: x1 2 [2, 2], x2 2 [1, 2], x3 2 [2, 3], x4 2 [2, 3], x5 2
[4, 4], and x6 2 [4, 4].

A naive implementation of our algorithm has time complexity O(t +ªXªªDª), where t

is the complexity of sorting the intervals by upper bounds. Incremental and linear time

sorting algorithms have time complexity less than O(ªXªlogªXª). We will show how to

improve the complexity to O(t + ªXª).

To obtain a complexity independent of ªDª, we consider the variables as semi-open

intervals where xi = [ai, bi) and define the set D0 as the union of the lower bounds ai and

the open upper bounds bi of each variable. The size of D0 is bounded by 2ªXª. Let c and

d be two consecutive values in D0 and let I = (c, d ] be a semi-open interval. We modify

the algorithm to assign )I2 buckets to the value d using a partial sum data structure (see

Section 4.1). We then run the algorithm as before using the set D0 instead of D. This

modification improves the time complexity to O(t + ªXª2).
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To get a linear complexity, we implement the buckets using a union-find data structure

and an array of integers that stores the number of empty buckets a value v has. If all

buckets of a value v are filled in, the algorithm merges the value v with the next element

in D 0. Requesting n times the next value having a free bucket is a linear time operation

using the interval union-find data structure [3]. The algorithm takes O(t + ªXª) steps

using the interval union-find for the failure flags, the stable sets Stable, and the potential

stable sets PS.

Although the interval union-find data structure gives the best theoretical time com-

plexity, we found that it did not result in the fastest code in practice in spite of our best

efforts to optimize the code. In our experiments (see Section 6), we use instead the tree

data structure described in [9] to obtain an algorithm with O(t + ªXªlogªXª) time

complexity. This tree data structure even offers slightly better performance than the

standard union-find data structure which runs in O(t + ªXªa(ªXª)) where a is the inverse

of Ackermann’s function.

5. Domain Consistency

In this section we present a propagator that makes a gcc domain consistent. We will use

Régin’s propagator [12] for the alldifferent constraint as a black box that has complexity

O(ªXª1.5ªDª) to make the lbc and ubc domain consistent.

5.1. The Upper Bound Constraint (ubc)

The problem of making a ubc domain consistent can be reduced to the problem of

making an alldifferent constraint domain consistent. Consider the domain dom(x) of a

variable x as a multiset where the multiplicity of a value v 2 dom(x) is uv. One can

represent a multiset as a normal set where different labels refer to the same value. For

instance, the domain of variable x2 in Example 1 can be represented by {1a, 1b, 1c, 2a,

2b, 2c}. We apply Régin’s propagator with the new domains and then merge back

duplicates to their original value. Since there areªXªvariables and the largest domain is

bounded by uªDª where u = maxv2D uv, we obtain a time complexity of O (uªXª1.5ªDª).

5.2. The Lower Bound Constraint ( lbc)

The problem of making an lbc domain consistent can also be reduced to the problem of

making an alldifferent constraint domain consistent. We first duplicate the values as

we did in Section 5.1 according to the minimal capacities. Let M be a ªXª�ªDª binary

matrix such that Mij equals 1 if the value j belongs to the domain of the variable xi and

equals 0 otherwise. The transposed matrix MT defines the dual problem. In a dual problem,

the dual values D0 represent the primal variables and the dual variables X 0 represent the

primal values.
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Theorem 4 Solving the alldifferent problem on the dual problem solves the lower bound

problem on the primal problem.

Proof: Since we have duplicated some values in the domains of the variables, the mini-

mal capacity of a set S is now equal to the size of the set; i.e., )S2 =ªSª. Let U be an

unstable set in the primal problem. In the dual problem, the values in U are represented

by variables. There are ªUªdual variables whose domains are contained in a set of ªUª
dual values. Consequently, an unstable set in the primal corresponds to a Hall set in the

dual. A propagator for the alldifferent constraint removes from a domain the values con-

tained in a Hall set only if the domain is not fully contained in this Hall set. If such a

propagator is applied on the dual problem, it would remove from the domains that

intersect an unstable set the values that do not belong to this unstable set. This operation

is sufficient to make the primal domain consistent. The alldifferent propagator would

also return a failure if the problem is unsolvable. A failure set in the primal corresponds

to a set of values in the dual that contains more variables than values. Such a set makes

the dual unsolvable and is detected by the alldifferent propagator. Í
We use Régin’s propagator to solve the dual problem and then merge back the duplicated

values in the domains to their previous value. Since in the dual problem there are at most

lªDªvariables and the largest domain is bounded byªXª, the total time complexity is

O(l1.5ªXªªDª1.5) where l = maxv2Dlv.

The complete algorithm makes the ubc domain consistent and then makes the lbc

domain consistent. The total time complexity is O(uªXª1.5ªDª+l1.5ªXªªDª1.5).

That the complexity depends on the number of values in D can make the filter

inefficient for some problems. We identify two classes of problems that occur often in

applications and where our algorithm offers a better complexity than existing algorithms.

Our analysis assumes that the maximal capacity uv is bounded by a constant for all values v.

The first class consists of problems where the minimal capacity lv is non-null. Since each

value must be instantiated by at least one variable, we necessarily have ªDª e ªXª for a

solvable problem. In this case the algorithm runs in time O(ªXª1.5ªDª). The second class

of problems is the one where the minimal capacity lv is null for all values v. In this case

we only need to make ubc domain consistent which can be done in time O(ªXª1.5ªDª).

For either class, the complexity of the algorithm improves the previous best gcc

propagator [13] for domain consistency which runs in O(ªXª2ªDª).

5.3. Improving the gcc Propagator

In the previous sections, we saw how one can use an alldifferent propagator as a black box

to enforce domain consistency on the gcc. In this section, we show how to implement the

black box in order to get a complexity of O(ªXª1.5ªDª) for any class of problems.

For the ubc and lbc problems, we will need to construct a special graph. Following

Régin [12], let G(bbbX, DÀÀÀ, E ) be an undirected bipartite graph such that nodes at the left

represent variables and nodes at the right represent values. There is an edge (xi, v) in E iff
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the value v is in the domain dom(xi) of the variable. Let c(n) be the capacity associated to

node n such that c(xi) = 1 for all variable-nodes xi 2 X and c(v) is an arbitrary non-

negative value for all value-nodes v in D. A matching M in graph G is a subset of the

edges E such that no more than c(n) edges in M are adjacent to node n. We are interested

in finding a matching M with maximal cardinality.

The following concepts from flow and matching theory (see [1]) will be useful in this

context. Consider a graph G and a matching M. The residual graph GM of G is the

directed version of graph G such that edges in M are oriented from values to variables

and edges in E j M are oriented from variables to values. A node n is free if the

number of edges adjacent to n in M is strictly less than its capacity c(n). An augmenting

path in GM is a path with an odd number of links that connects two free nodes together.

If there is an augmenting path p in GM, then there exists a matching M 0 of cardinal-

ityªM 0ª = ªMª + 1 that is obtained by computing the symmetric difference M � p. A

matching M is maximal iff there is no augmenting path in the graph GM.

Hopcroft and Karp [5] describe an algorithm with running time O(ªXª1.5ªDª) that finds

a maximum matching in a bipartite graph when the capacities c(n) are equal to 1 for all

nodes. We generalize the algorithm to obtain the same complexity when c(v) Q 0 for the

value-nodes and c(xi) = 1 for variable-nodes.

The HopcroftYKarp algorithm starts with an initial empty matching M = ;;; which is

improved at each iteration by finding a set of disjoint shortest augmenting paths. An

iteration that finds a set of augmenting paths proceeds in two steps.

The first step consists of performing a breadth-first search [17] (BFS) on the residual

graph GM starting with the free variable-nodes. The breadth-first search generates a forest

of nodes such that nodes at level i are at distance i from a free node. This distance is

minimal by property of BFS. Let m be the smallest level that contains a free value-node.

For each node n at level i G m, we assign a list L(n) of nodes adjacent to node n that are

at level i + 1. We set L(n) = ;;; for every node at level m or higher.

The second step of the algorithm uses a stack to perform a depth-first search [17]

(DFS). The DFS starts from a free variable-node and is only allowed to branch from a

node n to a node in L(n). When the algorithm branches from node n1 to n2, it deletes n2

from L(n1). If the DFS reaches a free value-node, the algorithm marks this node as non-

free, clears the stack, and pushes a new free variable-node that has not been visited onto

the stack. This DFS generates a forest of trees whose roots are free variable-nodes. If a

tree also contains a free value-node, then the path from the root to this free-value node is

an augmenting path. Changing the orientation of all edges that lie on the augmenting

paths generates a matching of greater cardinality.

In our case, to find a matching when capacities of value-nodes c(v) are non-negative,

we construct the duplicated graph G0 where value-nodes v are duplicated c(v) times and

the capacity of each node is set to 1. Clearly, a matching in G0 corresponds to a matching

in G and can be found by the HopcroftYKarp algorithm. We can simulate a trace of the

HopcroftYKarp algorithm run on graph G0 by directly using graph G. We simply let the

DFS visit c(n) j degM (n) times a free-node n where degM (n) is the number of edges in

M adjacent to node n. This simulates the visit of the free duplicated nodes of node n in G.

Even if we allow multiple visits of a same node, we maintain the constraint that an edge
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cannot be traversed more than once in the DFS. The running time complexity for a DFS

is still bounded by the number of edges O(ªXªªDª).

Hopcroft and Karp proved that if s is the cardinality of a maximum cardinality match-

ing, then O(
ffiffi
s
p

) iterations are sufficient to find this maximum cardinality matching. In

our case, s is bounded by ªXª and the complexity of each BFS and DFS is bounded by the

number of edges in GM i.e., O(ªXªªDª). The total complexity is therefore O(ªXª1.5ªDª).

We will run this algorithm twice, first with c(v) = uv to obtain a matching Mu and then

with c(v) = lv to obtain a matching Ml.

5.4. Pruning the Domains

Using the algorithm described in Section 5.3, we compute a matching Mu in graph G

such that capacities of variable-nodes are set to c(xi) = 1 and capacities of value-nodes

are set to c(v) = uv. A matching Mu clearly corresponds to an assignment that satisfies the

ubc if it has cardinalityªXªi.e., if each variable is assigned to a value.

Consider now the same graph G where capacities of variable-nodes are c(xi) = 1 but

capacities of value-nodes are set to c(v) = lv. A maximum matching Ml of cardinality

ªMlª =
P

lv represents a partial solution that satisfies the lbc. Variables that are not assigned

to a value can in fact be assigned to any value in their domain and still satisfy the lbc.

Pruning the domains consists of finding the edges that cannot be part of a matching.

From flow theory, we know that an edge can be part of a matching iff it belongs to a strongly

connected component of the residual graph or lies on a path starting from or leading to a free

node.

Régin’s algorithm prunes the domains by finding all strongly connected components

and flagging all edges that lie on a path starting or finishing at a free node. This can be done

in O(ªXªªDª) using a DFS as described in [17]. Using Theorem 2 and 3, we remove

unsupported edges in GMu and then in GMl
and therefore enforce domain consistency in

O(ªXª1.5ªDª).

Reusing matchings Mu and Ml, Régin shows how an incremental propagator can

maintain domain consistency in O(ªXªªDª) steps. Incremental algorithms are useful when

variable domains are pruned by other constraints and domain consistency needs to be

reinforced on the gcc. Régin’s incremental algorithm can also be used with our algorithm.

Our algorithm offers a better running time complexity. The advantage of our method

remains to be evaluated in practice.

6. Experimental Results

We implemented our new bounds consistency algorithm for the generalized cardinality

constraint (denoted hereafter as BC) using the ILOG Solver C++ library, Version 4.2

[6].1 Following a suggestion by Puget [10] adapted to the gcc, the range of applicability

of BC can be extended by combining bounds consistency with the removal of a value
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when the number of times it has been assigned reaches its upper bound (denoted BC+).

The ILOG Solver library already provides implementations of Régin’s [13] domain

consistency algorithm (denoted DC), and an algorithm (denoted CC) that enforces a level

of consistency that is equivalent to enforcing domain consistency on individual cardina-

lity constraints, where there is one cardinality constraint for each value [6, 20].

We compared the algorithms experimentally on various benchmark and random

problems. All of the experiments were run on a 2.40 GHz Pentium 4 with 1 GB of main

memory. Each reported runtime is the average of 10 runs except for random problems

where 100 runs were performed. Unless otherwise noted, the minimum domain size

variable ordering heuristic was used in the search.

We first consider problems introduced by Puget ([10]; denoted here as Pathological)

that were Bdesigned to show the worst case behavior^ of algorithms for the alldifferent

constraint. Here we adapt the problem to the gcc. A Pathological problem consists of a

single gcc over 2n + 1 variables with dom(xi) = [ij n, 0], 0 e i e n, and dom(xi) = [0,

ij n], n + 1 e i e 2n and each value must occur exactly once. The problems were solved

using the lexicographic variable ordering. On these problems, our BC propagator offers a

clear performance improvement over the other propagators (see Figure 2). Qualitatively

similar results were obtained for a generalization of these problems where each value

must occur exactly c times, where c is some small value.

We next consider instruction scheduling problems for multiple-issue pipelined process-

ors. For these problems there are n variables, one for each instruction to be scheduled and

latency constraints of the form xi e xj + l where l is some small integer value, and one or

more gcc’s over all n variables (see [18] for more details on the problem). In our

experiments, we used ten hard problems that were taken from the SPEC95 floating point,

Figure 2. Time (sec.) to first solution for Pathological problems.
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SPEC2000 floating point, and MediaBench benchmarks. The issue width of a processor

refers to how many instructions can be issued each clock cycle. In our experiments we

used the representative cases of a processor with an issue width of two with two identical

functional units, and an issue width of four with two floating point units and two integer

units (see Table 1). Here, our BC propagator offers a clear performance improvement

over the other propagators.

We next consider car sequencing problems (see [6]). For these problems there are n

variables, n values, each configuration of five options is equally likely, and there are

approximately 4n gcc’s. Here, our BC+ propagator achieves almost the same pruning

power as DC and becomes faster than the other propagators as n grows (see Table 2). We

also consider sport league scheduling problems (see [19] and references therein). For

these problems there are n2 variables, n values, and n /2 gcc’s. Here, our BC+ propagator

is within 15% of the fastest propagator, DC, in terms of run-time and pruning power (see

Table 3). The complexity or run-time of the CC and DC propagators depends on the

number of domain values, whereas the BC/BC+ propagators do not. The car sequencing

and sports league scheduling problems illustrate that the number of domain values does

not have to be very large for this factor to lead to competitive run-times for our relatively

unoptimized BC/BC+ propagators.

Table 2. (left) Time (sec.) to first solution or to detect inconsistency for car sequencing problems; (right)

number of backtracks (fails)

n CC DC BC BC+ n CC DC BC BC+

10 0.07 0.07 0.09 0.09 10 439 321 460 429

15 3.40 3.88 5.39 4.12 15 13,849 9,609 19,958 13,565

20 20.65 30.05 30.95 21.83 20 55,657 52,581 105,436 55,580

25 131.27 203.23 163.97 118.57 25 255,690 250,042 520,519 255,653

Table 1. Time (sec.) to optimal solution for instruction scheduling problems; (left) issue width = 2; (right) issue

width = 2 + 2 = 4. A blank entry means the problem was not solved within a 10 minute time bound

n CC DC BC n CC DC BC

69 0.01 0.12 0.00 69 0.00 0.07 0.00

70 0.00 0.07 0.00 70 0.01 0.07 0.00

111 0.03 0.75 0.01 111 0.03 0.44 0.01

211 0.51 9.24 0.07 211 0.56 7.16 0.11

214 0.60 9.29 0.09 214 0.61 7.85 0.13

216 2.67 124.07 0.31 216 2.78 89.61 0.48

220 5.09 285.91 0.52 220 2.90 98.15 0.57

690 1.34 493.15 1.67 690 2.17 307.20 2.81

856 471.16 3.84 856

1,006 8.70 1,006 307.00 14.44
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To systematically study the scaling behavior of the algorithm, we next consider ran-

dom problems. The problems consisted of a single gcc over n variables and each variable

had its initial domain set to [a, b], where a and b, a e b, were chosen uniformly at

random from [1, d = n /2] (chosen so that a mixture of consistent and inconsistent

problems would be generated). In these Bpure^ problems nearly all of the run-time is due

to the gcc propagators, and one can clearly see the cubic behavior of the DC propagator

and the nearly linear incremental behavior of the BC propagator (see Table 4). On these

problems, CC (not shown) could not solve some of the smallest problems within a 10

minute time bound.

We have also empirically compared our algorithm to Katriel and Thiel’s algorithm [7]

over the same problems reported above. The implementation of Katriel and Thiel’s

algorithm was written by those authors. Care was taken to, as much as possible, compare

the algorithms rather than the implementations. To this end, both implementations used

the same sorting code and the pruning of count variables was disabled in Katriel and

Thiel’s algorithm. Our algorithm was never slower on the Pathological problems (the

maximum speedup of our algorithm over Katriel and Thiel’s algorithm was 75%, where

the speedup is calculated as the time saved divided by the original time), never slower on

the instruction scheduling problems (maximum speedup was 13%), and never slower on

the car sequencing problems (maximum speedup was 26%). Katriel and Thiel’s algo-

rithm was never slower on the sports league scheduling problems (maximum speedup

was 8%) and never slower on the random problems (maximum speedup was 13%).

Table 4. Time (sec.) to first solution or to detect inconsistency for random problems where the bounds on

number of occurrences of each value were (left) [0, 2]; (right) chosen uniformly at random from {[0, 1], [0, 2],

[1, 1], [1, 2], [1, 3], [2, 2], [2, 3], [2, 4]}. A blank entry means some problems could not be solved within a

10 min. time bound

n DC BC

DC BC

d/2 d 2d d/2 d 2d

100 0.02 0.01 0.00 0.01 0.33 0.00 0.00 0.00

200 0.23 0.02 0.00 0.07 4.81 0.00 0.01 0.01

400 2.55 0.08 0.01 0.60 74.88 0.00 0.03 0.04

800 26.14 0.33 0.03 4.58 0.01 0.15 0.16

1,600 266.80 1.24 0.20 34.78 0.02 0.70 0.62

Table 3. (left) Time (sec.) to first solution for sports league scheduling problems; (right) number of backtracks

(fails). A blank entry means the problem was not solved within a 10 minute time bound

n CC DC BC BC+ n CC DC BC BC+

8 0.19 0.16 0.04 0.18 8 1,308 914 136 942

10 1.10 0.12 0.03 0.19 10 5,767 428 54 689

12 1.98 1.70 51.71 2.07 12 6,449 4,399 149,728 5,356

14 11.82 8.72 9.98 14 33,901 19,584 22,176
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7. Conclusions

We presented an efficient algorithm for bounds consistency propagation of the gcc and

showed its usefulness on a set of benchmark and random problems. We also presented an

algorithm for domain consistency propagation with an improved worst-case bound on

problems that arise in practice.
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9. López-Ortiz, A., Quimper, C.-G., Tromp, J., & van Beek, P. (2003). A fast and simple algorithm for bounds

consistency of the alldifferent constraint. In Proceedings of the Eighteenth International Joint Conference

on Artificial Intelligence, Acapulco, Mexico, pages 245Y250.

10. Puget, J.-F. (1998). A fast algorithm for the bound consistency of alldiff constraints. In Proceedings of the

Fifteenth National Conference on Artificial Intelligence, Madison, Wisconsin, pages 359Y366.
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