
Solving Kirkman’s Schoolgirl Problem in a Few
Seconds

NICOLAS BARNIER barnier@recherche.enac.fr

École Nationale de l’Aviation Civile, Toulouse, France

PASCAL BRISSET brisset@recherche.enac.fr

École Nationale de l’Aviation Civile, Toulouse, France

Abstract. The Social Golfer Problem has been extensively used by the constraint community in recent years

as an example of a highly symmetric problem. It is an excellent problem for benchmarking symmetry breaking

mechanisms such as SBDS or SBDD and for demonstrating the importance of the choice of the right model for

one problem. We address in this paper a specific instance of the Golfer Problem well known as Kirkman’s

Schoolgirl Problem and list a collection of techniques and tricks to find efficiently all its unique solutions. In

particular, we propose SBDD+, a generic improvement over SBDD which allows a deep pruning when a

symmetry is detected during the search. Our implementation of the presented techniques improves previously

published results by an order of magnitude for CPU time as well as for number of backtracks. It computes the

seven unique solutions of Kirkman’s problem in a few seconds.

Keywords: symmetry breaking, social golfer problem, resolvable steiner systems

1. Introduction

Highly symmetric problems are always challenging for Constraint Programming and

breaking, removing, discarding symmetries among solutions has been the subject of much

interest among researchers of the CP community in recent years. We focus in this article

on one particular symmetric problem: the Social Golfer Problem [7], also known as

resolvable Steiner system in combinatorial theory [13]. Except for small instances, this

problem is open and Constraint Programming gives balanced results: formulation is

straightforward but far from being efficient enough to solve all instances.

We are interested in breaking as much symmetry as possible, as well as combining and

improving previously proposed techniques to find all solutions of one specific instance of

the problem. The first important choice concerns the model. We naturally choose a set

model [9] which automatically removes one kind of symmetry. The next step is to

statically remove symmetries by adding constraints. Additional redundant constraints may

be added to detect failures as soon as possible. The crucial point is then to be able to find

an isomorphism relating two solutions quickly; we propose a Blazy^ approach which splits

the detection into two phases, building and checking, that provides the required efficiency.

One of the key ideas of the article is to exploit an isomorphism found between two

solutions, or partial solutions, to prune as much as possible of the subsequent search tree.

We show that this is possible if the structure of the search tree is intrinsically related to

Constraints, 10, 7–21, 2005
2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

the symmetries; in this case an isomorphism which maps a solution to another one

similarly maps also some ancestor nodes. Combined with SBDD [5], we call the tech-

nique SBDD+.

Our experiments show that results presented in previous papers [18] can be greatly

improved both in number of failures and in CPU time. The problem of finding all sol-

utions to Kirkman’s Problem, which might have been considered hard to solve recently

using Constraint Programming (two hours of CPU time mentioned in [5]), can be solved

in a few seconds using our approach.

The remainder of the article is structured as follows: we first define the Social Golfer

Problem and model it, giving numerous possible redundant constraints. In the next

section, we present our algorithm used to check symmetry and explain extensively our

deep pruning technique associated with symmetry finding. Section 4 displays results of

our experiments, confirming the approach. We conclude by recalling that many chal-

lenges remain.

2. Model

The classical instance of the Social Golfer Problem is described in the following terms:

32 golfers want to play in 8 groups of 4 each week, in such a way that any two

golfers play in the same group at most once. How many weeks can they do this for?

The problem may be generalized to w weeks of g groups, each one containing s

golfers. This instance will be denoted g-s-w in the sequel of the article. We note n = g � s

the total number of golfers. The most famous and historical instance is the 5-3-7 for

which all 7 unique (non-symmetric) solutions were already computed by Kirkman in the

early 1850s [12]. In the combinatorics area, solutions for s = 3 are known as Kirkman

triple systems or resolvable Steiner systems. Such systems have been extensively

investigated (see for example [2]).

In the context of Constraint Programming, different models have been proposed in

[19] for the Golfer Problem. The integer set model1 which automatically removes sym-

metries inside groups is the one we chose for our experiments. In this model, the

variables are the groups themselves and constraints are expressed as operations on sets.

The variables Gi, j, with i the index of weeks and j the index of groups, are sets and

their associated domain is a lattice of sets defined by its greatest lower bound (the

necessary elements) and its least upper bound (the possible elements) [9]. The Gi, j s are

subsets of the set of golfers. Each of them contains exactly s elements. All the groups of

a week are disjoint and every pair of groups from different weeks share at most one

element. All these properties are expressed with the following constraints:

1 � i � w; 1 � j � g Gi; j � 1; 2; . . . ; nf g
1 � i � w; 1 � j � g Gi; j

�� �� ¼ s
ð1Þ

8 N. BARNIER AND P. BRISSET

1 � i � w; 1 � jG j0 � g Gi; j \ Gi; j0 ¼ ; ð2Þ

1 � iG i0 � w; 1 � j; j0 � g Gi; j \ Gi0; j0
�� �� � 1 ð3Þ

The constraints (2) may be basically implemented as w all_disjoint global

constraints [10] instead of the wg(g j 1)/2 binary disjoint constraints. Note that no global

consistency is achieved for this global constraint. The number of constraints of type (3)

grows quadratically with the number of groups. It may prevent to solve large instances with

this model.

According to [19] experiments, the naive set model is not the best one. However, we

choose it for several reasons. First it is the simplest one and it uses the highest abstraction

level. Second, redundant constraints described in the following section are easier to

express with this model. Third, this is the model used in [5, 18] and it allows us to

compare our approach with these previous ones.

2.1. Redundant Constraints

Several constraints can be added to the original model. While they may help to solve the

hardest instances, the induced overhead is sometimes too large for small instances like

Kirkman’s.

The fact that a player plays exactly once per week is not explicit in the original model,

but only entailed by the constraints (1) and (2). The corresponding constraint is written

using reified membership constraints:

1 � i � w; 1 � p � n
X

1 � j � g

p 2 Gi; j

� �
¼ 1 ð4Þ

Warwick Harvey2 proposes to express the fact that the players of a group appear in

exactly s groups in other weeks:

1 � i 6¼ i0 � w; 1 � j � g
X

1 � j0 � g

Gi; j \ Gi0; j0 6¼ ;
� �

¼ s ð5Þ

Taking into account the size of the groups, the global constraint atmost1 proposed

by [17] may also be set on the list of all groups:

atmost1 Gi; j=1 � i � w; 1 � j � g
� �

; s
� �

ð6Þ

where atmost1 (S, c) states that sets of S must have cardinal c and must intersect

pairwise in atmost one element. The propagation associated with this constraint basically

ensures that the possible number of partners of a player p is large enough, i.e. greater or

SOLVING KIRKMAN’S SCHOOLGIRL PROBLEM 9

equal to (c j 1)Np where Np is the number of occurrences of p. In our case, Np is fixed

(equal to w) so the propagation rule of the constraint can be efficiently customized.

2.2. Breaking Symmetries Statically

Our first goal is to compute all the unique non-symmetric solutions to the problem. As

described in previous papers [5, 18, 19], the Social Golfer Problem is highly symmetric

(Px denotes the set of permutations of {1, 2, . . . , x}):

� Players can be exchanged inside groups �P 2 Psð Þ;
� Groups can be exchanged inside weeks ð�G 2 PgÞ;
� Weeks can be ordered arbitrarily �W 2 Pwð Þ;
� Players can be renamed among n! permutations �X 2 Pnð Þ.

The symmetry inside groups is inherently removed by modelling groups as sets. The

symmetry inside weeks may be handled by ordering the g groups. Because these groups

are disjoint, a total order can be achieved by sorting them according to the smallest

element of the groups (because two golfers do not play together twice in the same

group):

1 � i � w; 1 � j � g � 1 min Gi; j < min Gi; jþ1

Note that this implies that the first player is in the first group for each week.

Following the same idea, weeks can be ordered with the first group as key, which can

be easily done with the second smallest element:

1 � i � w � 1 min Gi; 1n 1f g
� �

< min Gi þ1; 1n 1f g
� �

Symmetries among players are more difficult to handle and only dynamic checks will

be able to remove them completely. We statically set:

� First week is fixed;

� First group of second week is fixed with smallest possible players;

� BSmall^ players are put in Bsmall^ groups: for every week, the pth player is not in a

larger group than the pth group:

1 � i � w; 1 � p � g G
��

i; p � p

where Gi; p is the number of the group of player p in week i, i.e. the Gi; p are dual

variables defined by:

1 � i � w; 1 � p � n G
��

i;p ¼ j iff p 2 Gi; j

10 N. BARNIER AND P. BRISSET

� Players together in a same group in the first week are placed in ordered groups in the

second week:

1 � j � g; p1; p2 2 G1; j; p1 < p2 G
��

2; p1
< G

��
2; p2

� Groups of the first week are ordered in the second week:

1 � j < j0 � g G
��

2;G1; j
�lexico G

��
2;G1; j0

where G
��

i; x1; x2;:::f g is the tuple G
��

i; x1
;G
��

i; x2
; : : :

� �
and e lexico stands for the lexicographic

order on integer tuples.

These constraints are compatible with each other (the first week has to be chosen

according to the order imposed by the other constraints, c.f. next example) and leave at

least one solution in every symmetry class: any solution to the original problem can be

permuted through some symmetries to get a solution which satisfies these additional

constraints.

Unfortunately, the conjunction of all these constraints does not remove all the

symmetries among players. For example, for the 5-2-2 instance, the two following

solutions are found:

1 2 3 4 5 6 7 8 9 10

1 3 2 4 5 7 6 9 8 10

1 2 3 4 5 6 7 8 9 10

1 3 2 5 4 6 7 9 8 10

Both solutions satisfy all aforementioned breaking symmetry constraints but the

second one is isomorphic to the first one through the functions (�G is the same for the

two rounds):

�X ¼ 1!7; 2 ! 8; 3 ! 9; 4 ! 10; 5 ! 1; 6 ! 2; 7! 3; 8 ! 4; 9 ! 5; 10 ! 6f g
�G ¼ 1 ! 4; 2 ! 5; 3 ! 1; 4 ! 2; 5 ! 3f g
�W ¼ 1 ! 1; 2 ! 2f g

We notice that even if permutations within weeks and groups may be statically

removed by constraints when considered alone, it is still necessary to take them into

account when the permutation within players is handled.

Remaining symmetries must be dynamically discarded; we discuss an efficient way to

do it in the next section.

2.3. Integer Model with a Cardinality Constraint

We give here another model whose originality comes from the use of a global cardinality

constraint [16]. To the best of our knowledge, it is the first time it is proposed.

SOLVING KIRKMAN’S SCHOOLGIRL PROBLEM 11

Decision variables in this model are G
��

i; p, the number of the group of player p in

week i. The cardinal of each group must then be constrained by:

1 � p � n; 1 � i � w
G
��

i; p 2 1::g½ �
gcc G

��
i; p 1 � p � nj

n o
;G 1; sð Þ; . . . ; g; sð Þ >

	
(

where gcc (S, G (v1, c1), . . . , (vk, ck), . . .9) constrains the number of occurrences of

elements of S equal to vk to be equal to ck. Then the fact that a player plays only once a

week is specified within the structure of the model.

The Bnot with the same golfer more than once^ constraint is straighforward with

reified constraints (whose number grows quadratically with the number of golfers):

1 � p1 < p2 � n
P

1� i�w

G
��

i; p1
¼ G

��
i; p2

	

� 1

This model is surprisingly efficient on some instances (for example it allows a short

program3 to find the first solution of the classic 8-4-9 instance in half a second and 32

backtracks) and surprisingly slow on some other: more that 300 000 backtracks are

required to find a first solution to 6-4-2. Therefore, we do not use this model for the

experiments presented in this paper.

3. Handling Symmetries During Search

In this section we present our adaptation to the Social Golfer Problem of a generic

symmetry breaking mechanism proposed in [5].

3.1. Generic Techniques for Breaking Symmetries

Symmetry breaking constraints fail to remove statically all symmetries among the

players in the Social Golfer problem. Therefore, several solutions have been proposed to

prune the search tree taking into account these symmetries dynamically.

Using SBDS [8], which needs to list explicitly the symmetries to remove, Barbara

Smith was able in [19] to break most of the symmetries and obtain new results. Later,

two generic and similar approaches were proposed at the same time [5, 6]. In the second

one, the technique called SBDD (for Symmetry Breaking via Dominance Detection) was

applied with success to the Social Golfer Problem and allows to compute all the non-

symmetric solutions of small instances.

In SBDD, states during the search (i.e., nodes of the search tree) are compared to

previously explored ones modulo a symmetry mapping function. A (new) state P0 is

dominated by an (old) state P if P0 is subsumed by �(P) where � is a symmetry mapping

function. When searching only for non-symmetric solutions, a state which is dominated

by an already explored one is discarded. So this technique requires to store all explored

12 N. BARNIER AND P. BRISSET

nodes. However, it can be noticed that if P0 is dominated by P then it is dominated by the

father node of P. It means that when all the sons of a state have been explored, one can

remove them from the store and keep only the father. Concretely, in case of depth first

search, the store for SBDD can be handled as a stack of states with their associated

depth. When a new state must be added to the store, all the states from the top of

the stack which have a greater depth may be removed. We will see later that it is

worthwhile to store states in a compiled form in order to ease future dominance

checks against these states.

One issue of the technique is its efficiency because checking dominance may be very

expensive: w(s!)gg! symmetries have to be checked in the Social Golfer Problem. Some

restrictions are necessary to get an effective procedure:

� storage of explored states may be limited;

� checking of dominance may be restricted to some depths.

We propose to specialize the SBDD technique for the Social Golfer Problem, first to

be able to check for dominance quickly, second, to better exploit the symmetries found.

3.2. Filtering Efficiently Symmetric Solutions

It is shown in experiments of [5] that it is not worthwhile to check dominance for every

node during search for golfer solutions. For the 4-4-4 instance, authors conclude that

checks every 8th depth give the best result. Results given in the next section show that

Blazy^ dominance checking is effective when solving small instances of the Golfer

Problem.

General dominance check for the Golfer Problem as described in [5] requires to

compute a matching in a bipartite-graph, for which the best algorithm known runs in

O n5=2
� �

[11]. However checking that there exists a symmetric mapping function which

maps an old solution (a leaf in the search tree) to a new one is significantly easier.

Actually, it can be noticed that a solution to the Golfer Problem is fully specified by

the week number of the pairs of players.4 Precisely, a solution can be described by the

following mapping:

p1; p2ð Þ ! i such that G
��

i; p1
¼ G

��
i; p2

ð7Þ

where (p1, p2) is a pair of golfers. Note however that the mapping is not total for

instances where a player does not play with all others.

A check must be done for each possible symmetry. [5] remarks that the possible

symmetries may be easily enumerated looking for a matching from the first week of the

first solution (or partial solution) P to any week of the second solution P0. The key idea

to compute symmetry checking efficiently is to compute it lazily: instead of choosing a

complete matching and checking the other weeks afterward, it is worth checking them

while the matching is built.

Figure 1 illustrates this principle: Suppose a partial isomorphism is built by mapping

an exchange of the first two groups of the first week 1 6 4, 2 6 5, 3 6 6). There is

SOLVING KIRKMAN’S SCHOOLGIRL PROBLEM 13

enough information in this partial matching to check all pairs among other weeks with

index of players less than 6. In this example, one can check that pairs (1, 4) and (2, 5) of

the second week would be mapped in the same week of the second solution. Because this

symmetry does not hold (pair (1, 4) is mapped to (4, 1) which appears in second week,

(2, 5) is mapped to (5, 2) which appears in week 3), it is not necessary to try to complete

this partial matching and we can Bbacktrack^ to consider another mapping for the first

two groups of the first week.

The check for pair mapping may be easily performed at a low cost by a precompu-

tation phase:

� Derive the set of pairs of each week i of the first solution P, sorted according to the

greatest element of the pair, denoted Ci(P). Note that this precomputation may be

done only once when the solution is found and stored.

� Build a table of the week numbers indexed by the pairs of the second solution P0

(mapping of equation (7), noted WP0(c)).

The complete procedure is detailed in Figure 2. The worst case complexity is the same as

a naive approach but experiments show that this checking algorithm, while only applied

on leaves of the search tree, is efficient enough to compute all solutions of Kirkman’s

problem in a reasonable time (Section 4).

3.3. Pruning Deeply

An efficient symmetry checking procedure applied on leaves allows us to compute all

the unique solutions but does not improve the search itself: no subtrees are removed.

However, following an idea of [14] used in an algorithm to compute graph iso-

morphisms,5 symmetry checking on leaves may be used to prune large subtrees.

The idea is illustrated in Figure 3. Let P be a first solution (the tree is explored by

depth first search, from left to right) and P0 a second solution proved to be isomorphic to

P (P0 = �(P)). We note n = P \ P0 the deepest node in the search tree which is common to

paths from the root to P and P0, and s (resp. s0) its immediate successor (we suppose that

Figure 1. Partial symmetry between solutions. Solid arrows show isomorphism building while dashed lines

show isomorphism checking.

14 N. BARNIER AND P. BRISSET

the search tree is binary) leading to P (resp. its immediate successor leading to P0). Under

some conditions (which we call BMcKay condition^ in the sequel), it can be shown that

node s0 is the image of s by the isomorphism � (more precisely the canonical extension

of � over partial solutions). In this case, the remaining unexplored subtree of s0 is itself

the image of an already explored subtree starting from s. Then it can be pruned because it

would lead only to solutions that are images by � of already found solutions.

In order to be able to apply this idea to a search tree, the structure of the tree (i.e. the

labelling procedure) must be compatible with the symmetric mapping functions family

Figure 3. Illustration of McKay’s idea: The dark subtree can be pruned.

Figure 2. Search for a players symmetry �X mapping a solution P to P 0.

SOLVING KIRKMAN’S SCHOOLGIRL PROBLEM 15

we consider. For the Golfer Problem, all symmetries but the one on players permutation

may be simply removed with constraints. So the symmetries discovered at the leaves

concern only �X. Following these remarks, the right choice is to label golfer by golfer to

be able to apply �X extension on a node of the search tree. Note that a full choice for one

golfer p amounts to labelling the w G
��

i; p variables.

Unfortunately, this labelling does not ensure the McKay condition if the set of golfers

S above node n (Figure 4) is not stable (i.e., � Sð Þ 6¼ S) through the isomorphism found

�: suppose node n concerns golfer 3 and � is such that �(1) = 4; we clearly cannot have

s0 = �(s) in this case. The problem in this example is that the choice on golfer 1 for P is

mapped to the choice on golfer 4 in P0, the latter being under the node n. Hence, node n

cannot be pruned.

The necessary adaptation of McKay idea for our search tree is to consider two nodes s,

s0 which are descendants of n, leading respectively to P and P0, such that the set of

choices above s is mapped by � to the set of choices above s0. In this case s0 can be

pruned. Of course, it is better to choose the highest such node in the search tree to prune

as much as possible. Figure 4 illustrates the idea; the smallest set of golfers stable for �
which contains 3 (node n) is {1, 2, 3, 4, 5, 6}.

Results given in the next section show that this deep pruning is highly effective.

3.4. SBDD++++

We propose in this section an integration of the idea of deep pruning presented in the last

section with the symmetry breaking mechanism SBDD. This mechanism computes

isomorphisms not only on solutions (leaves of the search tree) but on states of the search

tree which can be described with the current domains of the variables. In SBDD+, we

Figure 4. Deep pruning for the golfer problem.

16 N. BARNIER AND P. BRISSET

will exploit such isomorphism and show that it is applicable on ancestors, then leading to

a better pruning.

Based on SBDD, the approach is generic: no hypothesis are required on the nature of

the variables (integer or set variables) or the nature of the isomorphism. However, we

present here the application of the method only to the Golfer Problem.

Fine symmetry checking on leaves improved with deep pruning allows us to solve our

problem in a reasonable time. However, better pruning may be obtained if the method is

integrated with the SBDD approach. It requires first to be able to apply a refinement of

the algorithm given in Figure 2 to incomplete solutions (nodes of the search tree), second

to call the procedure only at the appropriate times.

Experiments show that most of the symmetries found between two complete solutions

involve a mapping from the first week to itself.6 Besides, incomplete solutions always

get a complete first week since it is fixed (c.f. 2.2). This means that the previous

symmetry checking algorithm may be easily modified to be applied to incomplete

solutions, trying to map the first week of the first solution only on the first week of the

second (variable i0 takes only the value 1 in algorithm 2): building of the symmetry can

be kept. Moreover, the checking phase of the algorithm remains the same: a symmetry is

found if all pairs of P get an image in P0. But it does not mean that a symmetry is

necessarily found when it exists, i.e., the algorithm possibly does not find all symmetries

(which will then be discovered later, when the solution is completed).

Dominance checking remains expensive and it must not be done too often. The check

frequency must of course be related to the structure of the problem. A good compromise

for the Golfer Problem is to:

� Store nodes at every depth of the search tree.

� Check dominance for nodes only against stored nodes of smaller depth.

� Check dominance only for nodes at depths multiples of s.7

The maximum size of the node store may be estimated: the depth of the search tree is the

number of golfers gs; at each level, there may be gw (for one golfer, g choices for each

week) nodes to store. So the size of the store is bound by gsgw (12 890 625 for Kirkman’s

Problem). This bound is a bad upper bound due to numerous symmetries removed by

constraints (first week fixed, small golfers fixed, . . .). For Kirkman’s Problem, with the

detailed previous choices, only 15 nodes are effectively stored at the same time.

SBDD is compatible with the deep pruning mechanism: when a dominance is found, it

is usually possible to prune more than the dominated node, just looking for the highest

ancestor of the node for which the McKay condition is verified. We call the method

SBDD+. It is illustrated in Figure 5.

4. Results

We give in this section results of our experiments with the different techniques described

in previous sections. The implementation has been done using FaCiLe [1], a functional

SOLVING KIRKMAN’S SCHOOLGIRL PROBLEM 17

constraint library written in Objective Caml (caml.org). This library provides usual

finite domain variables over integers and sets, arithmetic constraints, set constraints [9],

global constraints and an extensive mechanism to build search goals. This library, under

LGPL license, and its documentation is available at www.recherche.enac.fr/

opti/facile. CPU times are given for a Pentium 700 MHz running Linux 2.4.5.

The set model has been used with the labelling described earlier, golfer by golfer,

choosing a group for each week, in increasing order. Additionally, some simple

symmetries are dynamically removed during the search: when a golfer is placed in a

group which does not contain any other golfers, no choice point is left.8 The refinement

of the redundant atmost1 (equation (6)) constraint is set in every experiment.

Labeling is slightly improved according to the following remark: the unique

solutions of 5-3-7 are extensions of unique solutions of 5-3-2. Let S and S0 be

isomorphic solutions of 5-3-2 such that S0 = �(S). If S is extended into a solution P

of 5-3-7, then it is clear that �(P) is an isomorphic solution of 5-3-7 and also is an

extension of P0. Then, our labeling first computes all unique solutions of 5-3-2 and

extends them to 7 weeks. There are only 2 unique solutions for 5-3-2 and it takes 0.1

seconds to compute them.

Table 1 shows the number of created choice points, the number of backtracks, the total

number of solutions found, the number of dominance checks and the CPU time for

different combinations of methods and tricks presented in this paper to compute all

7 unique solutions to the schoolgirl problem (then 11 found solutions means that

isomorphism has been detected only at the leaf of the search tree for 4 of them). The

first column (Leaves) gives the results for the straightforward search with simple

discarding of symmetric solutions at leaves. This time can be compared with the one

annouced in [5] (two hours). Next column (McKay) corresponds to the symmetry

detection at leaves with deep pruning. We see that the number of failures and the time are

smaller by an order of magnitude from the previous ones. Column SBDD uses our

Figure 5. SBDD+: Deep pruning integrated to SBDD.

18 N. BARNIER AND P. BRISSET

incomplete dominance checking; SBDD+ adds deep pruning. It is the best time achieved

with our experiments. It can be compared with the result of [18] (400 s on a similar

CPU).

However, the number of backtracks can still be reduced with redundant constraints: in

column B+(4)^, the redundant constraint (4) stating that a golfer plays only once per

week allows us to further reduce the search but the overhead is too large (with our

implementation) and CPU time is not improved. The last column adds redundant

constraint (5) which expresses that the players of a group are spread among s different

groups in other weeks. The overhead is here dissuasive but the number of backtracks is

5 times smaller than what was done in [18].

Our combination of tricks to solve the Golfer Problem allowed us to solve open (at

least for Constraint Programming) instances (6-4-6, 7-3-9, 8-3-7, 7-4-6, 6-5-7). Some of

these instances, at the time of writing this paper, are no longer open [15] and last updates

of Warwick Harvey’s web page include all these results (www.icparc.ic.ac.uk/

~wh/golf/).

5. Conclusion

We have presented in this article a combination of techniques which allows us to

efficiently find all solutions to the Golfer Problem. The main contribution of the paper is

an improvement of the SBDD principle that we call SBDD+. The key idea of the

improvement is, while breaking symmetries, to exploit the symmetry function to be able

to prune higher in the search tree. Extensive experiments show that this new mechanism

can reduce by an order of magnitude the CPU time as well as the number of backtracks

on the considered problem.

The deep pruning technique has been applied only to the Golfer Problem but is

general. The only restriction is to have a relative compatibility between the structure of

the search tree and the considered symmetry mappings in order to be able to prove that a

symmetry found between two nodes is also true for ancestors of these two nodes. We

believe that the notion of stability through the isomorphism of ancestor nodes, a nec-

essary and sufficient condition for our problem, should be a general property. Further

work is needed in this direction.

Table 1. Computing the 7 solutions of Kirkman’s problem

Choice points Fails Solutions Dom. checks CPU(s)

Leaves 20 062 206 19 491 448 20 640 5 925

McKay 1 845 543 1 803 492 934 484

SBDD 107 567 104 134 11 5 373 24

SBDD+ 29 954 28 777 11 456 7.8

+(4) 18 705 16 370 11 456 9.4

+(5) 18 470 16 169 11 443 36

SOLVING KIRKMAN’S SCHOOLGIRL PROBLEM 19

For the Golfer Problem itself, some instances remain out of reach for current

Constraint Programming approaches (even if they are well known by combinatorics, for

example 7-3-10 and 7-4-9 are extensively studied). Our model may be improved using

the incomplete propagation techniques proposed by [18] in order to attack these

instances. Note that SBDD+ must be refined and tuned for larger instances to avoid an

explosion of the node store and an unacceptable time overhead due to node dominance

checking.

In spite of many efforts from the constraint community, the 8-4-10 instance is still

open. This challenge is fascinating and can be considered with the highest priority to

demonstrate that constraint technology is really suited for highly symmetric combina-

torial problems.

Notes

1. www.icparc.ic.ac.uk/eclipse/examples.

2. www.icparc.ic.ac.uk/~wh/golf.

3. This model for the Golfer Problem is an example provided in the constraint library

we use.

4. It is the integer model proposed by Barbara Smith in [19].

5. The nauty software based on McKay ideas is used by combinatorics people to find

resolvable Steiner sytems [2].

6. For 7 non-symmetric solutions, 927 solutions are found and 603 of them have this

property.

7. We note that the cardinal of a set of golfers that is stable for a symmetry function

(c.f. Figure 4, a group can be mapped only on another group) is a multiple of s. Since

the pruning can occur only at the level of such a set, the checking is not required at

every level.

8. A similar idea is used in usual graph coloring algorithms: if a Bnew^ unused color is

tried for a node, there is no need to consider other new colors for this node later.

References

1. Barnier, N., & Brisset, P. (2001). FaCiLe: A functional constraint library. In Proceedings of

CICLOPS2001. Paphos, pages 52Y66.

2. Cohen, M. B., Colbourn, C. J., Ives, L. A., & Ling, A. C. H. (2001). Kirkman triple systems of order 21

with nontrivial automorphism group. Math. Comput.

3. Walsh, T., ed. (2001). CP’01: 7th International Conference on Principle and Practice of Constraint

Programming, number 2239 in LNCS, Springer-Verlag, Paphos, Cyprus.

4. CPAIOR’02: Fourth International Workshop on Integration of AI and OR Techniques in Constraint

Programming for Combinatorial Optimisation Problems, Le Croisic, France, 2002.

5. Fahle, T., Schamberger, S., & Sellmann, M. Symmetry breaking. In CP’01 [3], pages 93Y107.

6. Focacci, F., & Milano, M. Global cut framework for removing symmetries. In CP’01 [3], pages 77Y92.

7. Gent, I., Walsh, T., & Selman, B. CSPlib: A problem library for constraints. csplib.org.

20 N. BARNIER AND P. BRISSET

8. Gent, I. P., & Barbara, S. (2000). Symmetry breaking during search in constraint programming. In Horn,

W., ed., EACI’2000, pages 599Y603.

9. Gervet, C. (1997). Interval propagation to reason about sets: Definition and implementation of a practical

language. Constraints 1(3): 191Y244. www.icparc.ic.ac.uk/~cg6.

10. Gervet, C., & Sadler, A. (2004). Global Filtering for the Disjointness Constraint on Fixed Cardinality

Sets. Technical Report, ICPARC-04-02 (March).

11. Hopcroft, J., & Karp, R. (1973). An n5/2 algorithm for maximum matching in bipartite graphs. SIAM

J. Comput. 2(4): 225Y231.

12. Kirkman, T. P. (1850). Note on an unanswered prize question. Cambridge Dublin Math. J. 5: 255Y262.

13. Hall, M. Jr. (1983). Combinatorial Theory, 2nd Edition. Wiley Classics Library.

14. McKay, B. D. (1981). Practical graph isomorphism. Congr. Numerantium 30: 45Y87.

15. Prestwich, S. Randomised backtracking for linear pseudo-boolean constraint problems. In CPAIOR’02

[4], pages 7Y19.

16. Régin, J. -C. (1996). Generalized arc consistency for global cardinality constraint. In Proceedings of the

Thirteenth National Conference on Artificial Intelligence.

17. Sadler, A., & Gervet, C. (2001). Global reasoning on sets. In Formul’01, Workshop Modelling and

Problem Formulation.

18. Sellmann, M., & Harvey, W. Heuristic constraint propagation. In CPAIOR’02 [4], pages 191Y204.

19. Smith, B. (2001). Reducing symmetry in a combinatorial design problem. In CPAIOR’01, pages 351Y359

(April). www.icparc.ic.ac.uk/cpAIOR01.

SOLVING KIRKMAN’S SCHOOLGIRL PROBLEM 21

